
Document Number: 252046-065

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

November 2020

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2020, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

-047 • Removed Documentation Changes 1-25
• Add Documentation Changes 1-19

June 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

§

-048 • Removed Documentation Changes 1-19
• Add Documentation Changes 1-33

September 2015

-049 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-33

December 2015

-050 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-9

April 2016

-051 • Removed Documentation Changes 1-9
• Add Documentation Changes 1-20

June 2016

-052 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-22

September 2016

-053 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-26

December 2016

-054 • Removed Documentation Changes 1-26
• Add Documentation Changes 1-20

March 2017

-055 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-28

July 2017

-056 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-18

October 2017

-057 • Removed Documentation Changes 1-18
• Add Documentation Changes 1-29

December 2017

-058 • Removed Documentation Changes 1-29
• Add Documentation Changes 1-17

March 2018

-059 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

May 2018

-060 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-23

November 2018

-061 • Removed Documentation Changes 1-23
• Add Documentation Changes 1-21

January 2019

-062 • Removed Documentation Changes 1-21
• Add Documentation Changes 1-28

May 2019

-063 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-34

October 2019

-064 • Removed Documentation Changes 1-34
• Add Documentation Changes 1-36

May 2020

-065 • Removed Documentation Changes 1-36
• Add Documentation Changes 1-31

November 2020

Revision Description Date

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-L 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, M-U 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference, V-Z 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set
Reference 334569

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
Programming Guide, Part 4 332831

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific
Registers 335592

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 10, Volume 1

4 Updates to Chapter 15, Volume 1

5 Updates to Chapter 1, Volume 2A

6 Updates to Chapter 2, Volume 2A

7 Updates to Chapter 3, Volume 2A

8 Updates to Chapter 4, Volume 2B

9 Updates to Chapter 5, Volume 2C

10 Updates to Chapter 6, Volume 2D

11 Updates to Chapter 7, Volume 2D

12 Updates to Chapter 1, Volume 3A

13 Updates to Chapter 4, Volume 3A

14 Updates to Chapter 6, Volume 3A

15 Updates to Chapter 7, Volume 3A

16 Updates to Chapter 10, Volume 3A

17 Updates to Chapter 11, Volume 3A

18 Updates to Chapter 17, Volume 3B

19 Updates to Chapter 18, Volume 3B

20 Updates to Chapter 24, Volume 3B

21 Updates to Chapter 25, Volume 3C

22 Updates to Chapter 26, Volume 3C

23 Updates to Chapter 27, Volume 3C

24 Updates to Chapter 32, Volume 3C

25 Updates to Chapter 34, Volume 3C

26 Updates to Chapter 35, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

27 Updates to Chapter 40, Volume 3D

28 Updates to Chapter 42, Volume 3D

29 Updates to Appendix C, Volume 3D

30 Updates to Chapter 1, Volume 4

31 Updates to Chapter 2, Volume 4

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

1. Updates to Chapter 1, Volume 1

Change bars and green text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

--
Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Vol. 1 1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32
architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System

Programming Guide (order numbers 253668, 253669, 326019 and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series

1-2 Vol. 1

ABOUT THIS MANUAL

• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
• Intel® Xeon® Processor Scalable Family
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family

Vol. 1 1-3

ABOUT THIS MANUAL

• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

1-4 Vol. 1

ABOUT THIS MANUAL

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with the
families of Intel processors that are based on these architectures. It also gives an overview of the common features
found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Vol. 1 1-5

ABOUT THIS MANUAL

Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2
extensions, including XMM registers and packed double-precision floating-point data types; provides an overview
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel®
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3,
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set,
FMA and Intel AVX2 extensions and gives guidelines for writing code that access these extensions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 17 — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection
Extensions and gives guidelines for writing code that access these extensions.

Chapter 18 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 19 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O
instructions, and I/O protection mechanisms.

Chapter 20 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. This notation is described below.

1-6 Vol. 1

ABOUT THIS MANUAL

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able.

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers that contain such bits.

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or

reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.2.1 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

Figure 1-1. Bit and Byte Order

Byte 3

Data Structure

Byte 1Byte 2 Byte 0
Lowest

Bit offset

28
24
20
16
12
8
4
0

Address

Byte Offset

Highest
Address 32 24 23 16 15 8 7 0

Vol. 1 1-7

ABOUT THIS MANUAL

• The operands argument1, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, 0F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.

1-8 Vol. 1

ABOUT THIS MANUAL

1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code.
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

SDM29002

Vol. 1 1-9

ABOUT THIS MANUAL

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm

See also:
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us
https://software.intel.com/en-us/articles/resource-center/
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/security-software-guidance/

1-10 Vol. 1

ABOUT THIS MANUAL

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

2. Updates to Chapter 5, Volume 1

Change bars and green text show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

--
Changes to this chapter: Update to Table 5-2, “Instruction Set Extensions Introduction in Intel 64 and IA-32
Processors”.

Vol. 1 5-1

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:
• Section 5.1, “General-Purpose Instructions”.
• Section 5.2, “x87 FPU Instructions”.
• Section 5.3, “x87 FPU AND SIMD State Management Instructions”.
• Section 5.4, “MMX™ Instructions”.
• Section 5.5, “SSE Instructions”.
• Section 5.6, “SSE2 Instructions”.
• Section 5.7, “SSE3 Instructions”.
• Section 5.8, “Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions”.
• Section 5.9, “SSE4 Instructions”.
• Section 5.10, “SSE4.1 Instructions”.
• Section 5.11, “SSE4.2 Instruction Set”.
• Section 5.12, “Intel® AES-NI and PCLMULQDQ”.
• Section 5.13, “Intel® Advanced Vector Extensions (Intel® AVX)”.
• Section 5.14, “16-bit Floating-Point Conversion”.
• Section 5.15, “Fused-Multiply-ADD (FMA)”.
• Section 5.16, “Intel® Advanced Vector Extensions 2 (Intel® AVX2)”.
• Section 5.17, “Intel® Transactional Synchronization Extensions (Intel® TSX)”.
• Section 5.18, “Intel® SHA Extensions”.
• Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512)”.
• Section 5.20, “System Instructions”.
• Section 5.21, “64-Bit Mode Instructions”.
• Section 5.22, “Virtual-Machine Extensions”.
• Section 5.23, “Safer Mode Extensions”.
• Section 5.24, “Intel® Memory Protection Extensions”.
• Section 5.25, “Intel® Software Guard Extensions”.
• Section 5.26, “Shadow Stack Management Instructions”.
• Section 5.27, “Control Transfer Terminating Instructions”.

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors.

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.

5-2 Vol. 1

INSTRUCTION SET SUMMARY

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors.

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors.

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors.

IA-32e mode: 64-bit
mode instructions

Intel 64 processors.

System Instructions Intel 64 and IA-32 processors.

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme processors
QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors 8000 series
and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions,
CRC32, POPCNT

Intel® Core™ i7 965 processor, Intel® Xeon® processors X3400, X3500, X5500, X6500, X7500 series,
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI,
PCLMULQDQ

Intel® Xeon® processor E7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X
processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence of
Intel AES-NI and PCLMULQDQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor E3 and E5 families, 2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor E3-1200 v2 product family, Intel® Xeon®
processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon
processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon
processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.

FMA, AVX2, BMI1, BMI2,
INVPCID, LZCNT, Intel®
TSX

Intel® Xeon® processor E3/E5/E7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE Intel Xeon processor E3/E5/E7 v3 product families, 4th Generation Intel Core processor family, Intel Atom
processors.

PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor based
on Silvermont microarchitecture.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

Vol. 1 5-3

INSTRUCTION SET SUMMARY

Intel® SHA Extensions Intel Atom processor based on Goldmont microarchitecture.

ADX Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based on
Goldmont microarchitecture.

AVX512ER, AVX512PF,
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Processor Scalable Family, Intel® Core™ i3-
8121U processor.

CLFLUSHOPT, XSAVEC,
XSAVES, Intel® MPX

Intel Xeon Processor Scalable Family, 6th Generation Intel® Core™ processor family, Intel Atom processor
based on Goldmont microarchitecture.

SGX1 6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus
microarchitecture.

AVX512DQ, AVX512BW,
AVX512VL

Intel Xeon Processor Scalable Family, Intel Core i3-8121U processor.

CLWB Intel Xeon Processor Scalable Family, Intel Atom® processor based on Tremont microarchitecture, 11th
Generation Intel Core processor family.

PKU Intel Xeon Processor Scalable Family.

AVX512_IFMA,
AVX512_VBMI

Intel Core i3-8121U processor.

SHA-NI Intel Core i3-8121U processor, Intel Atom processor based on Goldmont microarchitecture.

UMIP Intel Core i3-8121U processor, Intel Atom processor based on Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture.

RDPID 10th Generation Intel® Core™ processor family, Intel Atom processor based on Goldmont Plus
microarchitecture.

AVX512_4FMAPS,
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI 2nd Generation Intel® Xeon® Processor Scalable Family, 10th Generation Intel Core processor family.

AVX512_VPOPCNTDQ Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family.

Fast Short REP MOV 10th Generation Intel Core processor family.

GFNI (SSE) 10th Generation Intel Core processor family, Intel Atom processor based on Tremont microarchitecture.

VAES,
GFNI (AVX/AVX512),
AVX512_VBMI2,
VPCLMULQDQ,
AVX512_BITALG

10th Generation Intel Core processor family.

ENCLV Intel Atom processor based on Tremont microarchitecture.

Split Lock Detection 10th Generation Intel Core processor family, Intel Atom processor based on Tremont microarchitecture.

CLDEMOTE Intel Atom processor based on Tremont microarchitecture.

Direct stores: MOVDIRI,
MOVDIR64B

Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor family.

User wait: TPAUSE,
UMONITOR, UMWAIT

Intel Atom processor based on Tremont microarchitecture.

AVX512_BF16 3rd Generation Intel® Xeon® Processor Scalable Processors.

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Processor Generation Introduction

5-4 Vol. 1

INSTRUCTION SET SUMMARY

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations,
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and
miscellaneous subgroups. The sections that follow introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose and segment registers. They
also perform specific operations such as conditional moves, stack access, and data conversion.
MOV Move data between general-purpose registers; move data between memory and general-

purpose or segment registers; move immediates to general-purpose registers.
CMOVE/CMOVZ Conditional move if equal/Conditional move if zero.
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero.
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal.
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below.
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal.
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above.
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal.
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less.
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal.
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater.

AVX512_VP2INTERSECT 11th Generation Intel Core processor family.

Key Locker1 11th Generation Intel Core processor family.

Control-flow Enforcement
Technology (CET)

11th Generation Intel Core processor family.

NOTES:
1. Details on Key Locker can be found in the Intel Key Locker Specification here: https://software.intel.com/con-

tent/www/us/en/develop/download/intel-key-locker-specification.html.

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Processor Generation Introduction

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Vol. 1 5-5

INSTRUCTION SET SUMMARY

CMOVC Conditional move if carry.
CMOVNC Conditional move if not carry.
CMOVO Conditional move if overflow.
CMOVNO Conditional move if not overflow.
CMOVS Conditional move if sign (negative).
CMOVNS Conditional move if not sign (non-negative).
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even.
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd.
XCHG Exchange.
BSWAP Byte swap.
XADD Exchange and add.
CMPXCHG Compare and exchange.
CMPXCHG8B Compare and exchange 8 bytes.
PUSH Push onto stack.
POP Pop off of stack.
PUSHA/PUSHAD Push general-purpose registers onto stack.
POPA/POPAD Pop general-purpose registers from stack.
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword.
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register.
MOVSX Move and sign extend.
MOVZX Move and zero extend.

5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.
ADCX Unsigned integer add with carry.
ADOX Unsigned integer add with overflow.
ADD Integer add.
ADC Add with carry.
SUB Subtract.
SBB Subtract with borrow.
IMUL Signed multiply.
MUL Unsigned multiply.
IDIV Signed divide.
DIV Unsigned divide.
INC Increment.
DEC Decrement.
NEG Negate.
CMP Compare.

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.
DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.

5-6 Vol. 1

INSTRUCTION SET SUMMARY

AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword
values.
AND Perform bitwise logical AND.
OR Perform bitwise logical OR.
XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.
SHR Shift logical right.
SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.
SHLD Shift left double.
ROR Rotate right.
ROL Rotate left.
RCR Rotate through carry right.
RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of
a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test.
BTS Bit test and set.
BTR Bit test and reset.
BTC Bit test and complement.
BSF Bit scan forward.
BSR Bit scan reverse.
SETE/SETZ Set byte if equal/Set byte if zero.
SETNE/SETNZ Set byte if not equal/Set byte if not zero.
SETA/SETNBE Set byte if above/Set byte if not below or equal.
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.
SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry.
SETBE/SETNA Set byte if below or equal/Set byte if not above.
SETG/SETNLE Set byte if greater/Set byte if not less or equal.
SETGE/SETNL Set byte if greater or equal/Set byte if not less.
SETL/SETNGE Set byte if less/Set byte if not greater or equal.
SETLE/SETNG Set byte if less or equal/Set byte if not greater.
SETS Set byte if sign (negative).

Vol. 1 5-7

INSTRUCTION SET SUMMARY

SETNS Set byte if not sign (non-negative).
SETO Set byte if overflow.
SETNO Set byte if not overflow.
SETPE/SETP Set byte if parity even/Set byte if parity.
SETPO/SETNP Set byte if parity odd/Set byte if not parity.
TEST Logical compare.
CRC321 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient

implementation of data integrity protocols.
POPCNT2 This instruction calculates of number of bits set to 1 in the second operand (source) and

returns the count in the first operand (a destination register).

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control
program flow.
JMP Jump.
JE/JZ Jump if equal/Jump if zero.
JNE/JNZ Jump if not equal/Jump if not zero.
JA/JNBE Jump if above/Jump if not below or equal.
JAE/JNB Jump if above or equal/Jump if not below.
JB/JNAE Jump if below/Jump if not above or equal.
JBE/JNA Jump if below or equal/Jump if not above.
JG/JNLE Jump if greater/Jump if not less or equal.
JGE/JNL Jump if greater or equal/Jump if not less.
JL/JNGE Jump if less/Jump if not greater or equal.
JLE/JNG Jump if less or equal/Jump if not greater.
JC Jump if carry.
JNC Jump if not carry.
JO Jump if overflow.
JNO Jump if not overflow.
JS Jump if sign (negative).
JNS Jump if not sign (non-negative).
JPO/JNP Jump if parity odd/Jump if not parity.
JPE/JP Jump if parity even/Jump if parity.
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.
RET Return.
IRET Return from interrupt.
INT Software interrupt.
INTO Interrupt on overflow.
BOUND Detect value out of range.

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

5-8 Vol. 1

INSTRUCTION SET SUMMARY

ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and from memory.
MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.
SCAS/SCASW Scan string/Scan word string.
SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.
LODS/LODSW Load string/Load word string.
LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.
STOS/STOSD Store string/Store doubleword string.
REP Repeat while ECX not zero.
REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or memory.
IN Read from a port.
OUT Write to a port.
INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/OUTSB Output string to port/Output byte string to port.
OUTS/OUTSW Output string to port/Output word string to port.
OUTS/OUTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag.

Vol. 1 5-9

INSTRUCTION SET SUMMARY

CLC Clear the carry flag.
CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.
LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.
CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.
LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.
LEA Load effective address.
NOP No operation.
UD Undefined instruction.
XLAT/XLATB Table lookup translation.
CPUID Processor identification.
MOVBE1 Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.
XGETBV Reads the state of an extended control register.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.

5-10 Vol. 1

INSTRUCTION SET SUMMARY

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1, BMI2
ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract.
BLSI Extract lowest set bit.
BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.
BZHI Zero high bits starting from specified bit position.
LZCNT Count the number leading zero bits.
MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.
PEXT Parallel extraction of bits using a mask.
RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.
SHLX Shift logic left.
SHRX Shift logic right.
TZCNT Count the number trailing zero bits.

5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers.
There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point,
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8,
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU
registers. They also perform conditional move operations on floating-point operands.

Vol. 1 5-11

INSTRUCTION SET SUMMARY

FLD Load floating-point value.
FST Store floating-point value.
FSTP Store floating-point value and pop.
FILD Load integer.
FIST Store integer.
FISTP1 Store integer and pop.
FBLD Load BCD.
FBSTP Store BCD and pop.
FXCH Exchange registers.
FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two

1. SSE3 provides an instruction FISTTP for integer conversion.

5-12 Vol. 1

INSTRUCTION SET SUMMARY

FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
FCOM Compare floating-point.
FCOMP Compare floating-point and pop.
FCOMPP Compare floating-point and pop twice.
FUCOM Unordered compare floating-point.
FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.
FICOMP Compare integer and pop.
FCOMI Compare floating-point and set EFLAGS.
FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).
FXAM Examine floating-point.

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87 floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.

Vol. 1 5-13

INSTRUCTION SET SUMMARY

FINCSTP Increment FPU register stack pointer.
FDECSTP Decrement FPU register stack pointer.
FFREE Free floating-point register.
FINIT Initialize FPU after checking error conditions.
FNINIT Initialize FPU without checking error conditions.
FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.
FNSTCW Store FPU control word without checking error conditions.
FLDCW Load FPU control word.
FSTENV Store FPU environment after checking error conditions.
FNSTENV Store FPU environment without checking error conditions.
FLDENV Load FPU environment.
FSAVE Save FPU state after checking error conditions.
FNSAVE Save FPU state without checking error conditions.
FRSTOR Restore FPU state.
FSTSW Store FPU status word after checking error conditions.
FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.
FNOP FPU no operation.

5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS
Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor
family:
FXSAVE Save x87 FPU and SIMD state.
FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore,
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium III processor
family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel
64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2
extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory,
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9,
“Programming with Intel® MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each
subgroup.

5-14 Vol. 1

INSTRUCTION SET SUMMARY

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX
registers and memory.
MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.
PUNPCKHWD Unpack high-order words.
PUNPCKHDQ Unpack high-order doublewords.
PUNPCKLBW Unpack low-order bytes.
PUNPCKLWD Unpack low-order words.
PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.
PADDB Add packed byte integers.
PADDW Add packed word integers.
PADDD Add packed doubleword integers.
PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.
PSUBW Subtract packed word integers.
PSUBD Subtract packed doubleword integers.
PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal.
PCMPEQW Compare packed words for equal.
PCMPEQD Compare packed doublewords for equal.
PCMPGTB Compare packed signed byte integers for greater than.

Vol. 1 5-15

INSTRUCTION SET SUMMARY

PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.
PAND Bitwise logical AND.
PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.
PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit
operands.
PSLLW Shift packed words left logical.
PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.
PSRLW Shift packed words right logical.
PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For
more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel®
SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its
own):
• SIMD single-precision floating-point instructions that operate on the XMM registers.
• MXCSR state management instructions.
• 64-bit SIMD integer instructions that operate on the MMX registers.
• Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5-16 Vol. 1

INSTRUCTION SET SUMMARY

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point values located in XMM registers
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM
registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or

between and XMM register and memory.
MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers

or between and XMM register and memory.
MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an

XMM register and memory.
MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM

register to the low quadword of another XMM register.
MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an

XMM register and memory.
MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM

register to the high quadword of another XMM register.
MOVMSKPS Extract sign mask from four packed single-precision floating-point values.
MOVSS Move scalar single-precision floating-point value between XMM registers or between an

XMM register and memory.

5.5.1.2 SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.
ADDPS Add packed single-precision floating-point values.
ADDSS Add scalar single-precision floating-point values.
SUBPS Subtract packed single-precision floating-point values.
SUBSS Subtract scalar single-precision floating-point values.
MULPS Multiply packed single-precision floating-point values.
MULSS Multiply scalar single-precision floating-point values.
DIVPS Divide packed single-precision floating-point values.
DIVSS Divide scalar single-precision floating-point values.
RCPPS Compute reciprocals of packed single-precision floating-point values.
RCPSS Compute reciprocal of scalar single-precision floating-point values.
SQRTPS Compute square roots of packed single-precision floating-point values.
SQRTSS Compute square root of scalar single-precision floating-point values.
RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values.
MAXPS Return maximum packed single-precision floating-point values.
MAXSS Return maximum scalar single-precision floating-point values.
MINPS Return minimum packed single-precision floating-point values.
MINSS Return minimum scalar single-precision floating-point values.

Vol. 1 5-17

INSTRUCTION SET SUMMARY

5.5.1.3 SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point operands.
CMPPS Compare packed single-precision floating-point values.
CMPSS Compare scalar single-precision floating-point values.
COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in

EFLAGS register.
UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags

in EFLAGS register.

5.5.1.4 SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision
floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values.
ORPS Perform bitwise logical OR of packed single-precision floating-point values.
XORPS Perform bitwise logical XOR of packed single-precision floating-point values.

5.5.1.5 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point operands.
UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point

operands.
UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point

operands.

5.5.1.6 SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-
precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value.
CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed double-

word integers.
CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer.
CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar double-

word integer.

5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status
register.
LDMXCSR Load MXCSR register.
STMXCSR Save MXCSR register state.

5-18 Vol. 1

INSTRUCTION SET SUMMARY

5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4,
“MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.
PINSRW Insert word.
PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.
PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.
PSHUFW Shuffle packed integer word in MMX register.

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions
The cacheability control instructions provide control over the caching of non-temporal data when storing data from
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The
SFENCE instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.
MOVNTQ Non-temporal store of quadword from an MMX register into memory.
MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM

register into memory.
PREFETCHh Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-

archy
SFENCE Serializes store operations.

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-
tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate
subgroups):
• Packed and scalar double-precision floating-point instructions.
• Packed single-precision floating-point conversion instructions.
• 128-bit SIMD integer instructions.
• Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

Vol. 1 5-19

INSTRUCTION SET SUMMARY

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions
SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data between XMM registers and between
XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or

between and XMM register and memory.
MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers

or between and XMM register and memory.
MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an

XMM register and memory.
MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an

XMM register and memory.
MOVMSKPD Extract sign mask from two packed double-precision floating-point values.
MOVSD Move scalar double-precision floating-point value between XMM registers or between an

XMM register and memory.

5.6.1.2 SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point operands.
ADDPD Add packed double-precision floating-point values.
ADDSD Add scalar double precision floating-point values.
SUBPD Subtract packed double-precision floating-point values.
SUBSD Subtract scalar double-precision floating-point values.
MULPD Multiply packed double-precision floating-point values.
MULSD Multiply scalar double-precision floating-point values.
DIVPD Divide packed double-precision floating-point values.
DIVSD Divide scalar double-precision floating-point values.
SQRTPD Compute packed square roots of packed double-precision floating-point values.
SQRTSD Compute scalar square root of scalar double-precision floating-point values.
MAXPD Return maximum packed double-precision floating-point values.
MAXSD Return maximum scalar double-precision floating-point values.
MINPD Return minimum packed double-precision floating-point values.
MINSD Return minimum scalar double-precision floating-point values.

5.6.1.3 SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values.
ORPD Perform bitwise logical OR of packed double-precision floating-point values.
XORPD Perform bitwise logical XOR of packed double-precision floating-point values.

5-20 Vol. 1

INSTRUCTION SET SUMMARY

5.6.1.4 SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values.
CMPSD Compare scalar double-precision floating-point values.
COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags

in EFLAGS register.
UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set

flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.
SHUFPD Shuffles values in packed double-precision floating-point operands.
UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point

operands.
UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point

operands.

5.6.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and
double-precision floating-point values.
CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-

point values.
CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-

point values.
CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-

point values.
CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-

point values.
CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer.
CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword

integers.
CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value.

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision
floating-point instructions.

Vol. 1 5-21

INSTRUCTION SET SUMMARY

CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed double-

word integers.

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords
contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword.
MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.
PSUBQ Subtract packed quadword integers.
PSHUFLW Shuffle packed low words.
PSHUFHW Shuffle packed high words.
PSHUFD Shuffle packed doublewords.
PSLLDQ Shift double quadword left logical.
PSRLDQ Shift double quadword right logical.
PUNPCKHQDQ Unpack high quadwords.
PUNPCKLQDQ Unpack low quadwords.

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on
store operations.
CLFLUSH See Section 5.1.13.
LFENCE Serializes load operations.
MFENCE Serializes load and store operations.
PAUSE Improves the performance of “spin-wait loops”.
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.
MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM

register into memory.
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.
MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into
the following categories:
• One x87FPU instruction used in integer conversion.
• One SIMD integer instruction that addresses unaligned data loads.
• Two SIMD floating-point packed ADD/SUB instructions.

5-22 Vol. 1

INSTRUCTION SET SUMMARY

• Four SIMD floating-point horizontal ADD/SUB instructions.
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.
• Two thread synchronization instructions.

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode

specified in the floating-point control word (FCW).

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements

within the operands; single-precision subtraction on the first and third pairs.
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision

subtraction on the first pair.

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data elements. The first data element of

the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by
adding the first and second elements of the second operand; and the fourth by adding the
third and fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the fourth
element of the first operand from the third element of the first operand; the third by
subtracting the second element of the second operand from the first element of the second
operand; and the fourth by subtracting the fourth element of the second operand from the
third element of the second operand.

HADDPD Performs a double-precision addition on contiguous data elements. The first data element
of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the second
element of the second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.
MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.

Vol. 1 5-23

INSTRUCTION SET SUMMARY

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in
both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from
the source.

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.
MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back

store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS
SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers.
These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination

operands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination

operands and packs the signed, saturated 16-bit results to the destination operand.
PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination

operands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by

subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed 16-bit results are packed and written to the
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by
subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed, saturated 16-bit results are packed and
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by
subtracting the most significant doubleword from the least significant double word of each
pair in the source and destination operands. The signed 32-bit results are packed and
written to the destination operand.

5-24 Vol. 1

INSTRUCTION SET SUMMARY

5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce

an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are
added horizontally. The signed, saturated 16-bit results are packed to the destination
operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits.
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destination
operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant

three or four bits of each shuffle control byte of the control mask form the shuffle index.
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is
set, the constant zero is written in the result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-

sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand forming an intermediate value

of twice the width of an operand. The result is extracted from the intermediate value into
the destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the
byte offset specified by the immediate value.

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.

Vol. 1 5-25

INSTRUCTION SET SUMMARY

• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:
• String and text processing that can take advantage of single-instruction multiple-data programming

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS
SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe
each subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-

byte region (a streaming line) to be fetched and held in a small set of temporary buffers
(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in
the same streaming line may be supplied from the streaming load buffer and can improve
throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point data elements in the source

operand to the corresponding data elements in the destination, using an immediate byte
control.

5-26 Vol. 1

INSTRUCTION SET SUMMARY

BLENDPS Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

BLENDVPD Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

BLENDVPS Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding
elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
ROUNDPS Round packed single precision floating-point values into integer values and return rounded

floating-point values.
ROUNDPD Round packed double precision floating-point values into integer values and return

rounded floating-point values.
ROUNDSS Round the low packed single precision floating-point value into an integer value and return

a rounded floating-point value.
ROUNDSD Round the low packed double precision floating-point value into an integer value and return

a rounded floating-point value.

5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified offset in an XMM register

and stores the result to memory or a general-purpose register.
INSERTPS Inserts a single-precision floating-point value from either a 32-bit memory location or

selected from a specified offset in an XMM register to a specified offset in the destination
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.

PINSRB Insert a byte value from a register or memory into an XMM register.
PINSRD Insert a dword value from 32-bit register or memory into an XMM register.
PINSRQ Insert a qword value from 64-bit register or memory into an XMM register.
PEXTRB Extract a byte from an XMM register and insert the value into a general-purpose register or

memory.
PEXTRW Extract a word from an XMM register and insert the value into a general-purpose register

or memory.
PEXTRD Extract a dword from an XMM register and insert the value into a general-purpose register

or memory.

Vol. 1 5-27

INSTRUCTION SET SUMMARY

PEXTRQ Extract a qword from an XMM register and insert the value into a general-purpose register
or memory.

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word element into packed signed word

integers.
PMOVZXBW Zero extend the lower 8-bit integer of each packed word element into packed signed word

integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword element into packed signed

dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword element into packed signed

dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword element into packed signed

dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword element into packed signed

dword integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword element into packed signed
qword integers.

PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword element into packed signed
qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword element into packed signed
qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
MPSADBW Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word

integers.

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally

packed unsigned words. The resulting value and location (offset within the source) are
packed into the low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the

result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5-28 Vol. 1

INSTRUCTION SET SUMMARY

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation.

5.11 SSE4.2 INSTRUCTION SET
Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit
integer SIMD instructions.
CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0.

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 INTEL® AES-NI AND PCLMULQDQ
Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less
multiplication for two binary numbers up to 64-bit wide.
AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM
register set to use a “vector extension“ (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy
128-bit SIMD floating-point instructions to support three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:
• Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD

instruction sets.

Vol. 1 5-29

INSTRUCTION SET SUMMARY

• Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit
SIMD instruction sets.

• Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

• Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction
sets.

• Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

• Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by
VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four

single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into

eight/four 16-bit floating-point data.

5.15 FUSED-MULTIPLY-ADD (FMA)
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.
• Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.
• Table 14-18 lists promoted vector integer instructions in AVX2.
• Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
XABORT Abort an RTM transaction execution.
XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.
XEND Transaction end of an RTM transaction region.
XTEST Test if executing in a transactional region.

5-30 Vol. 1

INSTRUCTION SET SUMMARY

5.18 INTEL® SHA EXTENSIONS
Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants.
SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the

previous message dwords.
SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate

message dwords.
SHA1NEXTE Calculate SHA1 state E after four rounds.
SHA1RNDS4 Perform four rounds of SHA1 operations.
SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.
SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.
SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)
The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit,
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers.

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX / Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX / Intel AVX2. Some instruction
mnemonics in AVX / AVX2 that are promoted into AVX-512 can be replaced by new instruction mnemonics that are
available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details of EVEX instruction
encoding are discussed in Section 2.6, “Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

512-bit instruction mnemonics in AVX-512F that are not AVX/AVX2 promotions include:
VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.
VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.
VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VFIXUPIMMPD/PS Perform fix-up to special values in DP/SP FP vectors.
VFIXUPIMMSD/SS Perform fix-up to special values of the low DP/SP FP element.
VGETEXPPD/PS Convert the exponent of DP/SP FP elements of a vector into FP values.
VGETEXPSD/SS Convert the exponent of the low DP/SP FP element in a vector into FP value.
VGETMANTPD/PS Convert the mantissa of DP/SP FP elements of a vector into FP values.
VGETMANTSD/SS Convert the mantissa of the low DP/SP FP element of a vector into FP value.
VINSERTF32X4/64X4 Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA32/64 VMOVDQA with 32/64-bit granular conditional update.
VMOVDQU32/64 VMOVDQU with 32/64-bit granular conditional update.

Vol. 1 5-31

INSTRUCTION SET SUMMARY

VPBLENDMD/Q Blend dword/qword elements using opmask as select control.
VPBROADCASTD/Q Broadcast from general-purpose register to vector register.
VPCMPD/UD Compare packed signed/unsigned dwords using specified primitive.
VPCMPQ/UQ Compare packed signed/unsigned quadwords using specified primitive.
VPCOMPRESSQ/D Compress packed 64/32-bit elements of a vector.
VPERMI2D/Q Full permute of two tables of dword/qword elements overwriting the index vector.
VPERMI2PD/PS Full permute of two tables of DP/SP elements overwriting the index vector.
VPERMT2D/Q Full permute of two tables of dword/qword elements overwriting one source table.
VPERMT2PD/PS Full permute of two tables of DP/SP elements overwriting one source table.
VPEXPANDD/Q Expand packed dword/qword elements of a vector.
VPMAXSQ Compute maximum of packed signed 64-bit integer elements.
VPMAXUD/UQ Compute maximum of packed unsigned 32/64-bit integer elements.
VPMINSQ Compute minimum of packed signed 64-bit integer elements.
VPMINUD/UQ Compute minimum of packed unsigned 32/64-bit integer elements.
VPMOV(S|US)QB Down convert qword elements in a vector to byte elements using truncation (saturation |

unsigned saturation).
VPMOV(S|US)QW Down convert qword elements in a vector to word elements using truncation (saturation |

unsigned saturation).
VPMOV(S|US)QD Down convert qword elements in a vector to dword elements using truncation (saturation

| unsigned saturation).
VPMOV(S|US)DB Down convert dword elements in a vector to byte elements using truncation (saturation |

unsigned saturation).
VPMOV(S|US)DW Down convert dword elements in a vector to word elements using truncation (saturation |

unsigned saturation).
VPROLD/Q Rotate dword/qword element left by a constant shift count with conditional update.
VPROLVD/Q Rotate dword/qword element left by shift counts specified in a vector with conditional

update.
VPRORD/Q Rotate dword/qword element right by a constant shift count with conditional update.
VPRORRD/Q Rotate dword/qword element right by shift counts specified in a vector with conditional

update.
VPSCATTERDD/DQ Scatter dword/qword elements in a vector to memory using dword indices.
VPSCATTERQD/QQ Scatter dword/qword elements in a vector to memory using qword indices.
VPSRAQ Shift qwords right by a constant shift count and shifting in sign bits.
VPSRAVQ Shift qwords right by shift counts in a vector and shifting in sign bits.
VPTESTNMD/Q Perform bitwise NAND of dword/qword elements of two vectors and write results to

opmask.
VPTERLOGD/Q Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional

update.
VPTESTMD/Q Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
VRCP14PD/PS Compute approximate reciprocals of packed DP/SP FP elements of a vector.
VRCP14SD/SS Compute the approximate reciprocal of the low DP/SP FP element of a vector.
VRNDSCALEPD/PS Round packed DP/SP FP elements of a vector to specified number of fraction bits.
VRNDSCALESD/SS Round the low DP/SP FP element of a vector to specified number of fraction bits.
VRSQRT14PD/PS Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.
VRSQRT14SD/SS Compute the approximate reciprocal of square root of the low DP/SP FP element of a

vector.
VSCALEPD/PS Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified

in a second vector.

5-32 Vol. 1

INSTRUCTION SET SUMMARY

VSCALESD/SS Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in
the corresponding element of a second vector.

VSCATTERDD/DQ Scatter SP/DP FP elements in a vector to memory using dword indices.
VSCATTERQD/QQ Scatter SP/DP FP elements in a vector to memory using qword indices.
VSHUFF32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
VSHUFI32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not AVX/AVX2 promotions include:
VCVT(T)PD2QQ Convert packed DP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PD2UQQ Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
VCVT(T)PS2QQ Convert packed SP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PS2UQQ Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
VCVTUQQ2PD/PS Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
VEXTRACTF64X2 Extract a vector from a full-length vector with 64-bit granular update.
VEXTRACTI64X2 Extract a vector from a full-length vector with 64-bit granular update.
VFPCLASSPD/PS Test packed DP/SP FP elements in a vector by numeric/special-value category.
VFPCLASSSD/SS Test the low DP/SP FP element by numeric/special-value category.
VINSERTF64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VINSERTI64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VPMOVM2D/Q Convert opmask register to vector register in 32/64-bit granularity.
VPMOVB2D/Q2M Convert a vector register in 32/64-bit granularity to an opmask register.
VPMULLQ Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed

result.
VRANGEPD/PS Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified

range primitive in imm8.
VRANGESD/SS Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-

fied range primitive in imm8.
VREDUCEPD/PS Perform Reduction operation on packed DP/SP FP elements of a vector using specified

reduction primitive in imm8.
VREDUCESD/SS Perform Reduction operation on the low DP/SP FP element of a vector using specified

reduction primitive in imm8.

512-bit instruction mnemonics in AVX-512BW that are not AVX/AVX2 promotions include:
VDBPSADBW Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU8/16 VMOVDQU with 8/16-bit granular conditional update.
VPBLENDMB Replaces the VPBLENDVB instruction (using opmask as select control).
VPBLENDMW Blend word elements using opmask as select control.
VPBROADCASTB/W Broadcast from general-purpose register to vector register.
VPCMPB/UB Compare packed signed/unsigned bytes using specified primitive.
VPCMPW/UW Compare packed signed/unsigned words using specified primitive.
VPERMW Permute packed word elements.
VPERMI2B/W Full permute from two tables of byte/word elements overwriting the index vector.
VPMOVM2B/W Convert opmask register to vector register in 8/16-bit granularity.
VPMOVB2M/W2M Convert a vector register in 8/16-bit granularity to an opmask register.
VPMOV(S|US)WB Down convert word elements in a vector to byte elements using truncation (saturation |

unsigned saturation).
VPSLLVW Shift word elements in a vector left by shift counts in a vector.
VPSRAVW Shift words right by shift counts in a vector and shifting in sign bits.

Vol. 1 5-33

INSTRUCTION SET SUMMARY

VPSRLVW Shift word elements in a vector right by shift counts in a vector.
VPTESTNMB/W Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
VPTESTMB/W Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not AVX/AVX2 promotions include:
VPBROADCASTM Broadcast from opmask register to vector register.
VPCONFLICTD/Q Detect conflicts within a vector of packed 32/64-bit integers.
VPLZCNTD/Q Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:
KADDB/W/D/Q Add two 8/16/32/64-bit opmasks.
KANDB/W/D/Q Logical AND two 8/16/32/64-bit opmasks.
KANDNB/W/D/Q Logical AND NOT two 8/16/32/64-bit opmasks.
KMOVB/W/D/Q Move from or move to opmask register of 8/16/32/64-bit data.
KNOTB/W/D/Q Bitwise NOT of two 8/16/32/64-bit opmasks.
KORB/W/D/Q Logical OR two 8/16/32/64-bit opmasks.
KORTESTB/W/D/Q Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
KSHIFTLB/W/D/Q Shift left 8/16/32/64-bit opmask by specified count.
KSHIFTRB/W/D/Q Shift right 8/16/32/64-bit opmask by specified count.
KTESTB/W/D/Q Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
KUNPCKBW/WD/DQ Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.
KXNORB/W/D/Q Bitwise logical XNOR of two 8/16/32/64-bit opmasks.
KXORB/W/D/Q Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:
VEXP2PD/PS Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
VEXP2SD/SS Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
VRCP28PD/PS Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector.
VRCP28SD/SS Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector.
VRSQRT28PD/PS Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements

of a vector.
VRSQRT28SD/SS Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element

of a vector.

512-bit instruction mnemonics in AVX-512PF include:
VGATHERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using dword indices.
VGATHERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using qword indices.
VGATHERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
VGATHERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
VSCATTERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using dword indices.
VSCATTERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using qword indices.
VSCATTERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
VSCATTERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using qword indices.

5-34 Vol. 1

INSTRUCTION SET SUMMARY

5.20 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.
CLAC Clear AC Flag in EFLAGS register.
STAC Set AC Flag in EFLAGS register.
LGDT Load global descriptor table (GDT) register.
SGDT Store global descriptor table (GDT) register.
LLDT Load local descriptor table (LDT) register.
SLDT Store local descriptor table (LDT) register.
LTR Load task register.
STR Store task register.
LIDT Load interrupt descriptor table (IDT) register.
SIDT Store interrupt descriptor table (IDT) register.
MOV Load and store control registers.
LMSW Load machine status word.
SMSW Store machine status word.
CLTS Clear the task-switched flag.
ARPL Adjust requested privilege level.
LAR Load access rights.
LSL Load segment limit.
VERR Verify segment for reading
VERW Verify segment for writing.
MOV Load and store debug registers.
INVD Invalidate cache, no writeback.
WBINVD Invalidate cache, with writeback.
INVLPG Invalidate TLB Entry.
INVPCID Invalidate Process-Context Identifier.
LOCK (prefix) Perform atomic access to memory (can be applied to a number of general purpose instruc-

tions that provide memory source/destination access).
HLT Halt processor.
RSM Return from system management mode (SMM).
RDMSR Read model-specific register.
WRMSR Write model-specific register.
RDPMC Read performance monitoring counters.
RDTSC Read time stamp counter.
RDTSCP Read time stamp counter and processor ID.
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.
XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.
XSETBV Writes the state of an extended control register.

Vol. 1 5-35

INSTRUCTION SET SUMMARY

RDFSBASE Reads from FS base address at any privilege level.
RDGSBASE Reads from GS base address at any privilege level.
WRFSBASE Writes to FS base address at any privilege level.
WRGSBASE Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword.
CMPSQ Compare string operands.
CMPXCHG16B Compare RDX:RAX with m128.
LODSQ Load qword at address (R)SI into RAX.
MOVSQ Move qword from address (R)SI to (R)DI.
MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.
STOSQ Store RAX at address RDI.
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H.
SYSCALL Fast call to privilege level 0 system procedures.
SYSRET Return from fast systemcall.

5.22 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and

current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is

stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand)
from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control

to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control

to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX

root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize

address translation in virtual machines with memory-resident EPT pages.
INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID

(VPID).

5-36 Vol. 1

INSTRUCTION SET SUMMARY

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs,

transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which

is processor functionality enabled and configured by software in VMX root operation. No
VM exit occurs.

5.23 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution

mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust

anchored to a chipset supporting Intel Trusted Execution Technology.
GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS] Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

5.24 INTEL® MEMORY PROTECTION EXTENSIONS
Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds
checking capability to memory references. Details of Intel MPX are described in Chapter 17, “Intel® MPX”.
BNDMK Create a LowerBound and a UpperBound in a register.
BNDCL Check the address of a memory reference against a LowerBound.
BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.
BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment

form.
BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.
BNDMOV Store to memory of the LowerBound and UpperBound from a register.
BNDLDX Load bounds using address translation.
BNDSTX Store bounds using address translation.

5.25 INTEL® SOFTWARE GUARD EXTENSIONS
Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in CHAPTER 36 through CHAPTER 42 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3D.
The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.

Vol. 1 5-37

INSTRUCTION SET SUMMARY

5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS
Shadow stack management instructions allow the program and run-time to perform operations like recovering
from control protection faults, shadow stack switching, etc. The following instructions are provided.
CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).
RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.
WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS
ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

5-38 Vol. 1

INSTRUCTION SET SUMMARY

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

3. Updates to Chapter 10, Volume 1

Updates to Chapter 10 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture.

--

Changes to this chapter: Update to Section 10.5.3, “Operation of FXRSTOR”.

Vol. 1 10-1

CHAPTER 10
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS (INTEL® SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in the Pentium III processor
family. These extensions enhance the performance of IA-32 processors for advanced 2-D and 3-D graphics, motion
video, image processing, speech recognition, audio synthesis, telephony, and video conferencing.

This chapter describes SSE. Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),”
provides information to assist in writing application programs that use SSE2 extensions. Chapter 12, “Programming
with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into the IA-32 architecture,
with the 64-bit MMX registers, 64-bit packed integer data types, and instructions that allowed SIMD operations to
be performed on packed integers. SSE extensions expand the SIMD execution model by adding facilities for
handling packed and scalar single-precision floating-point values contained in 128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while maintaining backward compatibility with
all existing IA-32 processors, applications and operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen XMM registers are available in

64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-precision floating-point values

packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point values and that extend SIMD

operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that operate on data located in MMX
registers

— 64-bit SIMD integer instructions that support additional operations on packed integer operands located in
MMX registers

• Instructions that save and restore the state of the MXCSR register.
• Instructions that support explicit prefetching of data, control of the cacheability of data, and control the

ordering of store operations.
• Extensions to the CPUID instruction.

These features extend the IA-32 architecture’s SIMD programming model in four important ways:
• The ability to perform SIMD operations on four packed single-precision floating-point values enhances the

performance of IA-32 processors for advanced media and communications applications that use computation-
intensive algorithms to perform repetitive operations on large arrays of simple, native data elements.

• The ability to perform SIMD single-precision floating-point operations in XMM registers and SIMD integer
operations in MMX registers provides greater flexibility and throughput for executing applications that operate
on large arrays of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM registers without polluting the
caches and the ability to prefetch data to selected cache levels before it is actually used. Applications that
require regular access to large amounts of data benefit from these prefetching and streaming store capabilities.

• The SFENCE (store fence) instruction provides greater control over the ordering of store operations when using
weakly-ordered memory types.

10-2 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

SSE extensions are fully compatible with all software written for IA-32 processors. All existing software continues
to run correctly, without modification, on processors that incorporate SSE extensions. Enhancements to CPUID
permit detection of SSE extensions. SSE extensions are accessible from all IA-32 execution modes: protected
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE extensions, including: XMM
registers, the packed single-precision floating-point data type, and SSE instructions. For additional information,
see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that can be generated with

SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed

description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating
these extensions into an operating-system environment.

10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE instructions operate on the XMM
registers, MMX registers, and/or memory as follows:
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, “XMM Registers”) are used to

operate on packed or scalar single-precision floating-point data. Scalar operations are operations performed on
individual (unpacked) single-precision floating-point values stored in the low doubleword of an XMM register.
XMM registers are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, “MXCSR Control and Status
Register”) provides status and control bits used in SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed
integer data. They are also used to hold operands for some operations performed between the MMX and XMM
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the
existing IA-32 addressing modes to address operands in memory. (MMX and XMM registers cannot be used to

Figure 10-1. SSE Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers

Vol. 1 10-3

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

address memory). The general-purpose registers are also used to hold operands for some SSE instructions and
are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In 64-bit mode, eight additional
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. Memory operands are
specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with SSE extensions (see
Figure 10-2). These registers can be accessed directly using the names XMM0 to XMM7; and they can be accessed
independently from the x87 FPU and MMX registers and the general-purpose registers (that is, they are not aliased
to any other of the processor’s registers).

SSE instructions use the XMM registers only to operate on packed single-precision floating-point operands. SSE2
extensions expand the functions of the XMM registers to operand on packed or scalar double-precision floating-
point operands and packed integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used to address memory.
Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 32-bit, 64-bit, and 128-bit incre-
ments. When storing the entire contents of an XMM register in memory (128-bit store), the data is stored in 16
consecutive bytes, with the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information for SSE, SSE2, and SSE3
SIMD floating-point operations. This register contains:
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations

Figure 10-2. XMM Registers

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

127 0

10-4 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• flush-to-zero flag that provides a means of controlling underflow conditions on SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR instructions and stored
in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset of the processor;
attempting to write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions, will result
in a general-protection exception (#GP) being generated.

10.2.3.1 SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has been detected. They
are “sticky” flags. That is, after a flag is set, it remains set until explicitly cleared. To clear these flags, use the
LDMXCSR or the FXRSTOR instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An exception type is masked
if the corresponding mask bit is set, and it is unmasked if the bit is clear. These mask bits are set upon a power-up
or reset. This causes all SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag bit, a SIMD floating-point
exception will not be generated as a result of this change. The unmasked exception will be generated only upon the
execution of the next SSE/SSE2/SSE3 instruction that detects the unmasked exception condition.

For more information about the use of the SIMD floating-point exception mask and flag bits, see Section 11.5,
“SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, “SSE3/SSSE3 And SSE4 Exceptions.”

10.2.3.2 SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results of SIMD floating-point
instructions are rounded. See Section 4.8.4, “Rounding,” for a description of the function and encoding of the
rounding control bits.

10.2.3.3 Flush-To-Zero
Bit 15 (FTZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked response to a SIMD
floating-point underflow condition. When the underflow exception is masked and the flush-to-zero mode is
enabled, the processor performs the following operations when it detects a floating-point underflow condition.

Figure 10-3. MXCSR Control/Status Register

31 16

Overflow Mask
Divide-by-Zero Mask
Denormal Operation Mask
Invalid Operation Mask
Denormals Are Zeros*
Precision Flag
Underflow Flag

Underflow Mask

Flush to Zero
Rounding Control

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

Precision Mask

Overflow Flag
Divide-by-Zero Flag
Denormal Flag
Invalid Operation Flag

F
T R

C
P
M

Z
E

O
E

U
E

P
E

I
M

D
M

Z
M

O
M

U
MReserved

D
E E

ID
A
Z

* The denormals-are-zeros flag was introduced in the Pentium 4 and Intel Xeon processor.

Z

Vol. 1 10-5

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• Returns a zero result with the sign of the true result.
• Sets the precision and underflow exception flags.

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked response to under-
flow is to deliver the denormalized result (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”).
The flush-to-zero mode is provided primarily for performance reasons. At the cost of a slight precision loss, faster
execution can be achieved for applications where underflows are common and rounding the underflow result to
zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-zero mode.

10.2.3.4 Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the processor’s response
to a SIMD floating-point denormal operand condition. When the denormals-are-zeros flag is set, the processor
converts all denormal source operands to a zero with the sign of the original operand before performing any
computations on them. The processor does not set the denormal-operand exception flag (DE), regardless of the
setting of the denormal-operand exception mask bit (DM); and it does not generate a denormal-operand exception
if the exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2, “Normalized and
Denormalized Finite Numbers”). The denormals-are-zeros mode is provided to improve processor performance for
applications such as streaming media processing, where rounding a denormal operand to zero does not appre-
ciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the denormals-are-
zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with the SSE2 exten-
sions; however, it is fully compatible with the SSE SIMD floating-point instructions (that is, the denormals-are-
zeros flag affects the operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors and in
some models of the Pentium 4 processor, this flag (bit 6) is reserved. See Section 11.6.3, “Checking for the DAZ
Flag in the MXCSR Register,” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for instructions for
preventing such general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE instruc-
tion.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU
The state (XMM registers and MXCSR register) introduced into the IA-32 execution environment with the SSE
extensions is shared with SSE2 and SSE3 extensions. SSE/SSE2/SSE3 instructions are fully compatible; they can
be executed together in the same instruction stream with no need to save state when switching between instruc-
tion sets.

XMM registers are independent of the x87 FPU and MMX registers, so SSE/SSE2/SSE3 operations performed on the
XMM registers can be performed in parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7,
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states along with the x87 FPU and
MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision floating-point data type, to the IA-
32 architecture (see Figure 10-4). This data type consists of four IEEE 32-bit single-precision floating-point values

10-6 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

packed into a double quadword. (See Figure 4-3 for the layout of a single-precision floating-point value; refer to
Section 4.2.2, “Floating-Point Data Types,” for a detailed description of the single-precision floating-point format.)

This 128-bit packed single-precision floating-point data type is operated on in the XMM registers or in memory.
Conversion instructions are provided to convert two packed single-precision floating-point values into two packed
doubleword integers or a scalar single-precision floating-point value into a doubleword integer (see Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX registers, and between XMM
registers and general-purpose bit registers. See Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following
cases:
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on packed single-precision
floating-point operands (see Figure 10-5). Each source operand contains four single-precision floating-point
values, and the destination operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

Figure 10-4. 128-Bit Packed Single-Precision Floating-Point Data Type

0127

Contains 4 Single-Precision
Floating-Point Values

64 63 31329596

Vol. 1 10-7

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The scalar single-precision floating-point instructions operate on the low (least significant) doublewords of the two
source operands (X0 and Y0); see Figure 10-6. The three most significant doublewords (X1, X2, and X3) of the first
source operand are passed through to the destination. The scalar operations are similar to the floating-point oper-
ations performed in the x87 FPU data registers with the precision control field in the x87 FPU control word set for
single precision (24-bit significand), except that x87 stack operations use a 15-bit exponent range for the result,
while SSE operations use an 8-bit exponent range.

10.4.1.1 SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between XMM registers and between an
XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction transfers a double quadword
operand containing four packed single-precision floating-point values from memory to an XMM register and vice
versa, or between XMM registers. The memory address must be aligned to a 16-byte boundary; otherwise, a
general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction performs the same operations as
the MOVAPS instruction, except that 16-byte alignment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-bit single-precision floating-
point operand from memory to the low doubleword of an XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves two packed single-precision
floating-point values from memory to the low quadword of an XMM register and vice versa. The high quadword of
the register is left unchanged.

Figure 10-5. Packed Single-Precision Floating-Point Operation

Figure 10-6. Scalar Single-Precision Floating-Point Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 X2 X1 X0 OP Y0

OP

10-8 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The MOVHPS (move high packed single-precision floating-point) instruction moves two packed single-precision
floating-point values from memory to the high quadword of an XMM register and vice versa. The low quadword of
the register is left unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction moves two packed single-preci-
sion floating-point values from the low quadword of the source XMM register into the high quadword of the desti-
nation XMM register. The low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction moves two packed single-preci-
sion floating-point values from the high quadword of the source XMM register into the low quadword of the desti-
nation XMM register. The high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction transfers the most significant bit of
each of the four packed single-precision floating-point numbers in an XMM register to a general-purpose register.
This 4-bit value can then be used as a condition to perform branching.

10.4.1.2 SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal, square root, reciprocal of
square root, and maximum/minimum operations on packed and scalar single-precision floating-point values.

The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract packed single-precision
floating-point values) instructions add and subtract, respectively, two packed single-precision floating-point oper-
ands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract scalar single-precision floating-
point values) instructions add and subtract, respectively, the low single-precision floating-point values of two oper-
ands and store the result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multiplies two packed single-preci-
sion floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multiplies the low single-precision
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides two packed single-precision
floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides the low single-precision floating-
point values of two operands and stores the result in the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) instruction computes the approx-
imate reciprocals of values in a packed single-precision floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) instruction computes the approxi-
mate reciprocal of the low single-precision floating-point value in the source operand and stores the result in the
low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) instruction computes the
square roots of the values in a packed single-precision floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) instruction computes the square
root of the low single-precision floating-point value in the source operand and stores the result in the low double-
word of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision floating-point values) instruction
computes the approximate reciprocals of the square roots of the values in a packed single-precision floating-point
operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point value) instruction computes the
approximate reciprocal of the square root of the low single-precision floating-point value in the source operand and
stores the result in the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically greater
value from each comparison to the destination operand.

Vol. 1 10-9

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The MAXSS (return maximum of scalar single-precision floating-point values) instruction compares the low values
from two packed single-precision floating-point operands and returns the numerically greater value from the
comparison to the low doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically lesser value
from each comparison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruction compares the low values
from two packed single-precision floating-point operands and returns the numerically lesser value from the
comparison to the low doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed single-precision floating-point
values.

The ANDPS (bitwise logical AND of packed single-precision floating-point values) instruction returns the logical
AND of two packed single-precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point values) instruction returns the
logical AND NOT of two packed single-precision floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) instruction returns the logical OR of
two packed single-precision floating-point operands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) instruction returns the logical
XOR of two packed single-precision floating-point operands.

10.4.2.1 SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point values and return the results
of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction compares the corresponding values
from two packed single-precision floating-point operands, using an immediate operand as a predicate, and returns
a 32-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the immediate
operand allows the selection of any of 8 compare conditions: equal, less than, less than equal, unordered, not
equal, not less than, not less than or equal, or ordered.

The CMPSS (compare scalar single-precision, floating-point values) instruction compares the low values from two
packed single-precision floating-point operands, using an immediate operand as a predicate, and returns a 32-bit
mask result of all 1s or all 0s for the comparison to the low doubleword of the destination operand. The immediate
operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) and UCOMISS (unordered
compare scalar single-precision floating-point values and set EFLAGS) instructions compare the low values of two
packed single-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISS instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN;
the UCOMISS instruction only signals an invalid-operation exception when a source operand is an SNaN.

10.4.2.2 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single-precision floating-point
values and store the results in the destination operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places any two of the four packed
single-precision floating-point values from the destination operand into the two low-order doublewords of the
destination operand, and places any two of the four packed single-precision floating-point values from the source
operand in the two high-order doublewords of the destination operand (see Figure 10-7). By using the same
register for the source and destination operands, the SHUFPS instruction can shuffle four single-precision floating-
point values into any order.

10-10 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The UNPCKHPS (unpack and interleave high packed single-precision floating-point values) instruction performs an
interleaved unpack of the high-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point values) instruction performs an
interleaved unpack of the low-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-9).

Figure 10-7. SHUFPS Instruction, Packed Shuffle Operation

Figure 10-8. UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9. UNPCKLPS Instruction, Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST

Vol. 1 10-11

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions between single-precision
floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction
converts two packed signed doubleword integers into two packed single-precision floating-point values. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point value) instruction converts a
signed doubleword integer into a single-precision floating-point value. When the conversion is inexact, the result is
rounded according to the rounding mode selected in the MXCSR register.

The CVTPS2PI (convert packed single-precision floating-point values to packed doubleword integers) instruction
converts two packed single-precision floating-point values into two packed signed doubleword integers. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. The
CVTTPS2PI (convert with truncation packed single-precision floating-point values to packed doubleword integers)
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a source value to an
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword integer) instruction converts a
single-precision floating-point value into a signed doubleword integer. When the conversion is inexact, the result is
rounded according to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with truncation
scalar single-precision floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruc-
tion, except that truncation is used to round the source value to an integer value (see Section 4.8.4.2, “Truncation
with SSE and SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32 architecture. These instructions
operate on data in MMX registers and 64-bit memory locations.

NOTE
When SSE2 extensions are present in an IA-32 processor, these instructions are extended to
operate on 128-bit operands in XMM registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute average of packed
unsigned word integers) instructions compute a SIMD average of two packed unsigned byte or word integer oper-
ands, respectively. For each corresponding pair of data elements in the packed source operands, the elements are
added together, a 1 is added to the temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into a general-purpose
register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from memory into a
selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corresponding unsigned byte
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the corresponding unsigned byte
integers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corresponding signed word
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corresponding signed word inte-
gers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte integers in an MMX
register and stores the result in the low byte of a general-purpose register. The mask contains the most significant
bit of each byte in the MMX register. (When operating on 128-bit operands, a 16-bit mask is created.)

10-12 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The PMULHUW (multiply packed unsigned word integers and store high result) instruction performs a SIMD
unsigned multiply of the words in the two source operands and returns the high word of each result to an MMX
register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute differences of the
corresponding unsigned byte integers in two source operands, sums the differences, and stores the sum in the low
word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source operand according to the
order specified by an 8-bit immediate operand and returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the state of the MXCSR
register, respectively. The LDMXCSR instruction loads the MXCSR register from memory, while the STMXCSR
instruction stores the contents of the register to memory.

10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
SSE extensions introduce several new instructions to give programs more control over the caching of data. They
also introduces the PREFETCHh instructions, which provide the ability to prefetch data to a specified cache level,
and the SFENCE instruction, which enforces program ordering on stores. These instructions are described in the
following sections.

10.4.6.1 Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be stored to memory using a non-
temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the data
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for information
about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX register
to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-temporal
hint.

10.4.6.2 Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The SSE
and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a manner
that minimizes pollution of caches.

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the memory type of the destination region is write back (WB), write through (WT), or write combining
(WC), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be
updated in-place if the memory type was not WC and line was already in the cache.

Vol. 1 10-13

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to
memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implementa-
tions may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address speci-
fied for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other system
agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for producer-
consumer usage models. Fencing ensures that all system agents have global visibility of the stored data; for
instance, failure to fence may result in a written cache line staying within a processor and not being visible to other
agents.

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one
possible example, the memory type written to the bus may reflect the memory type for the first store to this line,
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by
updating in place data that already reside in the cache hierarchy. For such processors, the
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential for
speculative processor reads to bring the data into the caches; in this case, non-temporal stores
would then update in place, and data would not be flushed from the processor by a subsequent
fencing operation.

10.4.6.3 PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a suggested cache level, so that
the data is closer to the processor’s load and store unit when it is needed. These instructions fetch 32 aligned bytes
(or more, depending on the implementation) containing the addressed byte to a location in the cache hierarchy
specified by the temporal locality hint (see Table 10-1). In this table, the first-level cache is closest to the processor
and second-level cache is farther away from the processor than the first-level cache. The hints specify a prefetch
of either temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”).
Subsequent accesses to temporal data are treated like normal accesses, while those to non-temporal data will
continue to minimize cache pollution. If the data is already present at a level of the cache hierarchy that is closer
to the processor, the PREFETCHh instruction will not result in any data movement. The PREFETCHh instructions do
not affect functional behavior of the program.

See Section 11.6.13, “Cacheability Hint Instructions,” for additional information about the PREFETCHh instructions.

Table 10-1. PREFETCHh Instructions Caching Hints

PREFETCHh Instruction
Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

10-14 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.4.6.4 SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This
instruction guarantees that the result of every store instruction that precedes the store fence in program order is
globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way
of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that
data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a fast
save and restore, respectively, of the x87 execution environment (x87 state). (By saving the state of the x87 FPU
data registers, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.)

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers
and the MXCSR register (SSE state), along with x87 state.

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions;
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of
FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part of the SSE instruction group. They
have a separate CPUID feature bit to indicate whether they are present (if
CPUID.01H:EDX.FXSR[bit 24] = 1).

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE
area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes operation of
FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area
The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE
area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address of the
FXSAVE area on which it operates.

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing cache pollution

• Pentium III processor—1st-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

Table 10-1. PREFETCHh Instructions Caching Hints (Contd.)

PREFETCHh Instruction
Mnemonic Actions

Vol. 1 10-15

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format
of the first 416 bytes of the legacy region of an FXSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1 x87 State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU

Opcode (FOP), respectively.

Table 10-2. Format of an FXSAVE Area
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU
IP bits 63:32 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

10-16 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag;
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: FXSAVE saves it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector
(FPU DS). Otherwise, the processor deprecates the FPU DS value: FXSAVE saves it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 registers is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

10.5.1.2 SSE State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in response

to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions

of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit mode do not
read these bytes and do not update XMM8–XMM15.

If CR4.OSFXSR = 0, FXSAVE and FXRSTOR may or may not operate on SSE state; this behavior is implementation
dependent. Moreover, SSE instructions cannot be used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE
The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The instruction stores x87 state
and SSE state to the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific
operation and operation determined by instruction prefixes.

Vol. 1 10-17

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.5.3 Operation of FXRSTOR
The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. If the value at bytes 27:24 of
the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets reserved bits), execution of
FXRSTOR results in a general-protection fault (#GP). Otherwise, the instruction loads x87 state and SSE state rom
the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific operation and
operation determined by instruction prefixes.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the general and SIMD floating-
point exceptions that can be generated with the SSE instructions and for guidelines for handling these exceptions
when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional information about writing appli-
cations and operating-system code using the SSE extensions.

10-18 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

4. Updates to Chapter 15, Volume 1

Updates to Chapter 15 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture.

--

Changes to this chapter: Typo correction in Table 5-4, “Characteristics of Three Rounding Control Interfaces”.

Vol. 1 15-1

CHAPTER 15
PROGRAMMING WITH INTEL® AVX-512

15.1 OVERVIEW
The Intel AVX-512 family comprises a collection of instruction set extensions, including AVX-512 Foundation,
AVX-512 Exponential and Reciprocal instructions, AVX-512 Conflict, AVX-512 Prefetch, and additional 512-bit
SIMD instruction extensions. Intel AVX-512 instructions are natural extensions to Intel AVX and Intel AVX2. Intel
AVX-512 introduces the following architectural enhancements:
• Support for 512-bit wide vectors and SIMD register set. 512-bit register state is managed by the operating

system using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, and Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

• Support for 16 new, 512-bit SIMD registers (for a total of 32 SIMD registers, ZMM0 through ZMM31) in 64-bit
mode. The extra 16 registers state is managed by the operating system using XSAVE/XRSTOR/XSAVEOPT.

• Support for 8 new opmask registers (k0 through k7) used for conditional execution and efficient merging of
destination operands. The opmask register state is managed by the operating system using the
XSAVE/XRSTOR/XSAVEOPT instructions.

• A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The
EVEX prefix builds upon the foundations of the VEX prefix to provide compact, efficient encoding for function-
ality available to VEX encoding plus the following enhanced vector capabilities:

• Opmasks.

• Embedded broadcast.

• Instruction prefix-embedded rounding control.

• Compressed address displacements.

15.1.1 512-Bit Wide SIMD Register Support
Intel AVX-512 instructions support 512-bit wide SIMD registers (ZMM0-ZMM31). The lower 256-bits of the ZMM
registers are aliased to the respective 256-bit YMM registers and the lower 128-bit are aliased to the respective
128-bit XMM registers.

15.1.2 32 SIMD Register Support
Intel AVX-512 instructions also support 32 SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31 and
ZMM0-ZMM31). The number of available vector registers in 32-bit mode is still 8.

15.1.3 Eight Opmask Register Support
Intel AVX-512 instructions support 8 opmask registers (k0-k7). The width of each opmask register is architectur-
ally defined as size MAX_KL (64 bits). Seven of the eight opmask registers (k1-k7) can be used in conjunction with
EVEX-encoded AVX-512 Foundation instructions to provide conditional execution and efficient merging of data
elements in the destination operand. The encoding of opmask register k0 is typically used when all data elements
(unconditional processing) are desired. Additionally, the opmask registers are also used as vector flags/element-
level vector sources to introduce novel SIMD functionality as seen in new instructions such as VCOMPRESSPS.

15-2 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

15.1.4 Instruction Syntax Enhancement
The architecture of EVEX encoding enhances the vector instruction encoding scheme in the following way:
• 512-bit vector-length, up to 32 ZMM registers, and enhanced vector programming environment are supported

using the enhanced VEX (EVEX).
The EVEX prefix provides more encodable bit fields than the VEX prefix. In addition to encoding 32 ZMM registers
in 64-bit mode, instruction encoding using the EVEX prefix can directly encode 7 (out of 8) opmask register oper-
ands to provide conditional processing in vector instruction programming. The enhanced vector programming envi-
ronment can be explicitly expressed in the instruction syntax to include the following elements:
• An opmask operand: the opmask registers are expressed using the notation “k1” through “k7”. An EVEX-

encoded instruction supporting conditional vector operation using the opmask register k1 is expressed by
attaching the notation {k1} next to the destination operand. The use of this feature is optional for most instruc-
tions. There are two types of masking (merging and zeroing) differentiated using the EVEX.z bit ({z} in
instruction signature).

• Embedded broadcast may be supported for some instructions on the source operand that can be encoded as a
memory vector. Data elements of a memory vector may be conditionally fetched or written to.

• For instruction syntax that operates only on floating-point data in SIMD registers with rounding semantics, the
EVEX encoding can provide explicit rounding control within the EVEX bit fields at either scalar or 512-bit vector
length.

In AVX-512 instructions, vector addition of all elements of the source operands can be expressed in the same
syntax as AVX instruction:

VADDPS zmm1, zmm2, zmm3

Additionally, the EVEX encoding scheme of AVX-512 Foundation can express conditional vector addition as:

VADDPS zmm1 {k1}{z}, zmm2, zmm3

where:
• Conditional processing and updates to destination are expressed with an opmask register.
• Zeroing behavior of the opmask selected destination element is expressed by the {z} modifier (with merging

as the default if no modifier is specified).

Figure 15-1. 512-Bit Wide Vectors and SIMD Register Set

. . .
XMM31ZMM31

Bit#
0255256511

YMM31

127128

XMM1ZMM1 YMM1

XMM0ZMM0 YMM0

Vol. 1 15-3

PROGRAMMING WITH INTEL® AVX-512

Note that some SIMD instructions supporting three-operand syntax but processing only less than or equal to 128-
bits of data are considered part of the 512-bit SIMD instruction set extensions, because bits MAXVL-1:128 of the
destination register are zeroed by the processor. The same rule applies to instructions operating on 256-bits of data
where bits MAXVL-1:256 of the destination register are zeroed.

15.1.5 EVEX Instruction Encoding Support
Intel AVX-512 instructions employ a new encoding prefix, referred to as EVEX, in the Intel 64 and IA-32 instruction
encoding format. Instruction encoding using the EVEX prefix provides the following capabilities:
• Direct encoding of a SIMD register operand within EVEX (similar to VEX). This provides instruction syntax

support for three source operands.
• Compaction of REX prefix functionality and extended SIMD register encoding: the equivalent REX-prefix

compaction functionality offered by the VEX prefix is provided within EVEX. Furthermore, EVEX extends the
operand encoding capability to allow direct addressing of up to 32 ZMM registers in 64-bit mode.

• Compaction of SIMD prefix functionality and escape byte encoding: the functionality of a SIMD prefix (66H,
F2H, F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This
functionality is provided in the VEX prefix encoding scheme and employed within the EVEX prefix. Similarly, the
functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted within
the EVEX prefix encoding.

• Most EVEX-encoded SIMD numeric and data processing instruction semantics with memory operands have
more relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section
15.7, “Memory Alignment”).

• Direct encoding of an opmask operand within the EVEX prefix. This provides instruction syntax support for
conditional vector-element operation and merging of destination operand using an opmask register (k1-k7).

• Direct encoding of a broadcast attribute for instructions with a memory operand source. This provides
instruction syntax support for elements broadcasting the second operand before being used in the actual
operation.

• Compressed memory address displacements for a more compact instruction encoding byte sequence.
EVEX encoding applies to SIMD instructions operating on XMM, YMM and ZMM registers. EVEX is not supported for
instructions operating on MMX or x87 registers. Details of EVEX instruction encoding are discussed in Section 2.6,
“Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

15.2 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS
The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register. System
software requirements to support the ZMM state and opmask instructions are described in Section 15.5, “Accessing
XMM, YMM AND ZMM Registers”.
Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers needs to
follow the general procedural flow in Figure 15-2.

15-4 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports
the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for ZMM state
management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence
accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).

3. Detect CPUID.0x7.0:EBX.AVX512F[bit 16] = 1.

15.2.1 Additional 512-bit Instruction Extensions of the Intel AVX-512 Family
Processor support of the Intel AVX-512 Exponential and Reciprocal instructions are indicated by querying the
feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512ER[bit 27] = 1, the collection of

VEXP2PD/VEXP2PS/VRCP28xx/VRSQRT28xx instructions are supported.
Processor support of the Intel AVX-512 Prefetch instructions are indicated by querying the feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512PF[bit 26] = 1, a collection of

VGATHERPF0xxx/VGATHERPF1xxx/VSCATTERPF0xxx/VSCATTERPF1xxx instructions are supported.
Detection of 512-bit instructions operating on ZMM states and opmask registers, outside of AVX-512 Foundation,
needs to follow the general procedural flow in Figure 15-3.

Figure 15-2. Procedural Flow for Application Detection of AVX-512 Foundation Instructions

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor
extended state bit vector XCR0 register. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSX-
SAVE. XSETBV is a privileged instruction.

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check AVX512F flag

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,

Vol. 1 15-5

PROGRAMMING WITH INTEL® AVX-512

PREFETCHT1W does not require OS support for XMM/YMM/ZMM/k-reg, SIMD FP exception support.
Procedural Flow of Application Detection of other 512-bit extensions:
Prior to using the Intel AVX-512 Exponential and Reciprocal instructions, the application must identify that the
operating system supports the XGETBV instruction and the ZMM register state, in addition to confirming the
processor’s support for ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The
following simplified sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512ER[bit 27] = 1.
Prior to using the Intel AVX-512 Prefetch instructions, the application must identify that the operating system
supports the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for
ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified
sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512PF[bit 26] = 1.

15.3 DETECTION OF 512-BIT INSTRUCTION GROUPS OF INTEL® AVX-512
FAMILY

In addition to the Intel AVX-512 Foundation instructions, Intel AVX-512 family provides several groups of instruc-
tion extensions that can operate in vector lengths of 512/256/128 bits. Each group is enumerated by a CPUID leaf
7 feature flag and can be encoded via the EVEX.L’L field to support operation at vector lengths smaller than 512
bits. These instruction groups are listed in Table 15-1.

Figure 15-3. Procedural Flow for Application Detection of 512-bit Instructions

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check AVX512F and
additional 512-bit flags

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,

15-6 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in
Section 15.2.
Detection of other 512-bit sibling instruction groups listed in Table 15-1 (excluding AVX512F) follows the procedure
described in Figure 15-4:

To detect 512-bit instructions enumerated by AVX512CD, the following sequence is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.
Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same
flow.

15.4 DETECTION OF INTEL AVX-512 INSTRUCTION GROUPS OPERATING AT 256
AND 128-BIT VECTOR LENGTHS

For each of the 512-bit instruction groups in the Intel AVX-512 family listed in Table 15-1, the EVEX encoding
scheme may support a vast majority of these instructions operating at 256-bit or 128-bit (if applicable) vector
lengths. Encoding support for vector lengths smaller than 512-bits is indicated by CPUID.(EAX=07H,
ECX=0):EBX[bit 31], abbreviated as AVX512VL.

Table 15-1. 512-bit Instruction Groups in the Intel AVX-512 Family

CPUID Leaf 7 Feature Flag Bit Feature Flag abbreviation of 512-bit Instruction Group SW Detection Flow

CPUID.(EAX=07H, ECX=0):EBX[bit 16] AVX512F (AVX-512 Foundation) Figure 15-2

CPUID.(EAX=07H, ECX=0):EBX[bit 28] AVX512CD Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 17] AVX512DQ Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 30] AVX512BW Figure 15-4

Figure 15-4. Procedural Flow for Application Detection of 512-bit Instruction Groups

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check AVX512F and

a sibling 512-bit flag

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,

Vol. 1 15-7

PROGRAMMING WITH INTEL® AVX-512

The AVX512VL flag alone is never sufficient to determine a given Intel AVX-512 instruction may be encoded at
vector lengths smaller than 512 bits. Software must use the procedure described in Figure 15-5 and Table 15-2.

To illustrate the procedure described in Figure 15-5 and Table 15-2 for software to use EVEX.256 encoded VPCON-
FLICT, the following sequence is provided. It is strongly recommended this sequence is followed.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1, and
CPUID.0x7.0:EBX.AVX512VL[bit 31] = 1.

In some specific cases, AVX512VL may only support EVEX.256 encoding but not EVEX.128. These cases are listed
in Table 15-3.

Figure 15-5. Procedural Flow for Detection of Intel AVX-512 Instructions Operating at Vector Lengths < 512

Table 15-2. Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group

Usage of 256/128 Vector Lengths Feature Flag Collection to Verify

AVX512F AVX512F & AVX512VL

AVX512CD AVX512F & AVX512CD & AVX512VL

AVX512DQ AVX512F & AVX512DQ & AVX512VL

AVX512BW AVX512F & AVX512BW & AVX512VL

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check applicable collection of

CPUID flags listed in Table 2-2

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,

15-8 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

15.5 ACCESSING XMM, YMM AND ZMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e.,
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAXVL-1:128) of the YMM registers. AVX and FMA instructions with a
VEX prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written to by many instructions with a VEX.256 prefix.
XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.
The lower 256 bits of a ZMM register are aliased to the corresponding YMM register. Legacy SSE instructions (i.e.,
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAXVL-1:128) of the ZMM registers, where MAXVL is maximum vector
length (currently 512 bits). AVX and FMA instructions with a VEX prefix and vector length of 128-bits zero the upper
384 bits of the ZMM register, while the VEX prefix and vector length of 256-bits zeroes the upper 256 bits of the
ZMM register.
Upper bits of ZMM registers (511:256) can be read and written to by instructions with an EVEX.512 prefix.

15.6 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX
ENCODING

EVEX-encoded AVX-512 instructions support an enhanced vector programming environment. The enhanced vector
programming environment uses the combination of EVEX bit-field encodings and a set of eight opmask registers to
provide the following capabilities:
• Conditional vector processing of an EVEX-encoded instruction. Opmask registers k1 through k7 can be used to

conditionally govern the per-data-element computational operation and the per-element updates to the
destination operand of an AVX-512 Foundation instruction. Each bit of the opmask register governs one vector
element operation (a vector element can be 8 bits, 16 bits, 32 bits or 64 bits).

• In addition to providing predication control on vector instructions via EVEX bit-field encoding, the opmask
registers can also be used similarly on general-purpose registers as source/destination operands using modR/M
encoding for non-mask-related instructions. In this case, an opmask register k0 through k7 can be selected.

• In 64-bit mode, 32 vector registers can be encoded using the EVEX prefix.
• Broadcast may be supported for some instructions on the operand that can be encoded as a memory vector.

The data elements of a memory vector may be conditionally fetched or written to, and the vector size is
dependent on the data transformation function.

• Flexible rounding control for the register-to-register flavor of EVEX encoded 512-bit and scalar instructions.
Four rounding modes are supported by direct encoding within the EVEX prefix, overriding MXCSR settings.

• Broadcast of one element to the rest of the destination vector register.
• Compressed 8-bit displacement encoding scheme to increase the instruction encoding density for instructions

that normally require disp32 syntax.

Table 15-3. Instruction Mnemonics That Do Not Support EVEX.128 Encoding

Instruction Group Instruction Mnemonics Supporting EVEX.256 Only Using AVX512VL

AVX512F VBROADCASTSD, VBROADCASTF32X4, VEXTRACTI32X4, VINSERTF32X4, VINSERTI32X4, VPERMD,
VPERMPD, VPERMPS, VPERMQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2

AVX512CD

AVX512DQ
VBROADCASTF32X2, VBROADCASTF64X2, VBROADCASTI32X4, VBROADCASTI64X2, VEXTRACTI64X2,

VINSERTF64X2, VINSERTI64X2,

AVX512BW

Vol. 1 15-9

PROGRAMMING WITH INTEL® AVX-512

15.6.1 OPMASK Register to Predicate Vector Data Processing
AVX-512 instructions using EVEX encode a predicate operand to conditionally control per-element computational
operation and updating of the result to the destination operand. The predicate operand is known as the opmask
register. The opmask is a set of eight architectural registers of size MAX_KL (64-bit). Note that from this set of eight
architectural registers, only k1 through k7 can be addressed as a predicate operand. k0 can be used as a regular
source or destination but cannot be encoded as a predicate operand. Note also that a predicate operand can be
used to enable memory fault-suppression for some instructions with a memory operand (source or destination).
As a predicate operand, the opmask registers contain one bit to govern the operation/update to each data element
of a vector register. In general, opmask registers can support instructions with all element sizes: byte (int8), word
(int16), single-precision floating-point (float32), integer doubleword(int32), double-precision floating-point
(float64), integer quadword (int64). Therefore, a ZMM vector register can hold 8, 16, 32, or 64 elements in prin-
ciple. The length of an opmask register, MAX_KL, is sufficient to handle up to 64 elements with one bit per element,
i.e., 64 bits. Masking is supported in most of the AVX-512 instructions. For a given vector length, each instruction
accesses only the number of least significant mask bits that are needed based on its data type. For example, AVX-
512 Foundation instructions operating on 64-bit data elements with a 512-bit vector length, only use the 8 least
significant bits of the opmask register.
An opmask register affects an AVX-512 instruction at per-element granularity. Any numeric or non-numeric oper-
ation of each data element and per-element updates of intermediate results to the destination operand are predi-
cated on the corresponding bit of the opmask register.
An opmask serving as a predicate operand in AVX-512 obeys the following properties:
• The instruction’s operation is not performed for an element if the corresponding opmask bit is not set. This

implies that no exception or violation can be caused by an operation on a masked-off element. Consequently,
no MXCSR exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask bit is not
set. Instead, the destination element value must be preserved (merging-masking) or it must be zeroed out
(zeroing-masking).

• For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of
0.

Note that this feature provides a versatile construct to implement control-flow predication as the mask in effect
provides a merging behavior for AVX-512 vector register destinations. As an alternative the masking can be used
for zeroing instead of merging, so that the masked out elements are updated with 0 instead of preserving the old
value. The zeroing behavior is provided to remove the implicit dependency on the old value when it is not needed.
Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits
different than 0 (gather and scatter) and instructions that write to memory only accept merging-masking.
It’s important to note that the per-element destination update rule also applies when the destination operand is a
memory location. Vectors are written on a per element basis, based on the opmask register used as a predicate
operand.
The value of an opmask register can be:
• Generated as a result of a vector instruction (e.g., CMP, FPCLASS, etc.).
• Loaded from memory.
• Loaded from a GPR register.
• Modified by mask-to-mask operations.
Opmask registers can be used for purposes outside of predication. For example, they can be used to manipulate
sparse sets of elements from a vector, or used to set the EFLAGS based on the 0/0xFFFFFFFFFFFFFFFF/other status
of the OR of two opmask registers.

15.6.1.1 Opmask Register K0
The only exception to the opmask rules described above is that opmask k0 can not be used as a predicate operand.
Opmask k0 cannot be encoded as a predicate operand for a vector operation; the encoding value that would select
opmask k0 will instead select an implicit opmask value of 0xFFFFFFFFFFFFFFFF, thereby effectively disabling

15-10 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

masking. Opmask register k0 can still be used for any instruction that takes opmask register(s) as operand(s)
(either source or destination).
Note that certain instructions implicitly use the opmask as an extra destination operand. In such cases, trying to
use the “no mask” feature will translate into a #UD fault being raised.

15.6.1.2 Example of Opmask Usages
The example below illustrates the predicated vector add operation and predicated updates of added results into the
destination operand. The initial state of vector registers zmm0, zmm1, and zmm2 and k3 are:

MSB..LSB

zmm0 =
[0x00000003 0x00000002 0x00000001 0x00000000] (bytes 15 through 0)

[0x00000007 0x00000006 0x00000005 0x00000004] (bytes 31 through 16)

[0x0000000B 0x0000000A 0x00000009 0x00000008] (bytes 47 through 32)

[0x0000000F 0x0000000E 0x0000000D 0x0000000C] (bytes 63 through 48)

zmm1 =
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 15 through 0)

[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 31 through 16)

[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 47 through 32)

[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 63 through 48)

zmm2 =
[0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA] (bytes 15 through 0)

[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)

[0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC] (bytes 47 through 32)

[0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)

k3 = 0x8F03 (1000 1111 0000 0011)

An opmask register serving as a predicate operand is expressed as a curly-braces-enclosed decorator following the
first operand in the Intel assembly syntax. Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmm0, zmm1

The vpaddd instruction performs 32-bit integer additions on each data element conditionally based on the corre-
sponding bit value in the predicate operand k3. Since per-element operations are not operated if the corresponding
bit of the predicate mask is not set, the intermediate result is:

[********** ********** 0x00000010 0x0000000F] (bytes 15 through 0)

[********** ********** ********** **********] (bytes 31 through 16)

[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)

[0x0000001E ********** ********** **********] (bytes 63 through 48)

where ”**********” indicates that no operation is performed.
This intermediate result is then written into the destination vector register, zmm2, using the opmask register k3 as
the writemask, producing the following final result:

Vol. 1 15-11

PROGRAMMING WITH INTEL® AVX-512

zmm2 =

[0xAAAAAAAA 0xAAAAAAAA 0x00000010 0x0000000F] (bytes 15 through 0)

[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)

[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)

[0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)

Note that for a 64-bit instruction (for example, vaddpd), only the 8 LSB of mask k3 (0x03) would be used to iden-
tify the predicate operation on each one of the 8 elements of the source/destination vectors.

15.6.2 OpMask Instructions
AVX-512 Foundation instructions provide a collection of opmask instructions that allow programmers to set, copy,
or operate on the contents of a given opmask register. There are three types of opmask instructions:
• Mask read/write instructions: These instructions move data between a general-purpose integer register or

memory and an opmask mask register, or between two opmask registers. For example:

— kmovw k1, ebx; move lower 16 bits of ebx to k1.
• Flag instructions: This category consists of instructions that modify EFLAGS based on the content of opmask

registers.

— kortestw k1, k2; OR registers k1 and k2 and updated EFLAGS accordingly.
• Mask logical instructions: These instructions perform standard bitwise logical operations between opmask

registers.

— kandw k1, k2, k3; AND lowest 16 bits of registers k2 and k3, leaving the result in k1.

15.6.3 Broadcast
EVEX encoding provides a bit-field to encode data broadcast for some load-op instructions, i.e., instructions that
load data from memory and perform some computational or data movement operation. A source element from
memory can be broadcasted (repeated) across all the elements of the effective source operand (up to 16 times for
a 32-bit data element, up to 8 times for a 64-bit data element). This is useful when we want to reuse the same
scalar operand for all the operations in a vector instruction. Broadcast is only enabled on instructions with an
element size of 32 bits or 64 bits. Byte and word instructions do not support embedded broadcast.
The functionality of data broadcast is expressed as a curly-braces-enclosed decorator following the last
register/memory operand in the Intel assembly syntax.
For instance:

vmulps zmm1, zmm2, [rax] {1to16}

The {1to16} primitive loads one float32 (single precision) element from memory, replicates it 16 times to form a
vector of 16 32-bit floating-point elements, multiplies the 16 float32 elements with the corresponding elements in
the first source operand vector, and puts each of the 16 results into the destination operand.

AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives.

vmovaps [rax] {k3}, zmm19

In contrast, the k3 opmask register is used as the predicate operand in the above example. Only the store opera-
tion on data elements corresponding to the non-zero bits in k3 will be performed.

15-12 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

15.6.4 Static Rounding Mode and Suppress All Exceptions
In previous SIMD instruction extensions (up to AVX and AVX2), rounding control is generally specified in MXCSR,
with a handful of instructions providing per-instruction rounding override via encoding fields within the imm8
operand. AVX-512 offers a more flexible encoding attribute to override MXCSR-based rounding control for floating-
pointing instructions with rounding semantics. This rounding attribute embedded in the EVEX prefix is called Static
(per instruction) Rounding Mode or Rounding Mode override. This attribute allows programmers to statically apply
a specific arithmetic rounding mode irrespective of the value of RM bits in MXCSR. It is available only to register-to-
register flavors of EVEX-encoded floating-point instructions with rounding semantic. The differences between these
three rounding control interfaces are summarized in Table 15-4.

The static rounding-mode override in AVX-512 also implies the “suppress-all-exceptions” (SAE) attribute. The SAE
effect is as if all the MXCSR mask bits are set, and none of the MXCSR flags will be updated. Using static rounding-
mode via EVEX without SAE is not supported.
Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit
to 1 in a register-register vector instruction. In such a case, vector length is assumed to be MAXVL (512-bit in case
of AVX-512 packed vector instructions) or 128-bit for scalar instructions. Table 15-5 summarizes the possible static
rounding-mode assignments in AVX-512 instructions.
Note that some instructions already allow specifying the rounding mode statically via immediate bits. In such
cases, the immediate bits take precedence over the embedded rounding mode (in the same vein that they take
precedence over whatever MXCSR.RM says).

An example of use would be as follows:

vaddps zmm7 {k6}, zmm2, zmm4, {rd-sae}

This would perform the single-precision floating-point addition of vectors zmm2 and zmm4 with round-towards-
minus-infinity, leaving the result in vector zmm7 using k6 as conditional writemask.

Table 15-4. Characteristics of Three Rounding Control Interfaces

Rounding Interface
Static Rounding

Override
Imm8 Embedded Rounding

Override MXCSR Rounding Control

Semantic Requirement FP rounding FP rounding FP rounding

Prefix Requirement EVEX.B = 1 NA NA

Rounding Control EVEX.L’L IMM8[1:0] or MXCSR.RC
(depending on IMM8[2])

MXCSR.RC

Suppress All Exceptions (SAE) Implied no no

SIMD FP Exception #XM All suppressed Can raise #I, #P (unless SPE is set) MXCSR masking controls

MXCSR flag update No yes (except PE if SPE is set) Yes

Precedence Above MXCSR.RC Above EVEX.L’L Default

Scope 512-bit, reg-reg,
Scalar reg-reg

ROUNDPx, ROUNDSx,
VCVTPS2PH, VRNDSCALExx

All SIMD operands, vector lengths

Table 15-5. Static Rounding Mode

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -inf) + SAE

{ru-sae} Round up (toward +inf) + SAE

{rz-sae} Round toward zero (Truncate) + SAE

Vol. 1 15-13

PROGRAMMING WITH INTEL® AVX-512

Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.

Examples of instruction instances where the static rounding-mode is not allowed are shown below:

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2, 0x00

; instructions with memory operands

vmulps zmm7 {k6}, zmm2,[rax], {rd-sae}

; instructions with vector length different than MAXVL (512-bit)

vaddps ymm7 {k6}, ymm2, ymm4,{rd-sae}

15.6.5 Compressed Disp8*N Encoding
EVEX encoding supports a new displacement representation that allows for a more compact encoding of memory
addressing commonly used in unrolled code, where an 8-bit displacement can address a range exceeding the
dynamic range of an 8-bit value. This compressed displacement encoding is referred to as disp8*N, where N is a
constant implied by the memory operation characteristic of each instruction.
The compressed displacement is based on the assumption that the effective displacement (of a memory operand
occurring in a loop) is a multiple of the granularity of the memory access of each iteration. Since the base register
in memory addressing already provides byte-granular resolution, the lower bits of the traditional disp8 operand
become redundant, and can be implied from the memory operation characteristic.
The memory operation characteristics depend on the following:
• The destination operand is updated as a full vector, a single element, or multi-element tuples.
• The memory source operand (or vector source operand if the destination operand is memory) is fetched (or

treated) as a full vector, a single element, or multi-element tuples.
For example:
vaddps zmm7, zmm2, disp8[membase + index*8]

The destination zmm7 is updated as a full 512-bit vector, and 64-bytes of data are fetched from memory as a full
vector; the next unrolled iteration may fetch from memory in 64-byte granularity per iteration. There are 6 bits of
lowest address that can be compressed, hence N = 2^6 = 64. The contribution of “disp8” to effective address
calculation is 64*disp8.
vbroadcastf32x4 zmm7, disp8[membase + index*8]

In VBROADCASTF32x4, memory is fetched as a 4tuple of 4 32-bit entities. Hence the common lowest address bits
that can be compressed are 4, corresponding to the 4tuple width of 2^4 = 16 bytes (4x32 bits). Therefore, N =
2^4.
For EVEX encoded instructions that update only one element in the destination, or the source element is fetched
individually, the number of lowest address bits that can be compressed is generally the width in bytes of the data
element, hence N = 2^(width).

15.7 MEMORY ALIGNMENT
Memory alignment requirements on EVEX-encoded SIMD instructions are similar to VEX-encoded SIMD instruc-
tions. Memory alignment applies to EVEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 64 bytes of memory with EVEX prefix encoded

vector length of 512 bits (e.g., VMOVAPD, VMOVAPS, VMOVDQA, etc.). These instructions always require the
memory address to be aligned on a 64-byte boundary.

15-14 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

• Explicitly-unaligned SIMD load and store instructions accessing 64 bytes or less of data from memory (e.g.,
VMOVUPD, VMOVUPS, VMOVDQU, VMOVQ, VMOVD, etc.). These instructions do not require the memory
address to be aligned on a natural vector-length byte boundary.

• Most arithmetic and data processing instructions encoded using EVEX support memory access semantics.
When these instructions access from memory, there are no alignment restrictions.

Software may see performance penalties when unaligned accesses cross cacheline boundaries or vector-length
naturally-aligned boundaries, so reasonable attempts to align commonly used data sets should continue to be
pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand
sizes and alignment scenarios. The guaranteed atomic operations are described in Section 8.1.1, “Guaranteed
Atomic Operations” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. AVX and
FMA instructions do not introduce any new guaranteed atomic memory operations.
AVX-512 instructions may generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when
CR0.AM=1. 16, 32 and 64-byte memory references will not generate an #AC(0) fault. See Table 15-7 for details.
Certain AVX-512 Foundation instructions always require 64-byte alignment (see the complete list of VEX and EVEX
encoded instructions in Table 15-6). These instructions will #GP(0) if not aligned to 64-byte boundaries.

15.8 SIMD FLOATING-POINT EXCEPTIONS
AVX-512 instructions can generate SIMD floating-point exceptions (#XM) if embedded “suppress all exceptions”
(SAE) in EVEX is not set. When SAE is not set, these instructions will respond to exception masks of MXCSR in the
same way as VEX-encoded AVX instructions. When CR4.OSXMMEXCPT=0, any unmasked FP exceptions generate
an Undefined Opcode exception (#UD).

Table 15-6. SIMD Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment Require 64-byte alignment*

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256 VMOVDQA zmm, m512

(V)MOVDQA m128, xmm VMOVDQA m256, ymm VMOVDQA m512, zmm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256 VMOVAPS zmm, m512

(V)MOVAPS m128, xmm VMOVAPS m256, ymm VMOVAPS m512, zmm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256 VMOVAPD zmm, m512

(V)MOVAPD m128, xmm VMOVAPD m256, ymm VMOVAPD m512, zmm

(V)MOVNTDQA xmm, m128 VMOVNTPS m256, ymm VMOVNTPS m512, zmm

(V)MOVNTPS m128, xmm VMOVNTPD m256, ymm VMOVNTPD m512, zmm

(V)MOVNTPD m128, xmm VMOVNTDQ m256, ymm VMOVNTDQ m512, zmm

(V)MOVNTDQ m128, xmm VMOVNTDQA ymm, m256 VMOVNTDQA zmm, m512

Table 15-7. Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128 VMOVDQU ymm, m256 VMOVDQU zmm, m512

(V)MOVDQU m128, m128 VMOVDQU m256, ymm VMOVDQU m512, zmm

(V)MOVUPS xmm, m128 VMOVUPS ymm, m256 VMOVUPS zmm, m512

(V)MOVUPS m128, xmm VMOVUPS m256, ymm VMOVUPS m512, zmm

(V)MOVUPD xmm, m128 VMOVUPD ymm, m256 VMOVUPD zmm, m512

(V)MOVUPD m128, xmm VMOVUPD m256, ymm VMOVUPD m512, zmm

Vol. 1 15-15

PROGRAMMING WITH INTEL® AVX-512

15.9 INSTRUCTION EXCEPTION SPECIFICATION
Exception behavior of VEX-encoded AVX / AVX2 instructions are described in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A. Exception behavior of AVX-512 Foundation instructions and additional
512-bit extensions are described in Section 2.7, “Exception Classifications of EVEX-Encoded instructions” and
Section 2.8, “Exception Classifications of Opmask instructions”.

15.10 EMULATION
Setting the CR0.EM bit to 1 provides a technique to emulate legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions, nor FMA instructions.
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions
to #UD. Emulation of FMA by the operating system can be done similarly as with emulating AVX instructions.

15.11 WRITING FLOATING-POINT EXCEPTION HANDLERS
AVX-512, AVX and FMA floating-point exceptions are handled in an entirely analogous way to legacy SSE floating-
point exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must
provide an exception handler. Section 11.5.1, “SIMD Floating-Point Exceptions”, describes the SIMD floating-point
exception classes and gives suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.

15-16 Vol. 1

PROGRAMMING WITH INTEL® AVX-512

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

5. Updates to Chapter 1, Volume 2A

Updates to Chapter 1 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-L.

--

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Vol. 2A 1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018 and 334569) are part of a set that describes the architecture
and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order

Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System

Programming Guide (order numbers 253668, 253669, 326019 and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series

1-2 Vol. 2A

ABOUT THIS MANUAL

• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
• Intel® Xeon® Processor Scalable Family
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family

Vol. 2A 1-3

ABOUT THIS MANUAL

• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

1-4 Vol. 2A

ABOUT THIS MANUAL

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B, 2C AND 2D: INSTRUCTION SET REFERENCE
A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D content
follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related
Intel® manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and
the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-U. Continues the description of Intel 64 and IA-32 instructions
started in Chapter 3. It starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

Chapter 5 — Instruction Set Reference, V-Z. Continues the description of Intel 64 and IA-32 instructions
started in chapters 3 and 4. It provides the balance of the alphabetized list of instructions and starts Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2C.

Chapter 6 — Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions. This chapter
starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

Chapter 7— Instruction Set Reference Unique to Intel® Xeon Phi™ Processors. Describes the instruction
set that is unique to Intel® Xeon Phi™ processors based on the Knights Landing and Knights Mill microarchitec-
tures. The set is not supported in any other Intel processors.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Vol. 2A 1-5

ABOUT THIS MANUAL

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. IA-32 processors are “little endian” machines; this means the bytes of
a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any,

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in IA-32 registers. Depending upon
the values of reserved register bits will make software dependent upon the unspecified manner in
which the processor handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

Figure 1-1. Bit and Byte Order

Byte 3

Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset

Highest
Address

1-6 Vol. 2A

ABOUT THIS MANUAL

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three operands,

depending on the opcode. When present, they take the form of either literals or identifiers for data items.
Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes in memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EIP

Vol. 2A 1-7

ABOUT THIS MANUAL

1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.

1-8 Vol. 2A

ABOUT THIS MANUAL

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm

See also:
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

SDM29002

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/

Vol. 2A 1-9

ABOUT THIS MANUAL

• Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

• Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

• Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602

1-10 Vol. 2A

ABOUT THIS MANUAL

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

6. Updates to Chapter 2, Volume 2A

Updates to Chapter 2A added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-L.

--

Changes to this chapter: Update to Table 2-8, “VEX.vvvv to register name mapping”, typo correction in Table 2-
14, “Exception class description”, minor typo correction to heading 2.4.4, “Exceptions Type 4 (>=16 Byte mem
arg, no alignment, no floating-point exceptions)”, and update to Table 2-39, “#UD Conditions of Operand-
Encoding EVEX Prefix Bit Fields”.

Vol. 2A 2-1

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE,
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H.

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

• REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output
instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none3

Address
displacement
of 1, 2, or 4
bytes or none3

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Prefixes of
1 byte each
(optional)1, 2

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)”.
3. Some rare instructions can take an 8B immediate or 8B displacement.

2-2 Vol. 2A

INSTRUCTION FORMAT

— BND prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction
(see Chapter 17, “Intel® MPX,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints1:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).

• Group 4

• 67H—Address-size override prefix.
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description
of this prefix.
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for
a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.
Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes
may use 66H as a mandatory prefix to express distinct functionality.
Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Some earlier microarchitectures used these as branch hints, but recent generations have not and they are reserved for future hint
usage.

Vol. 2A 2-3

INSTRUCTION FORMAT

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode and a second opcode byte.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous

bullet).
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not
considered as a repeat prefix).
Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as

previous bullet).
For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the
mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an

addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is
present). If a displacement is required, it can be 1, 2, or 4 bytes.
If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.

2-4 Vol. 2A

INSTRUCTION FORMAT

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX
technology and XMM registers.
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M =
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute.
If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six
are represented in decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the
column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below
demonstrates interpretation of one table value.

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);

Vol. 2A 2-5

INSTRUCTION FORMAT

NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

2-6 Vol. 2A

INSTRUCTION FORMAT

NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field.
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling
factor (determined by SIB byte bits 6 and 7).

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

Vol. 2A 2-7

INSTRUCTION FORMAT

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are:
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software

unmodified.
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space.

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

2-8 Vol. 2A

INSTRUCTION FORMAT

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.
Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.
Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode
byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a
mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding
the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and
0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX
prefix. See Figure 2-3.

2.2.1.1 Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte.
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base)

byte.
• Instructions without ModR/M: the reg field of the opcode.
In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the
addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.
The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1).
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations.
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored.
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

Figure 2-3. Prefix Ordering in 64-bit Mode

REX

Immediate data
of 1, 2, or 4
bytes or none

Address
displacement of
1, 2, or 4 bytes

1 byte
(if required)

1 byte
(if required)

1-, 2-, or
3-byte
opcode

(optional)Grp 1, Grp
2, Grp 3,
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes

Vol. 2A 2-9

INSTRUCTION FORMAT

• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is
ignored when ModR/M specifies other registers or defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field

used for accessing GPRs.

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX

0100WR0B

Opcode mod

≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX

0100WR0B

Opcode mod

11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4

2-10 Vol. 2A

INSTRUCTION FORMAT

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each
case behaves.

Figure 2-6. Memory Addressing With a SIB Byte

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

mod

≠ 11

ModRM Byte

r/m

100

reg

rrr

scale

ss

SIB Byte

REX PREFIX

0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index

xxx

OM17Xfig1-5

REX PREFIX

0100W00B

Opcode

Bbbb

reg

bbb

OM17Xfig1-6

Vol. 2A 2-11

INSTRUCTION FORMAT

2.2.1.3 Displacement
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See
Table 2-6.

2.2.1.5 Immediates
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the
processor sign-extends all immediates to 64 bits prior to their use.
Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to
a 64-bit operand size.
For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

Table 2-5. Special Cases of REX Encodings
ModR/M or
SIB

Sub-field
Encodings

Compatibility Mode
Operation

Compatibility Mode
Implications Additional Implications

ModR/M Byte mod ≠ 11 SIB byte present. SIB byte required for
ESP-based addressing.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

SIB byte also required for R12-based addressing.
r/m =
b*100(ESP)

ModR/M Byte mod = 0 Base register not
used.

EBP without a
displacement must be
done using

mod = 01 with
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

Using RBP or R13 without displacement must be done
using mod = 01 with a displacement of 0.

r/m =
b*101(EBP)

SIB Byte index =
0100(ESP)

Index register not
used.

ESP cannot be used as
an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded
index field allows distinguishing RSP from R12,
therefore R12 can be used as an index.

SIB Byte base =
0101(EBP)

Base register is
unused if mod = 0.

Base register depends
on mod encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with
EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

Table 2-6. Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX

2-12 Vol. 2A

INSTRUCTION FORMAT

2.2.1.6 RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.
In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero.
RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative
addressing is encoded using a redundant form.
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode
R13 + 0 using a 1-byte displacement of zero.
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the
computed effective address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this
operand size). These are:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8
becomes the Task Priority Register (TPR).
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7. RIP-Relative Addressing
ModR/M and SIB Sub-field Encodings Compatibility Mode

Operation
64-bit Mode
Operation

Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 In 64-bit mode, if one wants to use a Disp32
without specifying a base register, one can use a
SIB byte encoding (indicated by MODRM.r/m=100)
as described in the next row.

r/m = 101 (none)

SIB Byte base = 101 (none) If mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4

Vol. 2A 2-13

INSTRUCTION FORMAT

2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field,
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a
subset of SIMD instructions need them.

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax.
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX
prefix provides substantially richer capability than the REX prefix.

Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes

2-14 Vol. 2A

INSTRUCTION FORMAT

2.3.5 The VEX Prefix
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields
providing specific capability, they are shown in Figure 2-9.
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to
distinguish encoded values of other VEX bit fields.

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other
prefixes. If VEX prefix is present a REX prefix is not supported.
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by
one byte. This may be helpful in some situations for code alignment.
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations.

Vol. 2A 2-15

INSTRUCTION FORMAT

Figure 2-9. VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1 VEX Byte 0, bits[7:0]
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2 VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

vvvv

1 03 2

L

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm:

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form

2-16 Vol. 2A

INSTRUCTION FORMAT

This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending
on the specific opcode.
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently
ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and
setting to other than zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits.
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source
register specifier stored in inverted (1’s complement) form.
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte
VEX version will ignore this bit).

Vol. 2A 2-17

INSTRUCTION FORMAT

Table 2-8. VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded
instructions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one
source operand and one destination operand).
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for

instructions with 2 or more source operands.
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts.

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode”
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.

Table 2-9. Instructions with a VEX.vvvv destination

VEX.vvvv Dest Register
General-Purpose Register

(If Applicable)1

NOTES:
1. See Section 2.5, “VEX Encoding Support for GPR Instructions” for additional details.

Valid in Legacy/Compatibility
32-bit modes?2

2. Only the first eight General-Purpose Registers are accessible/encodable in 16/32b modes.

1111B XMM0/YMM0 RAX/EAX Valid

1110B XMM1/YMM1 RCX/ECX Valid

1101B XMM2/YMM2 RDX/EDX Valid

1100B XMM3/YMM3 RBX/EBX Valid

1011B XMM4/YMM4 RSP/ESP Valid

1010B XMM5/YMM5 RBP/EBP Valid

1001B XMM6/YMM6 RSI/ESI Valid

1000B XMM7/YMM7 RDI/EDI Valid

0111B XMM8/YMM8 R8/R8D Invalid

0110B XMM9/YMM9 R9/R9D Invalid

0101B XMM10/YMM10 R10/R10D Invalid

0100B XMM11/YMM11 R11/R11D Invalid

0011B XMM12/YMM12 R12/R12D Invalid

0010B XMM13/YMM13 R13/R13D Invalid

0001B XMM14/YMM14 R14/R14D Invalid

0000B XMM15/YMM15 R15/R15D Invalid

Opcode Instruction mnemonic

VEX.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

2-18 Vol. 2A

INSTRUCTION FORMAT

The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are
reserved for future use and will #UD unless 0.

Table 2-10. VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector
operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits
255:128 of all YMM registers accessible in the current operating mode.
See the following table.

VEX.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

Opcode Instruction mnemonic

Vol. 2A 2-19

INSTRUCTION FORMAT

Table 2-11. VEX.L interpretation

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.
See the following table.

Table 2-12. VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color.
Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and
PBLENDVB use imm8[7:4] to encode one of the source registers.

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations
An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any
future extensions to the vector registers. A calling function that uses such extensions should save their state before
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is
recommended that software handling involuntary calls accommodate this by not executing instructions encoded

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2

2-20 Vol. 2A

INSTRUCTION FORMAT

with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions,
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector
registers.
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported
extensions to the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing
In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is
supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.
Table 2-3 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8D-R15D applicable only in 64-bit
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-3). In 32-bit mode,
R8D-R15D does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in
64-bit mode and does not apply if encoding in 32-bit mode.

Vol. 2A 2-21

INSTRUCTION FORMAT

2.3.12.1 64-bit Mode VSIB Memory Addressing
In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one
of the 16 vector registers as the vector index register.
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register.

2.4 AVX AND SSE INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte
r32

(In decimal) Base =
(In binary) Base =

EAX/
R8D
0
000

ECX/
R9D
1
001

EDX/
R10D
2
010

EBX/
R11D
3
011

ESP/
R12D
4
100

EBP/
R13D1

5
101

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the

base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

ESI/
R14D
6
110

EDI/
R15D
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

2-22 Vol. 2A

INSTRUCTION FORMAT

In this entry, “Type2” can be looked up in Table 2-14.
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the
exception classes defined in this section. For instructions that operate on MMX registers, see
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 2-14. Exception class description

See Table 2-15 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point

Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly

aligned
None

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
Yes

Type 3
AVX,

Legacy SSE
< 16 byte Yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
No

Type 5
AVX,

Legacy SSE
< 16 byte No

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7
AVX,

Legacy SSE
None None

Type 8 AVX None None

Type 11
F16C 8 or 16 byte, Not explicitly

aligned, no AC#
Yes

Type 12
AVX2 Gathers Not explicitly aligned, no

AC#
No

Vol. 2A 2-23

INSTRUCTION FORMAT

Table 2-15. Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD,
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW,
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB,
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD,
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD,
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB,
(V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ,
(V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW,
(V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD,
(V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD,
(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD,
VPERMQ, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, PMOVSXBW, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*,
VSTMXCSR

Type 6
VEXTRACTF128/VEXTRACTFxxxx, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128,
VMASKMOVPS**, VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB,
VPBROADCASTD, VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ

2-24 Vol. 2A

INSTRUCTION FORMAT

(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e. no
alignment checks are performed.

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not
aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are
listed in Table 2-18 through Table 2-27, certain subsets of AVX instructions may be subject to #UD exception
depending on the encoded value of the VEX.L field. Table 2-17 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-16. #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD,
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128,
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128,
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12

Vol. 2A 2-25

INSTRUCTION FORMAT

Table 2-17. #UD Exception and VEX.L Field Encoding
Exception

Class
#UD If VEX.L = 0

#UD If (VEX.L = 1 && AVX2 not present && AVX
present)

#UD If (VEX.L = 1 && AVX2
present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D,
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D,
VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND,
VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW,
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q,
VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W,
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D,
VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD,
VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D,
VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D,
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

VPCMP(E/I)STRI/M,
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD,
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW,
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128,
VPERM2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ,
VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD,
VPSRLW, VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12

2-26 Vol. 2A

INSTRUCTION FORMAT

2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-18. Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Vol. 2A 2-27

INSTRUCTION FORMAT

2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)

Table 2-19. Type 2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception,
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-28 Vol. 2A

INSTRUCTION FORMAT

2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-20. Type 3 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

Vol. 2A 2-29

INSTRUCTION FORMAT

2.4.4 Exceptions Type 4 (>=16 Byte mem arg, no alignment, no floating-point exceptions)

Table 2-21. Type 4 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:
1. LDDQU, MOVUPD, MOVUPS, PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory

operand is not aligned to 16-Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

2-30 Vol. 2A

INSTRUCTION FORMAT

2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22. Type 5 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-31

INSTRUCTION FORMAT

2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23. Type 6 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault
#PF(fault-code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-32 Vol. 2A

INSTRUCTION FORMAT

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24. Type 7 Class Exception Conditions

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25. Type 8 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ≠ 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Vol. 2A 2-33

INSTRUCTION FORMAT

2.4.9 Exceptions Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26. Type 11 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF
(fault-code)

X X X For a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-34 Vol. 2A

INSTRUCTION FORMAT

2.4.10 Exceptions Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS
VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15)

for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only.
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27. Type 12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm ≠ ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

Vol. 2A 2-35

INSTRUCTION FORMAT

Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD.
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.5.1 Exceptions Type 13 (VEX-Encoded GPR Instructions)
The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions.
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details.

2.6 INTEL® AVX-512 ENCODING
The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands)
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using
the VEX prefix, and many other capabilities not available with the VEX prefix.

Table 2-28. VEX-Encoded GPR Instructions

Exception Class Instruction

Type 13 ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29. Type 13 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X X X If VEX.L = 1.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-36 Vol. 2A

INSTRUCTION FORMAT

The significant feature differences between EVEX and VEX are summarized below.
• EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte

(C4H is the first byte) prefix.
• EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
• EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded

vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.

• EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding
density of the instruction byte stream.

• EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).

2.6.1 Instruction Format and EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10. Note that the values contained
within brackets are optional.

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Figure 2-10. AVX-512 Instruction Format and the EVEX Prefix

Figure 2-11. Bit Field Layout of the EVEX Prefix1

NOTES:
1. See Table 2-30 for additional details on bit fields.

[Immediate][Prefixes] [Disp16,32][SIB]ModR/MOpcodeEVEX

of bytes: 4 1 1 1 2, 4 1

[Disp8*N]

1

EVEX 62H P0 P1 P2

P0

7 6 5 4 3 2 01
R X B R’ 0 0 mm

P1

7 6 5 4 3 2 01
W v v v v 1 pp

P2

7 6 5 4 3 2 01
z L’ L b V’ a aa

P[7:0]

P[15:8]

P[23:16]

Vol. 2A 2-37

INSTRUCTION FORMAT

The bit fields in P[23:0] are divided into the following functional groups (Table 2-30 provides a tabular summary):
• Reserved bits: P[3:2] must be 0, otherwise #UD.
• Fixed-value bit: P[10] must be 1, otherwise #UD.
• Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is

identical to VEX.pp.
• Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows

access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.
• Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register

set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.

• Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].

• Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector
registers.

• EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.

• Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.

• Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the
following instruction classes are:

— Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+Op semantic where one of the source operand is from memory.

— Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

Table 2-30. EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

-- Reserved P[3 : 2] Must be 0.

-- Fixed Value P[10] Must be 1.

EVEX.mm Compressed legacy escape P[1: 0] Identical to low two bits of VEX.mmmmm.

EVEX.pp Compressed legacy prefix P[9 : 8] Identical to VEX.pp.

EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx). This
field is encoded in bit inverted format.

EVEX.R’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg. This bit is stored in
inverted format.

EVEX.X High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.vvvv VVVV register specifier P[14 : 11] Same as VEX.vvvv. This field is encoded in bit inverted format.

EVEX.V’ High-16 VVVV/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present. This bit is
stored in inverted format.

EVEX.aaa Embedded opmask register specifier P[18 : 16]

EVEX.W Osize promotion/Opcode extension P[15]

EVEX.z Zeroing/Merging P[23]

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L’L Vector length/RC P[22 : 21]

2-38 Vol. 2A

INSTRUCTION FORMAT

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
• Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.

2.6.2 Register Specifier Encoding and EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 2-31. Opmask register encoding is described in
Section 2.6.3.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 2-32.

2.6.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
• Opmask registers that are the source or destination operands of an instruction treating the content of opmask

register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using

Table 2-31. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

41

NOTES:
1. Not applicable for accessing general purpose registers.

3 [2:0] Reg. Type Common Usages

REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source

VVVV EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination

RM EVEX.X EVEX.B modrm.r/m GPR, Vector 1st Source or Destination

BASE 0 EVEX.B modrm.r/m GPR memory addressing

INDEX 0 EVEX.X sib.index GPR memory addressing

VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing

Table 2-32. EVEX Encoding Register Specifiers in 32-bit Mode

[2:0] Reg. Type Common Usages

REG modrm.reg GPR, Vector Destination or Source

VVVV EVEX.vvv GPR, Vector 2nd Source or Destination

RM modrm.r/m GPR, Vector 1st Source or Destination

BASE modrm.r/m GPR Memory Addressing

INDEX sib.index GPR Memory Addressing

VIDX sib.index Vector VSIB Memory Addressing

Vol. 2A 2-39

INSTRUCTION FORMAT

standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not
support conditional update of the destination operand.

• An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 2.6.4).

• An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.

2.6.4 Masking Support in EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand.
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:
• Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old

value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.

• Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.

AVX-512 Foundation instructions can be divided into the following groups:
• Instructions which support “zeroing-masking”.

— Also allow merging-masking.
• Instructions which require aaa = 000.

— Do not allow any form of masking.
• Instructions which allow merging-masking but do not allow zeroing-masking.

— Require EVEX.z to be set to 0.

— This group is mostly composed of instructions that write to memory.
• Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

2.6.5 Compressed Displacement (disp8*N) Support in EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-34 and Table 2-35 below,

Table 2-33. Opmask Register Specifier Encoding

[2:0] Register Access Common Usages

REG modrm.reg k0-k7 Source

VVVV VEX.vvvv k0-k7 2nd Source

RM modrm.r/m k0-7 1st Source

{k1} EVEX.aaa k01-k7

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using k0 as the embedded mask.

Opmask

2-40 Vol. 2A

INSTRUCTION FORMAT

where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 2-34 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword (see Section 2.6.11).
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-35. Table 2-35
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-35. Instruc-
tion classified in Table 2-35 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 2-34. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-35. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple2
32bit 0 8 8 8

Broadcast (2 elements)
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements)
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)

Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

Vol. 2A 2-41

INSTRUCTION FORMAT

2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
EVEX.b can provide three types of encoding context, depending on the instruction classes:
• Embedded broadcasting of one data element from a source memory operand to the destination for vector

instructions with “load+op” semantic.
• Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
• “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that

do not have rounding semantic.

2.6.7 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.
The following instruction classes do not support embedded broadcasting:
• Instructions with only one scalar result is written to the vector destination.
• Instructions with explicit broadcast functionality provided by its opcode.
• Instruction semantic is a pure load or a pure store operation.

2.6.8 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.6.9 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set.

2.6.10 Vector Length Orthogonality
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in
Table 2-36.

2-42 Vol. 2A

INSTRUCTION FORMAT

2.6.11 #UD Equations for EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and
opcode dependent.

2.6.11.1 State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-37 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCR0 shown in Table 2-37 will cause #UD.

2.6.11.2 Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns
listed in Table 2-38.

Table 2-36. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]

Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC

Reg-reg, FP Instructions w/ rounding semantic or SAE Enable static rounding
control (SAE implied)

Vector length Implied
(512 bit or scalar)

00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ

Load+op Instructions w/ memory source Broadcast Control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)

NA

Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)

Must be 0 (otherwise
#UD)

NA

Table 2-37. OS XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]

Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b

VEX-encoded instructions operating on YMM YMM xxxxx111b

EVEX-encoded 128-bit instructions ZMM 111xx111b

EVEX-encoded 256-bit instructions ZMM 111xx111b

EVEX-encoded 512-bit instructions ZMM 111xx111b

VEX-encoded instructions operating on opmask k-reg 111xxx11b

Table 2-38. Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD

P[3 : 2] -- if > 0 if > 0

P[10] -- if 0 if 0

P[1: 0] EVEX.mm if 00b if 00b

P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)

Vol. 2A 2-43

INSTRUCTION FORMAT

2.6.11.3 Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 2-39 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.

Table 2-40 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-39. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.R P[7] ModRM.reg encodes k-reg If EVEX.R = 0 None (BOUND if
EVEX.RX != 11b)ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)

ModRM.r/m encodes k-reg or GPR None (ignored)

ModRM.r/m without SIB/VSIB None (ignored)

ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)

ModRM.r/m encodes other registers None (valid)

ModRM.r/m base present None (valid)

ModRM.r/m base not present None (ignored)

EVEX.R’ P[4] ModRM.reg encodes k-reg or GPR If 0 None (ignored)

ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvvv P[14 : 11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored

Otherwise If != 1111b If != 1111b

EVEX.V’ P[19] Encodes ZMM/YMM/XMM None (valid) If 0

Otherwise If 0 If 0

Table 2-40. #UD Conditions of Opmask Related Encoding Field

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.aaa P[18 : 16] Instructions do not use opmask for conditional processing1.

NOTES:
1. E.g., VPBROADCASTMxxx, VPMOVM2x, VPMOVx2M.

If aaa != 000b If aaa != 000b

Opmask used as conditional processing mask and updated
at completion2.

2. E.g., Gather/Scatter family.

If aaa = 000b If aaa = 000b;

Opmask used as conditional processing. None (valid3)

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in K0.

None (valid1)

EVEX.z P[23] Vector instruction using opmask as source or destination4. If EVEX.z != 0 If EVEX.z != 0

Store instructions or gather/scatter instructions. If EVEX.z != 0 If EVEX.z != 0

Instruction supporting conditional processing mask with
EVEX.aaa = 000b.

If EVEX.z != 0 If EVEX.z != 0

VEX.vvvv Varies K-regs are instruction operands not mask control. If vvvv = 0xxxb None

2-44 Vol. 2A

INSTRUCTION FORMAT

Table 2-41 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

2.6.12 Device Not Available
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.

2.6.13 Scalar Instructions
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support
masking (using the least significant bit of the opmask register), but broadcasting is not supported.

2.7 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named
“E##NF”. A summary table of exception classes by class names are shown below.

4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

Table 2-41. #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.L’Lb P[22 : 20] Reg-reg, FP instructions with rounding semantic. None (valid1)

NOTES:
1. L’L specifies rounding control, see Table 2-36, supports {er} syntax.

None (valid1)

Other reg-reg, FP instructions that can cause #XM. None (valid2)

2. L’L specifies vector length, see Table 2-36, supports {sae} syntax.

None (valid2)

Other reg-mem instructions in Table 2-34. None (valid3)

3. L’L specifies vector length, see Table 2-36, supports embedded broadcast syntax

None (valid3)

Other instruction classes4 in Table 2-35.

4. L’L specifies either vector length or ignored.

If EVEX.b > 0 If EVEX.b > 0

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None

Type E1NF Vector Non-temporal Stores Explicitly aligned, no fault suppression None

Type E2 FP Vector Load+op Support fault suppression Yes

Type E2NF FP Vector Load+op No fault suppression Yes

Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression Yes

Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression Yes

Type E4 Integer Vector Load+op Support fault suppression No

Type E4NF Integer Vector Load+op No fault suppression No

Type E5 Legacy-like Promotion Varies, Support fault suppression No

Vol. 2A 2-45

INSTRUCTION FORMAT

Table 2-43 lists EVEX-encoded instruction mnemonic by exception classes.

Type E5NF Legacy-like Promotion Varies, No fault suppression No

Type E6 Post AVX Promotion Varies, w/ fault suppression No

Type E6NF Post AVX Promotion Varies, no fault suppression No

Type E7NM Register-to-register op None None

Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression None

Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None

Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression None

Type E11 VCVTPH2PS, VCVTPS2PH Half Vector Length, w/ fault suppression Yes

Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None

Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-43. EVEX Instructions in each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64

Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPD2QQ, VCVTPD2UQQ,
VCVTPD2UDQ, VCVTPS2DQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ, VCVTTPD2QQ,
VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD, VCVTUQQ2PS,
VDIVPD, VDIVPS, VEXP2PD, VEXP2PS, VFIXUPIMMPD, VFIXUPIMMPS, VFMADDxxxPD, VFMADDxxxPS,
VFMADDSUBxxxPD, VFMADDSUBxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS, VFMSUBxxxPD, VFMSUBxxxPS,
VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VGETEXPPD, VGETEXPPS, VGETMANTPD,
VGETMANTPS, VMAXPD, VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VRANGEPD, VRANGEPS, VREDUCEPD,
VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, VRCP28PD, VRCP28PS, VRSQRT28PD, VRSQRT28PS, VSCALEFPD,
VSCALEFPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS

Type E3

VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2QQ, VCVTPS2UQQ, VCVTPS2PD, VCVTSD2SS, VCVTSS2SD,
VCVTTPS2QQ, VCVTTPS2UQQ, VDIVSD, VDIVSS, VFMADDxxxSD, VFMADDxxxSS, VFMSUBxxxSD, VFMSUBxxxSS,
VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD, VFIXUPIMMSS, VGETEXPSD,
VGETEXPSS, VGETMANTSD, VGETMANTSS, VMAXSD, VMAXSS, VMINSD, VMINSS, VMULSD, VMULSS, VRANGESD,
VRANGESS, VREDUCESD, VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD,
VRCP28SS, VRSQRT28SD, VRSQRT28SS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS

Type E3NF
VCOMISD, VCOMISS, VCVTSD2SI, VCVTSD2USI, VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VCVTSS2USI, VCVTTSD2SI,
VCVTTSD2USI, VCVTTSS2SI, VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SS, VUCOMISD, VUCOMISS

Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VBLENDMPD, VBLENDMPS, VFPCLASSPD, VFPCLASSPS, VORPD, VORPS,
VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ, VPANDND, VPANDNQ, VPBLENDMB, VPBLENDMD,
VPBLENDMQ, VPBLENDMW, VPCMPD, VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPCMPQ, VPCMPUD,
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPMADD52LUQ, VPMADD52HUQ, VPMAXSD, VPMAXSQ, VPMAXUD, VPMAXUQ,
VPMINSD, VPMINSQ, VPMINUD, VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ, VPROLD,
VPROLQ, VPROLVD, VPROLVQ, VPRORD, VPRORQ, VPRORVD, VPRORVQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ,
VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ, VPSRLD, VPSRLQ)1, VPSUBD, VPSUBQ, VPSUBUSB, VPSUBUSW,
VPTERNLOGD, VPTERNLOGQ, VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VPXORD, VPXORQ, VPSLLVD,
VPSLLVQ, VRCP14PD, VRCP14PS, VRSQRT14PD, VRSQRT14PS, VXORPD, VXORPS

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

2-46 Vol. 2A

INSTRUCTION FORMAT

E4.nb2

VCOMPRESSPD, VCOMPRESSPS, VEXPANDPD, VEXPANDPS, VMOVDQU8, VMOVDQU16, VMOVDQU32,
VMOVDQU64, VMOVUPD, VMOVUPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,
VPADDUSW, VPAVGB, VPAVGW, VPCMPB, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPCMPW, VPCMPUB,
VPCMPUW, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ, VPMAXSB, VPMAXSW, VPMAXUB,
VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW, VPMULLW,
VPSLLVW, VPSLLW, VPSRAW, VPSRLVW, VPSRLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB,
VPTESTMW, VPTESTNMB, VPTESTNMW

Type E4NF

VALIGND, VALIGNQ, VPACKSSDW, VPACKUSDW, VPCONFLICTD, VPCONFLICTQ, VPERMD, VPERMI2D, VPERMI2PS,
VPERMI2PD, VPERMI2Q, VPERMPD, VPERMPS, VPERMQ, VPERMT2D, VPERMT2PS, VPERMT2Q, VPERMT2PD,
VPERMILPD, VPERMILPS, VPMULTISHIFTQB, VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ,
VPUNPCKLQDQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2, VSHUFPD, VSHUFPS, VUNPCKHPD,
VUNPCKHPS, VUNPCKLPD, VUNPCKLPS

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMI2W, VPERMT2W

Type E5
PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW,
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, VCVTDQ2PD, VCVTUDQ2PD, VPMOVSXxx,
VPMOVZXxx

Type E5NF VMOVDDUP

Type E6

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VBROADCASTSD, VBROADCASTSS, VFPCLASSSD, VFPCLASSSS, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW, VPMOVWB, VPMOVSWB, VPMOVUSWB

Type E6NF
VEXTRACTF32X4, VEXTRACTF32X8, VEXTRACTF64X2, VEXTRACTF64X4, VEXTRACTI32X4, VEXTRACTI32X8,
VEXTRACTI64X2, VEXTRACTI64X4, VINSERTF32X4, VINSERTF32X8, VINSERTF64X2, VINSERTF64X4,
VINSERTI32X4, VINSERTI32X8, VINSERTI64X2, VINSERTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D

Type
E7NM.1284

VMOVHLPS, VMOVLHPS

Type E7NM.
(VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVB2M, VPMOVD2M, VPMOVM2B,
VPMOVM2D, VPMOVM2Q, VPMOVM2W, VPMOVQ2M, VPMOVW2M

Type E9NF
VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS

Type E10NF (VCVTSI2SD, VCVTUSI2SD)6

Type E11 VCVTPH2PS, VCVTPS2PH

Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS

Type E12NP
VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS,
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD,
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:
1. Operand encoding Full tupletype with immediate.
2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding Mem128 tupletype.

Table 2-43. EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction

Vol. 2A 2-47

INSTRUCTION FORMAT

2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.

4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.

Table 2-44. Type E1 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in
a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

2-48 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1NF.

Table 2-45. Type E1NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Vol. 2A 2-49

INSTRUCTION FORMAT

2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-46. Type E2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.

General Protec-
tion, #GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an unaligned
memory access is made while the current privilege level is 3.

SIMD Floating-
point Exception,
#XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

2-50 Vol. 2A

INSTRUCTION FORMAT

2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception
class E3.

Table 2-47. Type E3 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

Vol. 2A 2-51

INSTRUCTION FORMAT

EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow
exception class E3NF.

Table 2-48. Type E3NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X EVEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

2-52 Vol. 2A

INSTRUCTION FORMAT

2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow
exception class E4.

Table 2-49. Type E4 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4.nb subclass (see E4.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-53

INSTRUCTION FORMAT

EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.

Table 2-50. Type E4NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

2-54 Vol. 2A

INSTRUCTION FORMAT

2.7.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault
suppression follow exception class E5.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class E5NF.

Table 2-51. Type E5 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-55

INSTRUCTION FORMAT

Table 2-52. Type E5NF Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-56 Vol. 2A

INSTRUCTION FORMAT

2.7.6 Exceptions Type E6 and E6NF

Table 2-53. Type E6 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-57

INSTRUCTION FORMAT

EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow
exception class E6NF.

Table 2-54. Type E6NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-58 Vol. 2A

INSTRUCTION FORMAT

2.7.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class
E7NM.

Table 2-55. Type E7NM Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• Instruction specific EVEX.L’L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Vol. 2A 2-59

INSTRUCTION FORMAT

2.7.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory
fault suppression follow exception class E9.

Table 2-56. Type E9 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-60 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class E9NF.

Table 2-57. Type E9NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-61

INSTRUCTION FORMAT

2.7.9 Exceptions Type E10 and E10NF
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.

Table 2-58. Type E10 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-62 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded scalar instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP exception nor
support memory fault suppression follow exception class E10NF.

Table 2-59. Type E10NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-63

INSTRUCTION FORMAT

2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do
not cause #AC follow exception class E11.

Table 2-60. Type E11 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X If fault suppression not set, and an illegal address in the SS segment.

X If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF (fault-
code)

X X X If fault suppression not set, and a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

2-64 Vol. 2A

INSTRUCTION FORMAT

2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

Table 2-61. Type E12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).
• If vvvv != 1111b.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

X X X X If index = destination register (gather operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

Vol. 2A 2-65

INSTRUCTION FORMAT

EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-62. Type E12NP Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

2-66 Vol. 2A

INSTRUCTION FORMAT

2.8 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS
The exception behavior of VEX-encoded opmask instructions are listed below.
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-63. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If ModRM:[7:6] != 11b.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Vol. 2A 2-67

INSTRUCTION FORMAT

Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-64. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-68 Vol. 2A

INSTRUCTION FORMAT

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

7. Updates to Chapter 3, Volume 2A

Updates to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-L.

--

Changes to this chapter:

Updates to the following instructions: AESDEC, AESDECLAST, AESENC, AESENCLAST, CALL, CMPSS, CPUID,
FRSTOR, GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB, IRET, and LZCNT.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no
additional changes are made to the affected instructions. Affected instructions include: VADDPD, VADDPS,
VADDSD, VADDSS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPS2DQ, VCV-TSD2SI, VCVTSD2SS,
VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VDIVPD, VDIVPS, VDIVSD, and VDIVSS.

CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-L) in IA-32e, protected,
virtual-8086, and real-address modes of operation. The set includes general-purpose, x87 FPU, MMX,
SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction
Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, and
Chapter 5, “Instruction Set Reference, V-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2C.

For each instruction, each operand combination is described. A description of the instruction and its operand, an
operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a
summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this chapter. The heading below
introduces the example. The table below provides an example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit
Mode

CPUID
Feature Flag

Description

F5 CMC ZO V/V NA Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Vol. 2A 3-1

INSTRUCTION SET REFERENCE, A-L
3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX Prefix)
The “Opcode” column in the table above shows the object code produced for each form of the instruction. When
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of
entries other than hexadecimal bytes are as follows:
• NP — Indicates the use of 66/F2/F3 prefixes (beyond those already part of the instructions opcode) are not

allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the
encoding for a different instruction.

• NFx — Indicates the use of F2/F3 prefixes (beyond those already part of the instructions opcode) are not
allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the
encoding for a different instruction.

• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of
the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value

following the opcode. This value is used to specify a code offset and possibly a new value for the code segment
register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed
value. All words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the
opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the register
operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack.
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign
to form a single opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not
encodab
le (N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)
In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in
following form (including the modR/M byte if applicable, the immediate byte if applicable):
VEX.[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib,/is4]
• VEX — Indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-

byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX
only applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W,
VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the following notations:

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1 (denoted by VEX.256). The VEX.L field
can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The presence of the notation
VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a)
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b)
an #UD occurs if there is no VEX.128 version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same
opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS).

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction
mnemonic would be either “SS“, “SD“, or “SI“ for SIMD floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if
VEX.L is not zero.

— 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only

R8B Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9B Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10B Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11B Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12B Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13B Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14B Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15B Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

Vol. 2A 3-3

INSTRUCTION SET REFERENCE, A-L
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using
either the 2-byte or 3-byte form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH
and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the corre-
sponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a valid
encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either 0FH, 0F3AH or
0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix.

— 0F,0F3A,0F38 and 2-byte/3-byte VEX: The presence of 0F3A and 0F38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode column
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— W0: VEX.W=0.

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section
2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX
prefix.

— If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of
VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored.

• opcode — Instruction opcode.
• /is4 — An 8-bit immediate byte is present containing a source register specifier in either imm8[7:4] (for 64-bit

mode) or imm8[6:4] (for 32-bit mode), and instruction-specific payload in imm8[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The

encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3.

EVEX.[128,256,512,LIG].[66,F2,F3].0F/0F3A/0F38.[W0,W1,WIG] opcode [/r] [ib]
• EVEX — The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 2.6.1 for

more detail on the EVEX prefix.
The encoding of various sub-fields of the EVEX prefix is described using the following notations:

— 128, 256, 512, LIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit,
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically
applies to scalar instructions operating on one data element of a vector register.

— 66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH and 0F38H.
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either 0FH, 0F3AH or
0F38H.

— W0: EVEX.W=0.

— W1: EVEX.W=1.
3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
— WIG: EVEX.W bit ignored
• opcode — Instruction opcode.
• In general, the encoding of EVEX.R and R’, EVEX.X and X’, and EVEX.B and B’ fields are not shown explicitly in

the opcode column.

NOTE
Previously, the terms NDS, NDD and DDS were used in instructions with an EVEX (or VEX) prefix.
These terms indicated that the vvvv field was valid for encoding, and specified register usage.
These terms are no longer necessary and are redundant with the instruction operand encoding
tables provided with each instruction. The instruction operand encoding tables give explicit details
on all operands, indicating where every operand is stored and if they are read or written. If vvvv is
not listed as an operand in the instruction operand encoding table, then EVEX (or VEX) vvvv must
be 0b1111.

3.1.1.3 Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program.
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions
with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one
of the byte registers (R8B - R15B) available when using REX.R and 64-bit mode.

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers
(R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15.
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive.
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8B - R15B are available using REX.R in
64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of
Vol. 2A 3-5

INSTRUCTION SET REFERENCE, A-L
memory are found at the address provided by the effective address computation. Word registers R8W - R15W
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
EDI. The contents of memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

• reg — A general-purpose register used for instructions when the width of the register does not matter to the
semantics of the operation of the instruction. The register can be r16, r32, or r64.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m64 — A memory quadword operand in memory.
• m128 — A memory double quadword operand in memory.
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The

number to the left of the colon corresponds to the pointer's segment selector. The number to the right
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR
registers.

• m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.
• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or

doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4,
and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands for
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i := 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers

are: MM0 through MM7. The contents of memory are found at the address provided by the effective address
computation.
3-6 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• <XMM0>— Indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second
source operand using an XMM register.
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — A YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are
available in 64-bit mode.

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — A YMM register or 256-bit memory operand.
• <YMM0>— Indicates use of the YMM0 register as an implicit argument.
• bnd — A 128-bit bounds register. BND0 through BND3.
• mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-

lation, Scale is ignored. Only the base and displacement are used in effective address calculation.
• m512 — A 64-byte operand in memory.
• zmm/m512 — A ZMM register or 512-bit memory operand.
• {k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.

Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.

• {k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking.

• k1 — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0
through k7.

• mV — A vector memory operand; the operand size is dependent on the instruction.
• vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of

memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).

• vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).

• zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.

• zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.
Vol. 2A 3-7

INSTRUCTION SET REFERENCE, A-L
• <ZMM0> — Indicates use of the ZMM0 register as an implicit argument.
• {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form

of the instruction. This also implies support for SAE (Suppress All Exceptions).
• {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE,

but do not support embedded rounding control.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having three source operands.
• SRC — The source in a single-source instruction.
• DST — The destination in an instruction. This field is encoded by reg_field.

3.1.1.4 Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.
EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 2-34 and Table 2-35, according to tupletypes. The tupletype for an instruction is listed in the operand
encoding definition table where applicable.

NOTES
• The letters in the Op/En column of an instruction apply ONLY to the encoding definition table

immediately following the instruction summary table.
• In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of

the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the
content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated specific
instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of

valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not

supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
3-8 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the
round key(s) from the second source operand, using one/two/four 128-bit data (state) from the first source
operand, and store the result in the destination operand.
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DE /r
AESDEC xmm1, xmm2/m128

A V/V AES Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm1 with one 128-bit round key from
xmm2/m128.

VEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using two 128-bit data
(state) from ymm2 with two 128-bit round keys from
ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using two 128-bit data
(state) from ymm2 with two 128-bit round keys from
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DE /r
VAESDEC zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using four 128-bit data
(state) from zmm2 with four 128-bit round keys from
zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
AESDEC—Perform One Round of an AES Decryption Flow3-50 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Operation
AESDEC
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows(STATE);
STATE := InvSubBytes(STATE);
STATE := InvMixColumns(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDEC (128b and 256b VEX encoded versions)
(KL,V) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
STATE := InvMixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDEC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
STATE := InvMixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] :=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC __m128i _mm_aesdec (__m128i, __m128i)
VAESDEC __m256i _mm256_aesdec_epi128(__m256i, __m256i);
VAESDEC __m512i _mm512_aesdec_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
AESDEC—Perform One Round of an AES Decryption Flow Vol. 2A 3-51

INSTRUCTION SET REFERENCE, A-L
AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, using
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four
(depending on vector length) round key(s) from the second source operand, and stores the result in the destination
operand.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using one 128-bit
data (state) from xmm1 with one 128-bit round key
from xmm2/m128.

VEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using one 128-bit
data (state) from xmm2 with one 128-bit round key
from xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round
keys from ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using one 128-bit
data (state) from xmm2 with one 128-bit round key
from xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round
keys from ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DF /r
VAESDECLAST zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform the last round of an AES decryption flow,
using the Equivalent Inverse Cipher, using four128-bit
data (state) from zmm2 with four 128-bit round keys
from zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
AESDECLAST—Perform Last Round of an AES Decryption Flow3-52 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Operation
AESDECLAST
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows(STATE);
STATE := InvSubBytes(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDECLAST (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDECLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)
VAESDECLAST __m256i _mm256_aesdeclast_epi128(__m256i, __m256i);
VAESDECLAST __m512i _mm512_aesdeclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
AESDECLAST—Perform Last Round of an AES Decryption Flow Vol. 2A 3-53

INSTRUCTION SET REFERENCE, A-L
AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of an AES encryption flow using one/two/four (depending on vector length)
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s)
from the second source operand, and stores the result in the destination operand.
Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation
AESENC
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows(STATE);
STATE := SubBytes(STATE);
STATE := MixColumns(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DC /r
AESENC xmm1, xmm2/m128

A V/V AES Perform one round of an AES encryption flow, using one
128-bit data (state) from xmm1 with one 128-bit round
key from xmm2/m128.

VEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform one round of an AES encryption flow, using one
128-bit data (state) from xmm2 with one 128-bit round
key from the xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES encryption flow, using two
128-bit data (state) from ymm2 with two 128-bit round
keys from the ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform one round of an AES encryption flow, using one
128-bit data (state) from xmm2 with one 128-bit round
key from the xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform one round of an AES encryption flow, using two
128-bit data (state) from ymm2 with two 128-bit round
keys from the ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DC /r
VAESENC zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform one round of an AES encryption flow, using four
128-bit data (state) from zmm2 with four 128-bit round
keys from the zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
AESENC—Perform One Round of an AES Encryption Flow3-54 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
VAESENC (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR I := 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
STATE := MixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i := 0 to KL-1:

STATE := SRC1.xmm[i] // xmm[i] is the i’th xmm word in the SIMD register
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
STATE := MixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i, __m128i)
VAESENC __m256i _mm256_aesenc_epi128(__m256i, __m256i);
VAESENC __m512i _mm512_aesenc_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
AESENC—Perform One Round of an AES Encryption Flow Vol. 2A 3-55

INSTRUCTION SET REFERENCE, A-L
AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of an AES encryption flow using one/two/four (depending on vector length)
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s)
from the second source operand, and stores the result in the destination operand.
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES encryption flow,
using one 128-bit data (state) from xmm1 with one
128-bit round key from xmm2/m128.

VEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES encryption flow,
using one 128-bit data (state) from xmm2 with one
128-bit round key from xmm3/m128; store the result
in xmm1.

VEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES encryption flow,
using two 128-bit data (state) from ymm2 with two
128-bit round keys from ymm3/m256; store the
result in ymm1.

EVEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform the last round of an AES encryption flow,
using one 128-bit data (state) from xmm2 with one
128-bit round key from xmm3/m128; store the result
in xmm1.

EVEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform the last round of an AES encryption flow,
using two 128-bit data (state) from ymm2 with two
128-bit round keys from ymm3/m256; store the
result in ymm1.

EVEX.512.66.0F38.WIG DD /r
VAESENCLAST zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform the last round of an AES encryption flow,
using four 128-bit data (state) from zmm2 with four
128-bit round keys from zmm3/m512; store the
result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
AESENCLAST—Perform Last Round of an AES Encryption Flow3-56 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Operation
AESENCLAST
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows(STATE);
STATE := SubBytes(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENCLAST (128b and 256b VEX encoded versions)
(KL, VL) = (1,128), (2,256)
FOR I=0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENCLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)
VAESENCLAST __m256i _mm256_aesenclast_epi128(__m256i, __m256i);
VAESENCLAST __m512i _mm512_aesenclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
AESENCLAST—Perform Last Round of an AES Encryption Flow Vol. 2A 3-57

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-122 Vol. 2A

CALL—Call Procedure

Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the CS

register), sometimes referred to as an intra-segment call.
• Far Call — A call to a procedure located in a different segment than the current code segment, sometimes

referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that

of the currently executing program or procedure.
• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 7,
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for infor-
mation on performing task switches with the CALL instruction.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 D N.S. Valid Call near, relative, displacement relative to next
instruction.

E8 cd CALL rel32 D Valid Valid Call near, relative, displacement relative to next
instruction. 32-bit displacement sign extended to
64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, address given in r/m16.

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in r/m32.

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in m16:16.

In 32-bit mode: if selector points to a gate, then RIP
= 32-bit zero extended displacement taken from
gate; else RIP = zero extended 16-bit offset from
far pointer referenced in the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
zero extended 32-bit offset from far pointer
referenced in the instruction.

REX.W FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
64-bit offset from far pointer referenced in the
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-123

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The
processor then branches to the address in the current code segment specified by the target operand. The target
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64
bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the
EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute
offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP
before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to
perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand
is ignored when a call gate is used.)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-124 Vol. 2A

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to the
new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the
EIP register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of
the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register and
the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend this
nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous task
link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruction differs
in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET instruction
to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit
values can be pushed on the stack. See Chapter 21, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be
used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code
segment at the same privilege level. However, using this mechanism requires that the target code segment
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-125

operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0,
the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the
upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for
the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to
perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type
of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use
a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling proce-
dure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter
copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called
within the new code segment.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-126 Vol. 2A

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-Flow Enforcement Tech-
nology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for CET details.

Instruction ordering. Instructions following a far call may be fetched from memory before earlier instructions
complete execution, but they will not execute (even speculatively) until all instructions prior to the far call have
completed execution (the later instructions may execute before data stored by the earlier instructions have become
globally visible).

Certain situations may lead to the next sequential instruction after a near indirect CALL being speculatively
executed. If software needs to prevent this (e.g., in order to prevent a speculative execution side channel), then an
LFENCE instruction opcode can be placed after the near indirect CALL in order to block speculative execution.

Operation

IF near call
THEN IF near relative call

THEN
IF OperandSize = 64

THEN
tempDEST := SignExtend(DEST); (* DEST is rel32 *)
tempRIP := RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL) AND DEST != 0

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-127

THEN
tempRIP := DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
IF ShadowStackEnabled(CPL)

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL)

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL)

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
FI;rel/abs
IF (Call near indirect, absolute indirect)

IF EndbranchEnabledAndNotSuppressed(CPL)
IF CPL = 3

THEN
IF (no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0)

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

FI;
ELSE

IF (no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0)
THEN

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI;

FI;
FI;

FI;
FI; near

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-128 Vol. 2A

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP := DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS := DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP := DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF DPL > CPL

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-129

THEN #SS(0); FI;
tempEIP := DEST(Offset);
IF target mode = Compatibility mode

 THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN
tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)
THEN #GP(0); FI;

IF tempEIP is non-canonical
THEN #GP(0); FI;

IF ShadowStackEnabled(CPL)
IF OperandSize = 32

THEN
tempPushLIP = CSBASE + EIP;

ELSE
IF OperandSize = 16

THEN
tempPushLIP = CSBASE + IP;

ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;

FI;
FI;
tempPushCS = CS;

FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-130 Vol. 2A

IF (SSP & 0xFFFFFFFF00000000 != 0)
THEN #GP(0); FI;

FI;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL)

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP := DEST(Offset);
IF target mode = Compatibility mode

 THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA & CS.L
 tempPushLIP = RIP
 ELSE
 tempPushLIP = CSBASE + EIP;
 FI;

tempPushCS = CS;
FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector);

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-131

(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;

(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order 0 bits *)
ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);
FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL

THEN #GP(0); FI;

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-132 Vol. 2A

IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); FI;

Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP := 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE
IF current TSS is 16-bit

THEN
TSSstackAddress := (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP := 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP := 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-133

IF CallGate(InstructionPointer) not within new code-segment limit
THEN #GP(0); FI;

SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP;
CS:EIP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;
SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP;
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS := NewSS; (* NewSS is NULL)
RSP := NewESP;
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
IF ShadowStackEnabled(CPL) AND CPL = 3

THEN
IF IA32_EFER.LMA = 0

THEN IA32_PL3_SSP := SSP;
ELSE (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
FI;

FI;
CPL := CodeSegment(DPL)
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

oldSSP := SSP
SSP := IA32_PLi_SSP; (* where i is the CPL *)
IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then #GP *)

THEN #GP(0); FI;
IF ((IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] != 0)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-134 Vol. 2A

THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position 0 - must be clear *)
new_token_value = SSP | BUSY_BIT (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
IF oldSS.DPL != 3

ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(oldSSP);

FI;
FI;
IF EndbranchEnabled (CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:EIP := CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

(* Align to next 8 byte boundary *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-135

ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled (CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF descriptor is not a TSS segment

 THEN #GP(TSS selector); FI;
IF TSS descriptor specifies that the TSS is busy

 THEN #GP(TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-136 Vol. 2A

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow
stack” token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits.
If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate does not indicate it is a code
segment.
If the segment selector from a call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and the segment pointed to is
marked not present.
If stack segment does not have room for the return address, parameters, or stack segment
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, call gate, task gate, or TSS is not present.
#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed.
If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the
code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-137

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canonical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-visor
shadow” stack token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits.
If code segment or 64-bit call gate overlaps non-canonical space.
If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a
code segment and has both the D-bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the
L-bit set and the D-bit clear.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-138 Vol. 2A

If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it
is a code segment.

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack
segment when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error
code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

CMPSS—Compare Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-185

CMPSS—Compare Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description
Compares the low single-precision floating-point values in the second source operand and the first source operand
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 32-bit memory location. Bits (MAXVL-1:32) of
the corresponding YMM destination register remain unchanged. The comparison result is a doubleword mask of all
1s (comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 32-bit memory location. The result is stored in the low 32 bits
of the destination operand; bits 127:32 of the destination operand are copied from the first source operand. Bits
(MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a doubleword mask of all 1s
(comparison true) or all 0s (comparison false).
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand
can be a XMM register or a 32-bit memory location. The destination operand (first operand) is an opmask register.
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.

The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see

Table 3-1). Bits 5 through 7 of the immediate are reserved.
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see

the first 8 rows of Table 3-1). Bits 3 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F3 0F C2 /r ib
CMPSS xmm1, xmm2/m32, imm8

A V/V SSE Compare low single-precision floating-point value in
xmm2/m32 and xmm1 using bits 2:0 of imm8 as
comparison predicate.

VEX.LIG.F3.0F.WIG C2 /r ib
VCMPSS xmm1, xmm2, xmm3/m32,
imm8

B V/V AVX Compare low single-precision floating-point value in
xmm3/m32 and xmm2 using bits 4:0 of imm8 as
comparison predicate.

EVEX.LIG.F3.0F.W0 C2 /r ib
VCMPSS k1 {k2}, xmm2,
xmm3/m32{sae}, imm8

C V/V AVX512F Compare low single-precision floating-point value in
xmm3/m32 and xmm2 using bits 4:0 of imm8 as
comparison predicate with writemask k2 and leave the
result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA

B NA ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8

CMPSS—Compare Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L

3-186 Vol. 2A

by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved
Imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-7, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 3-9, where the notations of reg1 reg2,
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSS instructions
in a similar fashion by extending the syntax listed in Table 3-9.
:

Table 3-8. Pseudo-Op and CMPSS Implementation

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

Table 3-9. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

CMPSS—Compare Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-187

Software should ensure VCMPSS is encoded with VEX.L=0. Encoding VCMPSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Operation
CASE (COMPARISON PREDICATE) OF

0: OP3 := EQ_OQ; OP5 := EQ_OQ;
1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 3-9. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

CMPSS—Compare Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L

3-188 Vol. 2A

22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPSS (EVEX encoded version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];

IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE

THEN DEST[0] := 1;
ELSE DEST[0] := 0; FI;

ELSE DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

CMPSS (128-bit Legacy SSE version)
CMP0 := DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[MAXVL-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent
VCMPSS __mmask8 _mm_cmp_ss_mask(__m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_cmp_round_ss_mask(__m128 a, __m128 b, int imm, int sae);
VCMPSS __mmask8 _mm_mask_cmp_ss_mask(__mmask8 k1, __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_mask_cmp_round_ss_mask(__mmask8 k1, __m128 a, __m128 b, int imm, int sae);
(V)CMPSS __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 3-1, Denormal.

Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.

INSTRUCTION SET REFERENCE, A-L
CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction oper-
ates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-8 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using some Intel processors, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)2
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID ZO Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH before using
leaf 0BH.
CPUID—CPU Identification3-198 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Table 3-8. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information.

EBX “Genu”

ECX “ntel”

EDX “ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).

EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31 - 24: Initial APIC ID**.

ECX Feature Information (see Figure 3-7 and Table 3-10).

EDX Feature Information (see Figure 3-8 and Table 3-11).

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH and
Leaf 1FH.

02H EAX Cache and TLB Information (see Table 3-12).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 228.

EAX Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.
CPUID—CPU Identification Vol. 2A 3-199

INSTRUCTION SET REFERENCE, A-L
Bits 07 - 05: Cache Level (starts at 1).
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13 - 10: Reserved.
Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***.
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****.

EBX Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.

ECX Bits 31-00: S = Number of Sets**.

EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31 - 03: Reserved = 0.

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15 - 00: Smallest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31 - 16: Reserved = 0.

EBX Bits 15 - 00: Largest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31 - 16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.

Bits 31 - 02: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-200 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set.
Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR MSR, IA32_HW_FEEDBACK_CONFIG MSR,
IA32_PACKAGE_THERM_STATUS MSR bit 26, and IA32_PACKAGE_THERM_INTERRUPT MSR bit 25 are
supported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bits 31 - 21: Reserved.

EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved.

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-201

INSTRUCTION SET REFERENCE, A-L
EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-8: Enumerates the size of the hardware feedback interface structure in number of 4 KB pages;
add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor's row in the hardware feedback interface struc-
ture. Note that on some parts the index may be same for multiple logical processors. On some parts the
indices may not be contiguous, i.e., there may be unused rows in the hardware feedback interface struc-
ture.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bit 30: AVX512BW.
Bit 31: AVX512VL.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-202 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
ECX Bit 00: PREFETCHWT1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 of the
IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs:
IA32_INTERRUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and
IA32_PL0_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDQ.
Bit 11: AVX512_VNNI.
Bit 12: AVX512_BITALG.
Bits 13: Reserved.
Bit 14: AVX512_VPOPCNTDQ.
Bit 15: Reserved.
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: Reserved.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: Reserved.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 01: Reserved.
Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bits 07-05: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: Reserved.
Bit 10: MD_CLEAR supported.
Bits 14-11: Reserved.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part.
Bits 19-16: Reserved.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit define
bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bits 25 - 21: Reserved.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch pre-
dictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and IA32_PRED_CMD[0]
(IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set this
bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the IA32_FLUSH_CMD
MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-203

INSTRUCTION SET REFERENCE, A-L
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit being
set in this MSR indicates that a model specific feature is supported; software must still consult CPUID
family/model/stepping to determine the behavior of the enumerated feature as features enumerated in
IA32_CORE_CAPABILITIES may have different behavior on different processor models.

Additionally, on hybrid parts (CPUID.07H.0H:EDX[15]=1), software must consult the native model ID and
core type from the Hybrid Information Enumeration Leaf.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit sup-
port the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 04-00: Reserved.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion
instructions from IEEE single precision.

Bits 31-06: Reserved.

EBX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

Direct Cache Access Information Leaf

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring.
Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events. Archi-
tectural event x is supported if EBX[x]=0 && EAX[31:24]>x.

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.
Bits 31 - 08: Reserved = 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-204 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
ECX Bits 31 - 00: Supported fixed counters bit mask. Fixed-function performance counter 'i' is supported if bit
‘i’ is 1 (first counter index starts at zero). It is recommended to use the following logic to determine if a
Fixed Counter is supported: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

EDX Bits 04 - 00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID >
1).
Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14 - 13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31 - 16: Reserved = 0.

Extended Topology Enumeration Leaf

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence
of Leaf 1FH before using leaf 0BH.
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3-255: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-205

INSTRUCTION SET REFERENCE, A-L
Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state.
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04 - 03: MPX state.
Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 12 - 10: Reserved.
Bit 13: Used for IA32_XSS.
Bits 15 - 14: Reserved.
Bit 16: Used for IA32_XSS.
Bits 31 - 17: Reserved.

EBX Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in
XCR0.

EDX Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bits 31 - 04: Reserved.

EBX Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07 - 00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: Reserved.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.
Bits 15 - 14: Reserved.
Bit 16: HWP state.
Bits 31 - 17: Reserved.

EDX Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31 - 00: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-206 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n.

EBX Bits 31 - 0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCR0.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).
Bits 31 - 02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31 - 02: Reserved.

L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and Mem-
ory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31 - 03: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-207

INSTRUCTION SET REFERENCE, A-L
Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31 - 04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01- 00: Reserved.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31 - 00: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 11 - 00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add one
to the return value to get the result.
Bits 31 - 12: Reserved.

EBX Bits 31 - 00: Reserved.

ECX Bits 01 - 00: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31 - 03: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-208 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Intel SGX Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04 - 02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and
ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bits 31 - 07: Reserved.

EBX Bits 31 - 00: MISCSELECT. Bit vector of supported extended SGX features.

ECX Bits 31 - 00: Reserved.

EDX Bits 07 - 00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2^(EDX[7:0]).
Bits 15 - 08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2^(EDX[15:8]).
Bits 31 - 16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below.

EAX Bit 03 - 00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.

EDX:ECX:EBX:EAX return 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-209

INSTRUCTION SET REFERENCE, A-L
Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
If EAX[3:0] 0010b, then this section has confidentiality protection only.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved
Memory.
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bit 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bit 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] (InjectPsb-
PmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to Intel
PT disable. Writes can also set PendToPAPMI and PendPSB.
Bit 31 - 07: Reserved.

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31 - 00: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-210 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.

EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.

ECX Bits 31 - 00: Reserved.

EDX Bits 31 - 00: Reserved.

Time Stamp Counter and Nominal Core Crystal Clock Information Leaf

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is 0, the nominal core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31 - 00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31 - 00: Reserved = 0.

Processor Frequency Information Leaf

16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.

EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

EDX Reserved.

NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-211

INSTRUCTION SET REFERENCE, A-L
EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.

ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31 - 00: Reserved = 0.

EBX Bits 31 - 00: Reserved = 0.

ECX Bits 31 - 00: Reserved = 0.

EDX Bits 31 - 00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translation structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reports the maximum input value of supported sub-leaf in leaf 18H.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-212 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
Each sub-leaf enumerates a different address translation structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-213

INSTRUCTION SET REFERENCE, A-L
EDX Bits 04 - 00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB*.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Key Locker Leaf (EAX = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs and backing up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: If1, the AES wide Key Locker instructions are supported.

EDX Reserved.

Hybrid Information Enumeration Leaf (EAX = 1AH, ECX = 0)

1AH EAX Enumerates the native model ID and core type.
Bits 31-24: Core type

10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™

Bits 23-0: Native model ID of the core. The core-type and native mode ID can be used to uniquely identify
the microarchitecture of the core. This native model ID is not unique across core types, and not related to
the model ID reported in CPUID leaf 01H, and does not identify the SOC.

EBX Reserved.

ECX Reserved.

EDX Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-214 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
V2 Extended Topology Enumeration Leaf

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence
of Leaf 1FH and using this if available.
Most of Leaf 1FH output depends on the initial value in ECX.
The EDX output of leaf 1FH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3: Module.
4: Tile.
5: Die.
6-255: Reserved.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-215

INSTRUCTION SET REFERENCE, A-L
EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

ECX Bit 00: LAHF/SAHF available in 64-bit mode.*
Bits 04 - 01: Reserved.
Bit 05: LZCNT.
Bits 07 - 06: Reserved.
Bit 08: PREFETCHW.
Bits 31 - 09: Reserved.

EDX Bits 10 - 00: Reserved.
Bit 11: SYSCALL/SYSRET.**
Bits 19 - 12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25 - 21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.

NOTES:
* LAHF and SAHF are always available in other modes, regardless of the enumeration of this feature flag.
** Intel processors support SYSCALL and SYSRET only in 64-bit mode. This feature flag is always enumer-

ated as 0 outside 64-bit mode.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX
EBX

Reserved = 0.
Reserved = 0.

ECX

EDX

Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
Reserved = 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification3-216 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low eight bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low eight bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped) 09H - Reserved
02H - 2 ways 0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** 0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-leaf 2

80000007H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.

80000008H EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.

EBX

ECX
EDX

Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.
Reserved = 0.
Reserved = 0.

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-217

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-9 for available processor type values. Stepping IDs are provided as needed.

NOTE
See Chapter 20 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

Figure 3-6. Version Information Returned by CPUID in EAX

Table 3-9. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
CPUID—CPU Identification3-218 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-7 and Table 3-10 show encodings for ECX.
• Figure 3-8 and Table 3-11 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.
CPUID—CPU Identification Vol. 2A 3-219

INSTRUCTION SET REFERENCE, A-L
Figure 3-7. Feature Information Returned in the ECX Register

Table 3-10. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 6, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
CPUID—CPU Identification3-220 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4_1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4_2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-10. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description
CPUID—CPU Identification Vol. 2A 3-221

INSTRUCTION SET REFERENCE, A-L

Figure 3-8. Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
CPUID—CPU Identification3-222 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Table 3-11. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved
CPUID—CPU Identification Vol. 2A 3-223

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form
and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value

and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-12. Table
3-12 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt.

Table 3-11. More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
CPUID—CPU Identification3-224 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Table 3-12. Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries
CPUID—CPU Identification Vol. 2A 3-225

INSTRUCTION SET REFERENCE, A-L
50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte
pages, 4-way set associative, 4 entries

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description
CPUID—CPU Identification3-226 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FEH General CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address
translation parameters.

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description
CPUID—CPU Identification Vol. 2A 3-227

INSTRUCTION SET REFERENCE, A-L
Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-8.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-8.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-8.
CPUID—CPU Identification3-228 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-8.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-8),
the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest
leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 3-8.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-8) is greater than Pn 0. See Table 3-8.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH
before using leaf 0BH.

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-8.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 3-8.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 3-8. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.
CPUID—CPU Identification Vol. 2A 3-229

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 3-8.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 3-8.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 3-8.

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 3-8.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 3-8.

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 3-8.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 3-8.

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 3-8.

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table
3-8.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 3-8.
CPUID—CPU Identification3-230 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 20 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor
Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Figure 3-9. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
CPUID—CPU Identification Vol. 2A 3-231

INSTRUCTION SET REFERENCE, A-L
Table 3-13 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

Table 3-13. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Figure 3-10. Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
CPUID—CPU Identification3-232 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-14 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Table 3-14. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III
CPUID—CPU Identification Vol. 2A 3-233

INSTRUCTION SET REFERENCE, A-L
Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID;
EAX[7:4] := Model;
EAX[11:8] := Family;
EAX[13:12] := Processor type;
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 3-7. *)
EDX := Feature flags; (* See Figure 3-8. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information;
 EBX := Cache and TLB information;
 ECX := Cache and TLB information;

EDX := Cache and TLB information;
BREAK;
EAX = 3H:

EAX := Reserved;
 EBX := Reserved;
 ECX := ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 3-8. *)
EBX := Deterministic Cache Parameters Leaf;

 ECX := Deterministic Cache Parameters Leaf;
EDX := Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 3-8. *)
 EBX := MONITOR/MWAIT Leaf;
 ECX := MONITOR/MWAIT Leaf;

EDX := MONITOR/MWAIT Leaf;
BREAK;
CPUID—CPU Identification3-234 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
EAX = 6H:
EAX := Thermal and Power Management Leaf; (* See Table 3-8. *)

 EBX := Thermal and Power Management Leaf;
 ECX := Thermal and Power Management Leaf;

EDX := Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-8. *)
EBX := Structured Extended Feature Flags Enumeration Leaf;

 ECX := Structured Extended Feature Flags Enumeration Leaf;
EDX := Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 3-8. *)
 EBX := Direct Cache Access Information Leaf;
 ECX := Direct Cache Access Information Leaf;

EDX := Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 3-8. *)
 EBX := Architectural Performance Monitoring Leaf;
 ECX := Architectural Performance Monitoring Leaf;

EDX := Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := Extended Topology Enumeration Leaf;

 ECX := Extended Topology Enumeration Leaf;
EDX := Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 3-8. *)
 EBX := Processor Extended State Enumeration Leaf;
 ECX := Processor Extended State Enumeration Leaf;

EDX := Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
CPUID—CPU Identification Vol. 2A 3-235

INSTRUCTION SET REFERENCE, A-L
EAX = FH:
EAX := Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 3-8. *)

 EBX := Intel Resource Director Technology Monitoring Enumeration Leaf;
 ECX := Intel Resource Director Technology Monitoring Enumeration Leaf;

EDX := Intel Resource Director Technology Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX := Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel Resource Director Technology Allocation Enumeration Leaf;
 ECX := Intel Resource Director Technology Allocation Enumeration Leaf;

EDX := Intel Resource Director Technology Allocation Enumeration Leaf;
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel SGX Enumeration Leaf;
 ECX := Intel SGX Enumeration Leaf;

EDX := Intel SGX Enumeration Leaf;
BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel Processor Trace Enumeration Leaf;
 ECX := Intel Processor Trace Enumeration Leaf;

EDX := Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; (* See Table 3-8. *)
 EBX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
 ECX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;

EDX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 3-8. *)
 EBX := Processor Frequency Information Enumeration Leaf;
 ECX := Processor Frequency Information Enumeration Leaf;

EDX := Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-8. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf;
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf;

EDX := System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 3-8. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf;
 ECX := Deterministic Address Translation Parameters Enumeration Leaf;

EDX := Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 3-8. *)
 EBX := Key Locker Enumeration Leaf;
 ECX := Key Locker Enumeration Leaf;

EDX := Key Locker Enumeration Leaf;
BREAK;
CPUID—CPU Identification3-236 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
EAX = 1AH:
EAX := Hybrid Information Enumeration Leaf; (* See Table 3-8. *)
EBX := Hybrid Information Enumeration Leaf;

 ECX := Hybrid Information Enumeration Leaf;
EDX := Hybrid Information Enumeration Leaf;

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := V2 Extended Topology Enumeration Leaf;

 ECX := V2 Extended Topology Enumeration Leaf;
EDX := V2 Extended Topology Enumeration Leaf;

BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved;
ECX := Reserved;
EDX := Reserved;

BREAK;
EAX = 80000001H:

EAX := Reserved;
EBX := Reserved;
ECX := Extended Feature Bits (* See Table 3-8.*);
EDX := Extended Feature Bits (* See Table 3-8. *);

BREAK;
EAX = 80000002H:

EAX := Processor Brand String;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX = 80000006H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Cache information;
EDX := Reserved = 0;

BREAK;
CPUID—CPU Identification Vol. 2A 3-237

INSTRUCTION SET REFERENCE, A-L
EAX = 80000007H:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX := Reserved = Physical Address Size Information;
EBX := Reserved = Virtual Address Size Information;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.
CPUID—CPU Identification3-238 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified with the source
operand. This state data is typically written to the specified memory location by a previous FSAVE/FNSAVE instruc-
tion.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately following
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding FSAVE/FNSAVE
instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point exception will be
generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions,
see the section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1). To avoid raising exceptions when loading a new operating environment, clear
all the exception flags in the FPU status word that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord := SRC[FPUControlWord];
FPUStatusWord := SRC[FPUStatusWord];
FPUTagWord := SRC[FPUTagWord];
FPUDataPointer := SRC[FPUDataPointer];
FPUInstructionPointer := SRC[FPUInstructionPointer];
FPULastInstructionOpcode := SRC[FPULastInstructionOpcode];

ST(0) := SRC[ST(0)];
ST(1) := SRC[ST(1)];
ST(2) := SRC[ST(2)];
ST(3) := SRC[ST(3)];
ST(4) := SRC[ST(4)];
ST(5) := SRC[ST(5)];
ST(6) := SRC[ST(6)];
ST(7) := SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next
“waiting” floating-point instruction.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from m94byte or m108byte.
FRSTOR—Restore x87 FPU State3-390 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.
FRSTOR—Restore x87 FPU State Vol. 2A 3-391

INSTRUCTION SET REFERENCE, A-L
GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse

Instruction Operand Encoding

Description

The AFFINEINVB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine
transformation is defined by A * inv(x) + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. The
inverse of the bytes in x is defined with respect to the reduction polynomial x8 + x4 + x3 + x + 1.
One SIMD register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register
or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x”
values in the first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of
the instruction require 16B alignment on their memory operations.
The inverse of each byte is given by the following table. The upper nibble is on the vertical axis and the lower nibble
is on the horizontal axis. For example, the inverse of 0x95 is 0x8A.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F3A CF /r /ib
GF2P8AFFINEINVQB xmm1,
xmm2/m128, imm8

A V/V GFNI Computes inverse affine transformation in the
finite field GF(2^8).

VEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1, xmm2,
xmm3/m128, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

VEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1, ymm2,
ymm3/m256, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1{k1}{z},
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1{k1}{z},
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.512.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB zmm1{k1}{z},
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse Vol. 2A 3-443

INSTRUCTION SET REFERENCE, A-L
Operation

define affine_inverse_byte(tsrc2qw, src1byte, imm):
FOR i := 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
* inverse(x) is defined in the table above *
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEINVQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

FOR i := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(tsrc2, SRC1.qword[j].byte[b], imm8)

ELSE IF *zeroing*:
DEST.qword[j].byte[b] := 0

ELSE DEST.qword[j].byte[b] remains unchanged
DEST[MAX_VL-1:VL] := 0

Table 3-50. Inverse Byte Listings

- 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 9

5 ED 5C 5 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 6 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 2 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C B 28 2F A3 DA D4 E4 F A9 27 53 4 1B FC AC E6

D 7A 7 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 D D6 EB C6 E CF AD 8 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 3 8C DD 9C 7D A0 CD 1A 41 1C
GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse3-444 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
VGF2P8AFFINEINVQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEINVQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_inverse_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEINVQB __m128i _mm_gf2p8affineinv_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_mask_gf2p8affineinv_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_maskz_gf2p8affineinv_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEINVQB __m256i _mm256_gf2p8affineinv_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_mask_gf2p8affineinv_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_maskz_gf2p8affineinv_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m512i _mm512_gf2p8affineinv_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_mask_gf2p8affineinv_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_maskz_gf2p8affineinv_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse Vol. 2A 3-445

INSTRUCTION SET REFERENCE, A-L
GF2P8AFFINEQB—Galois Field Affine Transformation

Instruction Operand Encoding

Description

The AFFINEB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine
transformation is defined by A * x + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. One SIMD
register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register or memory
operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” values in the
first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of
the instruction require16B alignment on their memory operations.

Operation

define parity(x):
t := 0 // single bit
FOR i := 0 to 7:

t = t xor x.bit[i]
return t

define affine_byte(tsrc2qw, src1byte, imm):
FOR i := 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]

return retbyte

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F3A CE /r /ib
GF2P8AFFINEQB xmm1,
xmm2/m128, imm8

A V/V GFNI Computes affine transformation in the finite
field GF(2^8).

VEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1, xmm2,
xmm3/m128, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite
field GF(2^8).

VEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1, ymm2,
ymm3/m256, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1{k1}{z},
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1{k1}{z},
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.512.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB zmm1{k1}{z},
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes affine transformation in the finite
field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
GF2P8AFFINEQB—Galois Field Affine Transformation3-446 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
VGF2P8AFFINEQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

DEST.qword[j].byte[b] := affine_byte(tsrc2, SRC1.qword[j].byte[b], imm8)
ELSE IF *zeroing*:

DEST.qword[j].byte[b] := 0
ELSE DEST.qword[j].byte[b] remains unchanged

DEST[MAX_VL-1:VL] := 0

VGF2P8AFFINEQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEQB __m128i _mm_gf2p8affine_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_mask_gf2p8affine_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_maskz_gf2p8affine_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEQB __m256i _mm256_gf2p8affine_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_mask_gf2p8affine_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_maskz_gf2p8affine_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m512i _mm512_gf2p8affine_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_mask_gf2p8affine_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
GF2P8AFFINEQB—Galois Field Affine Transformation Vol. 2A 3-447

INSTRUCTION SET REFERENCE, A-L
GF2P8MULB—Galois Field Multiply Bytes

Instruction Operand Encoding

Description

The instruction multiplies elements in the finite field GF(28), operating on a byte (field element) in the first source
operand and the corresponding byte in a second source operand. The field GF(28) is represented in polynomial
representation with the reduction polynomial x8 + x4 + x3 + x + 1.
This instruction does not support broadcasting.
The EVEX encoded form of this instruction supports memory fault suppression. The SSE encoded forms of the
instruction require16B alignment on their memory operations.

Operation

define gf2p8mul_byte(src1byte, src2byte):
tword := 0
FOR i := 0 to 7:

IF src2byte.bit[i]:
tword := tword XOR (src1byte<< i)

* carry out polynomial reduction by the characteristic polynomial p*
FOR i := 14 downto 8:

p := 0x11B << (i-8) *0x11B = 0000_0001_0001_1011 in binary*
IF tword.bit[i]:

tword := tword XOR p
return tword.byte[0]

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F38 CF /r
GF2P8MULB xmm1, xmm2/m128

A V/V GFNI Multiplies elements in the finite field GF(2^8).

VEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1, xmm2,
xmm3/m128

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

VEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1, ymm2,
ymm3/m256

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1{k1}{z}, xmm2,
xmm3/m128

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1{k1}{z}, ymm2,
ymm3/m256

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.512.66.0F38.W0 CF /r
VGF2P8MULB zmm1{k1}{z}, zmm2,
zmm3/m512

C V/V AVX512F
GFNI

Multiplies elements in the finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
GF2P8MULB—Galois Field Multiply Bytes3-448 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
VGF2P8MULB dest, src1, src2 (EVEX encoded version)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])

ELSE iF *zeroing*:
DEST.byte[j] := 0

* ELSE DEST.byte[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VGF2P8MULB dest, src1, src2 (128b and 256b VEX encoded versions)
(KL, VL) = (16, 128), (32, 256)
FOR j := 0 TO KL-1:

DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])
DEST[MAX_VL-1:VL] := 0

GF2P8MULB srcdest, src1 (128b SSE encoded version)
FOR j := 0 TO 15:

SRCDEST.byte[j] :=gf2p8mul_byte(SRCDEST.byte[j], SRC1.byte[j])

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8MULB __m128i _mm_gf2p8mul_epi8(__m128i, __m128i);
(V)GF2P8MULB __m128i _mm_mask_gf2p8mul_epi8(__m128i, __mmask16, __m128i, __m128i);
(V)GF2P8MULB __m128i _mm_maskz_gf2p8mul_epi8(__mmask16, __m128i, __m128i);
VGF2P8MULB __m256i _mm256_gf2p8mul_epi8(__m256i, __m256i);
VGF2P8MULB __m256i _mm256_mask_gf2p8mul_epi8(__m256i, __mmask32, __m256i, __m256i);
VGF2P8MULB __m256i _mm256_maskz_gf2p8mul_epi8(__mmask32, __m256i, __m256i);
VGF2P8MULB __m512i _mm512_gf2p8mul_epi8(__m512i, __m512i);
VGF2P8MULB __m512i _mm512_mask_gf2p8mul_epi8(__m512i, __mmask64, __m512i, __m512i);
VGF2P8MULB __m512i _mm512_maskz_gf2p8mul_epi8(__mmask64, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4.
GF2P8MULB—Galois Field Multiply Bytes Vol. 2A 3-449

INSTRUCTION SET REFERENCE, A-L
IRET/IRETD/IRETQ—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by
an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform
a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or
when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled
“Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction performs a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure,
without a task switch. The code segment being returned to must be equally or less privileged than the interrupt
handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is
to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET
instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET ZO Valid Valid Interrupt return (16-bit operand size).

CF IRETD ZO Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ ZO Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
IRET/IRETD/IRETQ—Interrupt Return3-504 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the excep-
tion handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64
bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-Flow Enforcement
Technology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for CET
details.

Instruction ordering. IRET is a serializing instruction. See Section 8.3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();
EFLAGS := (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
EFLAGS[15:0] := Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS := Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)

EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
IRET/IRETD/IRETQ—Interrupt Return Vol. 2A 3-505

INSTRUCTION SET REFERENCE, A-L
EFLAGS[15:0] := Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
FI;

ELSE
#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

FI;
END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit

THEN #GP(0); FI;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
(* If shadow stack or indirect branch tracking at CPL3 then #GP(0) *)
IF CR4.CET AND (IA32_U_CET.ENDBR_EN OR IA32_U_CET.SHSTK_EN)

THEN #GP(0); FI;
shadowStackEnabled = ShadowStackEnabled(CPL)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS := tempEFLAGS;
ESP := Pop();
SS := Pop(); (* Pop 2 words; throw away high-order word *)
ES := Pop(); (* Pop 2 words; throw away high-order word *)
DS := Pop(); (* Pop 2 words; throw away high-order word *)
FS := Pop(); (* Pop 2 words; throw away high-order word *)
GS := Pop(); (* Pop 2 words; throw away high-order word *)
IF shadowStackEnabled

(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
IRET/IRETD/IRETQ—Interrupt Return3-506 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
FI;

CPL := 3;
(* Resume execution in Virtual-8086 mode *)
tempOldSSP = SSP;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF shadowStackEnabled

expected_token_value = tempOldSSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
ESP := Pop();
SS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP := Pop(); (* 16-bit pop; clear upper bits *)
SS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP := Pop();
SS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
FI;
IF ShadowStackEnabled(CPL)

(* check if 8 byte aligned *)
IRET/IRETD/IRETQ—Interrupt Return Vol. 2A 3-507

INSTRUCTION SET REFERENCE, A-L
IF SSP AND 0x7 != 0
THEN #CP(FAR-RET/IRET); FI;

IF CS(RPL) != 3
THEN

tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)
IF CSBASE + RIP != tempSsEIP

THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;

FI;
tempOldCPL = CPL;
CPL := CS(RPL);

IF OperandSize = 64
THEN

RSP := tempRSP;
SS := tempSS;

ELSE
ESP := tempESP;
SS := tempSS;

FI;
IF new mode != 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
tempOldSSP = SSP;
IF ShadowStackEnabled(CPL)

IF CPL = 3
THEN tempSSP := IA32_PL3_SSP; FI;

IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR
((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)

THEN #GP(0); FI;
SSP := tempSSP
FI;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOldCPL)

expected_token_value = tempOldSSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
IRET/IRETD/IRETQ—Interrupt Return3-508 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
FOR each SegReg in (ES, FS, GS, and DS)
DO

tempDesc := descriptor cache for SegReg (* hidden part of segment register *)
IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code)))

THEN (* Segment register invalid *)
SegmentSelector := 0; (*Segment selector becomes null*)

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0

 THEN
 EFLAGS(IOPL) := tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
 FI;

IF ShadowStackEnabled(CPL)
IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)

THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare; CSBASE+RIP zero padded to 64 bit for 32 bit LIP *)

THEN #CP(FAR-RET/IRET); FI;
IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

THEN #CP(FAR-RET/IRET); FI;
IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR

((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)
THEN #GP(0); FI;

FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA = 1
(* In IA-32e-mode the IRET may be switching stacks if the interrupt/exception was delivered
 through an IDT with a non-zero IST *)
(* In IA-32e mode for same CPL IRET there is always a stack switch. The below check verifies if the
IRET/IRETD/IRETQ—Interrupt Return Vol. 2A 3-509

INSTRUCTION SET REFERENCE, A-L
 stack switch was to self stack and if so, do not try to free the token on this shadow stack. If the
 tempSSP was not to same stack then there was a stack switch so do attempt to free the token *)

IF tempSSP != SSP
THEN

expected_token_value = SSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = SSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)

FI;
FI;
SSP := tempSSP

FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop();
tempEFLAGS := Pop();

ELSE IF OperandSize = 16
THEN

EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP := Pop();
CS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS := Pop();

FI;
IF CS.RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode
THEN

IF OperandSize = 32
THEN

ESP := Pop();
SS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP := Pop(); (* 16-bit pop; clear upper bits *)
SS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP := Pop();
SS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;
IRET/IRETD/IRETQ—Interrupt Return3-510 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.
IRET/IRETD/IRETQ—Interrupt Return Vol. 2A 3-511

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.
IRET/IRETD/IRETQ—Interrupt Return3-512 Vol. 2A

LZCNT— Count the Number of Leading Zero Bits

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-579

LZCNT— Count the Number of Leading Zero Bits

Instruction Operand Encoding

Description

Counts the number of leading most significant zero bits in a source operand (second operand) returning the result
into a destination (first operand).
LZCNT differs from BSR. For example, LZCNT will produce the operand size when the input operand is zero. It
should be noted that on processors that do not support LZCNT, the instruction byte encoding is executed as BSR.
In 64-bit mode 64-bit operand size requires REX.W=1.

Operation
temp := OperandSize - 1
DEST := 0
WHILE (temp >= 0) AND (Bit(SRC, temp) = 0)
DO

temp := temp - 1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected
ZF flag is set to 1 in case of zero output (most significant bit of the source is set), and to 0 otherwise, CF flag is set
to 1 if input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

LZCNT: unsigned __int32 _lzcnt_u32(unsigned __int32 src);

LZCNT: unsigned __int64 _lzcnt_u64(unsigned __int64 src);

Opcode/Instruction Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F BD /r
LZCNT r16, r/m16

RM V/V LZCNT Count the number of leading zero bits in r/m16, return result in r16.

F3 0F BD /r
LZCNT r32, r/m32

RM V/V LZCNT Count the number of leading zero bits in r/m32, return result in r32.

F3 REX.W 0F BD /r
LZCNT r64, r/m64

RM V/N.E. LZCNT Count the number of leading zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

LZCNT— Count the Number of Leading Zero Bits

INSTRUCTION SET REFERENCE, A-L

3-580 Vol. 2A

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

8. Updates to Chapter 4, Volume 2B
Change bars and green text show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B: Instruction Set Reference, M-U.

--

Changes to this chapter:

Updates to the following instructions: PCLMULQDQ, PSIGNB/PSIGNW/PSIGND, PSLLW/PSLLD/PSLLQ, PSRLW/
PSRLD/PSRLQ, PTEST, RDPMC, SLDT, STOS/STOSB/STOSW/STOSD/STOSQ, and TZCNT.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no
additional changes are made to the affected instructions. Affected instructions include: VMULPD, VMULPS,
VMULSD, VMULSS, VSQRTPD, VSQRTPS, VSQRTSD, VSQRTSS, VSUBPD, VSUBPS, VSUBSD, and VSUBSS.

INSTRUCTION SET REFERENCE, M-U
PCLMULQDQ—Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to
use according to Table 4-13, other bits of the immediate byte are ignored.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

A V/V PCLMULQDQ Carry-less multiplication of one quadword of
xmm1 by one quadword of xmm2/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm1 and xmm2/m128 should be used.

VEX.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

B V/V PCLMULQDQ
AVX

Carry-less multiplication of one quadword of
xmm2 by one quadword of xmm3/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm2 and xmm3/m128 should be used.

VEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

B V/V VPCLMULQDQ Carry-less multiplication of one quadword of
ymm2 by one quadword of ymm3/m256,
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords
of ymm2 and ymm3/m256 should be used.

EVEX.128.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

C V/V VPCLMULQDQ
AVX512VL

Carry-less multiplication of one quadword of
xmm2 by one quadword of xmm3/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm2 and xmm3/m128 should be used.

EVEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

C V/V VPCLMULQDQ
AVX512VL

Carry-less multiplication of one quadword of
ymm2 by one quadword of ymm3/m256,
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords
of ymm2 and ymm3/m256 should be used.

EVEX.512.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ zmm1, zmm2, zmm3/m512, imm8

C V/V VPCLMULQDQ
AVX512F

Carry-less multiplication of one quadword of
zmm2 by one quadword of zmm3/m512,
stores the 128-bit result in zmm1. The imme-
diate is used to determine which quadwords
of zmm2 and zmm3/m512 should be used.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
PCLMULQDQ—Carry-Less Multiplication Quadword Vol. 2B 4-247

INSTRUCTION SET REFERENCE, M-U
The first source operand and the destination operand are the same and must be a ZMM/YMM/XMM register. The
second source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location. Bits (VL_MAX-
1:128) of the corresponding YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simplify programming and emit the
required encoding for imm8.

Operation
define PCLMUL128(X,Y): // helper function

FOR i := 0 to 63:
TMP [i] := X[0] and Y[i]
FOR j := 1 to i:

TMP [i] := TMP [i] xor (X[j] and Y[i - j])
DEST[i] := TMP[i]

FOR i := 64 to 126:
TMP [i] := 0
FOR j := i - 63 to 63:

TMP [i] := TMP [i] xor (X[j] and Y[i - j])
DEST[i] := TMP[i]

DEST[127] := 0;
RETURN DEST // 128b vector

Table 4-13. PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-

and.

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])

Table 4-14. Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHQDQ xmm1, xmm2 0001_0000B

PCLMULHQHQDQ xmm1, xmm2 0001_0001B
PCLMULQDQ—Carry-Less Multiplication Quadword4-248 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
PCLMULQDQ (SSE version)
IF Imm8[0] = 0:

TEMP1 := SRC1.qword[0]
ELSE:

TEMP1 := SRC1.qword[1]
IF Imm8[4] = 0:

TEMP2 := SRC2.qword[0]
ELSE:

TEMP2 := SRC2.qword[1]
DEST[127:0] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:128] (Unmodified)

VPCLMULQDQ (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i= 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

VPCLMULQDQ (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)
VPCLMULQDQ __m256i _mm256_clmulepi64_epi128(__m256i, __m256i, const int);
VPCLMULQDQ __m512i _mm512_clmulepi64_epi128(__m512i, __m512i, const int);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4, additionally
#UD If VEX.L = 1.
EVEX-encoded: See Exceptions Type E4NF.
PCLMULQDQ—Carry-Less Multiplication Quadword Vol. 2B 4-249

INSTRUCTION SET REFERENCE, M-U
PSIGNB/PSIGNW/PSIGND — Packed SIGN

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 38 08 /r1

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed byte integers in
mm1 depending on the corresponding sign in
mm2/m64.

66 0F 38 08 /r

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed byte integers in
xmm1 depending on the corresponding sign in
xmm2/m128.

NP 0F 38 09 /r1

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed word integers
in mm1 depending on the corresponding sign
in mm2/m128.

66 0F 38 09 /r

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed word integers
in xmm1 depending on the corresponding sign
in xmm2/m128.

NP 0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed doubleword
integers in mm1 depending on the
corresponding sign in mm2/m128.

66 0F 38 0A /r

PSIGND xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed doubleword
integers in xmm1 depending on the
corresponding sign in xmm2/m128.

VEX.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed byte integers in
xmm2 depending on the corresponding sign in
xmm3/m128.

VEX.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed word integers
in xmm2 depending on the corresponding sign
in xmm3/m128.

VEX.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed doubleword
integers in xmm2 depending on the
corresponding sign in xmm3/m128.

VEX.256.66.0F38.WIG 08 /r

VPSIGNB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed byte integers in ymm2 if the
corresponding sign in ymm3/m256 is less
than zero.

VEX.256.66.0F38.WIG 09 /r

VPSIGNW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed 16-bit integers in ymm2 if the
corresponding sign in ymm3/m256 is less
than zero.

VEX.256.66.0F38.WIG 0A /r

VPSIGND ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed doubleword integers in ymm2
if the corresponding sign in ymm3/m256 is
less than zero.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
PSIGNB/PSIGNW/PSIGND — Packed SIGN Vol. 2B 4-429

INSTRUCTION SET REFERENCE, M-U
Description

(V)PSIGNB/(V)PSIGNW/(V)PSIGND negates each data element of the destination operand (the first operand) if the
signed integer value of the corresponding data element in the source operand (the second operand) is less than
zero. If the signed integer value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source operand is zero, the corre-
sponding data element in the destination operand is set to zero.

(V)PSIGNB operates on signed bytes. (V)PSIGNW operates on 16-bit signed words. (V)PSIGND operates on signed
32-bit integers.

Legacy SSE instructions: Both operands can be MMX registers. In 64-bit mode, use the REX prefix to access addi-
tional registers.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source
operand is an YMM register or a 256-bit memory location.

Operation
def byte_sign(control, input_val):
 if control<0:
 return negate(input_val)
 elif control==0:
 return 0
 return input_val

def word_sign(control, input_val):
 if control<0:
 return negate(input_val)
 elif control==0:
 return 0
 return input_val

def dword_sign(control, input_val):
 if control<0:
 return negate(input_val)
 elif control==0:
 return 0
 return input_val

PSIGNB srcdest, src // MMX 64-bit operands
VL=64
KL := VL/8
for i in 0...KL-1:
 srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src // MMX 64-bit operands
VL=64
KL := VL/16
FOR i in 0...KL-1:
 srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])
PSIGNB/PSIGNW/PSIGND — Packed SIGN4-430 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
PSIGND srcdest, src // MMX 64-bit operands
VL=64
KL := VL/32
FOR i in 0...KL-1:
 srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

PSIGNB srcdest, src // SSE 128-bit operands
VL=128
KL := VL/8
FOR i in 0...KL-1:
 srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src // SSE 128-bit operands
VL=128
KL := VL/16
FOR i in 0...KL-1:
 srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])

PSIGND srcdest, src // SSE 128-bit operands
VL=128
KL := VL/32
FOR i in 0...KL-1:
 srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

VPSIGNB dest, src1, src2 // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/8
FOR i in 0...KL-1:
 dest.byte[i] := byte_sign(src2.byte[i], src1.byte[i])
DEST[MAXVL-1:VL] := 0

VPSIGNW dest, src1, src2 // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/16
FOR i in 0...KL-1:
 dest.word[i] := word_sign(src2.word[i], src1.word[i])
DEST[MAXVL-1:VL] := 0

VPSIGND dest, src1, src2 // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/32
FOR i in 0...KL-1:
 dest.dword[i] := dword_sign(src2.dword[i], src1.dword[i])
DEST[MAXVL-1:VL] := 0
PSIGNB/PSIGNW/PSIGND — Packed SIGN Vol. 2B 4-431

INSTRUCTION SET REFERENCE, M-U
Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB: __m64 _mm_sign_pi8 (__m64 a, __m64 b)

(V)PSIGNB: __m128i _mm_sign_epi8 (__m128i a, __m128i b)

VPSIGNB: __m256i _mm256_sign_epi8 (__m256i a, __m256i b)

PSIGNW: __m64 _mm_sign_pi16 (__m64 a, __m64 b)

(V)PSIGNW: __m128i _mm_sign_epi16 (__m128i a, __m128i b)

VPSIGNW: __m256i _mm256_sign_epi16 (__m256i a, __m256i b)

PSIGND: __m64 _mm_sign_pi32 (__m64 a, __m64 b)

(V)PSIGND: __m128i _mm_sign_epi32 (__m128i a, __m128i b)

VPSIGND: __m256i _mm256_sign_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
PSIGNB/PSIGNW/PSIGND — Packed SIGN4-432 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F F1 /r1

PSLLW mm, mm/m64

A V/V MMX Shift words in mm left mm/m64 while shifting in
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 left by xmm2/m128 while
shifting in 0s.

NP 0F 71 /6 ib

PSLLW mm1, imm8

B V/V MMX Shift words in mm left by imm8 while shifting in
0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 left by imm8 while shifting
in 0s.

NP 0F F2 /r1

PSLLD mm, mm/m64

A V/V MMX Shift doublewords in mm left by mm/m64 while
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 left by xmm2/m128
while shifting in 0s.

NP 0F 72 /6 ib1

PSLLD mm, imm8

B V/V MMX Shift doublewords in mm left by imm8 while
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 left by imm8 while
shifting in 0s.

NP 0F F3 /r1

PSLLQ mm, mm/m64

A V/V MMX Shift quadword in mm left by mm/m64 while
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128
while shifting in 0s.

NP 0F 73 /6 ib1

PSLLQ mm, imm8

B V/V MMX Shift quadword in mm left by imm8 while
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 left by imm8 while
shifting in 0s.

VEX.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 left by imm8 while shifting
in 0s.

VEX.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 left by imm8 while
shifting in 0s.

VEX.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 left by imm8 while
shifting in 0s.

VEX.256.66.0F.WIG F1 /r

VPSLLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /6 ib

VPSLLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 left by imm8 while shifting
in 0s.
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-435

INSTRUCTION SET REFERENCE, M-U
VEX.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /6 ib

VPSLLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 left by imm8 while
shifting in 0s.

VEX.256.66.0F.WIG F3 /r

VPSLLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /6 ib

VPSLLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 left by imm8 while
shifting in 0s.

EVEX.128.66.0F.WIG F1 /r
VPSLLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.256.66.0F.WIG F1 /r
VPSLLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.512.66.0F.WIG F1 /r
VPSLLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.128.66.0F.WIG 71 /6 ib
VPSLLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 left by imm8 while
shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /6 ib
VPSLLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 left by imm8 while
shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /6 ib
VPSLLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 left by imm8 while
shifting in 0 using writemask k1.

EVEX.128.66.0F.W0 F2 /r
VPSLLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.256.66.0F.W0 F2 /r
VPSLLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.512.66.0F.W0 F2 /r
VPSLLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.128.66.0F.W0 72 /6 ib
VPSLLD xmm1 {k1}{z}, xmm2/m128/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W0 72 /6 ib
VPSLLD ymm1 {k1}{z}, ymm2/m256/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W0 72 /6 ib
VPSLLD zmm1 {k1}{z}, zmm2/m512/m32bcst,
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.128.66.0F.W1 F3 /r
VPSLLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.256.66.0F.W1 F3 /r
VPSLLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.512.66.0F.W1 F3 /r
VPSLLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-436 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand
is set to all 0s. Figure 4-17 gives an example of shifting words in a 64-bit operand.

The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-
ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and
the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count
operand can be either an MMX technology register or an 64-bit memory location.

EVEX.128.66.0F.W1 73 /6 ib
VPSLLQ xmm1 {k1}{z}, xmm2/m128/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W1 73 /6 ib
VPSLLQ ymm1 {k1}{z}, ymm2/m256/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W1 73 /6 ib
VPSLLQ zmm1 {k1}{z}, zmm2/m512/m64bcst,
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst left
by imm8 while shifting in 0s using writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-17. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-437

INSTRUCTION SET REFERENCE, M-U
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of the
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are
ignored.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6, or EVEX.128.66.0F 71-73 /6),
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] := 0000000000000000H;
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] := 0000000000000000H;
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] := 0000000000000000H;
ELSE

DEST := ZeroExtend(DEST << COUNT);
FI;

LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-438 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT);

FI;
LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-439

INSTRUCTION SET REFERENCE, M-U
DEST[255:240] := ZeroExtend(SRC[255:240] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] := ZeroExtend(SRC[255:224] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] := ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] << COUNT);

FI;

VPSLLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-440 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSLLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORD_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-441

INSTRUCTION SET REFERENCE, M-U
PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-442 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSLLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR

VPSLLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-443

INSTRUCTION SET REFERENCE, M-U
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSLLD __m512i _mm512_slli_epi32(__m512i a, unsigned int imm);
VPSLLD __m512i _mm512_mask_slli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m512i _mm512_maskz_slli_epi32(__mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m256i _mm256_mask_slli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m256i _mm256_maskz_slli_epi32(__mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m128i _mm_mask_slli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m128i _mm_maskz_slli_epi32(__mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m512i _mm512_sll_epi32(__m512i a, __m128i cnt);
VPSLLD __m512i _mm512_mask_sll_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m512i _mm512_maskz_sll_epi32(__mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m256i _mm256_mask_sll_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m256i _mm256_maskz_sll_epi32(__mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m128i _mm_mask_sll_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLD __m128i _mm_maskz_sll_epi32(__mmask8 k, __m128i a, __m128i cnt);
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-444 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_maskz_slli_epi64(__mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m256i _mm256_mask_slli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m256i _mm256_maskz_slli_epi64(__mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m128i _mm_mask_slli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m128i _mm_maskz_slli_epi64(__mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_maskz_sll_epi64(__mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m256i _mm256_mask_sll_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m256i _mm256_maskz_sll_epi64(__mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m128i _mm_mask_sll_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m128i _mm_maskz_sll_epi64(__mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m512i _mm512_slli_epi16(__m512i a, unsigned int imm);
VPSLLW __m512i _mm512_mask_slli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m512i _mm512_maskz_slli_epi16(__mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m256i _mm256_mask_slli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m256i _mm256_maskz_slli_epi16(__mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m128i _mm_mask_slli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m128i _mm_maskz_slli_epi16(__mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m512i _mm512_sll_epi16(__m512i a, __m128i cnt);
VPSLLW __m512i _mm512_mask_sll_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m512i _mm512_maskz_sll_epi16(__mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m256i _mm256_mask_sll_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m256i _mm256_maskz_sll_epi16(__mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m128i _mm_mask_sll_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m128i _mm_maskz_sll_epi16(__mmask8 k, __m128i a, __m128i cnt);
PSLLW:__m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW:__m64 _mm_sll_pi16(__m64 m, __m64 count)
(V)PSLLW:__m128i _mm_slli_epi16(__m64 m, int count)
(V)PSLLW:__m128i _mm_sll_epi16(__m128i m, __m128i count)
VPSLLW:__m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW:__m256i _mm256_sll_epi16 (__m256i m, __m128i count)
PSLLD:__m64 _mm_slli_pi32(__m64 m, int count)
PSLLD:__m64 _mm_sll_pi32(__m64 m, __m64 count)
(V)PSLLD:__m128i _mm_slli_epi32(__m128i m, int count)
(V)PSLLD:__m128i _mm_sll_epi32(__m128i m, __m128i count)
VPSLLD:__m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD:__m256i _mm256_sll_epi32 (__m256i m, __m128i count)
PSLLQ:__m64 _mm_slli_si64(__m64 m, int count)
PSLLQ:__m64 _mm_sll_si64(__m64 m, __m64 count)
(V)PSLLQ:__m128i _mm_slli_epi64(__m128i m, int count)
(V)PSLLQ:__m128i _mm_sll_epi64(__m128i m, __m128i count)
VPSLLQ:__m256i _mm256_slli_epi64 (__m256i m, int count)
VPSLLQ:__m256i _mm256_sll_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-445

INSTRUCTION SET REFERENCE, M-U
Other Exceptions
VEX-encoded instructions:

Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSLLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSLLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-446 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F D1 /r1

PSRLW mm, mm/m64

A V/V MMX Shift words in mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.

NP 0F 71 /2 ib1

PSRLW mm, imm8

B V/V MMX Shift words in mm right by imm8 while shifting
in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 right by imm8 while
shifting in 0s.

NP 0F D2 /r1

PSRLD mm, mm/m64

A V/V MMX Shift doublewords in mm right by amount
specified in mm/m64 while shifting in 0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 right by amount
specified in xmm2 /m128 while shifting in 0s.

NP 0F 72 /2 ib1

PSRLD mm, imm8

B V/V MMX Shift doublewords in mm right by imm8 while
shifting in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 right by imm8
while shifting in 0s.

NP 0F D3 /r1

PSRLQ mm, mm/m64

A V/V MMX Shift mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.

NP 0F 73 /2 ib1

PSRLQ mm, imm8

B V/V MMX Shift mm right by imm8 while shifting in 0s.

66 0F 73 /2 ib

PSRLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 right by imm8 while
shifting in 0s.

VEX.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 right by imm8 while
shifting in 0s.

VEX.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 right by imm8
while shifting in 0s.

VEX.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 right by imm8 while
shifting in 0s.

VEX.256.66.0F.WIG D1 /r

VPSRLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 right by amount specified
in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /2 ib

VPSRLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 right by imm8 while
shifting in 0s.
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-459

INSTRUCTION SET REFERENCE, M-U
VEX.256.66.0F.WIG D2 /r

VPSRLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /2 ib

VPSRLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 right by imm8
while shifting in 0s.

VEX.256.66.0F.WIG D3 /r

VPSRLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /2 ib

VPSRLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 right by imm8 while
shifting in 0s.

EVEX.128.66.0F.WIG D1 /r
VPSRLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.256.66.0F.WIG D1 /r
VPSRLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.512.66.0F.WIG D1 /r
VPSRLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.128.66.0F.WIG 71 /2 ib
VPSRLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 right by imm8
while shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /2 ib
VPSRLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 right by imm8
while shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /2 ib
VPSRLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 right by imm8
while shifting in 0s using writemask k1.

EVEX.128.66.0F.W0 D2 /r
VPSRLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.256.66.0F.W0 D2 /r
VPSRLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.512.66.0F.W0 D2 /r
VPSRLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.128.66.0F.W0 72 /2 ib
VPSRLD xmm1 {k1}{z}, xmm2/m128/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.256.66.0F.W0 72 /2 ib
VPSRLD ymm1 {k1}{z}, ymm2/m256/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.512.66.0F.W0 72 /2 ib
VPSRLD zmm1 {k1}{z}, zmm2/m512/m32bcst,
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.128.66.0F.W1 D3 /r
VPSRLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.256.66.0F.W1 D3 /r
VPSRLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.512.66.0F.W1 D3 /r
VPSRLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-460 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data
elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand
is set to all 0s. Figure 4-19 gives an example of shifting words in a 64-bit operand.

Note that only the low 64-bits of a 128-bit count operand are checked to compute the count.

The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits
specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand;
and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE instruction 64-bit operand: The destination operand is an MMX technology register; the count operand
can be either an MMX technology register or an 64-bit memory location.

EVEX.128.66.0F.W1 73 /2 ib
VPSRLQ xmm1 {k1}{z}, xmm2/m128/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.256.66.0F.W1 73 /2 ib
VPSRLQ ymm1 {k1}{z}, ymm2/m256/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.512.66.0F.W1 73 /2 ib
VPSRLQ zmm1 {k1}{z}, zmm2/m512/m64bcst,
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-19. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-461

INSTRUCTION SET REFERENCE, M-U
128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2, or EVEX.128.66.0F 71-73 /2),
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] := 0000000000000000H
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] := 0000000000000000H
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] := 0000000000000000H
ELSE

DEST := ZeroExtend(DEST >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-462 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[255:0] := 0
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] := ZeroExtend(SRC[255:240] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[255:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] := ZeroExtend(SRC[255:224] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] >> COUNT);

FI;
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-463

INSTRUCTION SET REFERENCE, M-U
LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[255:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] := ZeroExtend(SRC[191:128] >> COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);

FI;

VPSRLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-464 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSRLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSRLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-465

INSTRUCTION SET REFERENCE, M-U
VPSRLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-466 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSRLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-467

INSTRUCTION SET REFERENCE, M-U
VPSRLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
VPSRLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32(__mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m256i _mm256_maskz_srli_epi32(__mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32(__mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32(__mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-468 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
VPSRLD __m256i _mm256_maskz_srl_epi32(__mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64(__mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64(__mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64(__mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64(__mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16(__mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16(__mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16(__mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m512i _mm512_maskz_srl_epi16(__mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16(__mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16(__mmask8 k, __m128i a, __m128i cnt);
PSRLW:__m64 _mm_srli_pi16(__m64 m, int count)
PSRLW:__m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW:__m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW:__m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW:__m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW:__m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD:__m64 _mm_srli_pi32 (__m64 m, int count)
PSRLD:__m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD:__m128i _mm_srli_epi32 (__m128i m, int count)
(V)PSRLD:__m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD:__m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD:__m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ:__m64 _mm_srli_si64 (__m64 m, int count)
PSRLQ:__m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ:__m128i _mm_srli_epi64 (__m128i m, int count)
(V)PSRLQ:__m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ:__m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ:__m256i _mm256_srl_epi64 (__m256i m, __m128i count)

Flags Affected

None.
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol. 2B 4-469

INSTRUCTION SET REFERENCE, M-U
Numeric Exceptions

None.

Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSRLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSRLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-470 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
PTEST—Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of the first source operand (first
operand) and the second source operand (second operand). VPTEST sets the CF flag if all bits in the result are 0 of
the bitwise AND of the second source operand (second operand) and the logical NOT of the destination operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source register can be an XMM register
or a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)PTEST (128-bit version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0)

THEN ZF := 1;
ELSE ZF := 0;

IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0)
THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF := 1;

ELSE ZF := 0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF := 1;

ELSE CF := 0;
DEST (unmodified)
AF := OF := PF := SF := 0;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND xmm1 result is all
0s. Set CF if xmm2/m128 AND NOT xmm1
result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on bitwise AND and
ANDN of sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on bitwise AND and
ANDN of sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
PTEST—Logical Compare Vol. 2B 4-489

INSTRUCTION SET REFERENCE, M-U
Intel C/C++ Compiler Intrinsic Equivalent

PTEST

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.
PTEST—Logical Compare4-490 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with the supported high-order bits
of the counter. The number of high-order bits loaded into EDX is implementation specific on processors that do no
support architectural performance monitoring. The width of fixed-function and general-purpose performance coun-
ters on processors supporting architectural performance monitoring are reported by CPUID 0AH leaf. See below for
the treatment of the EDX register for “fast” reads.

The ECX register specifies the counter type (if the processor supports architectural performance monitoring) and
counter index. Counter type is specified in ECX[30] to select one of two type of performance counters. If the
processor does not support architectural performance monitoring, ECX[30:0] specifies the counter index; other-
wise ECX[29:0] specifies the index relative to the base of each counter type. ECX[31] selects “fast” read mode if
supported. The two counter types are:

General-purpose or special-purpose performance counters are specified with ECX[30] = 0: The number of general-
purpose performance counters on processor supporting architectural performance monitoring are reported by
CPUID 0AH leaf. The availability of special-purpose counters, as well as the number of general-purpose counters if
the processor does not support architectural performance monitoring, is model specific; see Chapter 18, “Perfor-
mance Monitoring” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Fixed-function performance counters are specified with ECX[30] = 1. The number fixed-function performance
counters is enumerated by CPUID 0AH leaf. See Chapter 18, “Performance Monitoring” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. This counter type is selected if ECX[30] is set.

The width of fixed-function performance counters and general-purpose performance counters on processors
supporting architectural performance monitoring are reported by CPUID 0AH leaf. The width of general-purpose
performance counters are 40-bits for processors that do not support architectural performance monitoring coun-
ters. The width of special-purpose performance counters are implementation specific.

When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE) flag in register CR4
restricts the use of the RDPMC instruction as follows. When the PCE flag is set, the RDPMC instruction can be
executed at any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0.
(When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when executing at privilege
level 0.

The performance-monitoring counters are event counters that can be programmed to count events such as the
number of instructions, interrupts received, or cache misses. Chapter 19, “Performance Monitoring Events,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists the events that can be counted
for various processors in the Intel 64 and IA-32 architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

Performing back-to-back fast reads are not guaranteed to be monotonic. To guarantee monotonicity on back-to-
back reads, a serializing instruction must be placed between the two RDPMC instructions.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC ZO Valid Valid Read performance-monitoring counter
specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
RDPMC—Read Performance-Monitoring Counters Vol. 2B 4-539

INSTRUCTION SET REFERENCE, M-U
The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents of
the ECX register are used to select the counter, and the event count is stored in the full EAX and EDX registers. The
RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-monitoring counters, but they
must be read with the RDMSR instruction.

Operation

MSCB = Most Significant Counter Bit (* Model-specific *)

IF (((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0)) and (ECX indicates a supported counter))
THEN

EAX := counter[31:0];
EDX := ZeroExtend(counter[MSCB:32]);

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.
RDPMC—Read Performance-Monitoring Counters4-540 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel Xeon,
and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the desti-
nation is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity,
regardless of the operand size.

Operation

DEST := LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
SLDT—Store Local Descriptor Table Register4-640 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
SLDT—Store Local Descriptor Table Register Vol. 2B 4-641

INSTRUCTION SET REFERENCE, M-U
STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or EAX register
(respectively) into the destination operand. The destination operand is a memory location, the address of which is
read from either the ES:EDI or ES:DI register (depending on the address-size attribute of the instruction and the
mode of operation). The ES segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the STOS mnemonic) allows the destination operand to
be specified explicitly. Here, the destination operand should be a symbol that indicates the size and location of the
destination value. The source operand is then automatically selected to match the size of the destination operand
(the AL register for byte operands, AX for word operands, EAX for doubleword operands). The explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this form can be
misleading. That is, the destination operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword), but it does not have to specify the correct location. The location is always specified by the
ES:(E)DI register. These must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword versions of the STOS
instructions. Here also ES:(E)DI is assumed to be the destination operand and AL, AX, or EAX is assumed to be the
source operand. The size of the destination and source operands is selected by the mnemonic: STOSB (byte read
from register AL), STOSW (word from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the (E)DI register is
incremented or decremented according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, the
register is incremented; if the DF flag is 1, the register is decremented (the register is incremented or decremented
by 1 for byte operations, by 2 for word operations, by 4 for doubleword operations).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at address ES:(E)DI;
For 64-bit mode store AL at address RDI or
EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX at address ES:(E)DI;
For 64-bit mode store AX at address RDI or
EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at address
RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at address ES:(E)DI;
For 64-bit mode store AL at address RDI or
EDI.

AB STOSW NA Valid Valid For legacy mode, store AX at address ES:(E)DI;
For 64-bit mode store AX at address RDI or
EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at address
RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
STOS/STOSB/STOSW/STOSD/STOSQ—Store String4-660 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
NOTE: To improve performance, more recent processors support modifications to the processor’s operation during
the string store operations initiated with STOS and STOSB. See Section 7.3.9.3 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 for additional information on fast-string operation.

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the prefix 67H. Using a
REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The promoted no-operand
mnemonic is STOSQ. STOSQ (and its explicit operands variant) store a quadword from the RAX register into the
destination addressed by RDI or EDI. See the summary chart at the beginning of this section for encoding data and
limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix for block stores of ECX
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because
data needs to be moved into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
THEN

DEST := AL;
THEN IF DF = 0

THEN (E)DI := (E)DI + 1;
ELSE (E)DI := (E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST := AX;

THEN IF DF = 0
THEN (E)DI := (E)DI + 2;
ELSE (E)DI := (E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST := EAX;
THEN IF DF = 0

THEN (E)DI := (E)DI + 4;
ELSE (E)DI := (E)DI – 4;

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST := AL;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 1;
ELSE (R|E)DI := (R|E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST := AX;
STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol. 2B 4-661

INSTRUCTION SET REFERENCE, M-U
THEN IF DF = 0
THEN (R|E)DI := (R|E)DI + 2;
ELSE (R|E)DI := (R|E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST := EAX;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 4;
ELSE (R|E)DI := (R|E)DI – 4;

FI;
FI;

ELSE IF (Quadword store using REX.W)
THEN

DEST := RAX;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 8;
ELSE (R|E)DI := (R|E)DI – 8;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
STOS/STOSB/STOSW/STOSD/STOSQ—Store String4-662 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.
STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol. 2B 4-663

INSTRUCTION SET REFERENCE, M-U
TZCNT — Count the Number of Trailing Zero Bits

Instruction Operand Encoding

Description

TZCNT counts the number of trailing least significant zero bits in source operand (second operand) and returns the
result in destination operand (first operand). TZCNT is an extension of the BSF instruction. The key difference
between TZCNT and BSF instruction is that TZCNT provides operand size as output when source operand is zero
while in the case of BSF instruction, if source operand is zero, the content of destination operand are undefined. On
processors that do not support TZCNT, the instruction byte encoding is executed as BSF.

Operation

temp := 0
DEST := 0
DO WHILE ((temp < OperandSize) and (SRC[temp] = 0))

temp := temp +1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected

ZF is set to 1 in case of zero output (least significant bit of the source is set), and to 0 otherwise, CF is set to 1 if
the input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

TZCNT: unsigned __int32 _tzcnt_u32(unsigned __int32 src);

TZCNT: unsigned __int64 _tzcnt_u64(unsigned __int64 src);

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F BC /r
TZCNT r16, r/m16

A V/V BMI1 Count the number of trailing zero bits in r/m16, return result in r16.

F3 0F BC /r
TZCNT r32, r/m32

A V/V BMI1 Count the number of trailing zero bits in r/m32, return result in r32.

F3 REX.W 0F BC /r
TZCNT r64, r/m64

A V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) NA NA
TZCNT — Count the Number of Trailing Zero Bits4-696 Vol. 2B

INSTRUCTION SET REFERENCE, M-U
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If LOCK prefix is used.
TZCNT — Count the Number of Trailing Zero Bits Vol. 2B 4-697

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

9. Updates to Chapter 5, Volume 2C
Change bars and green text show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2C: Instruction Set Reference, V-Z.

--

Changes to this chapter:

Added the following instructions: VCVTNE2PS2BF16, VCVTNEPS2BF16, VDPBF16PS, VP2INTERSECTD/
VP2INTERSECTQ, and WBNOINVD.

Updates to the following instructions: VDBPSADBW, VFIXUPIMMPD, VFIXUPIMMPS, VFMADD132PD/
VFMADD213PD/VFMADD231PD, VPERMD/VPERMW, VPTESTNMB/W/D/Q, and VTESTPD/VTESTPS.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no
additional changes are made to the affected instructions. Affected instructions include: VCVTPD2QQ,
VCVTPD2UDQ, VCVTPD2UQQ, VCVTPS2UDQ, VCVTPS2QQ, VCVTPS2UQQ, VCVTQQ2PD, VCVTSD2USI,
VCVTSS2USI, VCVTUDQ2PS, VCVTUQQ2PD, VCVTUQQ2PS, VCVTUSI2SD, VCVTUSI2SS, VFMADD132PD,
VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADD132SD,
VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS, VFMADDSUB132PD,
VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS,
VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS, VFMSUBADD213PS,
VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PS, VFMSUB132SD, VFMSUB213SD,
VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS, VFNMADD132PD, VFNMADD213PD,
VFNMADD231PD, VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADD132SD, VFNMADD213SD,
VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS, VFNMSUB132PD, VFNMSUB213PD,
VFNMSUB231PD, VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUB132SD, VFNMSUB213SD,
VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, VSCALEFPD, VSCALEFSD, VSCALEFPS,
and VSCALEFSS.

VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 Data

INSTRUCTION SET REFERENCE, V-Z

5-24 Vol. 2C

VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 Data

Instruction Operand Encoding

Description

Converts two SIMD registers of packed single data into a single register of packed BF16 data.
This instruction does not support memory fault suppression.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and
input denormals are always treated as zero. MXCSR is not consulted nor updated. No floating-point exceptions are
generated.

Operation

VCVTNE2PS2BF16 dest, src1, src2
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL-1:

IF k1[i] or *no writemask*:
IF i < KL/2:

IF src2 is memory and evex.b == 1:
t := src2.fp32[0]

ELSE:
t := src2.fp32[i]

ELSE:
t := src1.fp32[i-KL/2]

// See VCVTNEPS2BF16 for definition of convert helper function
dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[i] := 0

ELSE: // Merge masking, dest element unchanged
dest.word[i] := origdest.word[i]

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 xmm1{k1}{z},
xmm2, xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from xmm2 and
xmm3/m128/m32bcst to packed BF16 data in
xmm1 with writemask k1.

EVEX.256.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 ymm1{k1}{z},
ymm2, ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from ymm2 and
ymm3/m256/m32bcst to packed BF16 data in
ymm1 with writemask k1.

EVEX.512.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 zmm1{k1}{z},
zmm2, zmm3/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Convert packed single data from zmm2 and
zmm3/m512/m32bcst to packed BF16 data in
zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-25

Intel C/C++ Compiler Intrinsic Equivalent

VCVTNE2PS2BF16 __m128bh _mm_cvtne2ps_pbh (__m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_mask_cvtne2ps_pbh (__m128bh, __mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_maskz_cvtne2ps_pbh (__mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m256bh _mm256_cvtne2ps_pbh (__m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_mask_cvtne2ps_pbh (__m256bh, __mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_maskz_cvtne2ps_ pbh (__mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m512bh _mm512_cvtne2ps_pbh (__m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_mask_cvtne2ps_pbh (__m512bh, __mmask32, __m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_maskz_cvtne2ps_pbh (__mmask32, __m512, __m512);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.

VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data

INSTRUCTION SET REFERENCE, V-Z

5-26 Vol. 2C

VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data

Instruction Operand Encoding

Description

Converts one SIMD register of packed single data into a single register of packed BF16 data.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and
input denormals are always treated as zero. MXCSR is not consulted nor updated.
As the instruction operand encoding table shows, the EVEX.vvvv field is not used for encoding an operand.
EVEX.vvvv is reserved and must be 0b1111 otherwise instructions will #UD.

Operation

Define convert_fp32_to_bfloat16(x):
IF x is zero or denormal:

dest[15] := x[31] // sign preserving zero (denormal go to zero)
dest[14:0] := 0

ELSE IF x is infinity:
dest[15:0] := x[31:16]

ELSE IF x is NAN:
dest[15:0] := x[31:16] // truncate and set MSB of the mantissa to force QNAN
dest[6] := 1

ELSE // normal number
LSB := x[16]
rounding_bias := 0x00007FFF + LSB
temp[31:0] := x[31:0] + rounding_bias // integer add
dest[15:0] := temp[31:16]

RETURN dest

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z},
xmm2/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from xmm2/m128
to packed BF16 data in xmm1 with writemask
k1.

EVEX.256.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z},
ymm2/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from ymm2/m256
to packed BF16 data in xmm1 with writemask
k1.

EVEX.512.F3.0F38.W0 72 /r
VCVTNEPS2BF16 ymm1{k1}{z},
zmm2/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Convert packed single data from zmm2/m512
to packed BF16 data in ymm1 with writemask
k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-27

VCVTNEPS2BF16 dest, src
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL/2-1:

IF k1[i] or *no writemask*:
IF src is memory and evex.b == 1:

t := src.fp32[0]
ELSE:

t := src.fp32[i]

dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[i] := 0

ELSE: // Merge masking, dest element unchanged
dest.word[i] := origdest.word[i]

DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTNEPS2BF16 __m128bh _mm_cvtneps_pbh (__m128);
VCVTNEPS2BF16 __m128bh _mm_mask_cvtneps_pbh (__m128bh, __mmask8, __m128);
VCVTNEPS2BF16 __m128bh _mm_maskz_cvtneps_pbh (__mmask8, __m128);
VCVTNEPS2BF16 __m128bh _mm256_cvtneps_pbh (__m256);
VCVTNEPS2BF16 __m128bh _mm256_mask_cvtneps_pbh (__m128bh, __mmask8, __m256);
VCVTNEPS2BF16 __m128bh _mm256_maskz_cvtneps_pbh (__mmask8, __m256);
VCVTNEPS2BF16 __m256bh _mm512_cvtneps_pbh (__m512);
VCVTNEPS2BF16 __m256bh _mm512_mask_cvtneps_pbh (__m256bh, __mmask16, __m512);
VCVTNEPS2BF16 __m256bh _mm512_maskz_cvtneps_pbh (__mmask16, __m512);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.

VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

INSTRUCTION SET REFERENCE, V-Z

5-88 Vol. 2C

VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

Instruction Operand Encoding

Description

Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword
elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results
in each 64-bit superblock of the destination register.
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as
follows:
• The lower two word results are calculated each from the SAD operation between a sliding dword element within

a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword
superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 5-8, is constructed from
the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of
the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte
offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from
the first source operand is located at byte offset 0.

• The next two word results are calculated each from the SAD operation between a sliding dword element within
a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corre-
sponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock
of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in
the qword superblock from the first source operand is located at byte offset 4.

• The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the
intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the
second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the inter-
mediate vector and the second source operand, similarly to PSHUFD.

The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or
a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at
16-bit word granularity.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F3A.W0 42 /r ib
VDBPSADBW xmm1 {k1}{z}, xmm2,
xmm3/m128, imm8

A V/V AVX512VL
AVX512BW

Compute packed SAD word results of unsigned bytes in
dword block from xmm2 with unsigned bytes of dword
blocks transformed from xmm3/m128 using the shuffle
controls in imm8. Results are written to xmm1 under the
writemask k1.

EVEX.256.66.0F3A.W0 42 /r ib
VDBPSADBW ymm1 {k1}{z}, ymm2,
ymm3/m256, imm8

A V/V AVX512VL
AVX512BW

Compute packed SAD word results of unsigned bytes in
dword block from ymm2 with unsigned bytes of dword
blocks transformed from ymm3/m256 using the shuffle
controls in imm8. Results are written to ymm1 under the
writemask k1.

EVEX.512.66.0F3A.W0 42 /r ib
VDBPSADBW zmm1 {k1}{z}, zmm2,
zmm3/m512, imm8

A V/V AVX512BW Compute packed SAD word results of unsigned bytes in
dword block from zmm2 with unsigned bytes of dword
blocks transformed from zmm3/m512 using the shuffle
controls in imm8. Results are written to zmm1 under the
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8

VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-89

Figure 5-8. 64-bit Super Block of SAD Operation in VDBPSADBW

63 0153147

Src1 stationary dword 0

Tmp1 sliding dword

+

_
abs

_
abs

_
abs

_
abs

+

01531

Src1 stationary dword 0

Tmp1 sliding dword

_
abs

_
abs

_
abs

_
abs

Src1 stationary dword 1

Tmp1 sliding dword

_
abs

_
abs

_
abs

_
abs

Src1 stationary dword 1

Tmp1 sliding dword

_
abs

_
abs

_
abs

_
abs

++

Destination qword superblock

723

01531 723

82339 1531

01531 723324763 3955

243955 3147

324763 3955

163147 2339

127+128*n 128*n31+128*n63+128*n95+128*n

128-bit Lane of Src2

037 15

00B: DW0
01B: DW1
10B: DW2
11B: DW3

DW3 DW2 DW1 DW0

127+128*n 128*n31+128*n63+128*n95+128*n

128-bit Lane of Tmp1

imm8 shuffle control

Tmp1 qword superblock

VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

INSTRUCTION SET REFERENCE, V-Z

5-90 Vol. 2C

Operation

VDBPSADBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Selection of quadruplets:
FOR I = 0 to VL step 128

TMP1[I+31:I] := select (SRC2[I+127: I], imm8[1:0])
TMP1[I+63: I+32] := select (SRC2[I+127: I], imm8[3:2])
TMP1[I+95: I+64] := select (SRC2[I+127: I], imm8[5:4])
TMP1[I+127: I+96] := select (SRC2[I+127: I], imm8[7:6])

END FOR

SAD of quadruplets:

FOR I =0 to VL step 64
TMP_DEST[I+15:I] := ABS(SRC1[I+7: I] - TMP1[I+7: I]) +

ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) +
ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) +
ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24])

TMP_DEST[I+31: I+16] := ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) +
ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) +
ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) +
ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32])

TMP_DEST[I+47: I+32] := ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) +
ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) +
ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) +
ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40])

TMP_DEST[I+63: I+48] := ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) +
ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) +
ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) +
ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48])

ENDFOR

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-91

Intel C/C++ Compiler Intrinsic Equivalent

VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b int imm8);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4NF.nb.

VDPBF16PS—Dot Product of BF16 Pairs Accumulated into Packed Single Precision

INSTRUCTION SET REFERENCE, V-Z

5-92 Vol. 2C

VDPBF16PS—Dot Product of BF16 Pairs Accumulated into Packed Single Precision

Instruction Operand Encoding

Description

This instruction performs a SIMD dot-product of two BF16 pairs and accumulates into a packed single precision
register.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are
always flushed to zero and input denormals are always treated as zero. MXCSR is not consulted nor updated.

NaN propagation priorities are described in Table 5-1.

Operation

Define make_fp32(x):
// The x parameter is bfloat16. Pack it in to upper 16b of a dword. The bit pattern is a legal fp32 value. Return that bit pattern.
dword := 0
dword[31:16] := x
RETURN dword

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.F3.0F38.W0 52 /r
VDPBF16PS xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Multiply BF16 pairs from xmm2 and
xmm3/m128, and accumulate the resulting
packed single precision results in xmm1 with
writemask k1.

EVEX.256.F3.0F38.W0 52 /r
VDPBF16PS ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Multiply BF16 pairs from ymm2 and
ymm3/m256, and accumulate the resulting
packed single precision results in ymm1 with
writemask k1.

EVEX.512.F3.0F38.W0 52 /r
VDPBF16PS zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Multiply BF16 pairs from zmm2 and
zmm3/m512, and accumulate the resulting
packed single precision results in zmm1 with
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Table 5-1. NaN Propagation Priorities

NaN Priority Description Comments

1 src1 low is NaN
Lower part has priority over upper part, i.e., it overrides the upper part.

2 src2 low is NaN

3 src1 high is NaN
Upper part may be overridden if lower has NaN.

4 src2 high is NaN

5 srcdest is NaN Dest is propagated if no NaN is encountered by src2.

VDPBF16PS—Dot Product of BF16 Pairs Accumulated into Packed Single Precision

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-93

VDPBF16PS srcdest, src1, src2
VL = (128, 256, 512)
KL = VL/32

origdest := srcdest
FOR i := 0 to KL-1:

IF k1[i] or *no writemask*:
IF src2 is memory and evex.b == 1:

t := src2.dword[0]
ELSE:

t := src2.dword[i]

// FP32 FMA with daz in, ftz out and RNE rounding. MXCSR neither consulted nor updated.

srcdest.fp32[i] += make_fp32(src1.bfloat16[2*i+1]) * make_fp32(t.bfloat[1])
srcdest.fp32[i] += make_fp32(src1.bfloat16[2*i+0]) * make_fp32(t.bfloat[0])

ELSE IF *zeroing*:
srcdest.dword[i] := 0

ELSE: // merge masking, dest element unchanged
srcdest.dword[i] := origdest.dword[i]

srcdest[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VDPBF16PS __m128 _mm_dpbf16_ps(__m128, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_mask_dpbf16_ps(__m128, __mmask8, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_maskz_dpbf16_ps(__mmask8, __m128, __m128bh, __m128bh);
VDPBF16PS __m256 _mm256_dpbf16_ps(__m256, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_mask_dpbf16_ps(__m256, __mmask8, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_maskz_dpbf16_ps(__mmask8, __m256, __m256bh, __m256bh);
VDPBF16PS __m512 _mm512_dpbf16_ps(__m512, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_mask_dpbf16_ps(__m512, __mmask16, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_maskz_dpbf16_ps(__mmask16, __m512, __m512bh, __m512bh);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.

VFIXUPIMMPD—Fix Up Special Packed Float64 Values

INSTRUCTION SET REFERENCE, V-Z

5-112 Vol. 2C

VFIXUPIMMPD—Fix Up Special Packed Float64 Values

Instruction Operand Encoding

Description

Perform fix-up of quad-word elements encoded in double-precision floating-point format in the first source operand
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding quadword element of
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from
the first source operand and the preserved element in the first operand are combined as the final results in the
destination operand (the first operand).
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each DP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into zmm1. Elements in the destination with the corresponding bit clear in k1 retain their
previous values or are set to 0.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F3A.W1 54 /r ib
VFIXUPIMMPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float64 vector xmm1, float64
vector xmm2 and int64 vector xmm3/m128/m64bcst
and store the result in xmm1, under writemask.

EVEX.256.66.0F3A.W1 54 /r ib
VFIXUPIMMPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float64 vector ymm1, float64
vector ymm2 and int64 vector ymm3/m256/m64bcst
and store the result in ymm1, under writemask.

EVEX.512.66.0F3A.W1 54 /r ib
VFIXUPIMMPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{sae}, imm8

A V/V AVX512F Fix up elements of float64 vector in zmm2 using int64
vector table in zmm3/m512/m64bcst, combine with
preserved elements from zmm1, and store the result in
zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8

VFIXUPIMMPD—Fix Up Special Packed Float64 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-113

Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] := ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[63:0] := dest[63:0]; ; preserve content of DEST
0001: dest[63:0] := tsrc[63:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] := QNaN(tsrc[63:0]);
0011: dest[63:0] := QNAN_Indefinite;
0100: dest[63:0] := -INF;
0101: dest[63:0] := +INF;
0110: dest[63:0] := tsrc.sign? –INF : +INF;
0111: dest[63:0] := -0;
1000: dest[63:0] := +0;
1001: dest[63:0] := -1;
1010: dest[63:0] := +1;
1011: dest[63:0] := ½;
1100: dest[63:0] := 90.0;
1101: dest[63:0] := PI/2;
1110: dest[63:0] := MAX_FLOAT;
1111: dest[63:0] := -MAX_FLOAT;

} ; end of token_response CASE

VFIXUPIMMPD—Fix Up Special Packed Float64 Values

INSTRUCTION SET REFERENCE, V-Z

5-114 Vol. 2C

; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting
return dest[63:0];

} ; end of FIXUPIMM_DP()

VFIXUPIMMPD
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[63:0], imm8 [7:0])

ELSE
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[i+63:i], imm8 [7:0])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VFIXUPIMMPD—Fix Up Special Packed Float64 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-115

Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPD __m512d _mm512_fixupimm_pd(__m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_pd(__mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_fixupimm_round_pd(__m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_round_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_round_pd(__mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m256d _mm256_fixupimm_pd(__m256d a, m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_mask_fixupimm_pd(__m256d a, __mmask8 k, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_maskz_fixupimm_pd(__mmask8 k, __m256d a, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m128d _mm_fixupimm_pd(__m128d a, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_mask_fixupimm_pd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_maskz_fixupimm_pd(__mmask8 k, __m128d a, __m128d b, 128ic, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid

Other Exceptions

See Exceptions Type E2.

Figure 5-9. VFIXUPIMMPD Immediate Control Description

7 6 5 4 3 2 1 0

+ INF #IE

- INF #IE

SNaN #IE

- VE #IE

ONE #IE

ONE #ZE

ZERO #IE

ZERO #ZE

VFIXUPIMMPS—Fix Up Special Packed Float32 Values

INSTRUCTION SET REFERENCE, V-Z

5-116 Vol. 2C

VFIXUPIMMPS—Fix Up Special Packed Float32 Values

Instruction Operand Encoding

Description

Perform fix-up of doubleword elements encoded in single-precision floating-point format in the first source operand
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding doubleword element of
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from
the first source operand and the preserved element in the first operand are combined as the final results in the
destination operand (the first operand).
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each SP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPS can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e. zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F3A.W0 54 /r
VFIXUPIMMPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float32 vector xmm1, float32
vector xmm2 and int32 vector xmm3/m128/m32bcst
and store the result in xmm1, under writemask.

EVEX.256.66.0F3A.W0 54 /r
VFIXUPIMMPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float32 vector ymm1, float32
vector ymm2 and int32 vector ymm3/m256/m32bcst
and store the result in ymm1, under writemask.

EVEX.512.66.0F3A.W0 54 /r ib
VFIXUPIMMPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{sae}, imm8

A V/V AVX512F Fix up elements of float32 vector in zmm2 using int32
vector table in zmm3/m512/m32bcst, combine with
preserved elements from zmm1, and store the result in
zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8

VFIXUPIMMPS—Fix Up Special Packed Float32 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-117

Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_SP (dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] := ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[31:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[31:0] := dest[31:0]; ; preserve content of DEST
0001: dest[31:0] := tsrc[31:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] := QNaN(tsrc[31:0]);
0011: dest[31:0] := QNAN_Indefinite;
0100: dest[31:0] := -INF;
0101: dest[31:0] := +INF;
0110: dest[31:0] := tsrc.sign? –INF : +INF;
0111: dest[31:0] := -0;
1000: dest[31:0] := +0;
1001: dest[31:0] := -1;
1010: dest[31:0] := +1;
1011: dest[31:0] := ½;
1100: dest[31:0] := 90.0;
1101: dest[31:0] := PI/2;
1110: dest[31:0] := MAX_FLOAT;
1111: dest[31:0] := -MAX_FLOAT;

} ; end of token_response CASE

VFIXUPIMMPS—Fix Up Special Packed Float32 Values

INSTRUCTION SET REFERENCE, V-Z

5-118 Vol. 2C

; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting
return dest[31:0];

} ; end of FIXUPIMM_SP()

VFIXUPIMMPS (EVEX)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[31:0], imm8 [7:0])

ELSE
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[i+31:i], imm8 [7:0])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VFIXUPIMMPS—Fix Up Special Packed Float32 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-119

Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPS __m512 _mm512_fixupimm_ps(__m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_ps(__mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_fixupimm_round_ps(__m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_round_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_round_ps(__mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m256 _mm256_fixupimm_ps(__m256 a, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_mask_fixupimm_ps(__m256 a, __mmask8 k, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_maskz_fixupimm_ps(__mmask8 k, __m256 a, __m256b, __m256i c, int imm8);
VFIXUPIMMPS __m128 _mm_fixupimm_ps(__m128 a, __m128 b, 128i c, int imm8);
VFIXUPIMMPS __m128 _mm_mask_fixupimm_ps(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm8);
VFIXUPIMMPS __m128 _mm_maskz_fixupimm_ps(__mmask8 k, __m128 a, __m128 b, __m128i c, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid

Other Exceptions

See Exceptions Type E2.

Figure 5-10. VFIXUPIMMPS Immediate Control Description

7 6 5 4 3 2 1 0

+ INF #IE

- INF #IE

SNaN #IE

- VE #IE

ONE #IE

ONE #ZE

ZERO #IE

ZERO #ZE

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-120 Vol. 2C

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-
Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W1 98 /r
VFMADD132PD xmm1, xmm2,
xmm3/m128

A V/V FMA Multiply packed double-precision floating-point
values from xmm1 and xmm3/mem, add to xmm2
and put result in xmm1.

VEX.128.66.0F38.W1 A8 /r
VFMADD213PD xmm1, xmm2,
xmm3/m128

A V/V FMA Multiply packed double-precision floating-point
values from xmm1 and xmm2, add to xmm3/mem
and put result in xmm1.

VEX.128.66.0F38.W1 B8 /r
VFMADD231PD xmm1, xmm2,
xmm3/m128

A V/V FMA Multiply packed double-precision floating-point
values from xmm2 and xmm3/mem, add to xmm1
and put result in xmm1.

VEX.256.66.0F38.W1 98 /r
VFMADD132PD ymm1, ymm2,
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point
values from ymm1 and ymm3/mem, add to ymm2
and put result in ymm1.

VEX.256.66.0F38.W1 A8 /r
VFMADD213PD ymm1, ymm2,
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point
values from ymm1 and ymm2, add to ymm3/mem
and put result in ymm1.

VEX.256.66.0F38.W1 B8 /r
VFMADD231PD ymm1, ymm2,
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point
values from ymm2 and ymm3/mem, add to ymm1
and put result in ymm1.

EVEX.128.66.0F38.W1 98 /r
VFMADD132PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from xmm1 and xmm3/m128/m64bcst, add
to xmm2 and put result in xmm1.

EVEX.128.66.0F38.W1 A8 /r
VFMADD213PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from xmm1 and xmm2, add to
xmm3/m128/m64bcst and put result in xmm1.

EVEX.128.66.0F38.W1 B8 /r
VFMADD231PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from xmm2 and xmm3/m128/m64bcst, add
to xmm1 and put result in xmm1.

EVEX.256.66.0F38.W1 98 /r
VFMADD132PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from ymm1 and ymm3/m256/m64bcst, add
to ymm2 and put result in ymm1.

EVEX.256.66.0F38.W1 A8 /r
VFMADD213PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from ymm1 and ymm2, add to
ymm3/m256/m64bcst and put result in ymm1.

EVEX.256.66.0F38.W1 B8 /r
VFMADD231PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point
values from ymm2 and ymm3/m256/m64bcst, add
to ymm1 and put result in ymm1.

EVEX.512.66.0F38.W1 98 /r
VFMADD132PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point
values from zmm1 and zmm3/m512/m64bcst, add
to zmm2 and put result in zmm1.

EVEX.512.66.0F38.W1 A8 /r
VFMADD213PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point
values from zmm1 and zmm2, add to
zmm3/m512/m64bcst and put result in zmm1.

EVEX.512.66.0F38.W1 B8 /r
VFMADD231PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point
values from zmm2 and zmm3/m512/m64bcst, add
to zmm1 and put result in zmm1.

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-121

Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using three
source operands and writes the multiply-add results in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.
VFMADD132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first source
operand to the two, four or eight packed double-precision floating-point values in the third source operand, adds
the infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in
the second source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
VFMADD213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source operand to the two, four or eight packed double-precision floating-point values in the first source operand,
adds the infinite precision intermediate result to the two, four or eight packed double-precision floating-point
values in the third source operand, performs rounding and stores the resulting two, four or eight packed double-
precision floating-point values to the destination operand (first source operand).
VFMADD231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source to the two, four or eight packed double-precision floating-point values in the third source operand, adds the
infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in the
first source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-122 Vol. 2C

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).

VFMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-123

VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1)

THEN
DEST[i+63:i] :=

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE

DEST[i+63:i] :=
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-124 Vol. 2C

VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1)

THEN
DEST[i+63:i] :=

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE

DEST[i+63:i] :=
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-125

VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1)

THEN
DEST[i+63:i] :=

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE

DEST[i+63:i] :=
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-126 Vol. 2C

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxPD __m512d _mm512_fmadd_pd(__m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_fmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask_fmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDxxxPD __m512d _mm512_mask_fmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDxxxPD __m256d _mm256_mask_fmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_maskz_fmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_mask3_fmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_mask_fmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_maskz_fmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_mask3_fmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.

VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a Pair of Mask Registers

INSTRUCTION SET REFERENCE, V-Z

5-300 Vol. 2C

VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a
Pair of Mask Registers

Instruction Operand Encoding

Description

This instruction writes an even/odd pair of mask registers. The mask register destination indicated in the
MODRM.REG field is used to form the basis of the register pair. The low bit of that field is masked off (set to zero)
to create the first register of the pair.
EVEX.aaa and EVEX.z must be zero.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature Flag Description

EVEX.NDS.128.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, xmm2,
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between dwords in
xmm3/m128/m32bcst and xmm2.

EVEX.NDS.256.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, ymm2,
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between dwords in
ymm3/m256/m32bcst and ymm2.

EVEX.NDS.512.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, zmm2,
zmm3/m512/m32bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between dwords in
zmm3/m512/m32bcst and zmm2.

EVEX.NDS.128.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, xmm2,
xmm3/m128/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between quadwords in
xmm3/m128/m64bcst and xmm2.

EVEX.NDS.256.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, ymm2,
ymm3/m256/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between quadwords in
ymm3/m256/m64bcst and ymm2.

EVEX.NDS.512.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, zmm2,
zmm3/m512/m64bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers,
the indicators of the locations of value
matches between quadwords in
zmm3/m512/m64bcst and zmm2.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a Pair of Mask Registers

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-301

Operation

VP2INTERSECTD destmask, src1, src2
(KL, VL) = (4, 128), (8, 256), (16, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i := 0 to KL-1:
FOR j := 0 to KL-1:

match := (src1.dword[i] == src2.dword[j])
maskregs[dest_base+0].bit[i] |= match
maskregs[dest_base+1].bit[j] |= match

VP2INTERSECTQ destmask, src1, src2
(KL, VL) = (2, 128), (4, 256), (8, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i = 0 to KL-1:
FOR j = 0 to KL-1:

match := (src1.qword[i] == src2.qword[j])
maskregs[dest_base+0].bit[i] |= match
maskregs[dest_base+1].bit[j] |= match

Intel C/C++ Compiler Intrinsic Equivalent

VP2INTERSECTD void _mm_2intersect_epi32(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm256_2intersect_epi32(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm512_2intersect_epi32(__m512i, __m512i, __mmask16 *, __mmask16 *);
VP2INTERSECTQ void _mm_2intersect_epi64(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm256_2intersect_epi64(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm512_2intersect_epi64(__m512i, __m512i, __mmask8 *, __mmask8 *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.

VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-351

VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

Instruction Operand Encoding

Description

Copies doublewords (or words) from the second source operand (the third operand) to the destination operand
(the first operand) according to the indices in the first source operand (the second operand). Note that this instruc-
tion permits a doubleword (word) in the source operand to be copied to more than one location in the destination
operand.
VEX.256 encoded VPERMD: The first and second operands are YMM registers, the third operand can be a YMM
register or memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.
EVEX encoded VPERMD: The first and second operands are ZMM/YMM registers, the third operand can be a
ZMM/YMM register, a 512/256-bit memory location or a 512/256-bit vector broadcasted from a 32-bit memory
location. The elements in the destination are updated using the writemask k1.
VPERMW: first and second operands are ZMM/YMM/XMM registers, the third operand can be a ZMM/YMM/XMM
register, or a 512/256/128-bit memory location. The destination is updated using the writemask k1.
EVEX.128 encoded versions: Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.256.66.0F38.W0 36 /r
VPERMD ymm1, ymm2, ymm3/m256

A V/V AVX2 Permute doublewords in ymm3/m256 using indices in
ymm2 and store the result in ymm1.

EVEX.256.66.0F38.W0 36 /r
VPERMD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst

B V/V AVX512VL
AVX512F

Permute doublewords in ymm3/m256/m32bcst using
indexes in ymm2 and store the result in ymm1 using
writemask k1.

EVEX.512.66.0F38.W0 36 /r
VPERMD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst

B V/V AVX512F Permute doublewords in zmm3/m512/m32bcst using
indices in zmm2 and store the result in zmm1 using
writemask k1.

EVEX.128.66.0F38.W1 8D /r
VPERMW xmm1 {k1}{z}, xmm2,
xmm3/m128

C V/V AVX512VL
AVX512BW

Permute word integers in xmm3/m128 using indexes
in xmm2 and store the result in xmm1 using writemask
k1.

EVEX.256.66.0F38.W1 8D /r
VPERMW ymm1 {k1}{z}, ymm2,
ymm3/m256

C V/V AVX512VL
AVX512BW

Permute word integers in ymm3/m256 using indexes
in ymm2 and store the result in ymm1 using writemask
k1.

EVEX.512.66.0F38.W1 8D /r
VPERMW zmm1 {k1}{z}, zmm2,
zmm3/m512

C V/V AVX512BW Permute word integers in zmm3/m512 using indexes
in zmm2 and store the result in zmm1 using writemask
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA

B Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

INSTRUCTION SET REFERENCE, V-Z

5-352 Vol. 2C

Operation

VPERMD (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
IF VL = 256 THEN n := 2; FI;
IF VL = 512 THEN n := 3; FI;
FOR j := 0 TO KL-1

i := j * 32
id := 32*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := SRC2[31:0];
ELSE DEST[i+31:i] := SRC2[id+31:id];

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMD (VEX.256 encoded version)
DEST[31:0] := (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] := (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] := (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] := (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] := (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] := (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] := (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] := (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAXVL-1:256] := 0

VPERMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128 THEN n := 2; FI;
IF VL = 256 THEN n := 3; FI;
IF VL = 512 THEN n := 4; FI;
FOR j := 0 TO KL-1

i := j * 16
id := 16*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC2[id+15:id]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-353

Intel C/C++ Compiler Intrinsic Equivalent

VPERMD __m512i _mm512_permutexvar_epi32(__m512i idx, __m512i a);
VPERMD __m512i _mm512_mask_permutexvar_epi32(__m512i s, __mmask16 k, __m512i idx, __m512i a);
VPERMD __m512i _mm512_maskz_permutexvar_epi32(__mmask16 k, __m512i idx, __m512i a);
VPERMD __m256i _mm256_permutexvar_epi32(__m256i idx, __m256i a);
VPERMD __m256i _mm256_mask_permutexvar_epi32(__m256i s, __mmask8 k, __m256i idx, __m256i a);
VPERMD __m256i _mm256_maskz_permutexvar_epi32(__mmask8 k, __m256i idx, __m256i a);
VPERMW __m512i _mm512_permutexvar_epi16(__m512i idx, __m512i a);
VPERMW __m512i _mm512_mask_permutexvar_epi16(__m512i s, __mmask32 k, __m512i idx, __m512i a);
VPERMW __m512i _mm512_maskz_permutexvar_epi16(__mmask32 k, __m512i idx, __m512i a);
VPERMW __m256i _mm256_permutexvar_epi16(__m256i idx, __m256i a);
VPERMW __m256i _mm256_mask_permutexvar_epi16(__m256i s, __mmask16 k, __m256i idx, __m256i a);
VPERMW __m256i _mm256_maskz_permutexvar_epi16(__mmask16 k, __m256i idx, __m256i a);
VPERMW __m128i _mm_permutexvar_epi16(__m128i idx, __m128i a);
VPERMW __m128i _mm_mask_permutexvar_epi16(__m128i s, __mmask8 k, __m128i idx, __m128i a);
VPERMW __m128i _mm_maskz_permutexvar_epi16(__mmask8 k, __m128i idx, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPERMD, see Exceptions Type E4NF.
EVEX-encoded VPERMW, see Exceptions Type E4NF.nb.
#UD If VEX.L = 0.

If EVEX.L’L = 0 for VPERMD.

VPTESTNMB/W/D/Q—Logical NAND and Set

INSTRUCTION SET REFERENCE, V-Z

5-502 Vol. 2C

VPTESTNMB/W/D/Q—Logical NAND and Set
Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Description

EVEX.128.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, xmm2,
xmm3/m128

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed byte integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.256.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, ymm2,
ymm3/m256

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed byte integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.512.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, zmm2,
zmm3/m512

A V/V AVX512F
AVX512BW

Bitwise NAND of packed byte integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.128.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, xmm2,
xmm3/m128

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed word integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.256.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, ymm2,
ymm3/m256

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed word integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.512.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, zmm2,
zmm3/m512

A V/V AVX512F
AVX512BW

Bitwise NAND of packed word integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.

EVEX.128.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, xmm2,
xmm3/m128/m32bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed doubleword integers in xmm2 and
xmm3/m128/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

EVEX.256.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, ymm2,
ymm3/m256/m32bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed doubleword integers in ymm2 and
ymm3/m256/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

EVEX.512.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, zmm2,
zmm3/m512/m32bcst

B V/V AVX512F Bitwise NAND of packed doubleword integers in zmm2 and
zmm3/m512/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

EVEX.128.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed quadword integers in xmm2 and
xmm3/m128/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

EVEX.256.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed quadword integers in ymm2 and
ymm3/m256/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

EVEX.512.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, zmm2,
zmm3/m512/m64bcst

B V/V AVX512F Bitwise NAND of packed quadword integers in zmm2 and
zmm3/m512/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.

VPTESTNMB/W/D/Q—Logical NAND and Set

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-503

Instruction Operand Encoding

Description

Performs a bitwise logical NAND operation on the byte/word/doubleword/quadword element of the first source
operand (the second operand) with the corresponding element of the second source operand (the third operand)
and stores the logical comparison result into each bit of the destination operand (the first operand) according to the
writemask k1. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and
second src operands is zero; otherwise it is set to 0.
EVEX encoded VPTESTNMD/Q: The first source operand is a ZMM/YMM/XMM registers. The second source operand
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted
from a 32/64-bit memory location. The destination is updated according to the writemask.
EVEX encoded VPTESTNMB/W: The first source operand is a ZMM/YMM/XMM registers. The second source operand
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the
writemask.

Operation

VPTESTNMB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j*8
IF MaskBit(j) OR *no writemask*

THEN
 DEST[j] := (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j*16
IF MaskBit(j) OR *no writemask*

THEN
 DEST[j] := (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

VPTESTNMB/W/D/Q—Logical NAND and Set

INSTRUCTION SET REFERENCE, V-Z

5-504 Vol. 2C

VPTESTNMD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j*32
IF MaskBit(j) OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

 THEN DEST[i+31:i] := (SRC1[i+31:i] BITWISE AND SRC2[31:0] == 0)? 1 : 0
ELSE DEST[j] := (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] == 0)? 1 : 0

FI
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
IF MaskBit(j) OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[63:0] == 0)? 1 : 0;
ELSE DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] == 0)? 1 : 0;

FI;
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPTESTNMB __mmask64 _mm512_testn_epi8_mask(__m512i a, __m512i b);
VPTESTNMB __mmask64 _mm512_mask_testn_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTNMB __mmask32 _mm256_testn_epi8_mask(__m256i a, __m256i b);
VPTESTNMB __mmask32 _mm256_mask_testn_epi8_mask(__mmask32, __m256i a, __m256i b);
VPTESTNMB __mmask16 _mm_testn_epi8_mask(__m128i a, __m128i b);
VPTESTNMB __mmask16 _mm_mask_testn_epi8_mask(__mmask16, __m128i a, __m128i b);
VPTESTNMW __mmask32 _mm512_testn_epi16_mask(__m512i a, __m512i b);
VPTESTNMW __mmask32 _mm512_mask_testn_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTNMW __mmask16 _mm256_testn_epi16_mask(__m256i a, __m256i b);
VPTESTNMW __mmask16 _mm256_mask_testn_epi16_mask(__mmask16, __m256i a, __m256i b);
VPTESTNMW __mmask8 _mm_testn_epi16_mask(__m128i a, __m128i b);
VPTESTNMW __mmask8 _mm_mask_testn_epi16_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMD __mmask16 _mm512_testn_epi32_mask(__m512i a, __m512i b);
VPTESTNMD __mmask16 _mm512_mask_testn_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTNMD __mmask8 _mm256_testn_epi32_mask(__m256i a, __m256i b);
VPTESTNMD __mmask8 _mm256_mask_testn_epi32_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMD __mmask8 _mm_testn_epi32_mask(__m128i a, __m128i b);
VPTESTNMD __mmask8 _mm_mask_testn_epi32_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMQ __mmask8 _mm512_testn_epi64_mask(__m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm512_mask_testn_epi64_mask(__mmask8, __m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm256_testn_epi64_mask(__m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm256_mask_testn_epi64_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm_testn_epi64_mask(__m128i a, __m128i b);

VPTESTNMB/W/D/Q—Logical NAND and Set

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-505

VPTESTNMQ __mmask8 _mm_mask_testn_epi64_mask(__mmask8, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

VPTESTNMD/VPTESTNMQ: See Exceptions Type E4.
VPTESTNMB/VPTESTNMW: See Exceptions Type E4.nb.

VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, V-Z

5-576 Vol. 2C

VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-precision elements in the first
source operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with
the dest sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits with the
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with
VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision elements in the first source
operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with the dest
sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the inverted dest
sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with VEX.W=1 will
cause #UD.
The first source register is specified by the ModR/M reg field.
128-bit version: The first source register is an XMM register. The second source register can be an XMM register or
a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and
ANDN of packed single-precision floating-point
sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and
ANDN of packed single-precision floating-point
sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and
ANDN of packed double-precision floating-point
sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and
ANDN of packed double-precision floating-point
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-577

Operation

VTESTPS (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, V-Z

5-578 Vol. 2C

Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);

int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.

WBNOINVD—Write Back and Do Not Invalidate Cache

INSTRUCTION SET REFERENCE, V-Z

5-592 Vol. 2C

WBNOINVD—Write Back and Do Not Invalidate Cache

Instruction Operand Encoding

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on
logical processor interrupt/event response time.

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBNOINVD void _wbnoinvd(void);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 09

WBNOINVD

ZO V/V WBNOINVD Write back and do not flush internal caches;
initiate writing-back without flushing of external
caches.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA

WBNOINVD—Write Back and Do Not Invalidate Cache

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-593

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

10.Updates to Chapter 6, Volume 2D
Change bars and green text show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2D: Instruction Set Reference.

--

Changes to this chapter include updates to the instruction GETSEC[ENTERACCS].

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

6-10 Vol. 2D

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and

EFLAGS.VM = 0.
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0.
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency

between enabled logical processors.
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be

set.
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on

configuration capability field after reset.
• The processor can not already be in authenticated code execution mode as launched by a previous

GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction

if it currently is in SMM or VMX operation.
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:
• Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated

processors), or
• In the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of
the same package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to
reaching this point, the processor performs several checks. These include:
• Establish and check the location and size of the specified authenticated code module to be executed by the

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code module

header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

Opcode Instruction Description

NP 0F 37

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated
code module size (bytes).

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 6-11

• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and
size are used to retrieve the code module from system memory and load it into the internal authenticated code
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error
condition results in an abort of the authenticated code execution launch and the signaling of a general protection
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no
machine check exception processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the control of the authenticated code
module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized
during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel®
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header
SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The
processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint
field + module base address (EBX). The AC module based fields used for initializing the processor state are checked
for consistency and any failure results in a shutdown condition.

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

6-12 Vol. 2D

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the
processor in Table 6-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result, the authenticated code can
reference EBP for relative address based references, given that the authenticated code module must be position
independent.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Table 6-4. Register State Initialization after GETSEC[ENTERACCS]

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are
disabled.

CR4 MCE←0: Others unchanged Machine Check Exceptions disabled.

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled.

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS].

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across
GETSEC[ENTERACCS].

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit;
[15:0]=CS.sel

Carry forward processor state across
GETSEC[ENTERACCS].

[E|R]DX Pre-ENTERACCS state:
GDTR base

Carry forward 64-bit processor state across
GETSEC[ENTERACCS].

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1,
AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1,
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr],
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENABLE See Table 6-5 for example. The number of initialized fields may change due to
processor implementation.

Performance
counters and
counter control
registers

0H

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 6-13

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following
entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared
upon entry into this mode.

Performance related counters and counter control registers are cleared as part of execution of ENTERACCS. This
implies any active performance counters at any time of ENTERACCS execution will be disabled. To reactive the
processor performance counters, this state must be re-initialized and re-enabled.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR
are preserved because preserving these bits may be important to maintain previously established platform settings
(See the footnote for Table 6-5.). The remaining bits are cleared for the purpose of establishing a more consistent
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any
previous condition established by the MONITOR instruction will be cleared.

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS],
certain critical processor state is captured and stored in the general- purpose registers at instruction completion.
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended
that a new IDT context be established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other operation that would result in an
exception or trap signaling.

Table 6-5. IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

Field Bit position Description

Fast strings enable 0 Clear to 0.

FOPCODE compatibility mode
enable

2 Clear to 0.

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Split-lock disable 4 Clear to 0.

Bus lock on cache line splits
disable

8 Clear to 0.

Hardware prefetch disable 9 Clear to 0.

GV1/2 legacy enable 15 Clear to 0.

MONITOR/MWAIT s/m enable 18 Clear to 0.

Adjacent sector prefetch disable 19 Clear to 0.

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

6-14 Vol. 2D

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module,
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain
access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG := 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 6-15

KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := READ(TXT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] := SIGNATURE[I];
COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL≠0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] := 0;
CR4.MCE := 0;
EFLAGS := 00000002h;
IA32_EFER := 0h;
[E|R]BX := [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX := Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX := Pre-GETSEC[ENTERACCS] GDT.base;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

6-16 Vol. 2D

DS.AR := 93h;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or
SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 6-17

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

11.Updates to Chapter 7, Volume 2D
Change bars and green text show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2D: Instruction Set Reference.

--

Changes to this chapter include updates to the instruction PREFETCHWT1.

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHWT1 instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHWT1 instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHWT1 instruction is not ordered with respect
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHWT1 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHWT1 instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and
MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint7-2 Vol. 2D

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint Vol. 2D 7-3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

12.Updates to Chapter 1, Volume 3A
Change bars and green text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Vol. 3A 1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide,
Part 1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order
number 332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-
32 Architecture processors. The other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series

1-2 Vol. 3A

ABOUT THIS MANUAL

• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,

C1000 series are built from 45 nm and 32 nm processes.
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
• Intel® Xeon® Processor Scalable Family
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

Vol. 3A 1-3

ABOUT THIS MANUAL

• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family
• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

1-4 Vol. 3A

ABOUT THIS MANUAL

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows1:

Chapter 1 — About This Manual. Gives an overview of all eight volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes
programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1 pins for
specific interrupt vectors.

1. Model-Specific Registers have been moved out of this volume and into a separate volume: Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

Vol. 3A 1-5

ABOUT THIS MANUAL

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support
multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in
an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and
Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache
control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon processors
is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™
technology that must be handled and considered at the system programming level, including: task switching,
exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter
describes the extensible framework of operating system requirements to support processor extended states.
Processor extended state may be required by instruction set extensions beyond those of
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for
power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-check
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes
for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the
time-stamp counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring
performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual Machine Control Structures. Describes components that manage VMX operation. These
include the working-VMCS pointer and the controlling-VMCS pointer.

1-6 Vol. 3A

ABOUT THIS MANUAL

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software
(running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a host
to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitor Programming Considerations. Describes programming consider-
ations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources. These
include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 35 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 36 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 37 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and
defines various Intel SGX data structures.

Chapter 38 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an
enclave, and enclave entry and exit.

Chapter 39 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit
(AEX).

Chapter 40 — SGX Instruction References. Describes the supervisor and user level instructions provided by
Intel SGX.

Chapter 41 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and
Intel 64 architectures.

Chapter 42 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

Vol. 3A 1-7

ABOUT THIS MANUAL

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any,

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset

1-8 Vol. 3A

ABOUT THIS MANUAL

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EIP

Vol. 3A 1-9

ABOUT THIS MANUAL

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.

1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

S 29002

1-10 Vol. 3A

ABOUT THIS MANUAL

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm

See also:
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/articles/intel-sdm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

13.Updates to Chapter 4, Volume 3A
Change bars and green text show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter include typo corrections and additional information added to section 4.10.2.3, “Details of
TLB Use”.

Vol. 3A 4-1

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address
translation) is the process of translating linear addresses so that they can be used to access memory or I/O
devices. Paging translates each linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such
accesses (the address’s memory type).

Intel-64 processors support four different paging modes. These modes are identified and defined in Section 4.1.
Section 4.2 gives an overview of the translation mechanism that is used in all modes. Section 4.3, Section 4.4, and
Section 4.5 discuss the four paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 discusses exceptions that may be
generated by paging (page-fault exceptions). Section 4.8 considers data which the processor writes in response to
linear-address accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to linear addresses. Section
4.10 provides details of how a processor may cache information about linear-address translation. Section 4.11
outlines interactions between paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, LA57, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in control register CR4 (bit 4, bit 5,

bit 7, bit 12, bit 17, bit 20, bit 21, bit 22, bit 23, and bit 24, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, CR4.LA57, and IA32_EFER.LME determine whether
paging is enabled and, if so, which of four paging modes is in use. Section 4.1.2 explains how to manage these bits
to establish or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE,
CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE modify the operation of the
different paging modes.

4.1.1 Four Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE, CR4.LA57, and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE,
CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE. (CR4.CET is also ignored insofar as it affects linear-address
access rights.)

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is
enabled, one of four paging modes is used. The values of CR4.PAE, CR4.LA57, and IA32_EFER.LME determine
which paging mode is used:
• If CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging uses CR0.WP,

CR4.PSE, CR4.PGE, CR4.SMEP, CR4.SMAP, and CR4.CET as described in Section 4.1.3 and Section 4.6.

4-2 Vol. 3A

PAGING

• If CR4.PAE = 1 and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 4.4. PAE paging
uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, CR4.CET, and IA32_EFER.NXE as described in Section 4.1.3 and
Section 4.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0, 4-level paging1 is used.2 4-level paging is detailed
in Section 4.5 (along with 5-level paging). 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1, 5-level paging is used. 5-level paging is detailed in
Section 4.5 (along with 4-level paging). 5-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

NOTE
32-bit paging and PAE paging can be used only in legacy protected mode (IA32_EFER.LME = 0). In
contrast, 4-level paging and 5-level paging can be used only IA-32e mode (IA32_EFER.LME = 1).

The four paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. With 4-level paging and 5-level paging, software can enable a facility by which a logical

processor caches information for multiple linear-address spaces. The processor may retain cached information
when software switches between different linear-address spaces.

• Support for protection keys. With 4-level paging and 5-level paging, each linear address is associated with a
protection key. Software can use the protection-key rights registers to disable, for each protection key, how
certain accesses to linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the four paging modes.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
uses either 4-level paging or 5-level paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software can-
not directly modify IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1. Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

LA57 in
CR4

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and
protection
keys?

None 0 N/A N/A N/A 32 32 N/A No No

32-bit 1 0 02 N/A 32 Up to 403 4 KB
4 MB4 No No

PAE 1 1 0 N/A 32 Up to 52
4 KB
2 MB

Yes5 No

4-level 1 1 1 0 48 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7

5-level 1 1 1 1 57 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7

Vol. 3A 4-3

PAGING

Because 32-bit paging and PAE paging are used only in legacy protected mode and because legacy protected mode
cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear
addresses.

4-level paging and 5-level paging are used only in IA-32e mode. IA-32e mode has two sub-modes:
• Compatibility mode. This sub-mode uses only 32-bit linear addresses. In this sub-mode, 4-level paging and 5-

level paging treat bits 63:32 of such an address as all 0.
• 64-bit mode. While this sub-mode produces 64-bit linear addresses, the processor enforces canonicality,

meaning that the upper bits of such an address are identical: bits 63:47 for 4-level paging and bits 63:56 for
5-level paging. 4-level paging (respectively, 5-level paging) does not use bits 63:48 (respectively, bits 63:57)
of such addresses.

4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of four paging modes, depending on the values of CR4.PAE,
IA32_EFER.LME, and CR4.LA57. Figure 4-1 illustrates how software can enable these modes and make transitions
between them. The following items identify certain limitations and other details:
• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts to do so using WRMSR

cause a general-protection exception (#GP(0)).
• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do

so using MOV to CR0 cause a general-protection exception (#GP(0)).
• One node in Figure 4-1 is labeled “IA-32e mode.” This node represents either 4-level paging (if CR4.LA57 = 0)

or 5-level paging (if CR4.LA57 = 1). As noted in the following items, software cannot modify CR4.LA57
(effecting transition between 4-level paging and 5-level paging) without first disabling paging.

• CR4.PAE and CR4.LA57 cannot be modified while either 4-level paging or 5-level paging is in use (when
CR0.PG = 1 and IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-protection
exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CR0.1

• Software can transition between 32-bit paging and PAE paging by changing the value of CR4.PAE with MOV to
CR4.

• Software cannot transition directly between 4-level paging (or 5-level paging) and any of other paging mode.
It must first disable paging (by clearing CR0.PG with MOV to CR0), then set CR4.PAE, IA32_EFER.LME, and
CR4.LA57 to the desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG
with MOV to CR0). As noted earlier, an attempt to modify CR4.PAE, IA32_EFER.LME, or CR.LA57 while 4-level
paging or 5-level paging is enabled causes a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This
is because VMX transitions can load CR0, CR4, and IA32_EFER in one operation. See Section 4.11.1.

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is

supported; see Section 4.1.4 and Section 4.3.
4. 32-bit paging uses 4-MByte pages only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Processors that support 4-level paging or 5-level paging do not necessarily support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

1. If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception
(#GP). Software should transition to compatibility mode and clear CR4.PCIDE before attempting to disable paging.

4-4 Vol. 3A

PAGING

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, bit 22,

bit 23, and bit 24, respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more information.
(PAE paging, 4-level paging, and 5-level paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE = 1,
specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 4-level paging and 5-level paging. PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section 4.10.1 for more information.

Figure 4-1. Enabling and Changing Paging Modes

PG = 1

No Paging
PAE Paging

PAE = 1
LME = 0

PG = 0
PAE = 0
LME = 0

32-bit Paging
PG = 1
PAE = 0
LME = 0

PG = 0
PAE = 0
LME = 1

Set PG Set PAE

Clear PAEClear PG

No Paging
PG = 0
PAE = 1
LME = 0

No Paging
PG = 1

4-level Paging

PAE = 1
LME = 1

Clear LME

Setr LME

PG = 0
PAE = 1
LME = 1

No Paging

Clear PAE
Set PAE Clear PG

Set PG

Set PAE
Clear PAE

Setr LME

Clear LME Clear PG

Set PG

#GP

Set LME

#GP

Set LME

#GP

Set PG

Clear PAE

#GP

Clear LME

#GP

Vol. 3A 4-5

PAGING

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE and CR4.PKS enable specification of access rights based on protection keys. 4-level paging and 5-level
paging associate each linear address with a protection key. When CR4.PKE = 1, the PKRU register specifies, for
each protection key, whether user-mode linear addresses with that protection key can be read or written. When
CR4.PKS = 1, the IA32_PKRS MSR does the same for supervisor-mode linear addresses. See Section 4.6 for more
information.

CR4.CET enables control-flow enforcement technology, including the shadow-stack feature. If CR4.CET = 1,
certain memory accesses are identified as shadow-stack accesses and certain linear addresses translate to
shadow-stack pages. Section 4.6 explains how access rights are determined for these accesses and pages. (The
processor allows CR4.CET to be set only if CR0.WP is also set.)

IA32_EFER.NXE enables execute-disable access rights for PAE paging, 4-level paging, and 5-level paging. If
IA32_EFER.NXE = 1, instruction fetches can be prevented from specified linear addresses (even if data reads from
the addresses are allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect
with 32-bit paging. Software that wants to use this feature to limit instruction fetches from readable pages must
use PAE paging, 4-level paging, or 5-level paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required
for 4-level paging and 5-level paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is
supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 4.6).

• SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode
access prevention (see Section 4.6).

4-6 Vol. 3A

PAGING

• PKU: protection keys for user-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys for
user-mode pages (see Section 4.6).

• OSPKE: enabling of protection keys for user-mode pages.
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4] returns the value of CR4.PKE. Thus, protection keys for user-
mode pages are enabled if this flag is 1 (see Section 4.6).

• CET: control-flow enforcement technology.
If CPUID.(EAX=07H,ECX=0H):ECX.CET_SS [bit 7] = 1, CR4.CET may be set to 1, enabling shadow-stack
pages (see Section 4.6).

• LA57: 57-bit linear addresses and 5-level paging.
If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, CR4.LA57 may be set to 1, enabling 5-level paging.

• PKS: protection keys for supervisor-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, CR4.PKS may be set to 1, enabling protection keys for
supervisor-mode pages (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing software to disable
execute access to selected pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages may be supported with 4-level paging and 5-
level paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e mode (with either
4-level paging or 5-level paging). (Processors that do not support CPUID function 80000001H do not allow
IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is reported as follows:

— If CPUID.80000001H:EDX.LM [bit 29] = 0, the value is reported as 32.

— If CPUID.80000001H:EDX.LM [bit 29] = 1 and CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 0, the
value is reported as 48.

— If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, the value is reported as 57.
(Processors that do not support CPUID function 80000008H, support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All four paging modes translate linear addresses using hierarchical paging structures. This section provides an
overview of their operation. Section 4.3, Section 4.4, Section 4.5, and Section 4.6 provide details for the four
paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging,
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With the other paging modes, each
entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of
these entries identifies the physical address of the region to which the linear address translates (called the page
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that
region to which the linear address translates.

Vol. 3A 4-7

PAGING

Each paging-structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3. A linear address is
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits)
selects an entry in a paging structure (initially the one located using CR3). If that entry references another paging
structure, the process continues with that paging structure and with the portion of the linear address immediately
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is
that of the page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the four paging modes (each example locates a 4-KByte page
frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation

process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the
page offset within the 4-KByte page frame. (See Figure 4-2 for an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures
comprise 512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 4-5 for
an illustration.)

• With 4-level paging, each paging structure comprises 512 = 29 entries and translation uses 9 bits at a time
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second,
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 4-8
for an illustration.)

• 5-level paging is similar to 4-level paging except that 5-level paging translates 57-bit linear addresses.
Bits 56:48 identify the first paging-structure entry, while the remaining bits are used as with 4-level paging.

The translation process in each of the examples above completes by identifying a page frame; the page frame is
part of the translation of the original linear address. In some cases, however, the paging structures may be
configured so that the translation process terminates before identifying a page frame. This occurs if the process
encounters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a
page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with a 4-KByte page frame when only 12 bits remain
in the linear address; entries identified earlier always reference other paging structures. That may not apply in
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry

is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.
• If only 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is

used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes.
32-bit paging can use 4-MByte pages if CR4.PSE = 1. The other paging modes can use 2-MByte pages (regardless
of the value of CR4.PSE). 4-level paging and 5-level paging can use 1-GByte pages if the processor supports them
(see Section 4.1.4).

Paging structures are given different names based on their uses in the translation process. Table 4-2 gives the
names of the different paging structures. It also provides, for each structure, the source of the physical address
used to locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry
from the structure; and details of whether and how such an entry can map a page.

4-8 Vol. 3A

PAGING

4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear
addresses to 40-bit physical addresses.1 Although 40 bits corresponds to 1 TByte, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the page directory. Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 4-2 illustrates the trans-
lation process when it uses a 4-KByte page; Figure 4-3 covers the case of a 4-MByte page. The following items
describe the 32-bit paging process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see

Table 4-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

Table 4-2. Paging Structures in the Different Paging Modes

Paging Structure Entry
Name Paging Mode

Physical
Address of
Structure

Bits Selecting
Entry Page Mapping

PML5 table PML5E
32-bit, PAE, 4-level N/A

5-level CR3 56:48 N/A (PS must be 0)

PML4 table PML4E

32-bit, PAE N/A

4-level CR3
47:39 N/A (PS must be 0)

5-level PML5E

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

4-level, 5-level PML4E 38:30 1-GByte page if PS=11

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, 4-level, 5-level PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12

4-KByte page
PAE, 4-level, 5-level 20:12

NOTES:
1. Not all processors support 1-GByte pages; see Section 4.1.4.
2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors sup-

port 4-MByte pages with 32-bit paging; see Section 4.1.4.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine MAXPHYADDR and
whether the PSE-36 mechanism is supported.

Vol. 3A 4-9

PAGING

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the
linear-address space. Use of the PDE depends on CR4.PSE and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see Table 4-4). The final physical

address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical

address specified in bits 31:12 of the PDE (see Table 4-5). A page table comprises 1024 32-bit entries (PTEs).
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see

Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR, and whether

the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and
MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the
PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.

4-10 Vol. 3A

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how such an entry is used.

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Vol. 3A 4-11

PAGING

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of page directory1 Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be 0)

Bits 39:32 of
address2

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.
2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in

positions 20:13 of a PDE mapping a 4-MByte page will change.

Table 4-3. Use of CR3 with 32-Bit Paging

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

4-12 Vol. 3A

PAGING

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-

imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYA-
DDR and whether the PSE-36 mechanism is supported.

Vol. 3A 4-13

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

4-14 Vol. 3A

PAGING

4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates
32-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced
by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 4-7 illus-
trates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of
four (4) internal, non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. The logical
processor loads these registers from the PDPTEs in memory as part of certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 (see Section 4.1.1) and the

instruction is modifying any of CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the
PDPTEs are loaded from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the
address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in
the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown
in Table 4-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by PAE paging. (The corresponding
bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-7. Use of CR3 with PAE Paging

Bit
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

Vol. 3A 4-15

PAGING

4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following items
describe the PAE paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTEi, where i is the value

of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address
in this region causes a page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of PDPTEi (see Table 4-8 in Section 4.4.1). A page directory comprises 512 64-bit entries (PDEs).
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the
linear-address space. Use of the PDE depends on its PS flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed

as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in

bits 51:12 of the PDE (see Table 4-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does
not access the PDPTEs in the page-directory-pointer table during linear-address translation.

4-16 Vol. 3A

PAGING

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see

Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

Page Table

PTE

4-KByte Page

Physical Address

31 20 111221
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory Pointer

2

9

12

9

40

40

40

Vol. 3A 4-17

PAGING

Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

0
Directory Offset

Page Directory

PDE with PS=1

2-MByte Page

Physical Address

31 2021
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory
Pointer

2

9

21

31

40

4-18 Vol. 3A

PAGING

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

Vol. 3A 4-19

PAGING

Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging
structure entries, it identifies separately the format of entries that map pages, those that reference other paging
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Ignored2

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with PAE paging.

Address of page-directory-pointer table Ignored CR3

Reserved3

3. Reserved fields must be 0.

Address of page directory Ign. Rsvd.
P
C
D

P
W
T

Rs
vd 1 PDPTE:

present

Ignored 0
PDTPE:

not
present

X
D
4

4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

Reserved Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D
4

Reserved Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D
4

Reserved Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit
Position(s)

Contents

4-20 Vol. 3A

PAGING

4.5 4-LEVEL PAGING AND 5-LEVEL PAGING
Because the operation of 4-level paging and 5-level paging is very similar, they are described together in this
section. The following items highlight the distinctions between the two paging modes:
• A logical processor uses 4-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0.

4-level paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed
at any given time.

• A logical processor uses 5-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1.
5-level paging translates 57-bit linear addresses to 52-bit physical addresses. Thus, 5-level paging supports a
linear-address space sufficient to access the entire physical-address space.

Both paging modes translate linear addresses using a hierarchy of in-memory paging structures located using the
contents of CR3, which is used to locate the first paging-structure. For 4-level paging, this is the PML4 table, and
for 5-level paging it is the PML5 table. Use of CR3 with 4-level paging and 5-level paging depends on whether
process-context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 0.

• Table 4-13 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 1.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by 4-level paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-12. Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address
translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table or PML5 table used for linear-address translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)

Table 4-13. Use of CR3 with 4-Level Paging and 5-Level Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-

tion with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

Vol. 3A 4-21

PAGING

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes
from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently determines
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

4-level paging and 5-level paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1
Figure 4-8 illustrates the translation process for 4-level paging when it produces a 4-KByte page; Figure 4-9 covers
the case of a 2-MByte page, and Figure 4-10 the case of a 1-GByte page. (The process for 5-level paging is similar.)

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table
011122021

Directory
30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

40

4-22 Vol. 3A

PAGING

Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021
Directory

30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4
47

9

PML4E
40

Vol. 3A 4-23

PAGING

4-level paging and 5-level paging associate with each linear address a protection key. Section 4.6 explains how
the processor uses the protection key in its determination of the access rights of each linear address.

The remainder of this section describes the translation process used by 4-level paging and 5-level paging in more
detail, as well has how the page size and protection key are determined. Because the process used by the two
paging modes is similar, they are described together, with any differences identified, in the following items:
• With 5-level paging, a 4-KByte naturally aligned PML5 table is located at the physical address specified in

bits 51:12 of CR3 (see Table 4-12). (4-level paging does not use a PML5 table and omits this step.) A PML5
table comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 56:48 of the linear address.

— Bits 2:0 are all 0.
Because a PML5E is identified using bits 56:48 of the linear address, it controls access to a 256-TByte region of
the linear-address space.

• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (for 4-
level paging; see Table 4-12) or in bits 51:12 of the PML4E (for 5-level paging; see Table 4-14). A PML4 table
comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 (for 4-level paging) or in bits 51:12 of the PML4E (for 5-level paging).

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region
of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-15). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-16). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDPTE (see Section 4.6.2).

• If the PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address
specified in bits 51:12 of the PDPTE (see Table 4-17). A page directory comprises 512 64-bit entries (PDEs). A
PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space. Use of the PDE depends on its PS flag:
• If the PDE's PS flag is 1, the PDE maps a 2-MByte page (see Table 4-18). The final physical address is computed

as follows:

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.

4-24 Vol. 3A

PAGING

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDE (see Section 4.6.2).

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-19). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see

Table 4-20). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PTE (see Section 4.6.2).

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 4.7).

The following bits in a paging-structure entry are reserved with 4-level paging and 5-level paging (assuming that
the entry’s P flag is 1):
• Bits 51:MAXPHYADDR are reserved in every paging-structure entry.
• The PS flag is reserved in a PML5E or a PML4E.
• If 1-GByte pages are not supported, the PS flag is reserved in a PDPTE.1

• If the PS flag in a PDPTE is 1, bits 29:13 of the entry are reserved.
• If the PS flag in a PDE is 1, bits 20:13 of the entry are reserved.
• If IA32_EFER.NXE = 0, the XD flag (bit 63) is reserved in every paging-structure entry.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the 4-level and 5-level paging-structure entries. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Table 4-14. Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a PML4 table

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 256-TByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table referenced by this
entry (see Section 4.9.2)

Vol. 3A 4-25

PAGING

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 256-TByte region
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-14. Format of a PML5 Entry (PML5E) that References a PML4 Table (Contd.)

Bit
Position(s)

Contents

4-26 Vol. 3A

PAGING

Table 4-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section
4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise,
it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. The PAT is supported on all processors that support 4-level paging.

Vol. 3A 4-27

PAGING

Table 4-17. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-16)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18. Format of a Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-19)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

4-28 Vol. 3A

PAGING

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section
4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2);
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-19. Format of a Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-18)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18. Format of a Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit
Position(s)

Contents

Vol. 3A 4-29

PAGING

Table 4-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2);
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

4-30 Vol. 3A

PAGING

.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2

2. Reserved fields must be 0.

Address of PML4 table (4-level paging)
or PML5 table (5-level paging) Ignored

P
C
D

P
W
T

Ign. CR3

X
D
3

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

Ignored Rsvd. Address of PML4 table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML5E:
present

Ignored 0
PML5E:

not
present

X
D
3

Ignored Rsvd. Address of page-directory-pointer table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D
3

Prot.
Key4

4. The protection key is used only if software has enabled the appropriate feature; see Section 4.6.2.

Ignored Rsvd. Address of
1GB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D
3

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D
3

Prot.
Key4 Ignored Rsvd. Address of

2MB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D
3

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D
3

Prot.
Key4 Ignored Rsvd. Address of 4KB page frame Ign. G

P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging

Vol. 3A 4-31

PAGING

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 4.6.1 describes how the processor determines the access rights for each linear address. Section 4.6.2
provides additional information about how protection keys contribute to access-rights determination. (They do so
only with 4-level paging and 5-level paging, and only if CR4.PKE = 1 or CR4.PKS = 1.)

4.6.1 Determination of Access Rights
Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the following:
accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses
to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state
segment (TSS) as part of a task switch or change of CPL. All these accesses are called implicit supervisor-mode
accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

When the shadow-stack feature of control-flow enforcement technology (CET) is enabled, certain accesses to
linear addresses are considered shadow-stack accesses (see Section 18.2, “Shadow Stacks”in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1). Like ordinary data accesses, each shadow-stack
access is defined as being either a user access or a supervisor access. In general, a shadow-stack access is a user
access if CPL = 3 and a supervisor access if CPL < 3. The WRUSS instruction is an exception; although it can be
executed only if CPL = 0, the processor treats its shadow-stack accesses as user accesses.

Shadow-stack accesses are allowed only to shadow-stack addresses. A linear address is a shadow-stack
address if the following are true of the translation of the linear address: (1) the R/W flag (bit 1) is 0 and the dirty
flag (bit 6) is 1 in the paging-structure entry that maps the page containing the linear address; and (2) the R/W
flag is 1 in every other paging-structure entry controlling the translation of the linear address.

The following items detail how paging determines access rights (only the items noted explicitly apply to shadow-
stack accesses):
• For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address with a protection key for
which read access is permitted (see Section 4.6.2).

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read
access is permitted (see Section 4.6.2).

• If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit or
explicit:

— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with a
protection key for which read access is permitted (see Section 4.6.2).

— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

1. With PAE paging, the PDPTEs do not determine access rights.

4-32 Vol. 3A

PAGING

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, data may be written to any supervisor-mode address with a protection key for which
write access is permitted (see Section 4.6.2).

• If CR0.WP = 1, data may be written to any supervisor-mode address with a translation for which the
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted (see Section 4.6.2); data may not be written to any supervisor-
mode address with a translation for which the R/W flag is 0 in any paging-structure entry controlling the
translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which
write access is permitted (see Section 4.6.2).

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a protection key for which write access is permitted (see Section 4.6.2).

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

• If CR0.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted (see Section 4.6.2); data may not be written to any user-mode
address with a translation for which the R/W flag is 0 in any paging-structure entry controlling the
translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the
translation and with a protection key for which write access is permitted (see Section 4.6.2);
data may not be written to any user-mode address with a translation for which the R/W flag is
0 in any paging-structure entry controlling the translation.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

— Instruction fetches from supervisor-mode addresses.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode
address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any supervisor-
mode address with a translation for which the XD flag (bit 63) is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any supervisor-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

— Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

• If CR4.SMEP = 0, access rights depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode
address.

— For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any user-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

Vol. 3A 4-33

PAGING

• If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.

— Supervisor-mode shadow-stack accesses are allowed only to supervisor-mode shadow-stack addresses
(see above).

• For user-mode accesses:

— Data reads.
Access rights depend on the mode of the linear address:

• Data may be read from any user-mode address with a protection key for which read access is permitted
(see Section 4.6.2).

• Data may not be read from any supervisor-mode address.

— Data writes.
Access rights depend on the mode of the linear address:

• Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every
paging-structure entry controlling the translation and with a protection key for which write access is
permitted (see Section 4.6.2).

• Data may not be written to any supervisor-mode address.

— Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of
IA32_EFER.NXE:

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-mode
address with a translation for which the XD flag is 0 in every paging-structure entry controlling the
translation.

• Instructions may not be fetched from any supervisor-mode address.

— User-mode shadow-stack accesses made outside enclave mode are allowed only to user-mode shadow-
stack addresses (see above). User-mode shadow-stack accesses made in enclave mode are treated like
ordinary data accesses (see above).

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

4.6.2 Protection Keys
4-level paging and 5-level paging associate a 4-bit protection key with each linear address (the protection key
located in bits 62:59 of the paging-structure entry that mapped the page containing the linear address; see Section
4.5). Two protection key features control accesses to linear addresses based on their protection keys:
• If CR4.PKE = 1, the PKRU register determines, for each protection key, whether user-mode addresses with that

protection key may be read or written.
• If CR4.PKS = 1, the IA32_PKRS MSR (MSR index 6E1H) determines, for each protection key, whether

supervisor-mode addresses with that protection key may be read or written.

32-bit paging and PAE paging do not associate linear addresses with protection keys. For the purposes of Section
4.6.1, reads and writes are implicitly permitted for all protection keys with either of those paging modes.

The PKRU register (protection-key rights for user pages) is a 32-bit register with the following format: for each i
(0 ≤ i ≤ 15), PKRU[2i] is the access-disable bit for protection key i (ADi); PKRU[2i+1] is the write-disable bit
for protection key i (WDi). The IA32_PKRS MSR has the same format (bits 63:32 of the MSR are reserved and must
be zero).

4-34 Vol. 3A

PAGING

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set.
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for more information about the XSAVE feature set.

Software can use the RDMSR and WRMSR instructions to read and write the IA32_PKRS MSR. Writes to the
IA32_PKRS MSR using WRMSR are not serializing. The IA32_PKRS MSR is not XSAVE-managed.

How a linear address’s protection key controls access to the address depends on the mode of the linear address:
• A linear address’s protection key controls only data accesses to the address. It does not in any way affect

instructions fetches from the address.
• If CR4.PKE = 0, the protection key of a user-mode address does not control data accesses to the address (for

the purposes of Section 4.6.1, reads and writes of user-mode addresses are implicitly permitted for all
protection keys).
If CR4.PKE = 1, use of the protection key i of a user-mode address depends on the value of the PKRU register:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, permission may be denied to certain data write accesses:

• User-mode write accesses are not permitted.

• Supervisor-mode write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, WDi does not affect
supervisor-mode write accesses to user-mode addresses with protection key i.)

• If CR4.PKS = 0, the protection key of a supervisor-mode address does not control data accesses to the address
(for the purposes of Section 4.6.1, reads and writes of supervisor-mode addresses are implicitly permitted for
all protection keys).
If CR4.PKS = 1, use of the protection key i of a supervisor-mode address depends on the value of the
IA32_PKRS MSR:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, IA32_PKRS.WDi does not
affect write accesses to supervisor-mode addresses with protection key i.)

Protection keys apply to shadow-stack accesses just as they do to ordinary data accesses.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause a page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for
reasons unrelated to paging. See Section 37.3, “Access-control Requirements” and Section 37.20, “Enclave Page
Cache Map (EPCM)” in Chapter 37, “Enclave Access Control and Data Structures.” Such an exception is called an
SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordinary
page faults.

Vol. 3A 4-35

PAGING

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so.
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

Figure 4-12. Page-Fault Error Code

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1
I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX The fault is not related to SGX.0
1 The fault resulted from violation of SGX-specific access-control

requirements.

Reserved

SGX

15 SS

6

SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.

4-36 Vol. 3A

PAGING

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging, 4-level paging, or 5-level paging is in use);
and (ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

• PK flag (bit 5).
This flag is 1 only for data accesses and only with 4-level paging and 5-level paging. In these cases, the setting
depends on the mode of the address being accessed:

— For accesses to supervisor-mode addresses, the flag is set if (1) CR4.PKS = 1; (2) the linear address has
protection key i; and (3) the IA32_PKRS MSR (see Section 4.6.2) is such that either (a) ADi = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access
causing the page-fault exception was a user-mode access. (Note that this flag may be set on page faults
due to user-mode accesses to supervisor-mode addresses.)

— For accesses to user-mode addresses, the flag is set if (1) CR4.PKE = 1; (2) the linear address has
protection key i; and (3) the PKRU register (see Section 4.6.2) is such that either (a) ADi = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access
causing the page-fault exception was a user-mode access.

• SS (bit 1).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack accesses in
enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.

• SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.1 For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

NOTE
If software on one logical processor writes to a page while software on another logical processor
concurrently clears the R/W flag in the paging-structure entry that maps the page, execution on
some processors may result in the entry’s dirty flag being set (due to the write on the first logical
processor) and the entry’s R/W flag being clear (due to the update to the entry on the second
logical processor). This will never occur on a processor that supports control-flow enforcement
technology (CET). Specifically, a processor that supports CET will never set the dirty flag in a
paging-structure entry in which the R/W flag is clear.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 4.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging.

Vol. 3A 4-37

PAGING

Memory-management software may clear these flags when a page or a paging structure is initially loaded into
physical memory. These flags are “sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see
Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not be exposed to the
processor’s self-modifying code detection logic. If the processor is executing code from the same
memory area that is being used for the paging structures, the setting of these flags may or may not
result in an immediate change to the executing code stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that access. Chapter 11, “Memory
Cache Control” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page
Attribute Table (PAT; see Section 11.12).1 Section 4.9.1 and Section 4.9.2 explain how paging contributes to
memory typing depending on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and
Pentium II Processors)

NOTE
The PAT is supported on all processors that support 4-level paging or 5-level paging. Thus, this
section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 11-6 in Section 11.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by
the MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, the PCD and PWT values come

from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).
• With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type
range registers (MTRRs) as specified in Table 11-7 in Section 11.5.2.2.

1. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for how to determine whether the PAT is
supported.

4-38 Vol. 3A

PAGING

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by the
MTRRs with a memory type selected from the PAT. Table 11-11 in Section 11.12.3 specifies how a memory type is
selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 4-level

paging):

— For 4-level paging or 5-level paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the

relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i =

2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where

the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses
a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the
processor might not use that change for a subsequent translation using that entry or for access to an affected linear
address. See Section 4.10.4.2 for how software can ensure that the processor uses the modified memory typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the
paging structures on the processor. Because the processor does not ensure that the data that it caches are always
consistent with the structures in memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software can take to remove cached
data that may be inconsistent and when it should do so. This section provides software developers information
about the relevant processor operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish
information cached for different linear-address spaces. Section 4.10.2 and Section 4.10.3 describe how the
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively.
Section 4.10.4 explains how software can remove inconsistent cached information by invalidating portions of the
TLBs and paging-structure caches. Section 4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if
CR0.CD = 1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.

Vol. 3A 4-39

PAGING

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE =
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3. Not all processors
allow CR4.PCIDE to be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either

IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-structure caches (Section
4.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID,
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to
1, Section 4.10 discussed the caching of translation information without any reference to PCIDs.
While the section now refers to PCIDs in its specification of this caching, this documentation change
is not intended to imply any change to the behavior of processors that do not allow CR4.PCIDE to
be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in translation lookaside buffers
(TLBs). In general, TLBs contain entries that map page numbers to page frames; these terms are defined in
Section 4.10.2.1. Section 4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 gives
details of TLB usage. Section 4.10.2.4 explains the global-page feature, which allows software to indicate that
certain translations should receive special treatment when cached in the TLBs.

4.10.2.1 Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging modes translate linear
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called
the page offset) determine the lower bits of the physical address. The boundary between the page number and
the page offset is determined by the page size. Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes
and the page number comprises bits 31:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

• 4-level paging and 5-level paging:

4-40 Vol. 3A

PAGING

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GByte
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of
the linear address.

4.10.2.2 Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations in translation lookaside
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number.
It contains the following information from the paging-structure entries used to translate linear addresses with the
page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear addresses with the page number

(see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

— The protection key (only with 4-level paging and 5-level paging).
• Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE

or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

4.10.2.3 Details of TLB Use
Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate
that page number. In addition, the processor does not cache a translation for a page number unless the accessed
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor
sets any of these accessed flags that is not already 1.

Subject to the limitations given in the previous paragraph, the processor may cache a translation for any linear
address, even if that address is not used to access memory. For example, the processor may cache translations
required for prefetches and for accesses that result from speculative execution that would never actually occur in
the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear
address. In this case, the processor may not actually consult the paging structures in memory. The processor may
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in
memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified paging-structure
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page

Vol. 3A 4-41

PAGING

number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 4-level paging), even
though part of that page number (e.g., bits 20:12) is part of the offset with respect to the page specified by the
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which
the translation is created. There is no way for software to be aware that multiple translations for smaller pages
have been used for a large page. For example, an execution of INVLPG for a linear address on such a page invali-
dates any and all smaller-page TLB entries for the translation of any linear address on that page.

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these translations. Which translation is used
may vary from one execution to another, and the choice may be implementation-specific.

4.10.2.4 Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global.
Because the G flag is used only in paging-structure entries that map a page, and because information from such
entries is not cached in the paging-structure caches, the global-page feature does not affect the behavior of the
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with
a PCID different from the current PCID.

4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging structures in memory.

4.10.3.1 Caches for Paging Structures
A processor may support any or all of the following paging-structure caches:
• PML5E cache (5-level paging only). Each PML5E-cache entry is referenced by a 9-bit value and is used for

linear addresses for which bits 56:40 have that value. The entry contains information from the PML5E used to
translate such linear addresses:

— The physical address from the PML5E (the address of the PML4 table).

— The value of the R/W flag of the PML5E.

— The value of the U/S flag of the PML5E.

— The value of the XD flag of the PML5E.

— The values of the PCD and PWT flags of the PML5E.
The following items detail how a processor may use the PML5E cache:

— If the processor has a PML5E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E in memory).

— The processor does not create a PML5E-cache entry unless the P flag is 1 and all reserved bits are 0 in the
PML5E in memory.

— The processor does not create a PML5E-cache entry unless the accessed flag is 1 in the PML5E in memory;
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML5E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced PML4 table).

— If the processor creates a PML5E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E in memory.

• PML4E cache (4-level paging and 5-level paging only). The use of the PML4E cache depends on the paging
mode:

4-42 Vol. 3A

PAGING

— For 4-level paging, each PML4E-cache entry is referenced by a 9-bit value and is used for linear addresses
for which bits 47:39 have that value.

— For 5-level paging, each PML4E-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 56:39 have that value.

A PML4E-cache entry contains information from the PML5E and PML4E used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

— The physical address from the PML4E (the address of the page-directory-pointer table).

— The logical-AND of the R/W flags in the PML5E and the PML4E.

— The logical-AND of the U/S flags in the PML5E and the PML4E.

— The logical-OR of the XD flags in the PML5E and the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4E cache:

— If the processor has a PML4E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E and PML4E in memory).

— The processor does not create a PML4E-cache entry unless the P flags are 1 and all reserved bits are 0 in
the PML5E and the PML4E in memory.

— The processor does not create a PML4E-cache entry unless the accessed flags are 1 in the PML5E and the
PML4E in memory; before caching a translation, the processor sets any accessed flags that are not already
1.

— The processor may create a PML4E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer
table).

— If the processor creates a PML4E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML4E in memory.

• PDPTE cache (4-level paging and 5-level paging only).1 The use of the PML4E cache depends on the paging
mode:

— For 4-level paging, each PDPTE-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 47:30 have that value.

— For 5-level paging, each PDPTE-cache entry is referenced by a 27-bit value and is used for linear addresses
for which bits 56:30 have that value.

A PDPTE-cache entry contains information from the PML5E, PML4E, PDPTE used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

— The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created
for a PDPTE that maps a 1-GByte page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, and PDPTE.

— The logical-AND of the U/S flags in the PML5E, PML4E, and PDPTE.

— The logical-OR of the XD flags in the PML5E, PML4E, and PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, and PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, and PDPTE in memory.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 4.4.1 and differs from that described here.

Vol. 3A 4-43

PAGING

— The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML5E, PML4E
and PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

— The processor may create a PDPTE-cache entry even if there are no translations for any linear address that
might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E, PML4E, or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for
which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for
which bits 31:21 have that value.

— For 4-level paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses
for which bits 47:21 have that value.

— For 5-level paging, each PDE-cache entry is referenced by a 36-bit value and is used for linear addresses
for which bits 56:21 have that value.

A PDE-cache entry contains information from the PML5E, PML4E, PDPTE, and PDE used to translate the relevant
linear addresses (for 32-bit paging and PAE paging, only the PDE applies; for 4-level paging, the PML5E does
not apply):

— The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a
PDE that maps a page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML5E, PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references below to PML5Es, PML4Es, and
PDPTEs apply only to 4-level paging and to 5-level paging, as appropriate):

— If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, PDPTE, and PDE in memory).

— The processor does not create a PDE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, PDPTE, and PDE in memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML5E, PML4E, PDPTE,
and PDE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

— The processor may create a PDE-cache entry even if there are no translations for any linear address that
might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML5E, PML4E, PDPTE, or PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the
appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference other paging
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for
accesses that are a result of speculative execution that would never actually occur in the executed code path.

4-44 Vol. 3A

PAGING

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical processor are associated
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in
Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the following to determine the physical
address to which it translates and whether the access should be allowed:
• If the processor finds a TLB entry that is for the page number of the linear address and that is associated with

the current PCID (or which is global), it may use the physical address, access rights, and other attributes from
that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an
entry from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.)
as if it had traversed the PDE (and, for 4-level paging and 5-level paging, the PDPTE, PML4E, and PML5E, as
appropriate) corresponding to the PDE-cache entry.

• The following items apply when 4-level paging or 5-level paging is used:

— If the processor does not find a relevant TLB entry or PDE-cache entry, it may use the upper bits of the
linear address (for 4-level paging, bits 47:30; for 5-level paging, bits 56:30) to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PDE, etc.) as if it had traversed the PDPTE, the PML4E, and (for 5-level paging) the
PML5E corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, PDE-cache entry, or PDPTE-cache entry, it may use the
upper bits of the linear address (for 4-level paging, bits 47:39; for 5-level paging, bits 56:39) to select an
entry from the PML4E cache that is associated with the current PCID. It can then use that entry to complete
the translation process (locating a PDPTE, etc.) as if it had traversed the corresponding PML4E.

— With 5-level paging, if the processor does not find a relevant TLB entry, PDE-cache entry, PDPTE-cache
entry, or PML4E-cache entry, it may use bits 56:48 of the linear address to select an entry from the PML5E
cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PML4E, etc.) as if it had traversed the corresponding PML5E.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear
address to traverse the entire paging-structure hierarchy, as described in Section 4.3, Section 4.4.2, and Section
4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs may contain multiple entries associated with a single PCID and with infor-
mation derived from a single paging-structure entry. The following items give some examples for 4-level paging:
• Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-

pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different
set of linear addresses. Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the same

physical address. This implies that the physical address in the mth PDPTE in the page-directory-pointer table
would appear in the PDPTE-cache entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2,
and (p1 & 1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one
resulting from a reference from the n1

th PML4E and one from the n2
th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical
address of the PML4 table). This implies the following:

Vol. 3A 4-45

PAGING

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since
been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB

entries that are for a page number corresponding to the linear address and that are associated with the current
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section
4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID,
regardless of the linear addresses to which they correspond.

• INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor.2 (The instruction may also invalidate global
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the
INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

2. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

4-46 Vol. 3A

PAGING

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE
from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H
except those for global pages. It also invalidates all entries in all paging-structure caches associated with PCID
000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following
are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It

may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address.
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the specified
PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, this may occur if either
CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs
other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 1.

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.
• On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may

invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear address
and that are associated with the current PCID.3 These invalidations ensure that the page-fault exception will not
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures in

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to 0, there
will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with 4-level paging. Since CR4.PCIDE can be set only with 4-level
paging, task switches occur only with CR4.PCIDE = 0.

3. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate
the faulting linear address.

Vol. 3A 4-47

PAGING

memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures
were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

4.10.4.2 Recommended Invalidation
The following items provide some recommendations regarding when software should perform invalidations:
• If software modifies a paging-structure entry that maps a page (rather than referencing another paging

structure), it should execute INVLPG for any linear address with a page number whose translation uses that
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section 4.10.3.3
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could
use MOV to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging structure, it may use one of the
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags
are 0 in all entries in the paging structure referenced by the modified entry), it remains necessary to
execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G

flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any
one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each
of the page numbers with translations that would use the entry; if no page numbers that would use the
entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section
4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or
MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes. A reference to a linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would
change, for any linear address, both the page size and either the page frame, access rights, or other attributes.
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g.,

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

4-48 Vol. 3A

PAGING

PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This
ensures invalidation of any information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing
MOV to CR4 to modify CR4.PGE.

4.10.4.3 Optional Invalidation
The following items describe cases in which software may choose not to invalidate and the potential consequences
of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is

because no TLB entry or paging-structure cache entry is created with information from a paging-structure entry
in which the P flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure entry
in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear
address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure to perform an invalidation may
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical address for a linear address
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication
that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the
write and the instruction fetch. Note that the invalidating instructions identified in Section 4.10.4.1 are all
serializing instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry may contain information cached
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be
necessary to do so to invalidate multiple TLB entries.)

1. If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to 0, the processor may use a
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.

Vol. 3A 4-49

PAGING

4.10.4.4 Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software developers should understand that,
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in
Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:
• If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose

translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from linear

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.1 In this case, the effects of the completed accesses may be visible to software even though the overall
instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the
memory that had been associated with it. However, because of speculative execution (or errant software), there
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the
following can happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed

for an address range that has read side effects.
• The processor may retain entries in the TLBs and paging-structure caches for an extended period of time.

Software should not assume that the processor will not use entries associated with a linear address simply
because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all
entries in a page table, the processor may subsequently create a PDE-cache entry for the PDE that references
that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the processor might not generate
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames
previously associated with the freed portion of the linear-address space should not be reallocated for another
purpose until the appropriate invalidations have been performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple Processors
As noted in Section 4.10.4, software that modifies a paging-structure entry may need to invalidate entries in the
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system
containing more than one logical processor, software must account for the fact that there may be entries in the
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The
following items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting
the Intel-64 and IA-32 architectures:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

4-50 Vol. 3A

PAGING

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to
enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure entries.

3. Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers
must take care to ensure that the following conditions are met:
• All logical processors that are using the paging structures that are being modified must participate and perform

appropriate invalidations after the modifications are made.
• If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the

operating system must ensure one of the following: (1) that the affected linear-address range is not used
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate
before any request to modify the paging-structure entries that control that linear-address space. In these cases,
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that range before the request to free it
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the
range, free the physical page frames associated with the range, and then signal the other logical processors using
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete
their invalidations before the linear-address range and the physical page frames previously associated with that
range can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)
The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 4.11.1
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section
4.11.2 gives an overview of VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called
VMX transitions. VM entries and VM exits are described in detail in Chapter 26 and Chapter 27, respectively, in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify
paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they

allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 4-level paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 4-level paging or 5-level
paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section 4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the
virtual-machine control structure (VMCS); see Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 27.5.4.

Vol. 3A 4-51

PAGING

• VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section
26.3.2.5 and Section 27.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C.

4.11.2 VMX Support for Address Translation
Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C describe two features of the virtual-machine extensions (VMX) that interact directly with
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.”
The processor may use this identification to maintain concurrently information for multiple address spaces in its
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a
set of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory
typing; these are used on conjunction with those specified in this chapter. See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure
caches and the ways in which software can manage that information. Some of the behaviors documented in
Section 4.10 may change. See Section 28.3 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor
generates a page-fault exception as described in Section 4.7. The handler for page-fault exceptions typically
directs the operating system or executive to load data for the unmapped page from external storage into physical
memory (perhaps writing a different page from physical memory out to external storage in the process) and to
map it using paging (by updating the paging structures). When the page has been loaded into physical memory, a
return from the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used,
a data structure can be partly in memory and partly in disk storage.

4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide support for a wide variety of approaches to memory manage-
ment. When segmentation and paging are combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules can be
mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2 in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear-address space (contained in a single
segment) into virtual memory. Alternatively, each program (or task) can have its own large linear-address space
(contained in its own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-

4-52 Vol. 3A

PAGING

phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give each
segment its own page table, as shown in Figure 4-13. This convention gives the segment a single entry in the page
directory, and this entry provides the access control information for paging the entire segment.

Figure 4-13. Memory Management Convention That Assigns a Page Table
to Each Segment

Seg. Descript.

LDT

Seg. Descript.
PDE

Page Directory

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables

Page Frames

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

14.Updates to Chapter 6, Volume 3A
Change bars and green text show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter: Updates to section 6.9, “Priority Among Simultaneous Exceptions and Interrupts”.

Vol. 3A 6-1

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 20, “8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor,
or within the currently executing program or task that requires the attention of a processor. They typically result in
a forced transfer of execution from the currently running program or task to a special software routine or task
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices.
Software can also generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors
also permits a machine-check exception to be generated when internal hardware errors and bus errors are
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this
chapter.

6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition
requiring special handling by the processor is assigned a unique identification number, called a vector number. The
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 6.10, “Interrupt
Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not
use the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 6.3,
“Sources of Interrupts”).

6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector Mnemonic Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/O breakpoints;
single-step; and others.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD instruction or reserved opcode.

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun
(reserved)

Fault No Floating-point instruction.1

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel Atom®, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O APIC
determines the vector number of the interrupt and sends this number to the local APIC. When a system contains
multiple processors, processors can also send interrupts to one another by means of the system bus (Pentium 4,
Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium
processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.2

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.3

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions4

20 #VE Virtualization Exception Fault No EPT violations5

21 #CP Control Protection Exception Fault Yes RET, IRET, RSTORSSP, and SETSSBSY
instructions can generate this exception.
When CET indirect branch tracking is
enabled, this exception can be generated
due to a missing ENDBRANCH instruction
at target of an indirect call or jump.

22-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved)
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. Processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium III processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

Vector Mnemonic Description Type Error
Code

Source

6-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not activated.

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 6.5,
“Exception Classifications”).

6.4.2 Software-Generated Exceptions
The INTO, INT1, INT3, and BOUND instructions permit exceptions to be generated in software. These instructions
allow checks for exception conditions to be performed at points in the instruction stream. For example, INT3 causes
a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation.1 If INT n provides a
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-

1. The INT n instruction has opcode CD following by an immediate byte encoding the value of n. In contrast, INT1 has opcode F1 and
INT3 has opcode CC.

Vol. 3A 6-5

INTERRUPT AND EXCEPTION HANDLING

dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and
returns an error code.

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, “Machine-Check Architecture,”
for more information about the machine-check mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the
instruction that caused the exception can be restarted without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program

to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction
following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the execution of the trapping instruction.
Traps allow execution of a program or task to be continued without loss of program continuity. The return
address for the trap handler points to the instruction to be executed after the trapping instruction.

• Aborts — An abort is an exception that does not always report the precise location of the instruction causing
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE
One exception subset normally reported as a fault is not restartable. Such exceptions result in loss
of some processor state. For example, executing a POPAD instruction where the stack frame
crosses over the end of the stack segment causes a fault to be reported. In this situation, the
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD
instruction had not been executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered programming errors. An application
causing this class of exceptions should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To ensure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction.
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler,
program or task execution continues at the instruction following the INTO instruction.

6-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken
at the end of the current iteration with the registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32
Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been
defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and

Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions
to ensure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed
executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see
Section 6.8.1, “Masking Maskable Hardware Interrupts”).

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see
Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is
invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and
RF flags in the EFLAGS register, as described in the following sections.

Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or
through the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). When the IF flag is clear, the
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed
as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is
an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag)
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL.2 If
IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.3
The inhibition ends after delivery of another event (e.g., exception) or the execution of the next instruction.

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF

instruction can be used to load the modified flags back into the EFLAGS register.
• Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to

modify the setting of the IF flag.
• When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables

maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference,
A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a
detailed description of the operations these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, “System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from
going into a debug exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-Breakpoint
Exception Condition,” for more information on the use of this flag.

As noted in Section 6.8.3, execution of the MOV or POP instruction to load the SS register suppresses any instruc-
tion breakpoint on the next instruction (just as if EFLAGS.RF were 1).

2. The effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting the VME flag
in control register CR4: see Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is also impacted by the
PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

3. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an
execution of STI.

6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

(Software might also use the POP instruction to load SS and ESP.)

If an interrupt or exception occurs after the new SS segment descriptor has been loaded but before the ESP register
has been loaded, these two parts of the logical address into the stack space are inconsistent for the duration of the
interrupt or exception handler (assuming that delivery of the interrupt or exception does not itself load a new stack
pointer).

To account for this situation, the processor prevents certain events from being delivered after execution of a MOV
to SS instruction or a POP to SS instruction. The following items provide details:
• Any instruction breakpoint on the next instruction is suppressed (as if EFLAGS.RF were 1).
• Any data breakpoint on the MOV to SS instruction or POP to SS instruction is inhibited until the instruction

boundary following the next instruction.
• Any single-step trap that would be delivered following the MOV to SS instruction or POP to SS instruction

(because EFLAGS.TF is 1) is suppressed.
• The suppression and inhibition ends after delivery of an exception or the execution of the next instruction.
• If a sequence of consecutive instructions each loads the SS register (using MOV or POP), only the first is

guaranteed to inhibit or suppress events in this way.

Intel recommends that software use the LSS instruction to load the SS register and ESP together. The problem
identified earlier does not apply to LSS, and the LSS instruction does not inhibit events as detailed above.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS
If more than one exception or interrupt is pending at an instruction boundary, the processor services them in a
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources.

The events generated by the “Call to Interrupt Procedure” instructions (INT n, INTO, INT3, and INT1), while deliv-
ered using the same mechanism as exceptions and interrupts, are integral to the execution of those instructions
and do not occur at instruction boundaries. For that reason, they do not appear in Table 6-2.

Vol. 3A 6-9

INTERRUPT AND EXCEPTION HANDLING

While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within
each class are implementation-dependent and may vary from processor to processor. The processor first services
a pending exception or interrupt from the class which has the highest priority, transferring execution to the first
instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending.
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program or
task where the exceptions and/or interrupts occurred.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check (#MC)

2 Trap on Task Switch

- T flag in TSS is set (#DB)

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint) (#DB)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault (#DB)

8 Faults from Fetching Next Instruction

- Code-Segment Limit Violation (#GP)

- Code Page Fault (#PF)

- Control protection exception due to missing ENDBRANCH at target of an indirect call or jump (#CP)

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes (#GP)

- Invalid Opcode (#UD)

- Coprocessor Not Available (#NM)

10 (Lowest) Faults on Executing an Instruction

- Bound error (#BR)

- Invalid TSS (#TS)

- Segment Not Present (#NP)

- Stack fault (#SS)

- General Protection (#GP)

- Data Page Fault (#PF)

- Alignment Check (#AC)

- x87 FPU Floating-point exception (#MF)

- SIMD floating-point exception (#XM)

- Virtualization exception (#VE)

- Control protection exception (#CP)

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.

6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line fills.
The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte. A
limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, the processor locates the IDT
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a memory
operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization code of an
operating system when creating an IDT. An operating system also may use it to change from one IDT to another.
The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be executed at
any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an incorrectly configured IDT
could result in incomplete interrupt handling and/or the blocking of interrupt delivery.
IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT and accessing the stack.

Figure 6-1. Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)
Gate for

0
IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the
EFLAGS register (see Section 6.12.1.3, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section 5.8.2,
“Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task gate, the
processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL to a task
gate (see Section 7.3, “Task Switching”).

Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset

6-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.

When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figure 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see Figure
6-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

Vol. 3A 6-15

INTERRUPT AND EXCEPTION HANDLING

6.12.1.1 Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines
When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be execute at a numerically lower privilege level, a shadow stack switch

occurs. When the shadow stack switch occurs:

a. On a transfer from privilege level 3, if shadow stacks are enabled at privilege level 3 then the SSP is saved
to the IA32_PL3_SSP MSR.

b. If shadow stacks are enabled at the privilege level where the handler will execute then the shadow stack for
the handler is obtained from one of the following MSRs based on the privilege level at which the handler
executes.

• IA32_PL2_SSP if handler executes at privilege level 2.

• IA32_PL1_SSP if handler executes at privilege level 1.

• IA32_PL0_SSP if handler executes at privilege level 0.

c. The SSP obtained is then verified to ensure it points to a valid supervisory shadow stack that is not
currently active by verifying a supervisor shadow stack token at the address pointed to by the SSP. The
operations performed to verify and acquire the supervisor shadow stack token by making it busy are as
described in Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1.

d. On this new shadow stack, the processor pushes the CS, LIP (CS.base + EIP), and SSP of the interrupted
procedure if the interrupted procedure was executing at privilege level less than 3; see Figure 6-5.

• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure and
shadow stacks are enabled at current privilege level:

a. The processor saves the current state of the CS, LIP (CS.base + EIP), and SSP registers on the current
shadow stack; see Figure 6-5.

6-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.

When executing a return from an interrupt or exception handler from the same privilege level as the interrupted
procedure, the processor performs these actions to enforce return address protection:
• Restores the CS and EIP registers to their values prior to the interrupt or exception.

Figure 6-5. Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines

Interrupted Procedure’s
and Handler’s Shadow Stack

SSP Before
Transfer to Handler

Shadow Stack Usage with
No Privilege-Level Change

LIP

CS

SSP SSP After
Transfer to Handler

Shadow Stack Usage with Privilege-
Level Change from Level 3

Handler’s Shadow StackInterrupted Procedure’s
Shadow Stack

SSP Before
Transfer to Handler

SSP After
Transfer to Handler

Supervisor
Shadow Stack

Token

Shadow Stack Usage with Privilege-
Level Change from Level 2 or 1

Handler’s Shadow Stack

CS

Interrupted Procedure’s
Shadow Stack

SSP Before
Transfer to Handler

SSP After
Transfer to Handler

Supervisor
Shadow Stack

Token

SSP

LIP

Vol. 3A 6-17

INTERRUPT AND EXCEPTION HANDLING

If shadow stack is enabled:

— Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET)) if
they do not match.

— Pops the top-of-stack value (the SSP prior to the interrupt or exception) from shadow stack into SSP
register.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted
procedure, the processor performs the actions below.
• If shadow stack is enabled at current privilege level:

— If SSP is not aligned to 8 bytes then causes a control protection exception (#CP(FAR-RET/IRET)).

— If privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

• Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match.

• Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using
operations described in section Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode),
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

6.12.1.2 Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an

INT n, INT3, or INTO instruction.4 Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of
the following techniques can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for

handlers that only need to access data available on the stack (for example, divide error exceptions). If the
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which
would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always
run, regardless of the CPL that the interrupted program or task is running at.

4. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode
CD 01).

6-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.12.1.3 Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor
clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response and
ensures that no single-step exception will be delivered after delivery to the handler. A subsequent IRET instruction
restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack.
Accessing a handler procedure through a trap gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling
an exception or interrupt with a separate task offers several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If

an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

• The handler can be further isolated from other tasks by giving it a separate address space. This is done by
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-6). A switch to the handler task is
handled in the same manner as an ordinary task switch (see Section 7.3, “Task Switching”). The link back to the
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks
that may be dispatched when interrupts are enabled.

Vol. 3A 6-19

INTERRUPT AND EXCEPTION HANDLING

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable
interrupts between the time it completes handling the interrupt and the time it executes the IRET
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is
still marked busy, which would cause a general-protection (#GP) exception.

6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format
shown in Figure 6-7. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an
event external to the program, such as an interrupt or an earlier exception.5 The bit is cleared if the
exception occurred during delivery of a software interrupt (INT n, INT3, or INTO).

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

Figure 6-6. Interrupt Task Switch

5. The bit is also set if the exception occurred during delivery of INT1.

IDT

Task Gate

TSS for Interrupt-

TSS Selector

GDT

TSS Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task

6-20 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)” section in this chapter.

The format of the error code is different for control protection exceptions (#CP). See the “Interrupt 21—Control
Protection Exception (#CP)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0]
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE
In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The
following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional

and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the
linear-address space. See Figure 6-8.

Figure 6-7. Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

Vol. 3A 6-21

INTERRUPT AND EXCEPTION HANDLING

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack
switching mechanisms described in Section 6.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode).
Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as 64-bit interrupt and trap
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes.
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally,
rather than only on a CPL change.

When shadow stacks are enabled at the interrupt handler’s privilege level and the interrupted procedure was not
executing at a privilege level 3, then the processor pushes the CS:LIP:SSP of the interrupted procedure on the
shadow stack of the interrupt handler (where LIP is the linear address of the return address).

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Figure 6-8. 64-Bit IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

TYPE

Interrupt/Trap Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

45

0 0 0

31 0

Offset 63..32 8

31 0

12

11

IST0 0

2

Reserved

IST Interrupt Stack Table

6-22 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables
the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably
aligned RSP values in the TSS.

6.14.3 IRET in IA-32e Mode
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works
correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to execute
properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit with an
IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is running in 64-
bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

When shadow stacks are enabled and the target privilege level is not 3, the CS:LIP from the shadow stack frame is
compared to the return linear address formed by CS:EIP from the stack. If they do not match then the processor
caused a control protection exception (#CP(FAR-RET/IRET)), else the processor pops the SSP of the interrupted
procedure from the shadow stack. If the target privilege level is 3 and shadow stacks are enabled at privilege level
3, then the SSP for the interrupted procedure is restored from the IA32_PL3_SSP MSR.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and
the target CPL ≠ 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed on
the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load
a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode
The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in
order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and RSP are saved on
the new stack (Figure 6-9). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not
loaded from the TSS. Instead, the new SS is forced to NULL.

Vol. 3A 6-23

INTERRUPT AND EXCEPTION HANDLING

6.14.5 Interrupt Stack Table
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled.
It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy
task-switch mechanism is not supported in IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate
descriptor in the interrupt-descriptor table (IDT); see Figure 6-8. The gate descriptor contains a 3-bit IST index
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the
value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

To support this stack-switching mechanism with shadow stacks enabled, the processor provides an MSR,
IA32_INTERRUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers that are
selected using the IST index from the gate descriptor. To switch to a shadow stack selected from the interrupt
shadow stack table pointed to by the IA32_INTERRUPT_SSP_TABLE, the processor requires that the shadow stack
addresses programmed into this table point to a supervisor shadow stack token; see Figure 6-10.

Figure 6-9. IA-32e Mode Stack Usage After Privilege Level Change

 CS

Error Code

 RFLAGS

 RIP

 SS
 RSP

Stack Usage with
Privilege-Level Change

Handler’s Stack

Stack Pointer After
Transfer to Handler

 CS

Error Code

 EFLAGS

 EIP

 SS
 ESP

Handler’s Stack

Legacy Mode IA-32e Mode

0
+4
+8
+12
+16
+20

0
+8
+16
+24
+32
+40

6-24 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. They are arranged in the
order of vector numbers. The information contained in these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can

be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable
to interrupts.)

• Description — Gives a general description of the purpose of the exception or interrupt type. It also describes
how the processor handles the exception or interrupt.

• Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the
contents of the error code are described. (This section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to.
It also indicates whether the pointer can be used to restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the state of the currently
running program or task and the possibilities of restarting the program or task without loss of continuity.

Figure 6-10. Interrupt Shadow Stack Table

IA32_INTERRUPT_SSP_TABLE

IST2 SSP

IST3 SSP

IST4 SSP

IST5 SSP

IST6 SSP

Not used; available

IST1 SSP

IST7 SSP
56

48

40

32

24

16

8

0

Vol. 3A 6-25

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting
instruction is executed.

6-26 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a
fault or a trap depends on the condition (see Table 6-3). See Chapter 17, “Debug, Branch Profile, TSC, and Intel®
Resource Director Technology (Intel® RDT) Features,” for detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before
the faulting instruction is executed. The program can resume normal execution upon returning from the debug
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being
executed is allowed to complete before the exception is generated. However, the new state of the program is not
corrupted and execution of the program can continue reliably.

The following items detail the treatment of debug exceptions on the instruction boundary following execution of the
MOV or the POP instruction that loads the SS register:
• If EFLAGS.TF is 1, no single-step trap is generated.
• If the instruction encounters a data breakpoint, the resulting debug exception is delivered after completion of

the instruction after the MOV or POP. This occurs even if the next instruction is INT n, INT3, or INTO.
• Any instruction breakpoint on the instruction after the MOV or POP is suppressed (as if EFLAGS.RF were 1).

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to the
fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any transac-
tional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN instruction

Table 6-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

Execution of INT11

NOTES:
1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead

use the INT3 instruction for software breakpoints.

Trap

Vol. 3A 6-27

INTERRUPT AND EXCEPTION HANDLING

and then delivers a #DB. See Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

6-28 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 6.5, “Exception
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state
prior to a return.

Vol. 3A 6-29

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT3, opcode CC) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode
for the INT3 instruction. (The INT3 instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment
mapped to the same physical address space as the code segment to place an INT3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the
debug registers. (See Section 17.3.2, “Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT3 instruc-
tion can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 16.3.7, “RTM-
Enabled Debugger Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action
of this instruction (INT 3) is slightly different than that of the INT3 instruction (see “INT n/INTO/INT3/INT1—Call
to Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is
essentially unchanged because the INT3 instruction does not affect any register or memory locations. The
debugger can thus resume the suspended program by replacing the INT3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the
debugger, program execution resumes with the replaced instruction.

6-30 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow,
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an
exception handler can be called automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus
resume normal execution upon returning from the overflow exception handler.

Vol. 3A 6-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND
instruction to be restarted.

6-32 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for

example, the source operand for a LES instruction is not a memory location.
• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not

support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions)
when the EM flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is clear
(0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI,
PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW,
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ,
PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD0, UD1 or UD2 instruction. Note that even though it is the execution of the UD0, UD1 or UD2
instruction that causes the invalid opcode exception, the saved instruction pointer will still points at the UD0,
UD1 or UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the
destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary
decoding of an invalid instruction. (See Section 6.5, “Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes,
even though undefined, do not generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not
executed.

Vol. 3A 6-33

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in control register CR0 was set

(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.
• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CR0 were set,

regardless of the setting of the EM flag.
• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI,

PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CR0 was set
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point,
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR
registers before it executes the instruction. See Section 2.5, “Control Registers,” for more information about the TS
flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT or FWAIT instructions should
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag
should be clear.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and
call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU,
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.

6-34 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception.
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the system.

Table 6-4. Interrupt and Exception Classes

Class Vector Number Description

Benign Exceptions and Interrupts 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions 0
10
11
12
13

21

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Control Protection

Page Faults 14
20

Page Fault
Virtualization Exception

Vol. 3A 6-35

INTERRUPT AND EXCEPTION HANDLING

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the
appropriate fault handler could still lead to a double-fault sequence.

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In this
mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is
received. The processor generates a special bus cycle to indicate that it has entered shutdown mode. Software
designers may need to be aware of the response of hardware when it goes into shutdown mode. For example,
hardware may turn on an indicator light on the front panel, generate an NMI interrupt to record diagnostic informa-
tion, invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are pending
during shutdown, they will be handled after an wake event from shutdown is processed (for example, A20M# inter-
rupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler
cannot be invoked and the processor must be reset.

Table 6-5. Conditions for Generating a Double Fault

First Exception
Second Exception

Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially

Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially

Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault

Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode

6-36 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium,
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and
reinitialize the x87 FPU using the FNINIT instruction.

Vol. 3A 6-37

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during
the execution of instructions that use information from a TSS. Table 6-6 shows the conditions that cause an invalid
TSS exception to be generated.

Table 6-6. Invalid TSS Conditions
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index During a task switch, an attempt to access data in a TSS results in a limit violation or
canonical fault.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new
TSS.

LDT segment selector index LDT not valid or not present.

Stack segment selector index The stack segment selector exceeds descriptor table limit.

Stack segment selector index The stack segment selector is NULL.

Stack segment selector index The stack segment descriptor is a non-data segment.

Stack segment selector index The stack segment is not writable.

Stack segment selector index The stack segment DPL ≠ CPL.

Stack segment selector index The stack segment selector RPL ≠ CPL.

Code segment selector index The code segment selector exceeds descriptor table limit.

Code segment selector index The code segment selector is NULL.

Code segment selector index The code segment descriptor is not a code segment type.

Code segment selector index The nonconforming code segment DPL ≠ CPL.

Code segment selector index The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e mode.

6-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

This exception can generated either in the context of the original task or in the context of the new task (see Section
7.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS
context is not recommended because the processor state may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event
external to the currently running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault.
See Section 7.3, “Task Switching,” for more information on the task switch process and the possible recovery
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point.
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the
segment descriptor information for the new segment selectors have been loaded in the segment registers), the
processor will load all the state information from the new TSS before it generates the exception. During a task
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before trying to resume the new task;
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The task
switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor to
check the registers as it loads them from the TSS.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

Table 6-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition

Vol. 3A 6-39

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception
during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the

SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a
task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present

segment
• a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor,
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR),
a program-state change does accompany the exception because the register is not loaded. Recovery from this
exception is possible by simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change

6-40 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS,
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Vol. 3A 6-41

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. Operations that can cause a limit

violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space
for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. This violation can occur
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.
However, when the exception results from attempting to load a not-present stack segment during a task switch,
the CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 7.3, “Task
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should check all segment registers before trying to resume the new
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for
additional information on how to handle this situation.)

6-42 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.”
The conditions that cause this exception to be generated comprise all the protection violations that do not cause
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS

during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS

descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.
• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged

Instructions,” for a list of privileged instructions).
• Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.

Vol. 3A 6-43

INTERRUPT AND EXCEPTION HANDLING

• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned

on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the
stack segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If
it occurs after the commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The general-protection
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. (See the Program State Change description for “Interrupt
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.

6-44 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and
it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the type field of the upper 64 bits of a 64-bit call gate is not 0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.

Vol. 3A 6-45

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If either the
PKE flag or the PKS flag is set in CR4, the protection-key rights registers may cause page faults on data
accesses to linear addresses with certain protection keys.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

• One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code flag.
• A shadow-stack access is made to a page that is not a shadow-stack page. See Section 18.2, “Shadow Stacks”

in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and Chapter 4.6, “Access
Rights.”

• An enclave access violates one of the specified access-control requirements. See Section 37.3, “Access-control
Requirements” and Section 37.20, “Enclave Page Cache Map (EPCM)” in Chapter 37, “Enclave Access Control
and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor uses the
error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other exceptions

(see Figure 6-11). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by
paging.

6-46 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

— PK flag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a linear address with a
protection key for which the protection-key rights registers disallow access.

— SS (bit 1).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack
accesses in enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-
fault exception, not the access rights specified by paging.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is
set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that
generated the exception. The page-fault handler can use this address to locate the corresponding page
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault
handler; the handler should save the contents of the CR2 register before a second page fault can occur.6 If a
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set when

Figure 6-11. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX The fault is not related to SGX.0
1 The fault resulted from violation of SGX-specific access-control

requirements.

Reserved

SGX

15 SS

6

SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.

Vol. 3A 6-47

INTERRUPT AND EXCEPTION HANDLING

the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-table
entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the
new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid
TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a
pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with
trap or interrupt gates), software executing at the same privilege level as the exception handler should initialize a
new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in this note.
When the exception handler is running at privilege level 0 (the normal case), the problem is limited to procedures
or tasks that run at privilege level 0, typically the kernel of the operating system.

6. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

6-48 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CR0 must be set for an
interrupt 16 (floating-point error exception) to be generated. (See Section 2.5, “Control Registers,” for a detailed
description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception type, the x87 FPU
provides a flag in the x87 FPU status register and a mask bit in the x87 FPU control register. If the x87 FPU detects
a floating-point error and the mask bit for the exception type is set, the x87 FPU handles the exception automati-
cally by generating a predefined (default) response and continuing program execution. The default responses have
been designed to provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is encountered in the program’s
instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU checks for pending x87
FPU floating-point exceptions (as described in step 2 above). Pending x87 FPU floating-point exceptions are
ignored for “non-waiting” x87 FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored when executing the state
management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-point-error exception
handler can determine the error condition that caused the exception from the settings of the flags in the x87 FPU
status word. See “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruction that was about to
be executed when the floating-point-error exception was generated. This is not the faulting instruction in which the
error condition was detected. The address of the faulting instruction is contained in the x87 FPU instruction pointer

Vol. 3A 6-49

INTERRUPT AND EXCEPTION HANDLING

register. See Section 8.1.8, “x87 FPU Instruction and Data (Operand) Pointers” in Chapter 8 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about information the FPU saves
for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because the handling of the
exception is delayed until the next waiting x87 FPU floating-point or WAIT/FWAIT instruction following the faulting
instruction. The x87 FPU, however, saves sufficient information about the error condition to allow recovery from the
error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87 FPU floating-point
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to force a pending x87
FPU floating-point exception to be handled before the dependent instruction is executed. See “x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for more information about synchronization of x87 floating-point-error exceptions.

6-50 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was enabled. Align-
ment checks are only carried out in data (or stack) accesses (not in code fetches or system segment accesses). An
example of an alignment-check violation is a word stored at an odd byte address, or a doubleword stored at an
address that is not an integer multiple of 4. Table 6-7 lists the alignment requirements various data types recog-
nized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that must be aligned on word,
doubleword, and quadword boundaries. A general-protection exception (#GP) is generated 128-bit data types that
are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.
• AC flag in the EFLAGS register is set.
• The CPL is 3 (including virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user mode). Memory
references that default to privilege level 0, such as segment descriptor loads, do not generate alignment-check
exceptions, even when caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level 3 can generate
an alignment-check exception. Although application programs do not normally store these registers, the fault can
be avoided by aligning the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte data structure, the first byte
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is enabled when
executing these instructions (and CPL is 3), a misaligned memory operand can cause either an alignment-check
exception or a general-protection exception (#GP) depending on the processor implementation (see “FXSAVE-Save
x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3

Table 6-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-bits) 8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

Vol. 3A 6-51

INTERRUPT AND EXCEPTION HANDLING

of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save Processor
Extended States” and “XRSTOR—Restore Processor Extended States” in Chapter 5 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2C).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or stores. The LDDQU instruc-
tions loads 128-bit unaligned data. They do not generate general-protection exceptions (#GP) when operands are
not aligned on a 16-byte boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or
may not be generated depending on processor implementation when data addresses are not aligned on an 8-byte
boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause alignment-check faults.
These instructions are rarely needed by application programs.

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 6.13. EXT is set if the #AC is
recognized during delivery of an event other than a software interrupt (see “INT n/INTO/INT3/INT1—Call to Inter-
rupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is not executed.

6-52 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external agent detected
a bus error. The machine-check exception is model-specific, available on the Pentium and later generations of
processors. The implementation of the machine-check exception is different between different processor families,
and these implementations may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the BINIT# and MCERR#
pins on the Pentium 4, Intel Xeon, and P6 family processors and the BUSCHK# pin on the Pentium processor. When
one of these pins is enabled, asserting the pin causes error information to be loaded into machine-check registers
and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter 15, “Machine-
Check Architecture.” Also, see the data books for the individual processors for processor-specific hardware infor-
mation.

Exception Error Code

None. Error information is provided by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check state registers are
directly associated with the error that caused the machine-check exception to be generated (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP
registers are directly associated with the error that caused the machine-check exception to be generated; if the flag
is clear, the saved instruction pointer may not be associated with the error (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4.

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change always accompanies a
machine-check exception, and an abort class exception is generated. For abort exceptions, information about the
exception can be collected from the machine-check MSRs, but the program cannot generally be restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear), a machine-check
exception causes the processor to enter the shutdown state.

Vol. 3A 6-53

INTERRUPT AND EXCEPTION HANDLING

Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The appropriate status
flag in the MXCSR register must be set and the particular exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/ SSE2/SSE3 SIMD
floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation exceptions; that is,
they are detected before any arithmetic operation occurs. The numeric underflow, numeric overflow, and inexact
result exceptions are post-computational exceptions.

See “SIMD Floating-Point Exceptions” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:
• It handles the exception automatically by producing the most reasonable result and allowing program

execution to continue undisturbed. This is the response to masked exceptions.
• It generates a SIMD floating-point exception, which in turn invokes a software exception handler. This is the

response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask bit in the MXCSR
register. If an exception is masked (the corresponding mask bit in the MXCSR register is set), the processor takes
an appropriate automatic default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-point exceptions (the OSXM-
MEXCPT flag in control register CR4 is set), a software exception handler is invoked through a SIMD floating-point
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating system
does not support unmasked SIMD floating-point exceptions), an invalid opcode exception (#UD) is signaled instead
of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situation does not arise
where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE/SSE2/SSE3 instruction will catch a
pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point exceptions were
masked (causing the corresponding exception flag to be set) and the SIMD floating-point exception was subse-
quently unmasked, then no exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up of two or four sub-
operands), multiple SIMD floating-point exception conditions may be detected. If no more than one exception
condition is detected for one or more sets of sub-operands, the exception flags are set for each exception condition
detected. For example, an invalid exception detected for one sub-operand will not prevent the reporting of a divide-
by-zero exception for another sub-operand. However, when two or more exceptions conditions are generated for
one sub-operand, only one exception condition is reported, according to the precedences shown in Table 6-8. This
exception precedence sometimes results in the higher priority exception condition being reported and the lower
priority exception conditions being ignored.

6-54 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was executed when the
SIMD floating-point exception was generated. This is the faulting instruction in which the error condition was
detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the handling of the excep-
tion is immediate unless the particular exception is masked. The available state information is often sufficient to
allow recovery from the error and re-execution of the faulting instruction if needed.

Table 6-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum, minimum, or certain compare and
convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower priority exceptions. For exam-

ple, a QNaN divided by zero results in a QNaN, not a divide-by-zero- exception.
2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

Vol. 3A 6-55

INTERRUPT AND EXCEPTION HANDLING

Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause
virtualization exceptions. See Section 25.5.7.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of program
continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area.
See Section 25.5.7.2 for details.

6-56 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 21—Control Protection Exception (#CP)

Exception Class Fault.

Description

Indicates a control flow transfer attempt violated the control flow enforcement technology constraints.

Exception Error Code

Yes (special format). The processor provides the control protection exception handler with following information
through the error code on the stack.

• Bit 14:0 - CPEC

— 1 - NEAR-RET: Indicates the #CP was caused by a near RET instruction.

— 2 - FAR-RET/IRET: Indicates the #CP was caused by a FAR RET or IRET instruction.

— 3 - ENDBRANCH: indicates the #CP was due to missing ENDBRANCH at target of an indirect call or jump
instruction.

— 4 - RSTORSSP: Indicates the #CP was caused by a shadow-stack-restore token check failure in the
RSTORSSP instruction.

— 5- SETSSBSY: Indicates #CP was caused by a supervisor shadow stack token check failure in the SETSSBSY
instruction.

• Bit 15 (ENCL) of the error code, if set to 1, indicates the #CP occurred during enclave execution.

Saved Instruction Pointer

The saved contents of the CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a control protection exception, because the instruction that
causes the exception to be generated is not executed.

When a control protection exception is generated during a task switch, the program-state may change as follows.
During a task switch, a control protection exception can occur during any of following operations:
• If task switch is initiated by IRET, CS and LIP stored on old task shadow stack do not match CS and LIP of new

task (where LIP is the linear address of the return address).
• If task switch is initiated by IRET and SSP of new task loaded from shadow stack of old task (if new task CPL is

< 3), OR the SSP from IA32_PL3_SSP (if new task CPL = 3) is not aligned to 4 bytes or is a value beyond 4GB.

Figure 6-12. Exception Error Code Information

 031

CPEC

ENCL

15 14

Reserved

Vol. 3A 6-57

INTERRUPT AND EXCEPTION HANDLING

In these cases the exception occurs in the context of the new task. The instruction pointer refers to the first instruc-
tion of the new task, not to the instruction which caused the task switch (or the last instruction to be executed, in
the case of an interrupt). If the design of the operating system permits control protection faults to occur during
task-switches, the control protection fault handler should be called through a task gate.

6-58 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when the interrupt vector number

associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n instruction or instruction
following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or the INTR signal. The
INT n instruction generates the interrupt within the instruction stream. When the processor receives an INTR
signal, it commits all state changes for all previous instructions before it responds to the interrupt; so, program
execution can resume upon returning from the interrupt handler.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

15.Updates to Chapter 7, Volume 3A
Change bars and green text show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter: Update to section 7.2.1, “Task-State Segment (TSS)”.

Vol. 3A 7-1

CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are only available when
the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit tasks and the 16-bit
TSS structure, see Section 7.6, “16-Bit Task-State Segment (TSS).” For information specific to task management in
64-bit mode, see Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to execute a program,
a task or process, an operating-system service utility, an interrupt or exception handler, or a kernel or executive
utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for execution, and
for switching from one task to another. When operating in protected mode, all processor execution takes place from
within a task. Even simple systems must define at least one task. More complex systems can use the processor’s
task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment (TSS). The task execution space
consists of a code segment, a stack segment, and one or more data segments (see Figure 7-1). If an operating
system or executive uses the processor’s privilege-level protection mechanism, the task execution space also
provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage place for task state
information. In multitasking systems, the TSS also provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor for execution, the
segment selector, base address, limit, and segment descriptor attributes for the TSS are loaded into the task
register (see Section 2.4.4, “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is loaded into control
register CR3.

7-2 Vol. 3A

TASK MANAGEMENT

7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES,

FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).
• The state of the shadow stack pointer (SSP).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register.
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the
LDT.

7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task

Figure 7-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)

Vol. 3A 7-3

TASK MANAGEMENT

to handle an interrupt or exception, the IDT entry for the interrupt or exception must contain a task gate that holds
the selector for the interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently running task and the
dispatched task. During a task switch, the execution environment of the currently executing task (called the task’s
state or context) is saved in its TSS and execution of the task is suspended. The context for the dispatched task is
then loaded into the processor and execution of that task begins with the instruction pointed to by the newly loaded
EIP register. If the task has not been run since the system was last initialized, the EIP will point to the first instruc-
tion of the task’s code; otherwise, it will point to the next instruction after the last instruction that the task
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task), the TSS
segment selector for the calling task is stored in the TSS of the called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor performs a task
switch to handle the interrupt or exception and automatically switches back to the interrupted task upon returning
from the interrupt-handler task or exception-handler task. This mechanism can also handle interrupts that occur
during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have a different logical-
to-physical address mapping for LDT-based segments. The page-directory base register (CR3) also is reloaded on a
task switch, allowing each task to have its own set of page tables. These protection facilities help isolate tasks and
prevent them from interfering with one another.

If protection mechanisms are not used, the processor provides no protection between tasks. This is true even with
operating systems that use multiple privilege levels for protection. A task running at privilege level 3 that uses the
same LDT and page tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.

Use of task management facilities for handling multitasking applications is optional. Multitasking can be handled in
software, with each software defined task executed in the context of a single IA-32 architecture task.

If shadow stack is enabled, then the SSP of the task is located at the 4 bytes at offset 104 in the 32-bit TSS and is
used by the processor to establish the SSP when a task switch occurs from a task associated with this TSS. Note
that the processor does not write the SSP of the task initiating the task switch to the TSS of that task, and instead
the SSP of the previous task is pushed onto the shadow stack of the new task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one task, and the
segment selector for the TSS must be loaded into the task register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system segment called the task-state
segment (TSS). Figure 7-2 shows the format of a TSS for tasks designed for 32-bit CPUs. The fields of a TSS are
divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, “16-Bit Task-State Segment
(TSS).” For information about 64-bit mode task structures, see Section 7.7, “Task Management in 64-bit Mode.”

7-4 Vol. 3A

TASK MANAGEMENT

The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic
fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior

to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the

task switch.
• EFLAGS register field — State of the EFLAGS register prior to the task switch.

Figure 7-2. 32-Bit Task-State Segment (TSS)

LDT Segment SelectorReserved

01531

96

GSReserved 98

FSReserved 88

DSReserved 84

SSReserved 80

CSReserved 76

ESReserved 72

EDI 68

ESI 64

EBP 60

ESP 56

EBX 52

EDX 48

ECX 44

EAX 40

EFLAGS 36

EIP 32

CR3 (PDBR) 28

SS2Reserved 24

ESP2 20

SS1Reserved 16

ESP1 12

SS0Reserved 8

ESP0 4

Previous Task LinkReserved 0

Reserved bits. Set to 0.

ReservedI/O Map Base Address T

104

100

SSP

Vol. 3A 7-5

TASK MANAGEMENT

• EIP (instruction pointer) field — State of the EIP register prior to the task switch.
• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task

switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is
created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's LDT.
• CR3 control register field — Contains the base physical address of the page directory to be used by the task.

Control register CR3 is also known as the page-directory base register (PDBR).
• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a logical address made

up of the segment selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack (ESP0,
ESP1, and ESP2). Note that the values in these fields are static for a particular task; whereas, the SS and ESP
values will change if stack switching occurs within the task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise a debug exception
when a task switch to this task occurs (see Section 17.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the TSS to the I/O permission bit
map and interrupt redirection bitmap. When present, these maps are stored in the TSS at higher addresses.
The I/O map base address points to the beginning of the I/O permission bit map and the end of the interrupt
redirection bit map. See Chapter 19, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the I/O permission bit map. See Section 20.3,
“Interrupt and Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt redirection
bit map.

• Shadow Stack Pointer (SSP) — Contains task's shadow stack pointer. The shadow stack of the task should
have a supervisor shadow stack token at the address pointed to by the task SSP (offset 104). This token will be
verified and made busy when switching to that shadow stack using a CALL/JMP instruction, and made free
when switching out of that task using an IRET instruction.

If paging is used:
• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor table entries for

each all should be marked as read/write.
• Task switches are carried out faster if the pages containing these structures are present in memory before the

task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 shows the format of a TSS
descriptor. TSS descriptors may only be placed in the GDT; they cannot be placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the current LDT) causes
a general-protection exception (#GP) to be generated during CALLs and JMPs; it causes an invalid TSS exception
(#TS) during IRETs. A general-protection exception is also generated if an attempt is made to load a segment
selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently running or suspended.
A type field with a value of 1001B indicates an inactive task; a value of 1011B indicates a busy task. Tasks are not
recursive. The processor uses the busy flag to detect an attempt to call a task whose execution has been inter-
rupted. To ensure that there is only one busy flag is associated with a task, each TSS should have only one TSS
descriptor that points to it.

7-6 Vol. 3A

TASK MANAGEMENT

The base, limit, and DPL fields and the granularity and present flags have functions similar to their use in data-
segment descriptors (see Section 3.4.5, “Segment Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-
bit TSS, the limit field must have a value equal to or greater than 67H, one byte less than the minimum size of a
TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS excep-
tion (#TS). A larger limit is required if an I/O permission bit map is included or if the operating system stores addi-
tional data. The processor does not check for a limit greater than 67H on a task switch; however, it does check
when accessing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically equal to or less than
the DPL of the TSS descriptor) can dispatch the task with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged software can
perform task switching. However, in multitasking applications, DPLs for some TSS descriptors may be set to 3 to
allow task switching at the application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a 64-bit TSS is
described in Section 7.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This expansion also applies to an LDT
descriptor in 64-bit mode. Table 3-2 provides the encoding information for the segment type field.

Figure 7-3. TSS Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:160

1B01

TSS Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

Vol. 3A 7-7

TASK MANAGEMENT

7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 bits
in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see Figure 2-6).
This information is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 shows the path the
processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task
register) and STR (store task register) instructions load and read the visible portion of the task register:

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS descriptor
in the GDT. It then loads the invisible portion of the task register with information from the TSS descriptor. LTR is a
privileged instruction that may be executed only when the CPL is 0. It’s used during system initialization to put an
initial value in the task register. Afterwards, the contents of the task register are changed implicitly when a task
switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose register
or memory. This instruction can be executed by code running at any privilege level in order to identify the currently
running task. However, it is normally used only by operating system software. (If CR4.UMIP = 1, STR can be
executed only when CPL = 0.)

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the limit
is set to FFFFH.

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:160

TSS (or LDT) Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

31 13 12 8 7 0

Reserved

31 0

Base Address 63:32

Reserved0

8

12

7-8 Vol. 3A

TASK MANAGEMENT

7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see Figure 7-6). It can be placed in the
GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the
GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch. When a program or
procedure makes a call or jump to a task through a task gate, the CPL and the RPL field of the gate selector pointing
to the task gate must be less than or equal to the DPL of the task-gate descriptor. Note that when a task gate is
used, the DPL of the destination TSS descriptor is not used.

Figure 7-5. Task Register

Figure 7-6. Task-Gate Descriptor

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base AddressTask
Invisible PartVisible Part

TSS

Register

31 16 15 1314 12 11 8 7 0

P
D
P
L

Type

0

31 16 15 0

TSS Segment Selector

1010

DPL
P
TYPE

Descriptor Privilege Level
Segment Present
Segment Type

4

0Reserved

ReservedReserved

Vol. 3A 7-9

TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these structures satisfy
the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task is stored in the TSS

descriptor, each task should have only one TSS descriptor. There may, however, be several task gates that
reference the same TSS descriptor.

• Need to provide selective access to tasks — Task gates fill this need, because they can reside in an LDT and
can have a DPL that is different from the TSS descriptor's DPL. A program or procedure that does not have
sufficient privilege to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) may be
allowed access to the task through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

• Need for an interrupt or exception to be handled by an independent task — Task gates may also reside
in the IDT, which allows interrupts and exceptions to be handled by handler tasks. When an interrupt or
exception vector points to a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the IDT can all point to
the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the

GDT or the current LDT.

Figure 7-7. Task Gates Referencing the Same Task

LDT

Task Gate

TSSGDT

TSS Descriptor

IDT

Task Gate

Task Gate

7-10 Vol. 3A

TASK MANAGEMENT

• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to JMP
and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new task
must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions,
interrupts (except for those identified in the next sentence), and the IRET and INT1 instructions are permitted
to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated by
the INT n, INT3, and INTO instructions, the DPL is checked and a general-protection exception (#GP) results if
it is less than the CPL.1

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal
to 67H). If the task switch was initiated by IRET and shadow stacks are enabled at the current CPL, then the
SSP must be aligned to 8 bytes, else a #TS(current task TSS) fault is generated. If CR4.CET is 1, then the TSS
must be a 32 bit TSS and the limit of the new task’s TSS must be greater than or equal to 107 bytes, else a
#TS(new task TSS) fault is generated.

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged into
system memory.

6. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the
current TSS in the task register and then copies the states of the following registers into the current TSS: all the
general-purpose registers, segment selectors from the segment registers, the temporarily saved image of the
EFLAGS register, and the instruction pointer register (EIP).

7. Loads the task register with the segment selector and descriptor for the new task's TSS.

8. If CET is enabled, the processor performs following shadow stack actions:
Read CS of new task from new task TSS
Read EFLAGS of new task from new task TSS
IF EFLAGS.VM = 1

THEN
new task CPL = 3;

ELSE
new task CPL = CS.RPL;

FI;
pushCsLipSsp = 0
IF task switch was initiated by CALL instruction, exception or interrupt

IF shadow stack enabled at current CPL
IF new task CPL < CPL and current task CPL = 3

THEN
IA32_PL3_SSP = SSP (* user → supervisor *)

ELSE
pushCsLipSsp = 1 (* no privilege change; supv → supv; supv → user *) tempSSP = SSP

1. The INT1 has opcode F1; the INT n instruction with n=1 has opcode CD 01.

Vol. 3A 7-11

TASK MANAGEMENT

tempSsLIP =CSBASE + EIP
tempSsCS = CS

FI;
FI;

FI;
verifyCsLIP = 0
IF task switch was initiated by IRET

IF shadow stacks enabled at current CPL
IF (CPL of new Task = CPL of current Task) OR

(CPL of new Task < 3 AND CPL of current Task < 3) OR
(CPL or new Task < 3 AND CPL of current task = 3)

(* no privilege change or supervisor → supervisor or user → supervisor IRET *)
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
verifyCsLIP = 1

FI;
// Clear busy flag on current shadow stack
 IF (SSP & 0x07 == 0) (* SSP must be aligned to 8B *)

THEN
 expected_token_value = (SSP & ~0x07) | BUSY_BIT; (* busy - bit 0 - must be set*)
 new_token_value = SSP (* clear the busy bit *)
 shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)
 FI;

SSP = 0
FI;

FI;

9. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3), the
EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during the
load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the new
task's TSS, but it is not loaded into CR3.)

10. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy
(B) flag is left set. (See Table 7-2.)

11. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily saved
image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt, the NT
flag is left unchanged in the saved EFLAGS image.

12. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

13. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy
(B) flag is left set.

14. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with this
loading and qualification occur in the context of the new task and may corrupt architectural state.

7-12 Vol. 3A

TASK MANAGEMENT

15. If CET is enabled, the processor performs following shadow stack actions:
IF shadow stack enabled at current CPL OR indirect branch tracking at current CPL

THEN
IF EFLAGS.VM = 1

THEN #TSS(new-Task-TSS);FI;
FI;
IF shadow stack enabled at current CPL

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception (* switch stack *)
new_SSP ← Load the 4 byte from offset 104 in the TSS
// Verify new SSP to be legal
IF new_SSP & 0x07 != 0

THEN #TSS(New-Task-TSS); FI;
expected_token_value = SSP; (* busy - bit 0 - must be clear *)
new_token_value = SSP | BUSY_BIT (* set the busy bit - bit 0*)

 IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value,
 expected_token_value) != expected_token_value
 THEN #TSS(New-Task-TSS); FI;

SSP = new_SSP
IF pushCsLipSsp = 1 (* call, int, exception from user → user or supv → supv or supv → user *)

Push tempSsCS, tempSsLip, tempSsSSP on shadow stack using 8B pushes
FI;

FI;
FI;
IF task switch initiated by IRET

IF verifyCsLIP = 1
(* do 64 bit comparisons; CS zero padded to 64 bit; CSBASE+EIP zero padded to 64 bit *)
IF tempSsCS and tempSsLIP do not match CS and CSBASE+EIP

THEN #CP(FAR-RET/IRET); FI;
FI;
IF ShadowStackEnabled(CPL)

THEN
IF (verifyCsLIP == 0) tempSSP = IA32_PL3_SSP;

IF tempSSP & 0x03 != 0 THEN #CP(FAR-RET/IRET) // verify aligned to 4 bytes
IF tempSSP[63:32] != 0 THEN # CP(FAR-RET/IRET)

SSP = tempSSP
FI;

FI;
IF EndbranchEnabled(CPL)

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception
IF CPL = 3

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

Vol. 3A 7-13

TASK MANAGEMENT

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

FI;

16. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to
have been executed.)

NOTES
If all checks and saves have been carried out successfully, the processor commits to the task
switch. If an unrecoverable error occurs in steps 1 through 8, the processor does not complete the
task switch and ensures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch.

If an unrecoverable error occurs in step 9, architectural state may be corrupted, but an attempt will
be made to handle the error in the prior execution environment. If an unrecoverable error occurs
after the commit point (in step 13), the processor completes the task switch (without performing
additional access and segment availability checks) and generates the appropriate exception prior to
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself
before allowing the processor to begin executing the new task. See Chapter 6, “Interrupt
10—Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task
when they occur after the commit point of a task switch.

The state of the currently executing task is always saved when a successful task switch occurs. If the task is
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored to
the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the
exception that is generated for each check if an error is detected and the segment that the error code references.
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model specific
and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be
subject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1. Exception Conditions Checked During a Task Switch
Condition Checked Exception1 Error Code Reference2

Segment selector for a TSS descriptor references
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

P bit is set in TSS descriptor. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a call, interrupt, or
exception).

#GP (for JMP, CALL, INT) Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by an IRET instruction). #TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) or 44 (for 16-bit
TSS).

#TS New Task’s TSS

7-14 Vol. 3A

TASK MANAGEMENT

The TS (task switched) flag in the control register CR0 is set every time a task switch occurs. System software uses
the TS flag to coordinate the actions of floating-point unit when generating floating-point exceptions with the rest
of the processor. The TS flag indicates that the context of the floating-point unit may be different from that of the
current task. See Section 2.5, “Control Registers”, for a detailed description of the function and use of the TS flag.

TSS segment limit greater than or equal to 108 (for 32-bit TSS) if CR4.CET = 1.3 #TS New Task’s TSS

If shadow stack enabled and SSP not aligned to 8 bytes (for task switch initiated
by an IRET instruction).3

#TS Current Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 4. #TS New Task’s LDT

If code segment is non-conforming, its DPL should equal its RPL. #TS New Code Segment

If code segment is conforming, its DPL should be less than or equal to its RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

P bit is set in stack segment descriptor. #SS New Stack Segment

Stack segment DPL should equal CPL. #TS New stack segment

P bit is set in new task's LDT descriptor. #TS New Task’s LDT

CS segment selector is valid 4. #TS New Code Segment

P bit is set in code segment descriptor. #NP New Code Segment

Stack segment DPL should equal its RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 4. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment

P bits are set in descriptors of DS, ES, FS, and GS segments. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless these are
conforming segments).

#TS New Data Segment

Shadow Stack Pointer in a task not aligned to 8 bytes (for task switch initiated by
a call, interrupt, or exception).3

#TS New Task’s TSS

If EFLAGS.VM=1 and shadow stacks are enabled.3 #TS New Task’s TSS

Supervisor Shadow Stack Token verification failures (for task switch initiated by a
call, interrupt, jump, or exception):3

- Busy bit already set.

- Address in Shadow stack token does not match SSP value from TSS.

#TS New Task’s TSS

If task switch initiated by IRET, CS and LIP stored on old task shadow stack does
not match CS and LIP of new task.3

#CP FAR-RET/IRET

If task switch initiated by IRET and SSP of new task loaded from shadow stack of
old task (if new task CPL is < 3) OR the SSP from IA32_PL3_SSP (if new task CPL
= 3) fails the following checks:3

- Not aligned to 4 bytes.

- Is beyond 4G.

#CP FAR-RET/IRET

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS is stack-fault

exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. Valid when CET is enabled.
4. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table's segment limit,

and refers to a compatible type of descriptor (for example, a segment selector in the CS register only is valid when it points to a
code-segment descriptor).

Table 7-1. Exception Conditions Checked During a Task Switch (Contd.)
Condition Checked Exception1 Error Code Reference2

Vol. 3A 7-15

TASK MANAGEMENT

7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the EFLAGS register are
used to return execution to the previous task. EFLAGS.NT = 1 indicates that the currently executing task is nested
within the execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor copies the segment
selector for the current TSS to the previous task link field of the TSS for the new task; it then sets EFLAGS.NT = 1.
If software uses an IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; it then
uses the value in the previous task link field to return to the previous task. See Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link field is not used and
EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when nesting is not desired.

Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task link field, and TS flag
(in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a program to set the NT
flag and execute an IRET instruction. This might randomly invoke the task specified in the previous link field of the
current task's TSS. To keep such spurious task switches from succeeding, the operating system should initialize the
previous task link field in every TSS that it creates to 0.

Figure 7-8. Nested Tasks

Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP instruction Effect of CALL Instruction or
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new task. Flag is set. Must have been
clear before.

Flag is set. Must have been
clear before.

No change. Must have been set.

Busy flag of old task. Flag is cleared. No change. Flag is currently
set.

Flag is cleared.

NT flag of new task. Set to value from TSS of new
task.

Flag is set. Set to value from TSS of new
task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of new
task.

No change. Loaded with selector
for old task’s TSS.

No change.

Previous task link field of old
task.

No change. No change. No change.

TS flag in control register CR0. Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Previous

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1
EFLAGS

Task RegisterTask Link
Previous

Task Link
Previous

Task Link

7-16 Vol. 3A

TASK MANAGEMENT

7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called (dispatched), a recursive (or
re-entrant) call to the task would cause the current state of the task to be lost. The busy flag in the TSS segment
descriptor is provided to prevent re-entrant task switching and a subsequent loss of task state information. The
processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being generated by a
CALL instruction, an interrupt, or an exception), the busy flag for the current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception), the processor
generates a general-protection exception (#GP) if the busy flag of the new task is already set. If the task switch
is initiated with an IRET instruction, the exception is not raised because the processor expects the busy flag to
be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the task code) or by an
IRET instruction in the task code, the processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or to any task in a
nested chain of tasks. The chain of nested suspended tasks may grow to any length, due to multiple calls, inter-
rupts, or exceptions. The busy flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a LOCK protocol (on the
bus or in the cache) when it sets or clears the busy flag. This lock keeps two processors from invoking the same
task at the same time. See Section 8.1.2.1, “Automatic Locking,” for more information about setting the busy flag
in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a chain of linked tasks, use the
following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that suspended the task to be
removed). It is assumed that the pre-empting task is the next task (newer task) in the chain from the task to
be removed. Change the previous task link field to point to the TSS of the next oldest task in the chain or to an
even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the chain. If more than
one task is being removed from the chain, the busy flag for each task being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be added to this proce-
dure to ensure that the TSS and its segment descriptor are both locked when the previous task link field is changed
and the busy flag is cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. These segments include the code,
data, stack, and system segments referenced in the TSS and any other segments accessed by the task code. The
segments are mapped into the processor’s linear address space, which is in turn mapped into the processor’s phys-
ical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its own LDT allows the
task address space to be isolated from other tasks by placing the segment descriptors for all the segments associ-
ated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow specific tasks to
communicate with or control each other, without dropping the protection barriers for the entire system.

Vol. 3A 7-17

TASK MANAGEMENT

Because all tasks have access to the GDT, it also is possible to create shared segments accessed through segment
descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own set of page tables
for mapping linear addresses to physical addresses. Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one of two ways:
• One linear-to-physical address space mapping is shared among all tasks. — When paging is not

enabled, this is the only choice. Without paging, all linear addresses map to the same physical addresses. When
paging is enabled, this form of linear-to-physical address space mapping is obtained by using one page
directory for all tasks. The linear address space may exceed the available physical space if demand-paged
virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical address space. — This form
of mapping is accomplished by using a different page directory for each task. Because the PDBR (control
register CR3) is loaded on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses. If the entries of
different page directories point to different page tables and the page tables point to different pages of physical
memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a shared area of the
physical space, which is accessible to all tasks. This mapping is required so that the mapping of TSS addresses does
not change while the processor is reading and updating the TSSs during a task switch. The linear address space
mapped by the GDT also should be mapped to a shared area of the physical space; otherwise, the purpose of the
GDT is defeated. Figure 7-9 shows how the linear address spaces of two tasks can overlap in the physical space by
sharing page tables.

Figure 7-9. Overlapping Linear-to-Physical Mappings

Task A
TSS

PDE

Page Directories

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables Page Frames

Task A

Task A

Shared

Shared

Task B

Task B

Shared PT

PTE
PTE

PDE
PDE

PDBR

PDBR

Task A TSS

Task B TSS

7-18 Vol. 3A

TASK MANAGEMENT

7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create shared logical-to-physical
address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access to the segment descriptors in

the GDT. If some segment descriptors in the GDT point to segments in the linear-address space that are
mapped into an area of the physical-address space common to all tasks, then all tasks can share the data and
code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in their TSSs point to the
same LDT. If some segment descriptors in a shared LDT point to segments that are mapped to a common area
of the physical address space, the data and code in those segments can be shared among the tasks that share
the LDT. This method of sharing is more selective than sharing through the GDT, because the sharing can be
limited to specific tasks. Other tasks in the system may have different LDTs that do not give them access to the
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to common addresses in linear
address space — If this common area of the linear address space is mapped to the same area of the physical
address space for each task, these segment descriptors permit the tasks to share segments. Such segment
descriptors are commonly called aliases. This method of sharing is even more selective than those listed above,
because, other segment descriptors in the LDTs may point to independent linear addresses which are not
shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286 processors (see
Figure 7-10). This format is supported for compatibility with software written to run on earlier IA-32 processors.

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory, which is loaded into control

register CR3. A separate set of page tables for each task is not supported for 16-bit tasks. If a 16-bit task is
dispatched, the page-table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of the I/O map are supported.
• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the EIP register are lost.
• When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16 bits of the registers

are modified and not maintained.

Vol. 3A 7-19

TASK MANAGEMENT

7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. However, the task switching
mechanism available in protected mode is not supported in 64-bit mode. Task management and switching must be
performed by software. The processor issues a general-protection exception (#GP) if the following is attempted in
64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INT n, INT3, INTO, INT1, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment (TSS) must exist.
Figure 7-11 shows the format of a 64-bit TSS. The TSS holds information important to 64-bit mode and that is not
directly related to the task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR
instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit TSS responsible for both 64-bit-
mode programs and compatibility-mode programs.

Figure 7-10. 16-Bit TSS Format

Task LDT Selector

DS Selector
SS Selector
CS Selector

ES Selector
DI
SI
BP

SP
BX
DX

CX
AX

FLAG Word
IP (Entry Point)

SS2
SP2

SS1
SP1
SS0
SP0

Previous Task Link

15 0
42
40

36
34
32

30

38

28
26
24
22

20
18
16
14
12

10
8
6
4
2
0

7-20 Vol. 3A

TASK MANAGEMENT

Figure 7-11. 64-Bit TSS Format

031

100
96

92
88

84
80

76

I/O Map Base Address

15

72
68

64
60

56
52

48

44
40

36
32

28
24

20

16
12

8
4

0
RSP0 (lower 32 bits)

RSP1 (lower 32 bits)

RSP2 (lower 32 bits)

Reserved bits. Set to 0.

RSP0 (upper 32 bits)

RSP1 (upper 32 bits)

RSP2 (upper 32 bits)

IST1 (lower 32 bits)
IST1 (upper 32 bits)

IST2 (lower 32 bits)

IST3 (lower 32 bits)

IST4 (lower 32 bits)

IST5 (lower 32 bits)

IST6 (lower 32 bits)

IST7 (lower 32 bits)

IST2 (upper 32 bits)

IST3 (upper 32 bits)

IST4 (upper 32 bits)

IST5 (upper 32 bits)

IST6 (upper 32 bits)

IST7 (upper 32 bits)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

16.Updates to Chapter 10, Volume 3A
Change bars and green text show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--
Changes to this chapter: Updates to section 10.5.4, “APIC Timer” and typo corrections as necessary.

Vol. 3A 10-1

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC,
was introduced into the IA-32 processors with the Pentium processor (see Section 22.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of the Local APIC”). The local
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the
processors in the system or to execute system wide functions (such as, booting up processors or distributing
work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive external interrupt events
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected
processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and
exception handling mechanism described in Chapter 6, “Interrupt and Exception Handling.” See Section 6.1, “Inter-
rupt and Exception Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated hardware that control the
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt
another processor or group of processors on the system bus. IPIs are used for software self-interrupts,
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its
associated processor when a programmed count is reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see
Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to
themselves when the internal thermal sensor has been tripped (see Section 14.8.2, “Thermal Monitor”).

10-2 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its
associated processor (see Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources.
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector
table or LVT (see Section 10.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs)
through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section
10.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6
family processors). See Section 10.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target
processor receives an IPI message, its local APIC handles the message automatically (using information included
in the message such as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor Interrupts,”
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see
Figure 10-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt
controller. Note that the local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local APIC”).
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Vol. 3A 10-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 10-2 and 10-3). Each
local APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated inter-
rupts. Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this
mechanism is commonly not used in MP systems.

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number)
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI and
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section
10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”).

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems

I/O APIC External
Interrupts

System Chip Set

Processor System Bus

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

CPU

Local APIC

Processor #3

Bridge

PCI

IPIs IPIs IPIs

Interrupt
Messages

IPIsInterrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

Interrupt
Messages

I/O APICExternal
Interrupts

System Chip Set

3-wire APIC Bus

CPU

Local APIC

Processor #4

IPIsIPIsIPIsIPIs Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

10-4 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 10-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its
messages are invisible to software and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 10-2). The I/O APIC sends interrupt requests to the
processors on the system bus through bridge hardware that is part of the Intel chip set. The bridge hardware
generates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on
the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external
APIC. See Section 22.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the
system bus. With the APIC architecture, they communication through the APIC bus (see Section 10.2, “System Bus
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its
status. Descriptions of how to program the local APIC are given in Section 10.5.1, “Local Vector Table,” and Section
10.6.1, “Interrupt Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 11.3,
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to
its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended
processor addressability (see Section 10.12).

Vol. 3A 10-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to
addresses within the 4-KByte APIC register space internally and no external bus cycles are
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses
to the APIC register space. Thus, for software intended to run on Pentium processors, system
software should explicitly not map the APIC register space to regular system memory. Doing so can
result in an invalid opcode exception (#UD) being generated or unpredictable execution.

Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits,
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any

Figure 10-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4

10-6 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned.

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated with the programming of the
local APIC is the IA32_APIC_BASE MSR (see Section 10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem1 the Local APIC ID Register is
no longer Read/Write; it is Read Only.

1. See Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel,” on page 1, and Section 2.8, “MSRs In the Intel® Microarchi-
tecture Code Name Nehalem” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 to determine which
processors are based on Nehalem microarchitecture.

Table 10-1 Local APIC Register Address Map

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section
10.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

Vol. 3A 10-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128 Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT Corrected Machine Check Interrupt (CMCI) Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-

ing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-

dent and may not be present in future IA-32 or Intel 64 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not

be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write

10-8 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 9
of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local
APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an
on-chip APIC. The CPUID feature flag for the APIC (see Section 10.4.2, “Presence of the Local APIC”) is also
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return
to the state described in Section 10.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC
software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23). The state of the
local APIC when in this software-disabled state is described in Section 10.4.7.2, “Local APIC State After It
Has Been Software Disabled.”

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, the thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 10-5). MSR bit
functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See Section 8.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see Section 10.4.3, “Enabling or
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC registers. This 24-bit value is
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR2 through 63 in the IA32_APIC_BASE MSR are reserved.

Vol. 3A 10-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the base address field of the
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to
different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID
is based on system topology and includes encoding for socket position and cluster information (see Figure 8-2 and
Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3#
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID
register (see Figure 10-6), and is used as the Initial APIC ID for the processor.

2. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP
APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved

10-10 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to
identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following a power-up or reset, after the
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1 Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s.

• IRR, ISR, TMR, ICR, LDR, and TPR.

• Timer initial count and timer current count registers.

• Divide configuration register.
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 8.4.1, “BSP

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only,
an AP will not respond to a STPCLK# signal.

Figure 10-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID
Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H
31 0

x2APIC ID

x2APIC Mode

xAPIC Mode

Vol. 3A 10-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.7.2 Local APIC State After It Has Been Software Disabled
When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 10.4.3,
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception of any interrupt or transmission of any IPIs that are in progress when the local APIC is disabled

are completed before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep

its arbitration ID synchronized with the rest of the system.

10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This
state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register.

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to identify the APIC version
(see Figure 10-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a
specific implementation.

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT
entries), the value returned is 3. For processors based on the Intel microarchitecture code
name Nehalem (which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the
Spurious Interrupt Vector Register; see Section 10.8.5 and Section 10.9.

10-12 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for handling local interrupts. These
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the thermal
sensor, and the internal APIC error detector. Local interrupt handling facilities include: the LVT, the error status
register (ESR), the divide configuration register (DCR), and the initial count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see
Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor
generates an interrupt (see Section 14.8.2, “Thermal Monitor”). This LVT entry is implementation specific, not
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance
counter generates an interrupt on overflow (see Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Figure 10-7. Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 0BNN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported

Vol. 3A 10-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only
operate as intended when used in conjunction with a specific trigger mode. The allowable
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should
be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored.

101 (INIT) Delivers an INIT request to the processor core, which causes the processor
to perform an INIT. When using this delivery mode, the vector field should

Figure 10-8. Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†
0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H

10-14 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller.
A special INTA bus cycle corresponding to ExtINT, is routed to the external
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system,
usually contained in the compatibility bridge. Only one processor in the
system should have an LVT entry configured to use the ExtINT delivery
mode. Not supported for the LVT CMCI register, the LVT thermal monitor
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 10.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the
interrupt for servicing and is reset when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always
treated as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive).
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset.
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see
Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 6.2,
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) as
valid interrupts.

Vol. 3A 10-15

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an
illegal vector in its Error Status Register (see Section 10.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table
6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0),
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is
actually seen on the input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of
the ESR is given in Figure 10-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus,
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors.
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should
be avoided.

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.

10-16 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending.
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectable IPI” error bit. The interrupt is
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not delivered
to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one
of these instructions to access a reserved register cause a general-protection exception (see Section
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt.
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations.
This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the initial-
count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

Figure 10-10. Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

Vol. 3A 10-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, a timer interrupt is generated and the timer
remains at its 0 value until reprogrammed.

In periodic mode, the timer is started by writing to the initial-count register (as in one-shot mode), and the value
written is copied into the current-count register, which counts down. The current-count register is automatically
reloaded from the initial-count register when the count reaches 0 and a timer interrupt is generated, and the
count-down is repeated. If during the count-down process the initial-count register is set, counting will restart,
using the new initial-count value. The initial-count register is a read-write register; the current-count register is
read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the
timer interrupt.

NOTE
Changing the mode of the APIC timer (from one-shot to periodic or vice versa) by writing to the
timer LVT entry does not start the timer. To start the timer, it is necessary to write to the initial-
count register as described above.

10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically:
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register.
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If

CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.)

The supported timer modes are given in Table 10-2. The three modes of the local APIC timer are mutually exclu-
sive.

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead,
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

Figure 10-11. Initial Count and Current Count Registers

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

10-18 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.3 When the timer generates an interrupt, it disarms itself and clears the
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the
IA32_TSC_DEADLINE and other MSR registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR.
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a spurious

timer interrupt. Software is expected to detect such spurious interrupts by checking the current value of the
time-stamp counter to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after the
memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write to
the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the deadline; no
fencing is required.)

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt
acceptance flow chart in Figure 10-17. If the interrupt is accepted, it is logged into the IRR register and handled by
the processor according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the
interrupt is not accepted, it is sent back to the local APIC and retried.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may
not return the actual value of the time-stamp counter; see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

Vol. 3A 10-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs)
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can
be used for the following functions:

10-20 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through the system bus
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see Figure 10-12) that allows software
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H). In x2APIC mode,
the ICR uses MSR 830H.

Figure 10-12. Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

Vol. 3A 10-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor or
processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the proces-
sor executing at the lowest priority among the set of processors specified
in the destination field. The ability for a processor to send a lowest priority
IPI is model specific and should be avoided by BIOS and operating system
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector
information is ignored.

101 (INIT) Delivers an INIT request to the target processor or processors, which
causes them to perform an INIT. As a result of this IPI message, all the tar-
get processors perform an INIT. The vector field must be programmed to
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs
(see Section 10.7, “System and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is
sent to all processors, regardless of the value in the destination field or the
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand.

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or
processors. The vector typically points to a start-up routine that is part of
the BIOS boot-strap code (see Section 8.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 10.6.2, “Determining
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 1.)

10-22 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel
Xeon processors, and will always be issued as a 0.)

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and,
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR.
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors in
the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message
internally or to issue the message to the bus and “snoop” it as with any
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family processors and to FFH for Pentium
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical
destination mode and destination field set to FH for Pentium and P6 family
processors and to FFH for Pentium 4 and Intel Xeon processors. Support
for this destination shorthand in conjunction with the lowest-priority deliv-
ery mode is model specific. For Pentium 4 and Intel Xeon processors, when
this shorthand is used together with lowest priority delivery mode, the IPI
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination short-
hand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid combinations for the fields in the
ICR for the Pentium 4 and Intel Xeon processors; Table 10-4 shows the valid combinations for the fields in the ICR
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Vol. 3A 10-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an

edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing

APIC, which is essentially the same as the “all including self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command Register
Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self Valid2 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert).

Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

10-24 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.6.2 Determining IPI Destination
The destination of an IPI5 can be one, all, or a subset (group) of the processors on the system bus. The sender of
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI.

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination
processor; in logical destination mode, used to specify a message destination address (MDA) that can be
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism
be used to select a destination processor from a specified group of processors. The ability of a processor to
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical,
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following
sections.

10.6.2.1 Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC ID (see Section 10.4.6, “Local
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH)
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that
APICs defined in the interrupt address are present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local
APICs is specified with 0FH.

NOTE
The number of local APICs that can be addressed on the system bus may be restricted by hardware.

10.6.2.2 Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which is
entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this
register is used to create an identifier that can be compared with the MDA.

5. Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

Vol. 3A 10-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC
ID register.

Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA.
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition (non-zero) is
detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to
identify a local APICs within the cluster.
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration
ID supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported
in this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium
processors. With this model, a hierarchical network can be created by connecting different flat clusters via

Figure 10-13. Logical Destination Register (LDR)

Figure 10-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B

10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents.
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-
chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC
units.

NOTES
All processors that have their APIC software enabled (using the spurious vector enable/disable bit)
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed
before the APIC is software enabled. Since some chipsets do not accurately track a system view of
the logical mode, program DFRs as soon as possible after starting the processor.

10.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI
to all the processors on the system bus and/or back to itself (see Section 10.6.1, “Interrupt Command Register
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination
mode is ignored when a destination shorthand is used.

10.6.2.4 Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus,
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the
IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in
the arbitration priority register (APR) in each local APIC. Figure 10-15 shows the layout of the APR.

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] ← TPR[7:0]
ELSE

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Figure 10-15. Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class
Arbitration Priority Class

4 3

Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV value is the vector number
for the highest priority bit that is set in the IRR (see Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value
is the vector number for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitration
among the destination processors, the processor with the lowest value in its APR handles the IPI and the other
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt,
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issues in
described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC
bus), the order in which the messages are sent and handled is determined through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15,
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus.
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID)
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and
Intel Xeon processors do not implement the Arb ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes
the APIC bus arbitration protocols and bus message formats, while Section 10.6.1, “Interrupt Command Register
(ICR),” describes the INIT level de-assert IPI message.

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register (ICR)”), all bus messages that
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly. Additionally, interrupt sources that target the APIC should be masked or changed to no longer target the
APIC.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or an IPI, the
manner in which it handles the message depends on processor implementation, as described in the following
sections.

10-28 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the specified destination, it
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)
register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) The local APIC examines the IPI message to determines if it is the specified destination for the IPI
as described in Section 10.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its
acceptance procedure; if it is not the destination, it discards the IPI message. When the message specifies
lowest-priority delivery mode, the local APIC will arbitrate with the other processors that were designated as
recipients of the IPI message (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt
queues contained in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4,
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)

Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message
No Accept

Message

Yes

Vol. 3A 10-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in
greater detail.

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor,
including the servicing of other interrupts.

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector.
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the

Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/INIT

/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowest
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

10-30 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the order in which interrupts
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be
written by software (TPR is a read/write register); see Figure 10-18.

NOTE
In this discussion, the term “task” refers to a software defined task, process, thread, program, or
routine that is dispatched to run on the processor by the operating system. It does not refer to an
IA-32 architecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls
the value of the processor-priority register (PPR).6

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority
register (PPR); see Figure 10-19. The PPR is a read-only register. The processor-priority class represents the
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 10.8.4 for more details on the ISR.)
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

Figure 10-18. Task-Priority Register (TPR)

6. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest Priority Delivery Mode.”

Figure 10-19. Processor-Priority Register (PPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task-Priority Sub-Class
Task-Priority Class

4 3

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor-Priority Sub-Class
Processor-Priority Class

4 3

Vol. 3A 10-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The processor-priority class determines the priority threshold for interrupting the processor. The processor will
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to delivery and which to
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in
Figure 10-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved
by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR
is then dispatched to the processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 10.8.5,
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per
interrupt vector and will reject other interrupts that are received within the same vector.

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-
priority interrupt has been completed, the servicing of the interrupted interrupt is resumed.

Figure 10-20. IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H

10-32 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 10-20). Upon acceptance
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an EOI
message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 10-21). This
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR.

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an
end-of-interrupt message to all I/O APICs.
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see
Section 10.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see
Section 10.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in
the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 10.8.3, “Interrupt,
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be
blocked. For example:
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts.
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8

Figure 10-21. EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H

Vol. 3A 10-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

instruction completes execution. Software does not need to force serialization after loading the TPR using MOV
CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged.

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must
be written with zeros. Failure to do this causes a general-protection exception.

10.8.6.1 Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see
Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates

a spurious vector.
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by
software.
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through
3 have no effect.

APIC Software Enable/Disable

Figure 10-22. CR8 Register

63 0

Value after reset: 0H

34

Reserved

10-34 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3,
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not
support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all
interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus.

Figure 10-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors. See bit 24 of Local APIC Version Register.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled

Vol. 3A 10-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous
winner’s arbitration priority, incremented by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, “Lowest Priority Delivery Mode”)
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest
priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit
messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts.
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request
service by writing a system-specified message to a system-specified address (PCI DWORD memory
write transaction). The transaction address specifies the message destination while the transaction
data specifies the message. System software is expected to initialize the message destination and
message during device configuration, allocating one or more non-shared messages to each MSI
capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address
Register. To request service, the PCI device function writes the contents of the Message Data Register to the
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message
addresses).

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address Register and the Message Data
Register. The operation issued by the device is a PCI write command to the Message Address Register with the
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a
DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

Figure 10-24. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX

10-36 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s).
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — When this bit is set, the message is directed to the processor with the
lowest interrupt priority among processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field.

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to FFH;
it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model,
then Destination ID field must not be set to FFH; the processors identified with this field must be
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical
or physical APIC ID for delivery of the lowest priority interrupt.

• If RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the processor in
the system that has the matching APIC ID is considered for delivery of that interrupt (this means no re-
direction).

• If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical destination mode and the
redirection is limited to only those processors that are part of the logical group of processors based on
the processor’s logical APIC ID and the Destination ID field in the message. The logical group of
processors consists of those identified by matching the 8-bit Destination ID with the logical destination
identified by the Destination Format Register and the Logical Destination Register in each local APIC.
The details are similar to those described in Section 10.6.2, “Determining IPI Destination.”

• If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the
physical or logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility.

Vol. 3A 10-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message.

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 10.4) in a backward compatible
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following.
• Retains all key elements of compatibility to the xAPIC architecture.

— Delivery modes.

— Interrupt and processor priorities.

— Interrupt sources.

— Interrupt destination types.
• Provides extensions to scale processor addressability for both the logical and physical destination modes.

Figure 10-25. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16 15 14 13 11 10 8 7 0

63 32

10-38 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Adds new features to enhance performance of interrupt delivery.
• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit 21
ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the
x2APIC mode.

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would
require system software to disable the local APIC unit. Specifically, attempting to write a value to the
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode using
IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State
Transitions” provides a detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for
accessing the x2APIC registers are architecturally defined and specified in Section 10.12.1.2, “x2APIC Register
Address Space”. Executing the RDMSR instruction with the APIC register address specified in ECX returns the
content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these
bits are reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with
the APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If
the register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The

Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations

xAPIC global enable
(IA32_APIC_BASE[11])

x2APIC enable
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode

Vol. 3A 10-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of
handling reserved bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2 x2APIC Register Address Space
The MSR address range 800H through 8FFH is architecturally reserved and dedicated for accessing APIC registers
in x2APIC mode. Table 10-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in
xAPIC mode.
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is
no register defined at offset 3F0H.

MSR addresses in the range 800H–8FFH that are not listed in Table 10-6 (including 80EH and 831H) are reserved.
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all
x2APIC MSRs (except for the ICR) are reserved.

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode) Register Name

MSR R/W
Semantics Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for initial
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes
#GP(0).

80DH 0D0H Logical Destination Register
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector
Register (SVR)

Read/write See Section 10.9 for reserved bits.

810H 100H In-Service Register (ISR); bits
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

10-40 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR);
bits 31:0

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes
#GP(0). See Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register
(ICR)

Read/write See Figure 10-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 10-8 for reserved bits.

834H 340H LVT Performance Monitoring
register

Read/write See Figure 10-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for reserved bits.

838H 380H Initial Count register (for
Timer)

Read/write

839H 390H Current Count register (for
Timer)

Read-only

83EH 3E0H Divide Configuration Register
(DCR; for Timer)

Read/write See Figure 10-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments

Vol. 3A 10-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.1.3 Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on reads by software.
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local
APIC ID register in the system are reserved and cannot be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H.
Each logical processor in the system (including clusters with a communication fabric) must be configured with an
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the
disconnected components into a single system.

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the
x2APIC mode as described in Section 10.12.1. Accessing any APIC register in the MSR address range 0800H
through 08FFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface
will behave similar to that of a legacy xAPIC in globally disabled state. Table 10-7 provides the interactions between
the legacy & extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this
by inserting a serializing instruction or the sequence MFENCE;LFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset

310H are accessible in x2APIC mode through the MSR at address 830H.
5. SELF IPI register is supported only in x2APIC mode.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available

10-42 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has specified
that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range used
for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition MSR
areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression: “ENTRY_LOW_DW
& FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading host state) and
causes an associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these
states as well as interactions of these states with INIT and reset.

10.12.5.1 x2APIC States
The valid states for a local x2APIC unit are listed in Table 10-5.
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0.
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0.
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1.
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1.
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a
general-protection exception. Figure 10-27 shows the comprehensive state transition diagram for a local x2APIC
unit.
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as follows.
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID are

the legacy local xAPIC ID, and are stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode.

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Section 10.4 through Section 10.6 for
details of individual APIC registers).

— Timer initial count and timer current count registers.
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH.
• The DFR (available only in xAPIC mode) is reset to all 1s.
• SELF IPI register is reset to zero.

Vol. 3A 10-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 10-6)

is preserved across this transition and the logical x2APIC ID (see Figure 10-29) is initialized by hardware during
this transition as documented in Section 10.12.10.2. The state of the extended fields in other APIC registers,
which was not initialized at reset, is not architecturally defined across this transition and system software
should explicitly initialize those programmable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC
registers are initialized as a result of INIT.
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is
initialized as described in Section 10.12.5.1. All the other APIC registers are initialized described in Section
10.12.5.1.

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception.
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are
initialized as described in Section 10.12.5.1.
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0

Extd = 1

EN = 0

10-44 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1,
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process:
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved
across mode transitions.
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID
register) are initialized as described in Section 10.12.5.1.
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved.

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express (PCIe)
devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only the
following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to
IOxAPIC units. This made possible through use of the interrupt-remapping architecture specified in the Intel®
Virtualization Technology for Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping
architecture specified in the Intel® Virtualization Technology for Directed I/O (Revision 1.3 and/or later versions).
Because of this, BIOS must enumerate support for and software must enable this interrupt remapping with
Extended Interrupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting
an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH).

Vol. 3A 10-45

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is

greater than or equal or 11 (0BH), then proceed to next step
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.
If both of the above conditions are true, extended topology enumeration leaf is available. If available, the extended
topology enumeration leaf is the preferred mechanism for enumerating topology. The presence of CPUID leaf 0BH
in a processor does not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and
maximum input value for basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported on
that processor.
The extended topology enumeration leaf is intended to assist software with enumerating processor topology on
systems that requires 32-bit x2APIC IDs to address individual logical processors. Details of CPUID leaf 0BH can be
found in the reference pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended topology enumeration leaf of
CPUID and processors that do not support CPUID leaf 0BH are treated in Section 8.9.4, “Algorithm for Three-Level
Mappings of APIC_ID”.

10.12.8.1 Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit value returned in
CPUID.0BH:EDX is facilitated by processor hardware.
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows BIOS to determine if a system
has processors with IDs exceeding the 8-bit initial APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID
(CPUID.01H:EBX[31:24]) is always equal to CPUID.0BH:EDX[7:0].
If the values of CPUID.0BH:EDX reported by all logical processors in a system are less than 255, BIOS can transfer
control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are greater than or equal to 255,
BIOS must support two options to hand off to OS.
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it should enable x2APIC in the Boot

Strap Processor (BSP) and all Application Processors (AP) before passing control to the OS. Applications
requiring processor topology information must use OS provided services based on x2APIC IDs or CPUID.0BH
leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that only logical processors with
CPUID.0BH.EDX value less than 255 are enabled. BIOS initialization on all logical processors with
CPUID.0B.EDX values greater than or equal to 255 must (a) disable APIC and execute CLI in each logical
processor, and (b) leave these logical processor in the lowest power state so that these processors do not
respond to INIT IPI during OS boot. The BSP and all the enabled logical processor operate in xAPIC mode after
BIOS passed control to OS. Application requiring processor topology information can use OS provided legacy
services based on 8-bit initial APIC IDs or legacy topology information from CPUID.01H and CPUID 04H leaves.
Even if the BIOS passes control in xAPIC mode, an OS can switch the processors to x2APIC mode later. BIOS
SMM handler should always read the APIC_BASE_MSR, determine the APIC mode and use the corresponding
access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 10-12. The lower 32 bits of ICR
in x2APIC mode is identical to the lower half of the ICR in xAPIC mode, except the Delivery Status bit is removed
since it is not needed in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode.
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI message to be sent and the
destination processor or processors. Self IPIs can also be sent using the SELF IPI register (see Section 10.12.11).

10-46 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

A single MSR write to the Interrupt Command Register is required for dispatching an interrupt in x2APIC mode.
With the removal of the Delivery Status bit, system software no longer has a reason to read the ICR. It remains
readable only to aid in debugging; however, software should not assume the value returned by reading the ICR is
the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both logical destination and physical
destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1 Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. It is a read-only register to
system software. This 32-bit value is referred to as “logical x2APIC ID”. System software accesses this register via
the RDMSR instruction reading the MSR at address 80DH. Figure 10-29 provides the layout of the Logical Destina-
tion Register in x2APIC mode.

Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Reserved

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

Destination Field

Address: 830H (63 - 0)

Value after Reset: 0H

Reserved

20

Vol. 3A 10-47

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

In the xAPIC mode, the Destination Format Register (DFR) through the MMIO interface determines the choice of a
flat logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the
Destination Format Register (DFR) is eliminated in x2APIC mode.
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by

LDR[31:16].
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability
of ((2^20) - 16) processors in logical destination mode.
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to
identify the logical address of a processor within a cluster without needing to know the number of implemented bits
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 10.12.10.2.

10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e.
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical
x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a
socket/package then multiple cluster IDs can exist within the package.
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 10.12.5).

Figure 10-29. Logical Destination Register in x2APIC Mode

MSR Address: 80DH

31 0

Logical x2APIC ID

10-48 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs.

Figure 10-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a
general-protection exception.
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message,
and non-focused lowest priority message. The purpose of each type of message and its format are described below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local
APIC. Table 10-1 shows the cycles in an EOI message.

Figure 10-30. SELF IPI register

Table 10-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

MSR Address: 083FH

31 8 7 0

Reserved Vector

Vol. 3A 10-49

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values.
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case,
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section
10.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 10-4.

10.13.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT and lowest-priority-with-
focus interrupts. Table 10-2 shows the cycles in a short message.

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 10-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

Table 10-1. EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0

10-50 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the
8-bit logical destination field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see
Section 10.5.3, “Error Handling”) terminate after cycle 21.

10.13.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery mode when a focus processor is
not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the state
of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see Table
10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-focused
lowest priority message are competed. For other combinations of status flags, refer to Section 10.13.2.3, “APIC
Bus Status Cycles.”

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

Table 10-2. Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0

Vol. 3A 10-51

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the
arbitration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots partic-
ipate in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried
at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the
error status register (see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not affected by
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error
in cycle 33 will force the sender to resend the message.

10.13.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and
(A1:A1) are examined. Table 10-4 shows how these status flags are interpreted, depending on the current delivery
mode and existence of a focus processor.

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1

10-52 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update ArbID
and Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

17.Updates to Chapter 11, Volume 3A
Change bars and green text show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--
Changes to this chapter: Typo corrections as needed.

Vol. 3A 11-1

CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, and the store buffer in Intel 64
and IA-32 processors. It also describes the memory type range registers (MTRRs) introduced in the P6 family
processors and how they are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers (TLBs), and a store buffer for
temporary on-chip (and external) storage of instructions and data. (Figure 11-1 shows the arrangement of caches,
TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the characteristics of
these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The sizes and char-
acteristics of these units are machine specific and may change in future versions of the processor. The
CPUID instruction returns the sizes and characteristics of the caches and buffers for the processor on which the
instruction is executed. See “CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only

11-2 Vol. 3A

MEMORY CACHE CONTROL

Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2. Cache Structure of the Intel Core i7 Processors

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® microarchitecture): 12 Kμops, 8-way set
associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core Solo, Pentium M processor: not
implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): not implemented.
• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-KByte, 8-way set

associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 32-byte cache line size; 2-way set

associative for earlier Pentium processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 8-KByte, 4-way set
associative, 64-byte cache line size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 16-KByte, 8-way set
associative, 64-byte cache line size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache line size.
• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M and Intel Xeon processors: 32-

KByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KBytes, 2-way set

associative for earlier P6 family processors.
• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KByte, 2-way set

associative for earlier Pentium processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
Cache

STLBData TLB

L2 Cache

ITLB

L3 Cache

IMC

QPI

Vol. 3A 11-3

MEMORY CACHE CONTROL

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in quadcore processors), 16-way set
associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in quadcore processors), 24-way set
associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 64-byte cache line size.
• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache line size.
• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set associative, 64-byte cache line size
• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-way set associative, 64-byte cache

line size, 128-byte sector size.
• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte, 4-way set associative,

32-byte cache line size.
• Pentium processor (external optional): System specific, typically 256- or 512-KByte, 4-way set associative,

32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way set associative, 64-byte cache line
size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-way set associative, 64-byte cache
line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 128 entries, 4-way set
associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set

associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set associative for Pentium processors with MMX

technology.

Data TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 64-entry DTLB, 4-way set

associative; 16-entry PDE cache, fully associative.
• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 64 entry, fully set

associative, shared with large page DTLB.
• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set associative.
• Pentium and P6 family processors: 64 entries, 4-way set associative; fully set, associative for Pentium

processors with MMX technology.

Instruction TLB
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for 4-KByte pages in Pentium

processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics

11-4 Vol. 3A

MEMORY CACHE CONTROL

Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the level 1 (L1) cache, the
level 2 (L2) cache, and the level 3 (L3) cache. See Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family based on Intel® microarchi-

tecture code name Nehalem and Intel® microarchitecture code name Westmere — The L1 cache is
divided into two sections: one section is dedicated to caching instructions (pre-decoded instructions) and the
other caches data. The L2 cache is a unified data and instruction cache. Each processor core has its own L1 and
L2. The L3 cache is an inclusive, unified data and instruction cache, shared by all processor cores inside a
physical package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family based on Intel® Core™ micro-
architecture — The L1 cache is divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data and instruction cache located
on the processor chip; it is shared between two processor cores in a dual-core processor implementation.
Quad-core processors have two L2, each shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one section is dedicated to caching
instructions (pre-decoded instructions) and the other caches data. The L2 cache is a unified data and
instruction cache is located on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is divided into two sections: one
section is dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2 cache
is a unified data and instruction cache located on the processor chip. It is shared between two processor cores
in a dual-core processor implementation. No trace cache is implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® microarchitecture — The trace
cache caches decoded instructions (μops) from the instruction decoder and the L1 cache contains data. The L2
and L3 caches are unified data and instruction caches located on the processor chip. Dualcore processors have
two L2, one in each processor core. Note that the L3 cache is only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to caching instructions (pre-
decoded instructions) and the other to caching data. The L2 cache is a unified data and instruction cache
located on the processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family processors. There is no trace
cache. The L2 cache is a unified data and instruction cache external to the processor chip on earlier Pentium
processors and implemented on the processor chip in later Pentium processors. For Pentium processors where
the L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel NetBurst microarchitectures,
Intel Core Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 caches (and L3 caches
if supported) are 64 bytes wide. The processor always reads a cache line from system memory beginning on a 64-
byte boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant bits clear.) A cache

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX technology have 4 buffers for 4

entries).

Write Combining
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics

Vol. 3A 11-5

MEMORY CACHE CONTROL

line can be filled from memory with a 8-transfer burst transaction. The caches do not support partially-filled cache
lines, so caching even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with cache line reads from
system memory beginning on a 32-byte boundary (5 least-significant bits of a memory address clear.) A cache line
can be filled from memory with a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all execution modes:
protected mode, system management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also
available in all execution modes; however, use of them must be handled carefully in SMM (see Section 34.4.2,
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up memory accesses
when paging is enabled by reducing the number of memory accesses that are required to read the page tables
stored in system memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs for
4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data TLBs for large
pages. The TLBs are normally active only in protected mode with paging enabled. When paging is disabled or the
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly flushed (see Section
11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction TLB and two levels of data
TLB. Intel Core i7 processor provides a second-level unified TLB.

The store buffer is associated with the processors instruction execution units. It allows writes to system memory
and/or the internal caches to be saved and in some cases combined to optimize the processor’s bus accesses. The
store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions and data flow
through these caches without the need for explicit software control. However, knowledge of the behavior of these
caches may be useful in optimizing software performance. For example, knowledge of cache dimensions and
replacement algorithms gives an indication of how large of a data structure can be operated on at once without
causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances, require intervention by
system software. For these rare cases, the processor provides privileged cache control instructions for use in
flushing caches and forcing memory ordering.

There are several instructions that software can use to improve the performance of the L1, L2, and L3 caches,
including the PREFETCHh, CLFLUSH, and CLFLUSHOPT instructions and the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are discussed in Section
11.5.5, “Cache Management Instructions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in other processors
(see Section 11.4, “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the processor reads an
entire cache line into the appropriate cache (L1, L2, L3, or all). This operation is called a cache line fill. If the
memory location containing that operand is still cached the next time the processor attempts to access the
operand, the processor can read the operand from the cache instead of going back to memory. This operation is
called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it first checks if a cache line for
that memory location exists in the cache. If a valid cache line does exist, the processor (depending on the write
policy currently in force) can write the operand into the cache instead of writing it out to system memory. This
operation is called a write hit. If a write misses the cache (that is, a valid cache line is not present for area of
memory being written to), the processor performs a cache line fill, write allocation. Then it writes the operand into
the cache line and (depending on the write policy currently in force) can also write it out to memory. If the operand
is to be written out to memory, it is written first into the store buffer, and then written from the store buffer to
memory when the system bus is available. (Note that for the Pentium processor, write misses do not result in a
cache line fill; they always result in a write to memory. For this processor, only read misses result in cache line fills.)

11-6 Vol. 3A

MEMORY CACHE CONTROL

When operating in an MP system, IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors
have the ability to snoop other processor’s accesses to system memory and to their internal caches. They use this
snooping ability to keep their internal caches consistent both with system memory and with the caches in other
processors on the bus. For example, in the Pentium and P6 family processors, if through snooping one processor
detects that another processor intends to write to a memory location that it currently has cached in shared state,
the snooping processor will invalidate its cache line forcing it to perform a cache line fill the next time it accesses
the same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping) that another processor is trying
to access a memory location that it has modified in its cache, but has not yet written back to system memory, the
snooping processor will signal the other processor (by means of the HITM# signal) that the cache line is held in
modified state and will perform an implicit write-back of the modified data. The implicit write-back is transferred
directly to the initial requesting processor and snooped by the memory controller to assure that system memory
has been updated. Here, the processor with the valid data may pass the data to the other processors without actu-
ally writing it to system memory; however, it is the responsibility of the memory controller to snoop this operation
and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 caches. In individual pages or
regions of system memory, it allows the type of caching (also called memory type) to be specified (see Section
11.5). Memory types currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All reads and writes appear on the

system bus and are executed in program order without reordering. No speculative memory accesses, page-
table walks, or prefetches of speculated branch targets are made. This type of cache-control is useful for
memory-mapped I/O devices. When used with normal RAM, it greatly reduces processor performance.

NOTE
The behavior of x87 and SIMD instructions referencing memory is implementation dependent. In
some implementations, accesses to UC memory may occur more than once. To ensure predictable
behavior, use loads and stores of general purpose registers to access UC memory that may have
read or write side effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) memory type, except that
this memory type can be overridden by programming the MTRRs for the WC memory type. This memory type
is available in processor families starting from the Pentium III processors and can only be selected through the
PAT.

Table 11-2. Memory Types and Their Properties

Memory Type and
Mnemonic

Cacheable Writeback
Cacheable

Allows
Speculative
Reads

Memory Ordering Model

Strong Uncacheable
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be selected through the PAT. Can be
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by programming MTRRs or by selecting it
through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for
reads; no for
writes

No Yes Speculative Processor Ordering. Available by programming MTRRs.

Vol. 3A 11-7

MEMORY CACHE CONTROL

• Write Combining (WC) — System memory locations are not cached (as with uncacheable memory) and
coherency is not enforced by the processor’s bus coherency protocol. Speculative reads are allowed. Writes
may be delayed and combined in the write combining buffer (WC buffer) to reduce memory accesses. If the WC
buffer is partially filled, the writes may be delayed until the next occurrence of a serializing event; such as an
SFENCE or MFENCE instruction, CPUID or other serializing instruction, a read or write to uncached memory, an
interrupt occurrence, or an execution of a LOCK instruction (including one with an XACQUIRE or XRELEASE
prefix). In addition, an execution of the XEND instruction (to end a transactional region) evicts any writes that
were buffered before the corresponding execution of the XBEGIN instruction (to begin the transactional region)
before evicting any writes that were performed inside the transactional region.
This type of cache-control is appropriate for video frame buffers, where the order of writes is unimportant as
long as the writes update memory so they can be seen on the graphics display. See Section 11.3.1, “Buffering
of Write Combining Memory Locations,” for more information about caching the WC memory type. This memory
type is available in the Pentium Pro and Pentium II processors by programming the MTRRs; or in processor
families starting from the Pentium III processors by programming the MTRRs or by selecting it through the PAT.

• Write-through (WT) — Writes and reads to and from system memory are cached. Reads come from cache
lines on cache hits; read misses cause cache fills. Speculative reads are allowed. All writes are written to a
cache line (when possible) and through to system memory. When writing through to memory, invalid cache
lines are never filled, and valid cache lines are either filled or invalidated. Write combining is allowed. This type
of cache-control is appropriate for frame buffers or when there are devices on the system bus that access
system memory, but do not perform snooping of memory accesses. It enforces coherency between caches in
the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. Reads come from cache lines
on cache hits; read misses cause cache fills. Speculative reads are allowed. Write misses cause cache line fills
(in processor families starting with the P6 family processors), and writes are performed entirely in the cache,
when possible. Write combining is allowed. The write-back memory type reduces bus traffic by eliminating
many unnecessary writes to system memory. Writes to a cache line are not immediately forwarded to system
memory; instead, they are accumulated in the cache. The modified cache lines are written to system memory
later, when a write-back operation is performed. Write-back operations are triggered when cache lines need to
be deallocated, such as when new cache lines are being allocated in a cache that is already full. They also are
triggered by the mechanisms used to maintain cache consistency. This type of cache-control provides the best
performance, but it requires that all devices that access system memory on the system bus be able to snoop
memory accesses to ensure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read misses cause cache fills.
Writes are propagated to the system bus and cause corresponding cache lines on all processors on the bus to
be invalidated. Speculative reads are allowed. This memory type is available in processor families starting from
the P6 family processors by programming the MTRRs (see Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6 Family, Pentium 4, and Intel
Xeon processors.

Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4,
Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel Core Duo,
Pentium M, Pentium 4 and Intel Xeon Processors

P6 Family
Processors

Pentium
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

11-8 Vol. 3A

MEMORY CACHE CONTROL

11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word cached. They are retained in an
internal write combining buffer (WC buffer) that is separate from the internal L1, L2, and L3 caches and the store
buffer. The WC buffer is not snooped and thus does not provide data coherency. Buffering of writes to WC memory
is done to allow software a small window of time to supply more modified data to the WC buffer while remaining as
non-intrusive to software as possible. The buffering of writes to WC memory also causes data to be collapsed; that
is, multiple writes to the same memory location will leave the last data written in the location and the other writes
will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium M, Pentium 4 and Intel Xeon processors; the WC buffer is made up of several 64-byte WC
buffers. For the P6 family processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC buffers one at a time. When one
or more WC buffers has been filled, the processor has the option of evicting the buffers to system memory. The
protocol for evicting the WC buffers is implementation dependent and should not be relied on by software for
system memory coherency. When using the WC memory type, software must be sensitive to the fact that the
writing of data to system memory is being delayed and must deliberately empty the WC buffers when system
memory coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will make a bus-transaction
style decision based on how much of the buffer contains valid data. If the buffer is full (for example, all bytes are
valid), the processor will execute a burst-write transaction on the bus. This results in all 32 bytes (P6 family proces-
sors) or 64 bytes (Pentium 4 and more recent processor) being transmitted on the data bus in a single burst trans-
action. If one or more of the WC buffer’s bytes are invalid (for example, have not been written by software), the
processor will transmit the data to memory using “partial write” transactions (one chunk at a time, where a “chunk”
is 8 bytes).

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8 partial write transactions
(for the Pentium 4 and more recent processors) for one WC buffer of data sent to memory.

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has started, the data is
subject to the weak ordering semantics of its definition. Ordering is not maintained between the successive alloca-
tion/deallocation of WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may appear
as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is evicted to memory as partial writes there
is no guaranteed ordering between successive partial writes (for example, a partial write for chunk 2 may appear
on the bus before the partial write for chunk 1 or vice versa).

The only elements of WC propagation to the system bus that are guaranteed are those provided by transaction
atomicity. For example, with a P6 family processor, a completely full WC buffer will always be propagated as a
single 32-bit burst transaction using any chunk order. In a WC buffer eviction where data will be evicted as partials,
all data contained in the same chunk (0 mod 8 aligned) will be propagated simultaneously. Likewise, for more
recent processors starting with those based on Intel NetBurst microarchitectures, a full WC buffer will always be
propagated as a single burst transactions, using any chunk order within a transaction. For partial buffer propaga-
tions, all data contained in the same chunk will be propagated simultaneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or write side effects, does not
include a frame buffer, and uses the write-back memory type for all memory. An I/O agent can perform direct
memory access (DMA) to write-back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should always use strong unca-
cheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes desirable, because
those writes cannot be observed at the other port until they reach the memory agent. A system can use strong
uncacheable, uncacheable, write-through, or write-combining memory for frame buffers or dual-ported memory
that contains pixel values displayed on a screen. Frame buffer memory is typically large (a few megabytes) and is
usually written more than it is read by the processor. Using strong uncacheable memory for a frame buffer gener-
ates very large amounts of bus traffic, because operations on the entire buffer are implemented using partial writes
rather than line writes. Using write-through memory for a frame buffer can displace almost all other useful cached

Vol. 3A 11-9

MEMORY CACHE CONTROL

lines in the processor's L2 and L3 caches and L1 data cache. Therefore, systems should use write-combining
memory for frame buffers whenever possible.

Software can use page-level cache control, to assign appropriate effective memory types when software will not
access data structures in ways that benefit from write-back caching. For example, software may read a large data
structure once and not access the structure again until the structure is rewritten by another agent. Such a large
data structure should be marked as uncacheable, or reading it will evict cached lines that the processor will be
referencing again.

A similar example would be a write-only data structure that is written to (to export the data to another agent), but
never read by software. Such a structure can be marked as uncacheable, because software never reads the values
that it writes (though as uncacheable memory, it will be written using partial writes, while as write-back memory,
it will be written using line writes, which may not occur until the other agent reads the structure and triggers
implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are provided that give software
greater control over the caching, prefetching, and the write-back characteristics of data. These instructions allow
software to use weakly ordered or processor ordered memory types to improve processor performance, but when
necessary to force strong ordering on memory reads and/or writes. They also allow software greater control over
the caching of data. For a description of these instructions and there intended use, see Section 11.5.5, “Cache
Management Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications are different from accessing
data in UC memory. When doing code fetches, the processor never transitions from cacheable code to UC code
speculatively. It also never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an instruction once. It may
decode consecutive UC instructions in a cacheline without fetching between each instruction. It may also fetch
additional cachelines from the same or a consecutive 4-KByte page in order to decode one non-speculative UC
instruction (this can be true even when the instruction is contained fully in one line).

Because of the above and because cacheline sizes may change in future processors, software should avoid placing
memory-mapped I/O with read side effects in the same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the Intel 64 and IA-32 architec-
tures.

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, shared, invalid) cache protocol
maintains consistency with caches of other processors. The L1 data cache and the L2/L3 unified caches have two
MESI status flags per cache line. Each line can be marked as being in one of the states defined in Table 11-4. In
general, the operation of the MESI protocol is transparent to programs.

Table 11-4. MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches of other
processors?

No No Maybe Maybe

A write to this line … Does not go to the
system bus.

Does not go to the
system bus.

Causes the processor to
gain exclusive ownership
of the line.

Goes directly to the
system bus.

11-10 Vol. 3A

MEMORY CACHE CONTROL

The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI protocol, because the
instruction cache is not writable. The instruction cache monitors changes in the data cache to maintain consistency
between the caches when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more information
on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling the caching of data and
instructions and for controlling the ordering of reads and writes between the processor, the caches, and memory.
These mechanisms can be divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures define several dedicated registers

and various bits within control registers and page- and directory-table entries that control the caching system
memory locations in the L1, L2, and L3 caches. These mechanisms control the caching of virtual memory pages
and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 architectures provide several
instructions that control the caching of data, the ordering of memory reads and writes, and the prefetching of
data. These instructions allow software to control the caching of specific data structures, to control memory
coherency for specific locations in memory, and to force strong memory ordering at specific locations in a
program.

The following sections describe these two groups of cache control mechanisms.

11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for the matter of memory address
space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers and bits for use in enabling or
restricting caching to various pages or regions in memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory locations (see Section 2.5,

“Control Registers”). If the CD flag is clear, caching is enabled for the whole of system memory, but may be
restricted for individual pages or regions of memory by other cache-control mechanisms. When the CD flag is
set, caching is restricted in the processor’s caches (cache hierarchy) for the P6 and more recent processor
families and prevented for the Pentium processor (see note below). With the CD flag set, however, the caches
will still respond to snoop traffic. Caches should be explicitly flushed to ensure memory coherency. For highest
processor performance, both the CD and the NW flags in control register CR0 should be cleared. Table 11-5
shows the interaction of the CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families starting with P6 family than the
Pentium processor (see Table 11-5). To ensure memory coherency after the CD flag is set, the caches should
be explicitly flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the P6 and more
recent processor families modifies cache line fill and update behavior. Also, setting the CD flag on these
processors do not force strict ordering of memory accesses unless the MTRRs are disabled and/or all memory
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

Vol. 3A 11-11

MEMORY CACHE CONTROL

Figure 11-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors

Page-Directory or
Page-Table Entry

TLBs

MTRRs3

Physical Memory

0

FFFFFFFFH2

control overall caching
of system memory

CD and NW Flags PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

MTRRs control caching
of selected regions of
physical memory

P
C
D

CR3

Control caching of
page directory

P
W
T

C
D

CR0
N
W

Store Buffer

P
C
D

P
W
T

G1

CR4

Enables global pages

P
G
E

designated with G flag

1. G flag only available in P6 and later processor families

3. MTRRs available only in P6 and later processor families;
 similar control available in Pentium processor with the KEN#
 and WB/WT# pins.

2. The maximum physical address size is reported by CPUID leaf
function 80000008H. The maximum physical address size of

PAT4

PAT controls caching
of virtual memory
pages

4. PAT available only in Pentium III and later processor families.

P4
A
T

FFFFFFFFFH applies only If 36-bit physical addressing is used.

5. L3 in processors based on Intel NetBurst microarchitecture can
be disabled using IA32_MISC_ENABLE MSR.

11-12 Vol. 3A

MEMORY CACHE CONTROL

Table 11-5. Cache Operating Modes

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of the MTRRs and with associated

read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to exclusive under control of WB/WT#.
• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code of 0. NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement (see Pentium 4 and Intel Xeon

processors reference below).
• Write hits update the cache.
• Only writes to shared lines and write misses update system memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of the MTRRs and with associated

read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to exclusive under control of the

WB/WT#.

Yes
Yes

Yes

Yes
Yes

• (P6 and later processor families only.) Strict memory ordering is not enforced unless the MTRRs are
disabled and/or all memory is referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement.
• Write hits update the cache and change exclusive lines to modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is intended to represent what

could be implemented in a system based on a Pentium processor with an external, platform specific, write-back L2 cache.
2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and NW bits to 1 selects the no-fill

cache mode.
3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

Vol. 3A 11-13

MEMORY CACHE CONTROL

• NW flag, bit 29 of control register CR0 — Controls the write policy for system memory locations (see
Section 2.5, “Control Registers”). If the NW and CD flags are clear, write-back is enabled for the whole of
system memory, but may be restricted for individual pages or regions of memory by other cache-control
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag; that is, when the CD
flag is set, the processor uses the no-fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, when the CD flag is set, the
processor disables caching, regardless of the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and NW flags in control register
CR0 are set), external snoops are accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems.
When snoops are inhibited, address parity is not checked and APCHK# is not asserted for a corrupt
address; however, when snoops are accepted, address parity is checked and APCHK# is asserted
for corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type used to access paging
structures and pages (see Section 4.9, “Paging and Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used to access the first paging
structure of the current paging-structure hierarchy (see Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced to the IA-32 architecture in
the P6 family processors) — Controls the flushing of TLB entries for individual pages. See Section 4.10,
“Caching Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the establishment of global pages with
the G flag. See Section 4.10, “Caching Translation Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family processors) — Control the type of
caching used in specific regions of physical memory. Any of the caching types described in Section 11.3,
“Methods of Caching Available,” can be selected. See Section 11.11, “Memory Type Range Registers (MTRRs),”
for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) — Extends the memory
typing capabilities of the processor to permit memory types to be assigned on a page-by-page basis (see
Section 11.12, “Page Attribute Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Available only in processors
based on Intel NetBurst microarchitecture) — Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches.

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to control the caching method
used for specific areas of memory. They perform similar (but not identical) functions to the MTRRs in the P6
family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated with the PCD and PWT flags in
control register CR3 and in the page-directory and page-table entries) permit caching in an external L2 cache
to be controlled on a page-by-page basis, consistent with the control exercised on the L1 cache of these
processors. The P6 and more recent processor families do not provide these pins because the L2 cache in
internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the CD flag is set,
caching is prevented globally (see Table 11-5). If the CD flag is clear, the page-level cache control flags and/or the
MTRRs can be used to restrict caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region of system memory uncache-
able, a page-level caching control cannot be used to enable caching for a page in that region. The converse is also

11-14 Vol. 3A

MEMORY CACHE CONTROL

true; that is, if a page-level caching control designates a page as uncacheable, an MTRR cannot be used to make
the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching policies to a page
and a region of memory, the write-through policy takes precedence. The write-combining policy (which can only be
assigned through an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used to select memory
types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the
IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit 6] takes precedence over the CD flag, MTRRs, and PAT
for the L3 cache in those processors. That is, when the third-level cache disable flag is set (cache disabled), the
other cache controls have no affect on the L3 cache; when the flag is clear (enabled), the cache controls have the
same affect on the L3 cache as they have on the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor processors based on Intel Core, and
Intel Atom microarchitectures.

11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors
The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory type for a page is
selected with the MTRRs and the PCD and PWT bits in the page-table or page-directory entry for the page. Table
11-6 describes the mapping of MTRR memory types and page-level caching attributes to effective memory types,
when normal caching is in effect (the CD and NW flags in control register CR0 are clear). Combinations that appear
in gray are implementation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

When normal caching is in effect, the effective memory type shown in Table 11-6 is determined using the following
rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is identical to the
MTRR-defined memory type.

Table 11-6. Effective Page-Level Memory Type for Pentium Pro and Pentium II Processors

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III processors when the PAT bit is not used
(set to 0) in page-table and page-directory entries.

Vol. 3A 11-15

MEMORY CACHE CONTROL

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the WB memory type and
the MTRR-defined memory type for all other memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP and WC memory
types and architecturally-defined for the WB, WT, and UC memory types.

11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, Pentium 4, Intel Xeon, and Pentium
III processors use the PAT to select effective page-level memory types. Here, a memory type for a page is selected
by the MTRRs and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a page-table or page-
directory entry (see Section 11.12.3, “Selecting a Memory Type from the PAT”). Table 11-7 describes the mapping
of MTRR memory types and PAT entry types to effective memory types, when normal caching is in effect (the CD
and NW flags in control register CR0 are clear).

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent Processor Families
MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

11-16 Vol. 3A

MEMORY CACHE CONTROL

11.5.2.3 Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer operand is written to a
memory location that crosses the page boundary between those two pages, the operand might be written to
memory twice. This action does not present a problem for writes to actual memory; however, if a device is mapped
the memory space assigned to the pages, the device might malfunction.

11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills, perform the
following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the uncached memory
type (see the discussion of the discussion of the TYPE field and the E flag in Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to ensure system memory coherency. If the caches are
not flushed, cache hits on reads will still occur and data will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct requirements: (i) discontinue new data
replacing existing data in the cache (ii) ensure data already in the cache are evicted to memory, (iii) ensure subse-
quent memory references observe UC memory type semantics. Different processor implementation of caching
control hardware may allow some variation of software implementation of these three requirements. See note
below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s caching behavior as indicated in
Table 11-5, but setting the CD flag alone may not be sufficient across all processor families to force
the effective memory type for all physical memory to be UC nor does it force strict memory
ordering, due to hardware implementation variations across different processor families. To force
the UC memory type and strict memory ordering on all of physical memory, it is sufficient to either
program the MTRRs for all physical memory to be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of steps given above has been
executed, the cache lines containing the code between the end of the WBINVD instruction and
before the MTRRS have actually been disabled may be retained in the cache hierarchy. Here, to

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES:
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since the data could never have

been cached. This attribute is preferred for performance reasons.
2. The UC attribute came from the page-table or page-directory entry and processors are required to check their caches because the

data may be cached due to page aliasing, which is not recommended.
3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. However, all processors that support both the PAT and the MTRRs determine the effective page-level memory
types for these combinations as given.

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent Processor Families (Contd.)
MTRR Memory Type PAT Entry Value Effective Memory Type

Vol. 3A 11-17

MEMORY CACHE CONTROL

remove code from the cache completely, a second WBINVD instruction must be executed after the
MTRRs have been disabled.
For Intel Atom processors, setting the CD flag forces all physical memory to observe UC semantics
(without requiring memory type of physical memory to be set explicitly). Consequently, software
does not need to issue a second WBINVD as some other processor generations might require.

11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the
IA32_MISC_ENABLE MSR. The third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3
cache to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to disable or
enable the L3 cache, software should disable and flush all the processor caches, as described earlier in Section
11.5.3, “Preventing Caching,” to prevent of loss of information stored in the L3 cache. After the L3 cache has been
disabled or enabled, caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the procedure described in Section
11.5.3, “Preventing Caching,” apply to the entire cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the L1, L2, and L3 caches. The INVD
and WBINVD instructions are privileged instructions and operate on the L1, L2 and L3 caches as a whole. The
PREFETCHh, CLFLUSH and CLFLUSHOPT instructions and the non-temporal move instructions (MOVNTI, MOVNTQ,
MOVNTDQ, MOVNTPS, and MOVNTPD) offer more granular control over caching, and are available to all privileged
levels.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3 caches. The INVD
instruction invalidates all internal cache entries, then generates a special-function bus cycle that indicates that
external caches also should be invalidated. The INVD instruction should be used with care. It does not force a
write-back of modified cache lines; therefore, data stored in the caches and not written back to system memory
will be lost. Unless there is a specific requirement or benefit to invalidating the caches without writing back the
modified lines (such as, during testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches, then invalidates the contents
of both the L1, L2, and L3 caches. It ensures that cache coherency with main memory is maintained regardless of
the write policy in effect (that is, write-through or write-back). Following this operation, the WBINVD instruction
generates one (P6 family processors) or two (Pentium and Intel486 processors) special-function bus cycles to indi-
cate to external cache controllers that write-back of modified data followed by invalidation of external caches
should occur. The amount of time or cycles for WBINVD to complete will vary due to the size of different cache hier-
archies and other factors. As a consequence, the use of the WBINVD instruction can have an impact on inter-
rupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a cache line from a specified location
in system memory be prefetched into the cache hierarchy (see Section 11.8, “Explicit Caching”).

The CLFLUSH and CLFLUSHOPT instructions allow selected cache lines to be flushed from memory. These instruc-
tions give a program the ability to explicitly free up cache space, when it is known that cached section of system
memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) allow data to be
moved from the processor’s registers directly into system memory without being also written into the L1, L2,
and/or L3 caches. These instructions can be used to prevent cache pollution when operating on data that is going
to be modified only once before being stored back into system memory. These instructions operate on data in the
general-purpose, MMX, and XMM registers.

11-18 Vol. 3A

MEMORY CACHE CONTROL

11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst microarchitecture that support
Intel Hyper-Threading Technology. When CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache
context mode using the L1 data cache context mode flag (IA32_MISC_ENABLE[bit 24]). Selectable modes are
adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1 Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When running in adaptive mode, the
L1 data cache is shared across logical processors in the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor (instead of being competitively
shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the logical processors use different
paging modes, processors compete for cache resources. This reduces the effective size of the cache for each logical
processor. Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2 Shared Mode
In shared mode, the L1 data cache is competitively shared between logical processors. This is true even if the
logical processors use identical CR3 registers and paging modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that one linear address in the cache
can point to different physical locations. The mechanism for resolving aliasing can lead to thrashing. For this
reason, IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based on the Intel NetBurst
microarchitecture that support Intel Hyper-Threading Technology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the processor causes the associated
cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition,
the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has
been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This
latter check is based on the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write
or a snoop of an instruction in a code segment, where the target instruction is already decoded and resident in the
trace cache, invalidates the entire trace cache. The latter behavior means that programs that self-modify code can
cause severe degradation of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-32 processors. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the instruction.
Systems software, such as a debugger, that might possibly modify an instruction using a different linear address
than that used to fetch the instruction, will execute a serializing operation, such as a CPUID instruction, before the
modified instruction is executed, which will automatically resynchronize the instruction cache and prefetch queue.
(See Section 8.1.3, “Handling Self- and Cross-Modifying Code,” for more information about the use of self-modi-
fying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache and memory, but if
the instruction was prefetched before the write, the old version of the instruction could be the one executed. To
prevent the old instruction from being executed, flush the instruction prefetch unit by coding a jump instruction
immediately after any write that modifies an instruction.

Vol. 3A 11-19

MEMORY CACHE CONTROL

11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the element may never
have been accessed in the normal von Neumann sequence. Implicit caching occurs on the P6 and more recent
processor families due to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching is an
extension of the behavior of existing Intel386, Intel486, and Pentium processor systems, since software running
on these processor families also has not been able to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate the cache when
changes are made to cacheable data that the cache coherency mechanism does not automatically handle. This
includes writes to dual-ported or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries. The linear address F000H
points to physical location B000H (the page-table entry for F000H contains the value B000H), and the page-table
entry for linear address F000 is PTE_F000.

Example 11-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the last MOV instruction performed
would place the value at physical location B000H into EBX, rather than the value at the new physical address
A000H. This situation is remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instructions, that provide software with
explicit control over the caching of data. These instructions provide “hints” to the processor that the data requested
by a PREFETCHh instruction should be read into cache hierarchy now or as soon as possible, in anticipation of its
use. The instructions provide different variations of the hint that allow selection of the cache level into which data
will be read.

The PREFETCHh instructions can help reduce the long latency typically associated with reading data from memory
and thus help prevent processor “stalls.” However, these instructions should be used judiciously. Overuse can lead
to resource conflicts and hence reduce the performance of an application. Also, these instructions should only be
used to prefetch data from memory; they should not be used to prefetch instructions. For more detailed informa-
tion on the proper use of the prefetch instruction, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64
and IA-32 Architectures Optimization Reference Manual.

11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)
The processor updates its address translation caches (TLBs) transparently to software. Several mechanisms are
available, however, that allow software and hardware to invalidate the TLBs either explicitly or as a side effect of
another operation. Most details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches.” In
addition, the following operations invalidate all TLB entries, irrespective of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.

11-20 Vol. 3A

MEMORY CACHE CONTROL

• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 to modify the PSE, PGE, or
PAE flag.

• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a store buffer. The store buffer
improves processor performance by allowing the processor to continue executing instructions without having to
wait until a write to memory and/or to a cache is complete. It also allows writes to be delayed for more efficient use
of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use multiple proces-
sors. The processor ensures that write operations are always carried out in program order. It also ensures that the
contents of the store buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is performed.
• (Pentium III, and more recent processor families only) When using an SFENCE instruction to order stores.
• (Pentium 4 and more recent processor families only) When using an MFENCE instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed description of the operation of
the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the memory types (see Section
11.3, “Methods of Caching Available”) with physical-address ranges in system memory. They allow the processor to
optimize operations for different types of memory such as RAM, ROM, frame-buffer memory, and memory-mapped
I/O devices. They also simplify system hardware design by eliminating the memory control pins used for this func-
tion on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows multiple ranges to be defined in physical memory, and it defines a set of model-
specific registers (MSRs) for specifying the type of memory that is contained in each range. Table 11-8 shows the
memory types that can be specified and their properties; Figure 11-4 shows the mapping of physical memory with
MTRRs. See Section 11.3, “Methods of Caching Available,” for a more detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the fixed and variable MTRRs,
which in effect makes all of physical memory uncacheable. Initialization software should then set the MTRRs to a
specific, system-defined memory map. Typically, the BIOS (basic input/output system) software configures the
MTRRs. The operating system or executive is then free to modify the memory map using the normal page-level
cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent family, each processor MUST use
the identical MTRR memory map so that software will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain MTRR consistency between all
the processors in the system (that is, all processors must use the same MTRR values). The P6 and
more recent processor families provide no hardware support for maintaining this consistency.

Vol. 3A 11-21

MEMORY CACHE CONTROL

11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if MTRRs are supported on a
processor by executing the CPUID instruction and reading the state of the MTRR flag (bit 12) in the feature infor-
mation register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional information about MTRRs can
be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap MSR for the P6 family processors). The
IA32_MTRRCAP MSR is a read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this register are as follows:

Table 11-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H

Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4. Mapping Physical Memory With MTRRs

0

FFFFFFFFH

80000H
BFFFFH
C0000H
FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

Variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)

11-22 Vol. 3A

MEMORY CACHE CONTROL

• VCNT (variable range registers count) field, bits 0 through 7 — Indicates the number of variable ranges
implemented on the processor.

• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs (IA32_MTRR_FIX64K_00000
through IA32_MTRR_FIX4K_0F8000) are supported when set; no fixed range registers are supported when
clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type is supported when set; the
WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-management range register
(SMRR) interface is supported when bit 11 is set; the SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software attempts to write to the
IA32_MTRRCAP MSR, a general-protection exception (#GP) is generated.

Software must read IA32_MTRRCAP VCNT field to determine the number of variable MTRRs and query other
feature bits in IA32_MTRRCAP to determine additional capabilities that are supported in a processor. For example,
some processors may report a value of ‘8’ in the VCNT field, other processors may report VCNT with different
values.

11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three groups of registers: the
IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range MTRRs. These registers can be read
and written to using the RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates the
availability of these registers on the processor (see Section 11.11.1, “MTRR Feature Identification”).

11.11.2.1 IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family processors) sets the default proper-
ties of the regions of physical memory that are not encompassed by MTRRs. The functions of the flags and field in
this register are as follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for those physical memory address

ranges that do not have a memory type specified for them by an MTRR (see Table 11-8 for the encoding of this
field). The legal values for this field are 0, 1, 4, 5, and 6. All other values result in a general-protection
exception (#GP) being generated.
Intel recommends the use of the UC (uncached) memory type for all physical memory addresses where
memory does not exist. To assign the UC type to nonexistent memory locations, it can either be specified as the
default type in the Type field or be explicitly assigned with the fixed and variable MTRRs.

Figure 11-5. IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported

63 0

Reserved W
C

71011

VCNT
F
I
X

89

Reserved

SMRR — SMRR interface supported

Vol. 3A 11-23

MEMORY CACHE CONTROL

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled when set; fixed-range MTRRs are
disabled when clear. When the fixed-range MTRRs are enabled, they take priority over the variable-range
MTRRs when overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-range MTRRs can
still be used and can map the range ordinarily covered by the fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are disabled when clear, and the
UC memory type is applied to all of physical memory. When this flag is set, the FE flag can disable the fixed-
range MTRRs; when the flag is clear, the FE flag has no affect. When the E flag is set, the type specified in the
default memory type field is used for areas of memory not already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are reserved; the processor generates a
general-protection exception (#GP) if software attempts to write nonzero values to them.

11.11.2.2 Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these registers is
divided into 8-bit fields that are used to specify the memory type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range from 0H to 7FFFFH. This range

is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 — Maps the two 128-KByte

address ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub-ranges, 8 ranges per
register.

• Registers IA32_MTRR_FIX4K_C0000 through IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte
address ranges from C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 ranges per
register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the corresponding fields of the
fixed-range MTRRs; Table 11-8 shows memory type encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3 Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type for m variable-
size address ranges, using a pair of MTRRs for each range. The number m of ranges supported is given in bits 7:0
of the IA32_MTRRCAP MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range;
the second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. The “n” suffix
is in the range 0 through m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and MTRRphysMask.

Figure 11-6. IA32_MTRR_DEF_TYPE MSR

Type — Default memory type
FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved

11-24 Vol. 3A

MEMORY CACHE CONTROL

Figure 11-7 shows flags and fields in these registers. The functions of these flags and fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of

this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base address of the address range.

This 24-bit value, in the case where MAXPHYADDR is 36 bits, is extended by 12 bits at the low end to form the
base address (this automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 bits if the maximum physical
address size is 36 bits, 28 bits if the maximum physical address size is 40 bits). The mask determines the range
of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section
11.11.3, “Example Base and Mask Calculations.”

— The width of the PhysMask field depends on the maximum physical address size supported by the
processor.

CPUID.80000008H reports the maximum physical address size supported by the processor. If
CPUID.80000008H is not available, software may assume that the processor supports a 36-bit physical
address size (then PhysMask is 24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are
reserved). See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Table 11-9. Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
9BFFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000

Vol. 3A 11-25

MEMORY CACHE CONTROL

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers are reserved; the processor
generates a general-protection exception (#GP) if software attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the area not mapped by the mask
value is set to the default memory type, unless some other MTRR specifies a type for that range. Intel does not
encourage the use of “discontinuous” ranges.

NOTE
It is possible for software to parse the memory descriptions that BIOS provides by using the
ACPI/INT15 e820 interface mechanism. This information then can be used to determine how
MTRRs are initialized (for example: allowing the BIOS to define valid memory ranges and the
maximum memory range supported by the platform, including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable MTRR ranges.

11.11.2.4 System-Management Range Register Interface
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to restrict access to a specified
memory address range used by system-management mode (SMM) software (see Section 34.4.2.1). If the SMRR
interface is supported, SMM software is strongly encouraged to use it to protect the SMI code and data stored by
SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). The IA32_SMRR_PHYSBASE
MSR defines the base address for the SMRAM memory range and the memory type used to access it in SMM. The
IA32_SMRR_PHYSMASK MSR contains a valid bit and a mask that determines the SMRAM address range protected
by the SMRR interface. These MSRs may be written only in SMM; an attempt to write them outside of SMM causes
a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and fields are the following:

Figure 11-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range Register Pair

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the SMRR interface has been enabled using
a model-specific bit in the IA32_FEATURE_CONTROL MSR.

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.

11-26 Vol. 3A

MEMORY CACHE CONTROL

• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of
this field).

• PhysBase field, bits 12 through 31 — Specifies the base address of the address range. The address must be
less than 4 GBytes and is automatically aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the range of the region being
mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section
11.11.3, “Example Base and Mask Calculations.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Before attempting to access these SMRR registers, software must test bit 11 in the IA32_MTRRCAP register. If
SMRR is not supported, reads from or writes to registers cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified address range are treated as
follows:
• If the logical processor is in SMM, accesses uses the memory type in the IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read accesses return a fixed value for each

byte. The uncacheable memory type (UC) is used in this case.

The above items apply even if the address range specified overlaps with a range specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical address size of 36 bits. The base
and mask values entered in variable-range MTRR pairs are 24-bit values that the processor extends to 36-bits.

For example, to enter a base address of 2 MBytes (200000H) in the IA32_MTRR_PHYSBASE3 register, the 12 least-
significant bits are truncated and the value 000200H is entered in the PhysBase field. The same operation must be
performed on mask values. For example, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4
MBytes), a mask value of FFFE00000H is required. Again, the 12 least-significant bits of this mask value are trun-
cated, so that the value entered in the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen
so that when any address in the 200000H to 3FFFFFH range is AND’d with the mask value, it will return the same
value as when the base address is AND’d with the mask value (which is 200000H).

Figure 11-8. IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register
63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register
63 0

Reserved

1112

Type

31

PhysBase

78

Reserved

Vol. 3A 11-27

MEMORY CACHE CONTROL

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base value of 000400H is entered
in the PhysBase field and a mask value of FFFC00H is entered in the PhysMask field.

Example 11-2. Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system has the following characteris-
tics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64 MBytes. This

restriction forces the 96 MBytes of system memory to be addressed from 0 to 64 MBytes and from 68 MBytes
to 100 MBytes, leaving a 4-MByte hole for the I/O card.

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at address A0000000H.
• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical address space for this system
configuration.

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 000F FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are mapped to WB and
UC memory types) to minimize the number of MTRR registers that are required to configure the memory environ-
ment. This setup also fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support
For Intel 64 and IA-32 processors that support greater than 36 bits of physical address size, software should query
CPUID.80000008H to determine the maximum physical address. See the example.

Example 11-3. Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in IA32_MTRR_PHYSMASKn
registers) is 28 bits instead of 24 bits. For this situation, Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 00FF FC00 0800H
Caches 0-64 MByte as WB cache type.

11-28 Vol. 3A

MEMORY CACHE CONTROL

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 00FF FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 00FF FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 00FF FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 00FF FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 00FF FF80 0800H
Caches A0000000-A0800000 as WC type.

11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following “power of 2” size and alignment
rules:

1. The minimum range size is 4 KBytes and the base address of the range must be on at least a 4-KByte
boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address must be aligned on a
2n boundary, where n is a value equal to or greater than 12. The base-address alignment value cannot be less
than its length. For example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be aligned on
at least an 8-KByte boundary.

11.11.4.1 MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR), then all memory accesses
are of the UC memory type. If the MTRRs are enabled, then the memory type used for a memory access is deter-
mined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs are enabled, the
processor uses the memory type stored for the appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type set by the variable-range
MTRRs:

— If one variable memory range matches, the processor uses the memory type stored in the
IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are identical, then that memory type
is used.

— If two or more variable memory ranges match and one of the memory types is UC, the UC memory type
used.

— If two or more variable memory ranges match and the memory types are WT and WB, the WT memory type
is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.

Vol. 3A 11-29

MEMORY CACHE CONTROL

11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in variable-range MTRRs and clear the
E flag in the IA32_MTRR_DEF_TYPE MSR to disable all MTRRs. All other bits in the MTRRs are undefined.

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all fixed-range and variable-
range MTRR register fields to 0. Software can then initialize the MTRRs according to known types of memory,
including memory on devices that it auto-configures. Initialization is expected to occur prior to booting the oper-
ating system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on initializing MTRRs in MP (multiple-
processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a future processor may not imple-
ment all memory types supported by the Pentium 4, Intel Xeon, and P6 family processors. The following rules
support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker memory ordering model.
For example, the uncacheable type cannot be mapped into any other type, and the write-back, write-through,
and write-protected types cannot be mapped into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that does delay writes,
because applications of such a memory type may rely on its write-through behavior. Accordingly, the write-
back type cannot be mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by a subsequent read, such as
the write-protected type, can only be mapped to another type with the same behavior (and there are no others
for the Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how a memory type is used,
allowing additional mappings. For example, write-through memory with no associated write side effects can be
mapped into write-back memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the memory types for memory-
mapped devices. The operating system should provide a driver and application programming interface (API) to
access and set the MTRRs. The function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1 MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range specified by the parameters
base and size. The base address is the starting physical address and the size is the number of bytes for the memory
range. The function automatically aligns the base address and size to 4-KByte boundaries. Pseudocode for the
MemTypeGet() function is given in Example 11-4.

11-30 Vol. 3A

MEMORY CACHE CONTROL

Example 11-4. MemTypeGet() Pseudocode

#define MIXED_TYPES -1 /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap physical-address space

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType := Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType := Get4KMemType (4KByteRange);
IF NextType != FirstType

THEN return Mixed_Types;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs are not enabled, then
the UC memory type is returned. If more than one memory type corresponds to the specified range, a status of
MIXED_TYPES is returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or WP) is
returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the memory type for a single 4-KByte
range at a given physical address. The sample code determines whether an PHY_ADDRESS falls within a fixed
range by comparing the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH
(16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the
appropriate bits within one of its MTRRs determine the memory type.

Example 11-5. Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

Vol. 3A 11-31

MEMORY CACHE CONTROL

11.11.7.2 MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory range specified by the parame-
ters base and size to the type specified by type. The base address and size are multiples of 4 KBytes and the size
is not 0.

Example 11-6. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID;

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED;

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED;

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR

THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED;

FI;

IF conflicts with current variable ranges

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE;

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST;

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;

11-32 Vol. 3A

MEMORY CACHE CONTROL

flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects conflicts with
current variable range registers by cycling through them and determining whether the physical address in question
matches any of the current ranges. During this scan, the algorithm can detect whether any current variable ranges
overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid executing code with a
partially valid MTRR setup. The algorithm disables caching by setting the CD flag and clearing the NW flag in control
register CR0. The caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB entries either
by clearing the page-global enable (PGE) flag in control register CR4 (if PGE was already set) or by updating control
register CR3 (if PGE was already clear). Finally, it disables MTRRs by clearing the E flag in the
IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and again invalidates
the caches and TLBs. This second invalidation is required because of the processor's aggressive prefetch of both
instructions and data. The algorithm restores interrupts and re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency between all the
processors in the system. The Pentium 4, Intel Xeon, and P6 family processors provide no hardware support to
maintain this consistency. In general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it must load the MTRRs of the
boot processor while the E flag in register MTRRdefType is 0. The operating system then directs other processors to
load their MTRRs with the same memory map. After all the processors have loaded their MTRRs, the operating
system signals them to enable their MTRRs. Barrier synchronization is used to prevent further memory accesses
until all processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-down style
algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat the loading and
enabling process to maintain consistency, using the following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that supports self-snooping, CPUID
feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

Vol. 3A 11-33

MEMORY CACHE CONTROL

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV from control register CR3 to
another register and then a MOV from that register back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only variable ranges are being
modified, software may clear the valid bits for the affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only variable-range registers were
modified and their individual valid bits were cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4, Intel Xeon, and P6 family
processors. Executing the WBINVD instruction is not needed when using Pentium 4, Intel Xeon, and P6 family
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 4 KByte granularity (the same gran-
ularity as 4-KByte pages). The memory type for a given page is cached in the processor’s TLBs. When using large
pages (2 MBytes, 4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, each with a
single memory type. Because the memory type for a large page is cached in the TLB, the processor can behave in
an undefined manner if a large page is mapped to a region of memory that MTRRs have mapped with multiple
memory types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within a large page are of the
same type. If a large page maps to a region of memory containing different MTRR-defined memory types, the PCD
and PWT flags in the page-table entry should be set for the most conservative memory type for that range. For
example, a large page used for memory mapped I/O and regular memory is mapped as UC memory. Alternatively,
the operating system can map the region using multiple 4-KByte pages each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory type implies that large pages with
different memory types may suffer a performance penalty, since they must be marked with the lowest common
denominator memory type. The same consideration apply to 1 GByte pages, each of which may consist of multiple
2-Mbyte ranges.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the physical memory range from 0
to 4 MBytes, which is potentially mapped by both the fixed and variable MTRRs. This support is invoked when a
Pentium 4, Intel Xeon, or P6 family processor detects a large page overlapping the first 1 MByte of this memory
range with a memory type that conflicts with the fixed MTRRs. Here, the processor maps the memory range as
multiple 4-KByte pages within the TLB. This operation ensures correct behavior at the cost of performance. To
avoid this performance penalty, operating-system software should reserve the large page option for regions of
memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to allow memory types to be
assigned to regions of physical memory based on linear address mappings. The PAT is a companion feature to the
MTRRs; that is, the MTRRs allow mapping of memory types to regions of the physical address space, where the PAT
allows mapping of memory types to pages within the linear address space. The MTRRs are useful for statically
describing memory types for physical ranges, and are typically set up by the system BIOS. The PAT extends the
functions of the PCD and PWT bits in page tables to allow all five of the memory types that can be assigned with the
MTRRs (plus one additional memory type) to also be assigned dynamically to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also available in the Pentium 4 and
Intel Xeon processors.

11-34 Vol. 3A

MEMORY CACHE CONTROL

11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing the CPUID instruction with a
value of 1 in the EAX register. Support for the PAT is indicated by the PAT flag (bit 16 of the values returned to EDX
register). If the PAT is supported, the operating system or executive can use the IA32_PAT MSR to program the PAT.
When memory types have been assigned to entries in the PAT, software can then use of the PAT-index bit (PAT) in
the page-table and page-directory entries along with the PCD and PWT bits to assign memory types from the PAT
to individual pages.

Note that there is no separate flag or control bit in any of the control registers that enables the PAT. The PAT is
always enabled on all processors that support it, and the table lookup always occurs whenever paging is enabled,
in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4). Figure 11-9. shows the format of the 64-bit
IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three low-order bits of each field are
used to specify a memory type. The five high-order bits of each field are reserved, and must be set to all 0s. Each
of the eight page attribute fields can contain any of the memory type encodings specified in Table 11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9. IA32_PAT MSR

Table 11-10. Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).

Vol. 3A 11-35

MEMORY CACHE CONTROL

11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, PCD, and PWT bits must be
encoded in the page-table or page-directory entry for the page. Table 11-11 shows the possible encodings of the
PAT, PCD, and PWT bits and the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries that
point to 4-KByte pages and bit 12 in paging-structure entries that point to larger pages. The PCD and PWT bits are
bits 4 and 3, respectively, in paging-structure entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the region of physical memory
in which the page is mapped to determine the effective memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or reset of the processor. The setting
remain unchanged following a soft reset (INIT reset).

The values in all the entries of the PAT can be changed by writing to the IA32_PAT MSR using the WRMSR instruc-
tion. The IA32_PAT MSR is read and write accessible (use of the RDMSR and WRMSR instructions, respectively) to
software operating at a CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT. Attempting to
write an undefined memory type encoding into the PAT causes a general-protection (#GP) exception to be gener-
ated.

The operating system is responsible for insuring that changes to a PAT entry occur in a manner that maintains the
consistency of the processor caches and translation lookaside buffers (TLB). This is accomplished by following the
procedure as specified in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of an
MTRR in a multiple processor system. It requires a specific sequence of operations that includes flushing the
processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it is possible to have a single
physical page mapped to two or more different linear addresses, each with different memory types. Intel does not
support this practice because it may lead to undefined operations that can result in a system failure. In particular,
a WC page must never be aliased to a cacheable page because WC writes may not check the processor caches.

Table 11-11. Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC

11-36 Vol. 3A

MEMORY CACHE CONTROL

When remapping a page that was previously mapped as a cacheable memory type to a WC page, an operating
system can avoid this type of aliasing by doing the following:

1. Remove the previous mapping to a cacheable memory type in the page tables; that is, make them not
present.

2. Flush the TLBs of processors that may have used the mapping, even speculatively.

3. Create a new mapping to the same physical address with a new memory type, for instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. Note on processors that support
self-snooping, CPUID feature flag bit 27, this step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) and enable page size extensions
must carefully scrutinize the use of the PAT index bit for the 4-KByte page-table entries. The PAT index bit for a
page-table entry (bit 7) corresponds to the page size bit in a page-directory entry. Therefore, the operating system
can only use PAT entries PA0 through PA3 when setting the caching type for a page table that is also used as a page
directory. If the operating system attempts to use PAT entries PA4 through PA7 when using this memory as a page
table, it effectively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care should be taken in selecting the
encodings for entries in the PAT (see Section 11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That is, the PCD and PWT bits in
page-table entries and in page-directory entries (that point to pages) are always select a memory type for a page
indirectly by selecting an entry in the PAT. They never select the memory type for a page directly as they do in
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not support the PAT, the PAT mech-
anism has been designed to allow backward compatibility to earlier processors. This compatibility is provided
through the ordering of the PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-directory entries) is reserved
and set to 0. With the PAT bit reserved, only the first four entries of the PAT can be selected with the PCD and PWT
bits. At power-up or reset (see Table 11-12), these first four entries are encoded to select the same memory types
as the PCD and PWT bits would normally select directly in an IA-32 processor that does not implement the PAT. So,
if encodings of the first four entries in the PAT are left unchanged following a power-up or reset, code written to run
on earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 processors that do implement
the PAT.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

18.Updates to Chapter 17, Volume 3B
Change bars and green text show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Update to section 17.4.9.2, “Setting Up the DS Save Area”.

Vol. 3B 17-1

CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR

TECHNOLOGY (INTEL® RDT) FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made
to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.17, “Time-Stamp Counter”.
• Features which allow monitoring of shared platform resources such as the L3 cache are described in Section

17.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features”.
• Features which enable control over shared platform resources are described in Section 17.19, “Intel® Resource

Director Technology (Intel® RDT) Allocation Features”.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an

instruction.
• Breakpoint instruction (INT3) — Generates a breakpoint exception (#BP) that transfers program control to

the debugger procedure or task. This instruction is an alternative way to set instruction breakpoints. It is
especially useful when more than four breakpoints are desired, or when breakpoints are being placed in the
source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.

17-2 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug
operation of the processor. These registers can be written to and read using the move to/from debug register form
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions.

Figure 17-1. Debug Registers

012345678910111213141516171819202122232425262728293031

L
0

G
0

L
1

G
1

L
2

G
2

L
3

G
3

L
E

G
E1

R
T
M

0G
D0 0R/W

0
LEN

0
R/W

1
LEN

1
R/W

2
LEN

2
R/W

3
LEN

3 DR7

012345678910111213141516171819202122232425262728293031

B
0

B
1

B
2

B
3

B
D

B
S

B
T

R
T
M

Reserved (set to 1) DR6

031

DR5

031

DR4

031

Breakpoint 3 Linear Address DR3

031

Breakpoint 2 Linear Address DR2

031

Breakpoint 1 Linear Address DR1

031

Breakpoint 0 Linear Address DR0

Reserved

111111110

Vol. 3B 17-3

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug
register DR7 further specifies breakpoint conditions.

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD).
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers
DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its

associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this
exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if
the processor does not support RTM.

17-4 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except
bit 16, which they should set) before returning to the interrupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1).
The flags and fields in this register control the following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint

condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM is
also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3).
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

Vol. 3B 17-5

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with
an of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other
processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for
comparison with the breakpoint address in the selected debug register). These requirements are enforced by the
processor; it uses LENn field bits to mask the lower address bits in the debug registers. Unaligned data or I/O
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Instruction
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must
point to the first prefix.

17-6 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size
prefixes are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DR0–DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of
the processor implementation (address matching is supported only on valid addresses generated by the processor
implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions
are generated and typical exception handler operations.

Table 17-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Vol. 3B 17-7

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software system. The processor
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-Detect Exception Condition”)
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at
one time. The following sections describe each class of debug exception.

Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

Reserved

3263

012345678910111213141516171819202122232425262728293031

L
0

G
0

L
1

G
1

L
2

G
2

L
3

G
3

L
E

G
E

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3 DR7

DR7

3263

01234567891011121314151631

B
0

B
1

B
2

B
3

B
D

B
S

B
TReserved (set to 1) DR6

DR6

00 100

111111110

3263

DR5

3263

DR4

3263

Breakpoint 3 Linear Address DR3

3263

Breakpoint 2 Linear Address DR2

3263

Breakpoint 1 Linear Address DR1

3263

R
T
M

17-8 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The INT1 instruction generates a debug exception as a trap. Hardware vendors may use the INT1 instruction for
hardware debug. For that reason, Intel recommends software vendors instead use the INT3 instruction for software
breakpoints.

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

17.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception
(#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions
detected during the decoding or execution of an instruction. However, if an instruction breakpoint is placed on an
instruction located immediately after a POP SS/MOV SS instruction, the breakpoint will be suppressed as if
EFLAGS.RF were 1 (see the next paragraph and Section 6.8.3, “Masking Exceptions and Interrupts When
Switching Stacks,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction
after the check for instruction breakpoints, CS limit violations, and FP exceptions. Task Switches and IRETD/IRETQ
instructions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image
pushed on the stack:
• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the

value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value

pushed for RF is 1.

Table 17-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify
debug registers (usually in conjunction with in-circuit
emulation)

BD = 1 None Fault

Task switch BT = 1 None Trap

INT1 instruction None None Trap

Vol. 3B 17-9

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration,
the value pushed for RF is 1.

• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was
called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last
iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those generated after the last
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as,
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a
page fault), the processor may generate one spurious debug exception after the second exception has been
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the
access, so these breakpoint condition causes a trap-class exception to be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint
matching does not occur unless it is enabled by setting the LE and/or the GE flags.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor gener-
ates the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

If an execution of the MOV or POP instruction loads the SS register and encounters a data breakpoint, the resulting
debug exception is delivered after completion of the next instruction (the one after the MOV or POP).

Any pending data or I/O breakpoints are lost upon delivery of an exception. For example, if a machine-check
exception (#MC) occurs following an instruction that encounters a data breakpoint (but before the resulting debug
exception is delivered), the data breakpoint is lost. If a MOV or POP instruction that loads the SS register encoun-
ters a data breakpoint, the data breakpoint is lost if the next instruction causes a fault.

Delivery of events due to INT n, INT3, or INTO does not cause a loss of data breakpoints. If a MOV or POP instruc-
tion that loads the SS register encounters a data breakpoint, and the next instruction is software interrupt (INT n,
INT3, or INTO), a debug exception (#DB) resulting from a data breakpoint will be delivered after the transition to
the software-interrupt handler. The #DB handler should account for the fact that the #DB may have been delivered

17-10 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

after a invocation of a software-interrupt handler, and in particular that the CPL may have changed between recog-
nition of the data breakpoint and delivery of the #DB.

17.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The
debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The
processor generates the exception before it executes the MOV instruction that accesses a debug register, which
causes a fault-class exception to be generated.

17.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated
after the instruction is executed. The processor will not generate this exception after the instruction that sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n, INT3, and INTO instructions,
however, do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n
or INTO instructions rather than executing them directly. To maintain protection, the operating system should
check the CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an external
interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This operation
clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler,
single step an INT n instruction that calls the interrupt handler.

If an occurrence of the MOV or POP instruction loads the SS register executes with EFLAGS.TF = 1, no single-step
debug exception occurs following the MOV or POP instruction.

17.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe
this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT3 instruction. See Chapter 6,
“Interrupt 3—Breakpoint Exception (#BP).” Debuggers use breakpoint exceptions in the same way that they use
the breakpoint registers; that is, as a mechanism for suspending program execution to examine registers and
memory locations. With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction
breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers,
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the
source code of a program under development.

Vol. 3B 17-11

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory
(RTM)

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 describes Restricted Transactional Memory (RTM). This is an
instruction-set interface that allows software to identify transactional regions (or critical sections) using the
XBEGIN and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region successfully
reaches an XEND instruction, the processor ensures that all memory operations performed within the region
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM transac-
tion region does not succeed if the processor cannot commit the updates atomically. When this happens, the
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor
discards all updates performed in the region, restores architectural state to appear as if the execution had not
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within an
RTM transaction region does not resume execution at the fallback instruction address specified with the XBEGIN
instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is deliv-
ered. (A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear
DR6.RTM[bit 16] (all other debug exceptions set DR6[16]).

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™
Processors)”

— Section 17.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Goldmont Microarchitecture”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Sandy Bridge”

— Section 17.11, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Haswell Microarchitecture”

— Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Skylake Microarchitecture”

— Section 17.14, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™

Duo Processors)”

— Section 17.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.16, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17-12 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.9.1, “LBR Stack” (processors
based on Intel® Microarchitecture code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about the
TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS),” for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 17.13.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 17.13.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.
when a counter overflows and is configured to trigger PMI). See Section 17.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and
IA32_FIXED_CTRx) are frozen on a PMI request. See Section 17.4.7 for details.

• FREEZE_WHILE_SMM (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all the
enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF,

Figure 17-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM

15

RTM

Vol. 3B 17-13

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the enable
bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI delivery will
be restored, after the SMI handler issues RSM to complete its service. Note that system software must check if
the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM control bit.
IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit
12] is reporting 1. See Section 18.8 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is
also set. See Section 17.3.3.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register,
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before
resuming program execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM.
A debugging device that is monitoring the system bus can read these messages and synchronize operations with
taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus,
as described in Section 17.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and LBR
bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when TR is
set.

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor families that do not provide an externally visible system

bus (i.e., processors based on the Silvermont microarchitecture or later).

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task.
See Section 7.2.1, “Task-State Segment (TSS).”

17-14 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.4.4.1 Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to systems with a front side bus
(FSB). BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional
FSB.

17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an interrupt when the buffer is nearly
full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation of inter-
rupt when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System software can selectively specify
CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two bit fields,
BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the CPL of
BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and
performance monitoring are available for processors supporting architectural performance monitoring version 2 or
greater (i.e. CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL to
reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on the
version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.LBR to resume recording branches. When using this feature, software should be careful
about writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance
counters are associated with the target workload and not polluted by the PMI and activities within the PMI
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two
flavors are supported:

Vol. 3B 17-15

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 18-3). The
PMCs affected include both general-purpose counters and fixed-function counters (see Section 18.6.2.1,
“Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the corre-
sponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter
operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition, but
does not change the IA32_PERF_GLOBAL_CTRL MSR.

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx
register.

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR
(see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

Table 17-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined
Freeza_Perfmon_On_PMI interface.

Table 17-3. Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed

Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on overflow Processor freezes the counters on overflow Unchanged

Processor clears IA32_PERF_GLOBAL_CTRL Processor set
IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads IA32_PERF_GLOBAL_STATUS
(0x38E) to examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to
IA32_PERF_GLOBAL_OVF_CTL (0x390)

Handler writes mask into
IA32_PERF_GLOBAL_OVF_RESET (0x390)

Processor clears IA32_PERF_GLOBAL_STATUS Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables IA32_PERF_GLOBAL_CTRL None Reduced software overhead

17-16 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can
vary between different processor families. Table 17-4 lists the LBR stack size and TOS pointer range for several
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID instruc-
tion in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR)
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 2, “Model-Specific
Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for model-
specific MSR addresses).
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size

column of Table 17-4) that store source and destination address of recent branches (see Figure 17-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR
address store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next consecutive (N-1) MSR address
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is
given in Table 17-4.

17.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the upper
32-bits of branch addresses will be stored as 0.

Table 17-4. LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH, 06_55H,
06_66H, 06_7AH, 06_67H, 06_6AH, 06_6CH,
06_7DH, 06_7EH

32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 17.12.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H, 06_3CH,
06_45H, 06_46H, 06_3FH, 06_2AH, 06_2DH,
06_3AH, 06_3EH, 06_1AH, 06_1EH, 06_1FH,
06_2EH, 06_25H, 06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH, 06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH,
06_5DH, 06_1CH, 06_26H, 06_27H, 06_35H,
06_36H

8 FROM_IP, TO_IP 0 to 7

Vol. 3B 17-17

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective
source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR stack. See
LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ registers
in the LBR stack.

— 000101B (64-bit EIP record format), Flags, TSX, LBR_INFO — Stores 64-bit offset (effective
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR update
are reported in the LBR_INFO MSR stack.

— 000110B (64-bit LIP record format), Flags, Cycles — Stores 64-bit linear address (CS.Base +
effective address) of respective source/destination. Misprediction info is reported in the upper bits of
'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 bits
of the 'TO' registers in the LBR stack (see Section 17.6).

— 000111B (64-bit LIP record format), Flags, LBR_INFO — Stores 64-bit linear address (CS.Base +
effective address) of respective source/destination. Misprediction, and elapsed cycles since the last LBR
update are reported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2 LBR Stack and IA-32 Processors
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and
“From Linear Address“ using the high and low half of each 64-bit MSR.

17.4.8.3 Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

Figure 17-4. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP

17-18 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides
the debug store (DS) mechanism. The DS mechanism allows:
• BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The

capability of PEBS varies across different microarchitectures. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 18, “Perfor-
mance Monitoring.”

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear)

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected.
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence
of the PEBS event that caused the counter to overflow. When the state information has been logged, the
counter is automatically reset to a specified value, and event counting begins again. The content layout of a
PEBS record varies across different implementations that support PEBS. See Section 18.6.2.4.2 for details of
enumerating PEBS record format.

NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset
of implementation-specific precise events. See Section 18.5.3.1 for a PEBS enhancement that can
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on INIT, processor Reset or transition to
system-management mode (SMM) or IA-32e mode. It is similarly disabled on the generation of a
machine-check exception on 45nm and 32nm Intel Atom processors and on processors with
Netburst or Intel Core microarchitecture.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the
IA32_MISC_ENABLE MSR (see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4).

The DS save area is divided into three parts: buffer management area, branch trace store (BTS) buffer, and PEBS
buffer (see Figure 17-5). The buffer management area is used to define the location and size of the BTS and PEBS
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in
their respective buffers and to record the performance counter reset value. The linear address of the first byte of
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should

be a multiple of the BTS record size (12 bytes) plus 1.

Vol. 3B 17-19

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This
address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it
must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 64-bit value that the counter is to be set to when a PEBS record is written. Bits
beyond the size of the counter are ignored. This value allows state information to be collected regularly every
time the specified number of events occur.

Figure 17-5. DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

17-20 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Figure 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not

predicted (clear).

Figure 17-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the begin-
ning of the instruction that caused the event. However, there are cases where the registers may be logged in a
partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

17.4.9.1 64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 17-8.

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown in
Figure 17-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 17-5.

Figure 17-6. 32-bit Branch Trace Record Format

Figure 17-7. PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

Vol. 3B 17-21

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The
structure of a branch trace record is similar to that shown in Figure 17-6, but each field is 8 bytes in length. This
makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in
Figure 17-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This makes
the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

Figure 17-8. IA-32e Mode DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

Figure 17-9. 64-bit Branch Trace Record Format

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

17-22 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Fields in the buffer management area of a DS save area are described in Section 17.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures
17-9 and Figures 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all
operating modes.

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described
in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting architec-
tural performance monitoring should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or
general-purpose counting (specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the
following procedure (See Section 18.6.2.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 17.4.9, “BTS and DS Save Area,”
and Section 17.4.9.1, “64 Bit Format of the DS Save Area”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section
10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the
xAPIC LVT.

Figure 17-10. 64-bit PEBS Record Format

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H

Vol. 3B 17-23

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, “Writing the DS Interrupt
Service Routine.”

The following restrictions should be applied to the DS save area.
• The recording of branch records in the BTS buffer (or PEBS records in the PEBS buffer) may not operate

properly if accesses to the linear addresses in any of the three DS save area sections cause page faults, VM
exits, or the setting of accessed or dirty flags in the paging structures (ordinary or EPT). For that reason,
system software should establish paging structures (both ordinary and EPT) to prevent such occurrences.
Implications of this may be that an operating system should allocate this memory from a non-paged pool and
that system software cannot do “lazy” page-table entry propagation for these pages. A virtual-machine
monitor may choose to allow use of PEBS by guest software only if EPT maps all guest-physical memory as
present and read/write.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses.
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary.

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any
change to control register CR3 will not change the DS addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

17.4.9.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-5), IA32_DEBUGCTL (see Figure 17-3), or
MSR_DEBUGCTLB (see Figure 17-16) control the generation of branch records and storing of them in the BTS
buffer; these are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines
whether the BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simul-
taneously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or
MSR_DEBUGCTLB for Pentium M processors).

Table 17-5. IA32_DEBUGCTL Flag Encodings
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full

17-24 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB)
if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. BTS absolute maximum < 1
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

17.4.9.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The
encoding of these five bits are shown in Table 17-6.

17.4.9.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the
appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR)
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be
restored to their original values when exiting the ISR.

Table 17-6. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

Vol. 3B 17-25

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• The processor will not disable the DS save area when the buffer is full and the circular mode has not been
selected. The current DS setting must be retained and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition
before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2
DUO AND INTEL® ATOM™ PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 17.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4.
• Last exception records — See Section 17.13.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom
processor families, and Intel processors based on Intel NetBurst microarchitecture.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store
destination addresses

17-26 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1. The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
P6 family processors.

17.5.2 LBR Stack in Intel Atom Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based on
the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

17.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Processors based on the Goldmont microarchitecture extend the capabilities described in Section 17.5.2 with the
following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0].
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 0x680..0x69f)

and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df).

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 17-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 17-7.

• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is
shown in Table 17-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 17.12.2.

• LBR MSRs may be cleared when MWAIT is used to request a C-state that is numerically higher than C1; see
Section 17.12.3.

Table 17-7. MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to“ address. See Section 17.4.8.1 for address format.

Cycle Count
(Saturating)

63:48 R/W Elapsed core clocks since last update to the LBR stack.

Vol. 3B 17-27

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT PLUS MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont Plus microarchitecture. Processors based on the
Goldmont Plus microarchitecture extend the capabilities described in Section 17.6 with the following changes:

• Enumeration of new LBR format: encoding 00111b in IA32_PERF_CAPABILITIES[5:0] is supported, see
Section 17.4.8.1.

• Each LBR stack entry consists of three MSRs:
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data. Layout is the same as
Table 17-16.

17.8 LAST BRANCH, INTERRUPT AND EXCEPTION RECORDING FOR INTEL®
XEON PHI™ PROCESSOR 7200/5200/3200

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in the Intel® Xeon Phi™ processor
7200/5200/3200 series based on the Knights Landing microarchitecture. Eight pairs of MSRs are supported in the
LBR stack, per thread:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 680H) through MSR_LASTBRANCH_7_FROM_IP (address 687H)
store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address 6C0H) through MSR_LASTBRANCH_7_TO_IP (address 6C7H) store
destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1.The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
the P6 family processors.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in
Intel Core 2 processors and adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout.

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses
related to recently executed branches. See Section 17.9.1.

17-28 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are
observable using the Intel® QPI link.

• Last exception records — See Section 17.13.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow

interrupt form the uncore.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11) for

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR

based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only
captures the subset of branches that are specified by MSR_LBR_SELECT.

Figure 17-11. IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM
UNCORE_PMI_EN

13

Vol. 3B 17-29

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.9.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is shown in Table 17-8 and Table 17-9.

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-10.

Table 17-10. LBR Stack Size and TOS Pointer Range

17.9.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all branches will be captured.
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in
the LBR. The layout of MSR_LBR_SELECT is shown in Table 17-11.

Table 17-8. MSR_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.
SIGN_EXt 62:48 R/W Signed extension of bit 47 of this register.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-9. MSR_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to” address. See Section 17.4.8.1 for address format
SIGN_EXt 63:48 R/W Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-11. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

17-30 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.9, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name
Nehalem”, apply to processors based on Intel microarchitecture code name Sandy Bridge. For processors based on
Intel microarchitecture code name Ivy Bridge, the same holds true.

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In Intel
microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The filtering
semantics for “Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 17-12.

17.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.10, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-13. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.10.

Table 17-12. MSR_LBR_SELECT for Intel® microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-13. MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

Vol. 3B 17-31

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become
less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution flow is
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions
would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.11.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is
shown in Table 17-14 and Table 17-9.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are

undefined.

Table 17-14. MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.

SIGN_EXT 60:48 R/W Signed extension of bit 47 of this register.

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region

Table 17-13. MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

17-32 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch
records:
• enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see Section

17.4.8.1.
• Each LBR stack entry consists of a triplets of MSRs:

— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32.

Processors based on the Skylake microarchitecture supports the same LBR filtering capabilities as described in
Table 17-13.

Table 17-15. LBR Stack Size and TOS Pointer Range

17.12.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 17-16.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 17-16. MSR_LBR_INFO_x
Bit Field Bit Offset Access Description

Cycle Count
(saturating)

15:0 R/W Elapsed core clocks since last update to the LBR stack.

Reserved 60:16 R/W Reserved

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region OR
 EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-14. MSR_LASTBRANCH_x_FROM_IP with TSX Information (Contd.)
Bit Field Bit Offset Access Description

Vol. 3B 17-33

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.12.2 Streamlined Freeze_LBRs_On_PMI Operation
The FREEZE_LBRS_ON_PMI feature causes the LBRs to be frozen on a hardware request for a PMI. This prevents
the LBRs from being overwritten by new branches, allowing the PMI handler to examine the control flow that
preceded the PMI generation. Architectural performance monitoring version 4 and above supports a streamlined
FREEZE_LBRs_ON_PMI operation for PMI service routine that replaces the legacy FREEZE_LBRs_ON_PMI opera-
tion (see Section 17.4.7).

While the legacy FREEZE_LBRS_ON_PMI clear the LBR bit in the IA32_DEBUGCTL MSR on a PMI request, the
streamlined FREEZE_LBRS_ON_PMI will set the LBR_FRZ bit in IA32_PERF_GLOBAL_STATUS. Branches will not
cause the LBRs to be updated when LBR_FRZ is set. Software can clear LBR_FRZ at the same time as it clears over-
flow bits by setting the LBR_FRZ bit as well as the needed overflow bit when writing to
IA32_PERF_GLOBAL_STATUS_RESET MSR.

This streamlined behavior avoids race conditions between software and processor writes to IA32_DEBUGCTL that
are possible with FREEZE_LBRS_ON_PMI clearing of the LBR enable.

17.12.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the
FROM, TO, INFO, LAST_BRANCH, LER and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero.

17.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for
recording taken branches, interrupts and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches,

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction
address.

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs

(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family
[CPUID family 0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs
(MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and
MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the

17-34 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also:
Table 17-17, Figure 17-12, and Section 17.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 17.13.3, “Last Exception Records.”

17.13.1 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to
this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example,
when an instruction or data breakpoint or a single-step trap occurs). See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

Figure 17-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS

Vol. 3B 17-35

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in
Figure 17-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last)
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1.
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-17 and Figure 17-12.

Table 17-17. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the
RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction

and the “to” address is the target instruction of the branch.
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that
caused the exception to be generated and the “to” address is the address of the first instruction in the
exception handler routine.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15

17-36 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch record
for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the
branch instruction followed by a record for the interrupt.

17.13.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7
and Intel® Atom™ processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors.
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the
processor took prior to an exception or interrupt being generated.

17.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in
some MSR names and locations.

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR
is located at register address 01D9H.
See Figure 17-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism

Figure 17-13. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP

Vol. 3B 17-37

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a
memory-resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start
at 40H). See Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based
on Skylake Microarchitecture,” and Section 2.20, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Figure 17-14. IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

Figure 17-15. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

17-38 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M
PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors.
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M
processors, this MSR is located at register address 01D9H. See Figure 17-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

Figure 17-16. MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags

Vol. 3B 17-39

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M
Processors, these pairs are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For
Pentium M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 17.13.3, “Last Exception Records,” and Section 2.21, “MSRs In
the Pentium M Processor” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

17.16 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP.
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.16.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode.
A protected-mode operating system procedure is required to provide user access to this register. Figure 17-18
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data
breakpoint or single-step trap occurs.

Figure 17-17. LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

17-40 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag. See Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set,
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear,
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section
17.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP,
and LastExceptionFromIP MSRs are undefined.

17.16.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads
the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception
or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for the
last branch that the processor took prior to an exception or interrupt being generated. When an exception or inter-
rupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers before
the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranchFromIP
MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch
records for the Pentium 4 and Intel Xeon processors.

17.16.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP
MSRs prior to recording the to and from addresses of the interrupt or exception.

Figure 17-18. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved

Vol. 3B 17-41

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch,
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3),
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs
are offsets into a code segment, software must determine the segment base address of the code segment associ-
ated with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The
segment base address can be determined by reading the segment selector for the code segment from the stack
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

17.17 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments
with every internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel®
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H],
DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at
which the processor is booted. The maximum resolved frequency may differ from the processor base
frequency, see Section 18.7.2 for more detail. On certain processors, the TSC frequency may not be the same
as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core
changes frequency. This is the architectural behavior moving forward.

17-42 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
To determine average processor clock frequency, Intel recommends the use of performance
monitoring logic to count processor core clocks over the period of time for which the average is
required. See Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading
Technology in Processors Based on Intel NetBurst® Microarchitecture,” and Chapter 19, “Perfor-
mance Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4,
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as an
ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-stamp
counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter on
processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can be
written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]],
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.17.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC.
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with
a ring transition or access to a platform resource.

17.17.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary TSC register, IA32_TSC_AUX
that is designed to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized
by privileged software with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation.
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is
controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC.
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

Vol. 3B 17-43

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.17.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these
writes on each logical processor. It may be difficult for software to do this in a way than ensures that all logical
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC,

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST
(bit 1).

17.17.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that runs
at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0])/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent2.

When ART hardware is reset, both invariant TSC and K are also reset.

17.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 v3
family introduced resource monitoring capability in each logical processor to measure specific platform shared
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is
described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring
Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent
to determine the usage of cache by applications running on the platform. The initial implementation is directed at
L3 cache monitoring (currently the last level cache in most server platforms).

Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case

2. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that priv-
ileged software can use to manage the time stamp counter for keeping time

17-44 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation,
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature

bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via

CPUID leaves and sub-leaves).
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as
Resource Monitoring IDs (RMIDs).

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product
generation on a per software-id basis.

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory
Bandwidth for a given software ID at any point during runtime.

17.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active
at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor.
Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. Before
reading back monitored data software must configure an event selection MSR (IA32_QM_EVTSEL) to specify which
metric is to be reported, and the specific RMID for which the data should be returned.

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID.
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory
controllers on the same package).

17.18.2 Enabling Monitoring: Usage Flow
Figure 17-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such as
CMT and enable resource monitoring for available resource types and monitoring events.

Vol. 3B 17-45

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available

resource types (see Section 17.18.4), and monitoring capabilities for each resource type (see Section
17.18.5). Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration
infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign
an RMID to each logical processor, see Section 17.18.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and
provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 17.18.7.

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to
check for error conditions and verify data validity.

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H,
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query
available resource types that support monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position
of CPUID.(EAX=0FH, ECX=0):EDX.

17.18.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0)
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e. executing CPUID

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each

Figure 17-19. Platform Shared Resource Monitoring Usage Flow

CPUID.(7,0):EBX.12

On OS/VMM Initialization

CPUID.(0FH,0):EDX[31:1]

PQM Capability
Enumeration

IA32_PQR_ASSOC.RMID

On Context Switch

Set RMID to monitor
the scheduled app

Periodical Resource

IA32_QM_EVTSEL

Configure event type
Read monitored data

CPUID.(0FH,1):ECX[31:0]
CPUID.(0FH,1):EDX[31:0]
CPUID.(0FH,1):EBX[31:0]

CPUID[WRMSR RDMSR/WRMSR

Selection/Reporting

IA32_QM_CTR

CPUID.(0FH,0):EBX[31:0]

17-46 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability
of that resource type (see Figure 17-21 and Figure 17-22). Reserved bits of CPUID.(EAX=0FH,
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally,
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports monitoring
in the processor.

17.18.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program
Monitoring MSRs using the resource type associated with the given ResID.

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs.
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource
type, see Figure 17-21.

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and
Table 17-18) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR.
The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH,
ECX=1H).EBX, see Figure 17-21.

Figure 17-20. CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

Figure 17-21. L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H))

0231

CPUID.(EAX=0FH, ECX=0H) Output: (EAX: Reserved; ECX: Reserved)

EDX L

EBX
031

Highest RMID Value of Any Resource Type (Zero-Based)

3

1

Reserved

CPUID.(EAX=0FH, ECX=1H) Output: (EAX: Reserved)

ECX
031

Highest RMID Value of This Resource Type (Zero-Based)

EBX
031

Upscaling Factor to Total Occupancy (Bytes) Upscaling Factor

MaxRMID

Vol. 3B 17-47

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.5.1 Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH,
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-18. The
L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) by multiplying
with CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

17.18.5.2 Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits will
be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy,
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that
support this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting local from total
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be
tracked by subtraction).

The corresponding Event ID can be looked up from Table 17-18. The L3 bandwidth data accumulated in
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-18. Monitoring Supported Event IDs

17.18.6 Monitoring Resource RMID Association
After Monitoring and sub-features has been enumerated, software can begin using the monitoring features. The
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID.

Note that the process of associating an RMID with a given software thread is the same for all shared resource moni-
toring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical
processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that

Figure 17-22. L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H))

Event Type Event ID Context

L3 Cache Occupancy 01H Cache Monitoring Technology

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

0231
EDX

1

Reserved

EventTypeBitMask
3

L3 Occupancy
L3 Total BW
L3 Local BW

17-48 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later
with monitoring event codes (retrieving data is discussed in a previous section).

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in
Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 (1 + CPUID.(EAX=0FH,
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded.
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be
reassigned by the OS or VMM scheduler when an application is migrated across LLCs.

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g. RMID
31) may only be supported by one resource type but not by another resource type.

17.18.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as
an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT)
and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported
back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g. no
Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly.

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon
counters.

Access to the aggregated monitoring information is accomplished through the following programmable monitoring
MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-24. Bits
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the
IA32_QM_EVTSEL register are shown in Table 17-18. Note that valid event codes may not necessarily map
directly to the bit position used to enumerate support for the resource via CPUID.
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed
in Section 17.18.5, which covers feature-specific details.

Figure 17-23. IA32_PQR_ASSOC MSR

01063

Width of IA32_PQR_ASSOC.RMID field: Log2 (CPUID.(EAX=0FH, ECX=0H).EBX[31:0] +1)

RMID

9

Reserved IA32_PQR_ASSOCReserved for CLOS*

32 31

*See Section 17.18

Vol. 3B 17-49

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations
where one thread changes the RMID/EvtID just before another thread reads monitoring data from
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore,
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring Technology,
software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by
multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

17.18.8 Monitoring Programming Considerations
Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits are
used. With Cache Monitoring Technology for instance, the number of bits used will be proportional to the base-two
logarithm of the total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is suffi-
cient to ensure at most one rollover per sampling period. Any future changes to counter width will be enumerated
to software.

Figure 17-24. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Figure 17-25. Software Usage of Cache Monitoring Resources

063

IA32_QM_CTRU

61

E Resource Monitoring Data

03163

RMID

7

Reserved IA32_QM_EVTSELReserved

41 3242 8

EvtID

RMID

063

Monitoring Data

IA32_QM_CTR MSR

62

Availability
Error

763

Reserved

41

RMID

Resource Monitoring ID

0

EvtID

32

Reserved

Event ID

IA32_QOSEVTSEL MSR

System Software

Event ID Counter Data

17-50 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.8.1 Monitoring Dynamic Configuration
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used.

17.18.8.2 Monitoring Operation With Power Saving Features
Note that some advanced power management features such as deep package C-states may shrink the L3 cache
and cause CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data
out of L3.

17.18.8.3 Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data.

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to
the prev-SMM RMID upon exit.

17.18.8.4 Monitoring Operation with RAS Features
In general the Reliability, Availability and Serviceability (RAS) features present in Intel Platforms are not expected
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory
copies or cache accesses these may be tracked and may influence the shared resource monitoring counter values.

17.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) capa-
bilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon
processor E5 v4 family (and a subset of communication-focused processors in the Intel Xeon E5 v3 family) intro-
duce capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache.
Certain Intel Atom processors also provide support for control over the L2 cache, with capabilities as described
below. The programming interface for Cache Allocation Technology and for the more general allocation capabilities
are described in the rest of this chapter. The CAT and CDP capabilities, where architecturally supported, may be
detected and enumerated in software using the CPUID instruction, as described in this chapter.

The Intel Xeon Processor Scalable Family introduces the Memory Bandwidth Allocation (MBA) feature which
provides indirect control over the memory bandwidth available to CPU cores, and is discussed later in this chapter.

17.19.1 Introduction to Cache Allocation Technology (CAT)
Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or
similar system service management agent to specify the amount of cache space into which an application can fill
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized user-
level implementations with minimal OS support are also possible, though not necessarily recommended (see notes
below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor family, L2
or L3 cache allocation capability may be provided, and the technology is designed to scale across multiple cache
levels and technology generations.

Vol. 3B 17-51

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Software can determine which levels are supported in a given platform programmatically using CPUID as described
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that

provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT
capabilities, such as the max allocation bitmask size,

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of
Service via a list of allocation bitmasks,

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mechanisms
to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available for
high priority applications based on guidance from the execution environment as shown in Figure 17-26. The archi-
tecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high
priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for
system throughput benefit across uses cases of OSes, VMMs, containers and other scenarios by managing the
CPUID and MSR interfaces. This section describes the hardware and software support required in the platform
including what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that
in Figure 17-26 the L3 Cache is shown as an example resource.

17.19.2 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted
based on the class with which they are associated. Each Class of Service can be configured using capacity bitmasks
(CBMs) which represent capacity and indicate the degree of overlap and isolation between classes. For each logical
processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM
to specify a COS when an application, thread or VM is scheduled.

The usage of Classes of Service (COS) are consistent across resources and a COS may have multiple resource
control attributes attached, which reduces software overhead at context swap time. Rather than adding new types
of COS tags per resource for instance, the COS management overhead is constant. Cache allocation for the indi-
cated application/thread/container/VM is then controlled automatically by the hardware based on the class and the
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where
resourceType indicates a resource type (e.g. “L3” for the L3 cache) and “n” indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:

Figure 17-26. Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications

Without CAT

Core 0

Shared LLC, Low priority got more cache

Lo Pri AppHi Pri App

Core 1 Core 0

Shared LLC, High priority got more cache

Lo Pri AppHi Pri App

Core 1

With CAT

17-52 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource
types are available which can be controlled,

• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length
of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior
of different classes of service using the bitmasks available,

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an
executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bit length of the capacity mask available generally depends on the configuration
of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a
processor family as well). Similarly, other parameters such as the number of supported COS may vary for each
resource type, and these details can be enumerated via CPUID.

Sample cache capacity bitmasks for a bit length of 8 are shown in Figure 17-27. Please note that all (and only)
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). Attempts to program a value without
contiguous '1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in
way-based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service
can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of

Figure 17-27. Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask

Vol. 3B 17-53

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is
usually beneficial to its performance.

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of
COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case,
which would allow some lower-priority threads share cache space with the highest priority threads. The third case
shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility COS0 should
typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is
no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which
has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on
the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition to
the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of
service or is entirely isolated in terms of cache space used.

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of
a CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID.
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are
selected and associated with different classes of service. For the available Classes of Service the associated CBMs
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementations
supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated other-
wise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor,

Figure 17-28. Class of Service and Cache Capacity Bitmasks

Set 1
Set 2

....

Cache Subsystem

Config

Tag with Cache

Enforcement

Set n

way 1

......

way 16

Enforce Mask

Capacity bitmask 3COS 3

Capacity bitmask 3COS 2

Capacity bitmask 3COS 1

Capacity bitmask 3COS 0

Cache Allocation

TransactionCOS

COS = 2 Mem Request

Class of Service

Application
Memory Request

Set Class of Service

Association

in IA32_PQR

OS Context
Switch

Configure CBM for

Enum/Confg

each Class of Service

Enumerate
Enforcement

17-54 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to
the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application
thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can
be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement
implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details
on specific features such as L3 CAT, L3 CDP, L2 CAT, and L2 CDP. Depending on the specific processor a mix of
features may be supported, and CPUID provides enumeration capabilities to enable software to dynamically detect
the set of supported features.

17.19.3 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of
code and data fetches to the L2 or L3 cache in a software configurable manner, depending on hardware support,
which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP
extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service (COS).
Support for the L2 CDP feature and the L3 CDP features are separately enumerated (via CPUID) and separately
controlled (via remapping the L2 CAT MSRs or L3 CAT MSRs respectively). Section 17.19.6.3 and Section 17.19.7
provide details on enumerating, controlling and enabling L3 and L2 CDP respectively, while this section provides a
general overview.

The L3 CDP feature was first introduced on the Intel Xeon E5 v4 family of server processors, as an extension to L3
CAT. The L2 CDP feature is first introduced on future Intel Atom family processors, as an extension to L2 CAT.

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled,
• the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see

Figure 17-29),
• the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP.

Using the CDP feature, virtual isolation between code and data can be configured on the L2 or L3 cache if desired,
similar to how some processor cache levels provide separate L1 data and L1 instruction caches.

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system
operation, including dynamically enabling or disabling the feature provided that certain software configuration
requirements are met (see Section 17.19.5).

An example of the operating mode of CDP is shown in Figure 17-29. Shown at the top are traditional CAT usage
models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given
COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations
where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables
code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis,
depending on application and system needs.

Vol. 3B 17-55

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports
16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond
to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data masks are defined
per-COS and interleaved in the MSR space as described in subsequent sections.

In cases where CPUID exposes a non-even number of supported Classes of Service for the CAT or CDP features,
software using CDP should use the lower matched pairs of code/data masks, and any upper unpaired masks should
not be used. As an example, if CPUID exposes 5 CLOS, when CDP is enabled then two code/data pairs are available
(masks 0/1 for CLOS[0] data/code and masks 2/3 for CLOS[1] data/code), however the upper un-paired mask
should not be used (mask 4 in this case) or undefined behavior may result.

17.19.4 Enabling Cache Allocation Technology Usage Flow
Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable
priority-based resource allocation for a CAT-capable resource.

Figure 17-29. Code and Data Capacity Bitmasks of CDP

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

COS0.Data

COS0.Code

COS1.Data

COS1.Code

CAT with

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

COS0

COS1

COS2

COS3

Traditional
CAT

CDP

Other COS.Data

Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

Example of CAT-Only Usage - 16 bit Capacity Masks

Other COS.Code

2

17-56 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ.
Common CLOS are used across the features.

17.19.4.1 Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX =
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control over
shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Alloca-
tion Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide

information on available resource types, and CAT capability for each resource type (see Section 17.19.4.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive.
See Section 17.19.4.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number
reported for L2 CAT in CPUID. See Section 17.19.4.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at the
same level as the L3 cache). Software may determine which logical processors share an MSR (for instance local
to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which logical
threads observe the change. Example flows for a similar method to determine register scope are described in
Section 15.5.2, “System Software Recommendation for Managing CMCI and Machine Check Resources”.
Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs that may share
a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. The set of COS are common across all allocation features, meaning that
multiple features may be supported in the same processor without additional software COS management
overhead at context swap time. See Section 17.19.4.4 for details.

17.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e.

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in

Figure 17-30. Cache Allocation Technology Usage Flow

CPUID.(7,0):EBX.15

On OS/VMM Initialization

CPUID.(10H,0):EBX[31:1]

CQE Capability
Enumeration

IA32_L3_QOS_MASK_0

Cache Allocation Configuration

...

Configure CBM
per COS

On Context Switch

IA32_PQR_ASSOC

Set COS for scheduled
thread context

IA32_L3_QOS_MASK_n
CPUID.(10H,1):EAX[4:0]
CPUID.(10H,1):EDX[15:0]
CPUID.(10H,1):EBX[

CPUID[WRMSR WRMSR

Vol. 3B 17-57

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID),
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see
Figure 17-31).

— For ECX>0, EAX[4:0] reports the length of the capacity bitmask length (ECX=1 or 2 for L2 CAT or L3 CAT
respectively) using minus-one notation, e.g., a value of 15 corresponds to the capacity bitmask having
length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the capability
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain additional feature
details.

• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-32. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an

Figure 17-31. CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Figure 17-32. L3 Cache Allocation Technology and CDP Enumeration

M
B
A

L
2

L
3

4 3 2 1 0

EBX

31
CPUID.(EAX=10H, ECX=0) Output: (EAX: Reserved; ECX: Reserved; EDX: Reserved)

Reserved

01631

CPUID.(EAX=10H, ECX=ResID=1) Output:

EDX

ECX
031

Reserved

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_MAX

0531
EAX

4

Reserved CBM_LEN

12

CDP

17-58 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates L3 Code and Data Prioritization Technology is
supported (see Section 17.19.5). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 17-33. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2]: If 1, indicates L2 Code and Data Prioritization Technology is
supported (see Section 17.19.6). Other bits of CPUID.(EAX=10H, ECX=2):ECX are reserved.

— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature
may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnec-
essary thread migrations across processor cores in order to avoid excessive time spent warming up processor
caches after a migration. In general, for best performance, minimize thread migration and COS migration across
processor logical threads and processor cores.

Figure 17-33. L2 Cache Allocation Technology

01631

CPUID.(EAX=10H, ECX=ResID=2) Output:

EDX

ECX
031

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_MAX

0531
EAX

4

Reserved CBM_LEN

Reserved

CDP

12

Vol. 3B 17-59

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.4.3 Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see
Section 17.19.4.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported
range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H,
ECX=0):EAX[31:1], for instance, ‘L2’ or ‘L3’ cache.

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form
IA32_resourceType_MASK_n:
• From 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource

types. The first supported resourceType is 'L3', corresponding to the L3 cache in a platform. The MSRs range
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service.

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H
through 0D4FH (inclusive).

Figure 17-34 and Figure 17-35 provide an overview of the relevant registers.

All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (COS) using the
IA32_PQR_ASSOC MSR as described in Chapter 17, “Class of Service to Cache Mask Association: Common Across
Allocation Features”.

17.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread

Figure 17-34. IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

Figure 17-35. IA32_L2_MASK_n MSRs

01063

RMID

9

Reserved IA32_PQR_ASSOC

IA32_L3_MASK_n

03163

Reserved IA32_L3_MASK_0

32

Bit_Mask

31

COS

....
03163

Reserved

32

Bit_Mask

IA32_L2_MASK_n

03163

Reserved IA32_L2_MASK_0

32

Bit_Mask

....
03163

Reserved

32

Bit_Mask

17-60 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and
Figure 17-34 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor.

Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency.

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =(
CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.
In all cases, code and data masks for L2 and L3 CDP should be programmed with at least one bit set.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the
enforcement feature by default or for legacy operating systems and software.

See Section 17.19.7, “Introduction to Memory Bandwidth Allocation” for important COS programming consider-
ations including maximum values when using CAT and CDP.

17.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology
L3 CDP is an extension of L3 CAT. The presence of the L3 CDP feature is enumerated via CPUID.(EAX=10H,
ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H,
ECX=1):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-36. The bit field
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence, all logical processors are
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP. The scope
of the IA32_L3_QOS_CFG MSR is defined to be the same scope as the L3 cache (e.g., typically per processor
socket). Refer to Section 17.19.7 for software considerations while enabling or disabling L3 CDP.

17.19.5.1 Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. The re-mapping is shown in Table 17-19.

Figure 17-36. Layout of IA32_L3_QOS_CFG

0263 1

Reserved

IA32_L3_QOS_CFG
3

L3 CDP Enable

Vol. 3B 17-61

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Table 17-19. Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control
over data fill location and one mask enabling control over code placement. A variety of overlapped and isolated
mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length
of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks
on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001,
0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of
invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0).

17.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
L2 CDP is an extension of the L2 CAT feature. The presence of the L2 CDP feature is enumerated via
CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] (see Figure 17-33). Most of the CPUID.(EAX=10H, ECX=2) sub-leaf
data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT specifies the
maximum COS applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to
(CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] =1, the processor supports L2 CDP and provides a new MSR
IA32_L2_QOS_CFG at address 0C82H. The layout of IA32_L2_QOS_CFG is shown in Figure 17-37. The bit field
definition of IA32_L2_QOS_CFG are:
• Bit 0: L2 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code

Figure 17-37. Layout of IA32_L2_QOS_CFG

0263 1

Reserved

IA32_L2_QOS_CFG
3

L2 CDP Enable

17-62 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

IA32_L2_QOS_CFG default values are all 0s at RESET, and the mask MSRs are all 1s. Hence all logical processors
are initialized in COS0 allocated with the entire L2 available and with CDP disabled, until software programs CAT
and CDP. The IA32_L2_QOS_CFG MSR is defined at the same scope as the L2 cache, typically at the module level
for Intel Atom processors for instance. In processors with multiple modules present it is recommended to program
the IA32_L2_QOS_CFG MSR consistently across all modules for simplicity.

17.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. This remapping is the same as the remapping shown in Table 17-19 for L3 CDP, but for the L2 MSR block
(IA32_L2_QOS_MASK_n) instead of the L3 MSR block (IA32_L3_QOS_MASK_n). The same code / data mask
mapping algorithm applies to remapping the MSR block between code and data masks.

As with L3 CDP, when L2 CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling
programmatic control over data fill location and one mask enabling control over code placement. A variety of over-
lapped and isolated mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions for L2 CDP remain the same as for L2 CAT. Capacity masks must be formed of contiguous
set bits, with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As
examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF,
0x00F0, 0x0001, 0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or
disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate
#GP(0).

17.19.6.2 Common L2 and L3 CDP Programming Considerations
Before enabling or disabling L2 or L3 CDP, software should write all 1's to all of the corresponding CAT/CDP masks
to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs for the L3 CAT feature). When enabling
CDP, software should also ensure that only COS number which are valid in CDP operation is used, otherwise unde-
fined behavior may result. For instance in a case with 16 CAT COS, since COS are reduced by half when CDP is
enabled, software should ensure that only COS 0-7 are in use before enabling CDP (along with writing 1's to all
mask bits before enabling or disabling CDP).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled,
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should
consider resetting all threads to COS[0] before enabling or disabling CDP.

17.19.6.3 Cache Allocation Technology Dynamic Configuration
All Resource Director Technology (RDT) interfaces including the IA32_PQR_ASSOC MSR, CAT/CDP masks, MBA
delay values and CQM/MBM registers are accessible and modifiable at any time during execution using
RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the
following conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in

CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H,

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a COS value in IA32_PQR_ASSOC.COS outside of the lower half of the COS space
will cause undefined performance impact to code and data fetches due to MSR space re-indexing into code/data
masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently.

Vol. 3B 17-63

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.19.6.4 Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some
advanced power management features such as C-states which may shrink or power off various caches within the
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C.

If software requires differentiation between threads but not absolute determinism then in many cases it is possible
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to
remain in the cache. If differentiation between threads is the goal of system software then this model allows
substantial power savings while continuing to deliver performance differentiation. If system software needs
optimal determinism then power saving modes which flush portions of the caches and power them off should be
disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents
are saved across package C-state entry/exit and are not lost.

17.19.6.5 Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of
SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-
determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power
management practices that affect CAT operation.

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon
entering SMM, and switching back to the previously running COS upon exit.

17.19.6.6 Associating Threads with CAT/CDP Classes of Service
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The
same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP
is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The
mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled,

— Two mask sets exist for each COS number, one for code, one for data.

— Masks for code/data are interleaved in the MSR address space (see Table 17-19).

17-64 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7 Introduction to Memory Bandwidth Allocation
The Memory Bandwidth Allocation (MBA) feature provides indirect and approximate control over memory band-
width available per-core, and was introduced on the Intel Xeon Processor Scalable Family. This feature provides a
method to control applications which may be over-utilizing bandwidth relative to their priority in environments such
as the data-center.

The MBA feature uses existing constructs from the Resource Director Technology (RDT) feature set including
Classes of Service (CLOS). A given CLOS used for L3 CAT for instance means the same thing as a CLOS used for
MBA. Infrastructure such as the MSR used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and
some elements of the CPUID enumeration (such as CPUID leaf 10H) are shared.

The high-level implementation of Memory Bandwidth Allocation is shown in Figure 17-38.

As shown in Figure 17-38, the MBA feature introduces a programmable request rate controller between the cores
and the high-speed interconnect, enabling indirect control over memory bandwidth for cores over-utilizing band-
width relative to their priority. For instance, high-priority cores may be run un-throttled, but lower priority cores
generating an excessive amount of traffic may be throttled to enable more bandwidth availability for the high-
priority cores.

Since MBA uses a programmable rate controller between the cores and the interconnect, higher-level shared
caches and memory controller, bandwidth to these caches may also be reduced, so care should be taken to throttle
only bandwidth-intense applications which do not use the off-core caches effectively.

The throttling values exposed by MBA are approximate, and are calibrated to specific traffic patterns. As work-load
characteristics vary, the throttling values provided may affect each workload differently. In cases where precise
control is needed, the Memory Bandwidth Monitoring (MBM) feature can be used as input to a software controller
which makes decisions about the MBA throttling level to apply.

Enumeration and configuration details are discussed below followed by usage model considerations.

Figure 17-38. A High-Level Overview of the MBA Feature

 Cache space available to
low-priority application

 Cache space available to
high-priority application

 Memory
Controller

 New MBA Feature

 High-Speed Interconnect

Core[0]

Private L2

Programmable
Request Rate

Controller

Core[n]

Private L2

Programmable
Request Rate

Controller

 Chip Multiprocessor Platform
●●

●

Shared L3 Cache – With CAT

Vol. 3B 17-65

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7.1 Memory Bandwidth Allocation Enumeration
Similar to other RDT features, enumeration of the presence and details of the MBA feature is provided via a sub-
leaf of the CPUID instruction.

Key components of the enumeration are as follows.
• Support for the MBA feature on the processor, and if MBA is supported, the following details:

— Number of supported Classes of Service (CLOS) for the processor.

— The maximum MBA delay value supported (which also implicitly provides a definition of the granularity).

— An indication of whether the delay values which can be programmed are linearly spaced or not.

The presence of any of the RDT features which enable control over shared platform resources is enumerated by
executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15]
reports 1, the processor supports software control over shared processor resources. Software may then use CPUID
leaf 10H to enumerate additional details on the specific controls provided.

Through CPUID leaf 10H software may determine whether MBA is supported on the platform. Specifically, as shown
in Figure 17-31, bit 3 of the EBX register indicates whether MBA is supported on the processor, and the bit position
(3) constitutes a Resource ID (ResID) which allows enumeration of MBA details. For instance, if bit 3 is supported
this implies the presence of CPUID.10H.[ResID=3] as shown in Figure 17-38 which provides the following details.
• CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] reports the maximum MBA throttling value supported, minus

one. For instance, a value of 89 indicates that a maximum throttling value of 90 is supported. Additionally, in
cases where a linear interface (see below) is supported then one hundred minus the maximum throttling value
indicates the granularity, 10% in this example.

• CPUID.(EAX=10H, ECX=ResID=3):EBX is reserved.
• CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports whether the response of the delay values is linear (see

text).
• CPUID.(EAX=10H, ECX=ResID=3):EDX[15:0] reports the number of Classes of Service (CLOS) supported for

the feature (minus one). For instance, a reported value of 15 implies a maximum of 16 supported MBA CLOS.

The number of CLOS supported for the MBA feature may or may not align with other resources such as L3 CAT. In
cases where the RDT features support different numbers of CLOS the lowest numerical CLOS support the common
set of features, while higher CLOS may support a subset. For instance, if L3 CAT supports 8 CLOS while MBA
supports 4 CLOS, all 8 CLOS would have L3 CAT masks available for cache control, but the upper 4 CLOS would not
offer MBA support. In this case the upper 4 CLOS would not be subject to any throttling control. Software can
manage supported resources / CLOS in order to either have consistent capabilities across CLOS by using the
common subset or enable more flexibility by selectively applying resource control where needed based on careful
CLOS and thread mapping. In all cases, CLOS[0] supports all RDT resource control features present on the plat-
form.

Discussion on the interpretation and usage of the MBA delay values is provided in Section 17.19.7.2 on MBA config-
uration.

17-66 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7.2 Memory Bandwidth Allocation Configuration
The configuration of MBA takes consists of two processes once enumeration is complete.
• Association of threads to Classes of Service (CLOS) - accomplished in a common fashion across RDT features

as described in Section 17.19.7.1 via the IA32_PQR_ASSOC MSR. As with features such as L3 CAT, software
may update the CLOS field of the PQR MSR at context swap time in order to maintain the proper association of
software threads to Classes of Service on the hardware. While logical processors may each be associated with
independent CLOS, see Section 17.19.7.3 for important usage model considerations (initial versions of the MBA
feature select the maximum delay value across threads).

• Configuration of the per-CLOS delay values, accomplished via the IA32_L2_QoS_Ext_BW_Thrtl_n MSR set
shown in Table 17-20.

The MBA delay values which may be programmed range from zero (implying zero delay, and full bandwidth avail-
able) to the maximum (MBA_MAX) specified in CPUID as discussed in Section 17.19.7.1. The throttling values are
approximate and do not sum to 100% across CLOS, rather they should be viewed as a maximum bandwidth “cap”
per-CLOS.

Software may select an MBA delay value then write the value into one or more of the
IA32_L2_QoS_Ext_BW_Thrtl_n MSRs to update the delay values applied for a specific CLOS. As shown in Table
17-20 the base address of the MSRs is at D50H, and the range corresponds to the maximum supported CLOS from
CPUID.(EAX=10H, ECX=ResID=1):EDX[15:0] as described in Section 17.19.7.1. For instance, if 16 CLOS are
supported then the valid MSR range will extend from D50H through D5F inclusive.

Figure 17-39. CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification

11 0

EAX

31
CPUID.(EAX = 10H, ECX = ResID = 3) Output:

Reserved

EBX Reserved

ECX Reserved

EDX Reserved

MBA_MAX-1

 031

31

31

 2 1 0

16 15 0

MBA_Lin_Rsp

COS_MAX

Vol. 3B 17-67

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Table 17-20. MBA Delay Value MSRs

The definition for the MBA delay value MSRs is provided in Figure 17.39. The lower 16 bits are used for MBA delay
values, and values from zero to the maximum from the CPUID MBA_MAX-1 value are supported. Values outside
this range will generate #GP(0).

If linear input throttling values are indicated by CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] then values from
zero through the MBA_MAX field from CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] are supported as inputs. In
the linear mode the input precision is defined as 100-(MBA_MAX). For instance, if the MBA_MAX value is 90, the
input precision is 10%. Values not an even multiple of the precision (e.g., 12%) will be rounded down (e.g., to 10%
delay applied).
• If linear values are not supported (CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] = 0) then input delay values

are powers-of-two from zero to the MBA_MAX value from CPUID. In this case any values not a power of two will
be rounded down the next nearest power of two.

Note that the throttling values provided to software are calibrated through specific traffic patterns, however as
workload characteristics may vary the response precision and linearity of the delay values will vary across
products, and should be treated as approximate values only.

17.19.7.3 Memory Bandwidth Allocation Usage Considerations
As the memory bandwidth control that MBA provides is indirect and approximate, using the feature with a closed-
loop controller to also monitor memory bandwidth and how effectively the applications use the cache (via the
Cache Monitoring Technology feature) may provide additional value. This approach also allows administrators to
provide a band-width target or set-point which a controller could use to guide MBA throttling values applied, and
this allows bandwidth control independent of the execution characteristics of the application.

As control is provided per processor core (the max of the delay values of the per-thread CLOS applied to the core)
care should be taking in scheduling threads so as to not inadvertently place a high-priority thread (with zero
intended MBA throttling) next to a low-priority thread (with MBA throttling intended), which would lead to inadver-
tent throttling of the high-priority thread.

Delay Value MSR Address

IA32_L2_QoS_Ext_BW_Thrtl_0 D50H
IA32_L2_QoS_Ext_BW_Thrtl_1 D51H
IA32_L2_QoS_Ext_BW_Thrtl_2 D52H
....

IA32_L2_QoS_Ext_BW_Thrtl_'COS_MAX' D50H + COS_MAX from CPUID.10H.3

Figure 17-40. IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition

16 15 063
Base MSR Address = 0xD50

IA32_L2_QOS_Ext_BW_Thrtl_n MSR
Reserved MBA Delay Value

17-68 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

19.Updates to Chapter 18, Volume 3B
Change bars and green text show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Update to section 18.3.1.1.1, “Processor Event Based Sampling (PEBS)”, minor update
to section 18.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility”, and typo correc-
tions as necessary.

Vol. 3B 18-1

CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring
Unit).

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection
of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based on
Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and perfor-
mance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architectural
performance events and a set of non-architectural performance events. Newer Intel processor generations support
enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or interrupt-based event
sampling usage. These events are non-architectural and vary from one processor model to another. They are
similar to those available in Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are discussed in Section 18.6.3,
“Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).” Non-architectural events for a
given microarchitecture cannot be enumerated using CPUID; and they are listed in Chapter 19, “Performance
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available
events. The visible behavior of architectural performance events is consistent across processor implementations.
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events
are discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors)”

• Section 18.3.1, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

• Section 18.3.2, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”

• Section 18.3.3, “Intel® Xeon® Processor E7 Family Performance Monitoring Facility”

• Section 18.3.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge”

• Section 18.3.5, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.6, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.7, “5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility”

18-2 Vol. 3B

PERFORMANCE MONITORING

• Section 18.3.8, “6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor
Performance Monitoring Facility”

• Section 18.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.4, “Performance monitoring (Intel® Xeon™ Phi Processors)”

• Section 18.4.1, “Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring”

— Section 18.5, “Performance Monitoring (Intel Atom® Processors)”

• Section 18.5.1, “Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)”

• Section 18.5.2, “Performance Monitoring for Silvermont Microarchitecture”

• Section 18.5.3, “Performance Monitoring for Goldmont Microarchitecture”

• Section 18.5.4, “Performance Monitoring for Goldmont Plus Microarchitecture”

• Section 18.5.5, “Performance Monitoring for Tremont Microarchitecture”

— Section 18.6, “Performance Monitoring (Legacy Intel Processors)”

• Section 18.6.1, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

• Section 18.6.2, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

• Section 18.6.3, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

• Section 18.6.4, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture”

• Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading Technology in
Processors Based on Intel NetBurst® Microarchitecture”

• Section 18.6.5, “Performance Monitoring and Dual-Core Technology”

• Section 18.6.6, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache”

• Section 18.6.7, “Performance Monitoring on L3 and Caching Bus Controller Sub-Systems”

• Section 18.6.8, “Performance Monitoring (P6 Family Processor)”

• Section 18.6.9, “Performance Monitoring (Pentium Processors)”

— Section 18.7, “Counting Clocks”

— Section 18.8, “IA32_PERF_CAPABILITIES MSR Enumeration”

— Section 18.9, “PEBS Facility”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a
mechanism for software to enumerate performance events and provides configuration and counting facilities for
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indicate
the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the Airmont
microarchitecture support the same performance monitoring capabilities as those based on the Silvermont micro-
architecture.

Vol. 3B 18-3

PERFORMANCE MONITORING

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell microar-
chitectures support version ID 1, 2, and 3. Intel processors based on the Skylake, Kaby Lake and Coffee Lake
microarchitectures support versionID 4.

Next generation Intel Atom processors are based on the Goldmont microarchitecture. Intel processors based on
the Goldmont microarchitecture support versionID 4.

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available to software in a logical processor (each

IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR).
• Number of bits supported in each IA32_PMCx.
• Number of architectural performance monitoring events supported in a logical processor.

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version iden-
tifier is greater than zero, architectural performance monitoring capability is supported. Software queries the
CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

18.2.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and performance
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8]. Note that this may vary from the number
of physical counters present on the hardware, because an agent running at a higher privilege level (e.g., a
VMM) may not expose all counters.

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each
performance event select register is paired with a corresponding performance counter in the 0C1H address
block. Note the number of IA32_PERFEVTSELx MSRs may vary from the number of physical counters present
on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may not expose all
counters.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and
the high-order bits are sign-extended from the value of bit 31.

18-4 Vol. 3B

PERFORMANCE MONITORING

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field
is defined architecturally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural
performance event, its corresponding UMASK value defines a specific microarchitectural condition.
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished.
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be
serviced).

• PC (pin control) flag (bit 19) — Beginning with Sandy Bridge microarchitecture, this bit is reserved (not
writeable). On processors based on previous microarchitectures, the logical processor toggles the PMi pins and
increments the counter when performance-monitoring events occur; when clear, the processor toggles the PMi
pins when the counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock
followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

Figure 18-1. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

Vol. 3B 18-5

PERFORMANCE MONITORING

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter
is not incremented.
This mask is intended for software to characterize microarchitectural conditions that can count multiple
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with
multiple occurrences.

18.2.1.2 Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all the predefined architectural
performance events (Table 18-1). The number of architectural events is reported through CPUID.0AH:EAX[31:24],
while non-zero bits in CPUID.0AH:EBX indicate any architectural events that are not available.

The behavior of each architectural performance event is expected to be consistent on all processors that support
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter
does not advance in the following conditions:

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter 14, “Power and
Thermal Management”)

The performance counter for this event counts across performance state transitions using different core clock
frequencies

• Instructions Retired — Event select C0H, Umask 00H
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction
are not counted.

Table 18-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

7 Topdown Slots 01H A4H

18-6 Vol. 3B

PERFORMANCE MONITORING

This event does not increment under VM-exit conditions. Counters continue counting during hardware
interrupts, traps, and inside interrupt handlers.

• UnHalted Reference Cycles — Event select 3CH, Umask 01H
This event counts reference clock cycles at a fixed frequency while the clock signal on the core is running. The
event counts at a fixed frequency, irrespective of core frequency changes due to performance state transitions.
Processors may implement this behavior differently. Current implementations use the core crystal clock, TSC or
the bus clock. Because the rate may differ between implementations, software should calibrate it to a time
source with known frequency.

• Last Level Cache References — Event select 2EH, Umask 4FH
This event counts requests originating from the core that reference a cache line in the last level on-die cache.
The event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but
may exclude cache line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level on-die cache. The event count may
include speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache
line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch
instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op
of a branch instruction in the architectural path of execution and experienced misprediction in the branch
prediction hardware.
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to
estimate performance differences is not recommended.

• Topdown Slots — Event select A4H, Umask 01H
This event counts the total number of available slots for an unhalted logical processor.
The event increments by machine-width of the narrowest pipeline as employed by the Top-down Microarchi-
tecture Analysis method. The count is distributed among unhalted logical processors (hyper-threads) who
share the same physical core, in processors that support Intel Hyper-Threading Technology.
Software can use this event as the denominator for the top-level metrics of the Top-down Microarchitecture
Analysis method.

NOTE
Programming decisions or software precisians on functionality should not be based on the event
values or dependent on the existence of performance monitoring events.

18.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK

Vol. 3B 18-7

PERFORMANCE MONITORING

field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do
not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are
enabling/disabling event counting and checking the status of counter overflows. Architectural performance
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field interface
in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR records with
reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only the
legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on PMI
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2,
only the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on
PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a
fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function PMC.
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

Figure 18-2. Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

18-8 Vol. 3B

PERFORMANCE MONITORING

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting
is enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the
AND’ed results is true; counting is disabled when the result is false.

The behavior of the fixed function performance counters supported by architectural performance version 2 is
expected to be consistent on all processors that support those counters, and is defined as follows.

Figure 18-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63

Vol. 3B 18-9

PERFORMANCE MONITORING

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0,
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

Table 18-2. Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function
Performance Counter

Address Event Mask Mnemonic Description

IA32_FIXED_CTR0 309H INST_RETIRED.ANY This event counts the number of instructions that retire
execution. For instructions that consist of multiple uops,
this event counts the retirement of the last uop of the
instruction. The counter continues counting during
hardware interrupts, traps, and in-side interrupt handlers.

IA32_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THREAD

CPU_CLK_UNHALTED.CORE

The CPU_CLK_UNHALTED.THREAD event counts the
number of core cycles while the logical processor is not in a
halt state.

If there is only one logical processor in a processor core,
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of
the processor core.

The core frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may have a
changing ratio with regards to time.

IA32_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_TSC This event counts the number of reference cycles at the
TSC rate when the core is not in a halt state and not in a TM
stop-clock state. The core enters the halt state when it is
running the HLT instruction or the MWAIT instruction. This
event is not affected by core frequency changes (e.g., P
states) but counts at the same frequency as the time stamp
counter. This event can approximate elapsed time while the
core was not in a halt state and not in a TM stopclock state.

IA32_FIXED_CTR3 30CH TOPDOWN.SLOTS This event counts the number of available slots for an
unhalted logical processor. The event increments by
machine-width of the narrowest pipeline as employed by
the Top-down Microarchitecture Analysis method. The
count is distributed among unhalted logical processors
(hyper-threads) who share the same physical core.

Software can use this event as the denominator for the
top-level metrics of the Top-down Microarchitecture
Analysis method.

18-10 Vol. 3B

PERFORMANCE MONITORING

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

18.2.3 Architectural Performance Monitoring Version 3
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e. a processor core
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• AnyThread counting for processor core supporting two or more logical processors. The interface that supports

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in Figure
18-6.

Figure 18-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfDSBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

Vol. 3B 18-11

PERFORMANCE MONITORING

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3 for
processor core comprising of two or more logical processors. When set to 1, it enables counting the associated
event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx)
occurring across all logical processors sharing a processor core. When bit 21 is 0, the counter only increments
the associated event conditions (including matching the thread’s CPL with the OS/USR setting of
IA32_PERFEVTSELx) occurring in the logical processor which programmed the IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is
shown.

Each control block for a fixed-function performance counter provides an AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 18-8 and
Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

NOTE
The number of general-purpose performance monitoring counters (i.e., N in Figure 18-9) can vary
across processor generations within a processor family, across processor families, or could be

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 18-7. IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

18-12 Vol. 3B

PERFORMANCE MONITORING

different depending on the configuration chosen at boot time in the BIOS regarding Intel Hyper
Threading Technology, (e.g. N=2 for 45 nm Intel Atom processors; N =4 for processors based on
the Nehalem microarchitecture; for processors based on the Sandy Bridge microarchitecture, N =
4 if Intel Hyper Threading Technology is active and N=8 if not active). In addition, the number of
counters may vary from the number of physical counters present on the hardware, because an
agent running at a higher privilege level (e.g., a VMM) may not expose all counters.

18.2.3.1 AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While AnyThread counting provides some benefits in

Figure 18-8. Layout of Global Performance Monitoring Control MSR

Figure 18-9. Global Performance Monitoring Overflow Status and Control MSRs

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

Global Enable Controls IA32_PERF_GLOBAL_CTRL

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfDSBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..

ClrOvfUncore

OvfUncore

61

Vol. 3B 18-13

PERFORMANCE MONITORING

simple software environments of an earlier era, the evolution contemporary software environments introduce
certain concepts and pre-requisites that AnyThread counting does not comply with.

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX
(see Chapter 23, “Introduction to Virtual-Machine Extensions”) where each VM represents a domain separated
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtualiza-
tion or requiring domain separation.

Specifically, Intel recommends VMM:
• Configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in

VMX non-Root operation (see CHAPTER 24 for additional information),
• Clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits

and VM entries (see CHAPTER 24, CHAPTER 26, and CHAPTER 27).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted (see relevant sections of Chapter 19, “Performance Monitoring Events”).

18.2.4 Architectural Performance Monitoring Version 4
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well as
capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation interface
that replaces the legacy semantic behavior but retains the same control interface in
IA32_DEBUGCTL.Freeze_LBRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the following
enhancement:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 18.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI and

IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 18.2.4.1. Legacy semantics of Freeze_LBRs_On_PMI
and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and
read-only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 18.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

18.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance monitoring
version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serves as a control to enable capturing data in
the LBR stack. To enable capturing LBR records, the following expression must hold with architectural perfmon
version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ)) =1
• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the
performance counters are frozen.

18-14 Vol. 3B

PERFORMANCE MONITORING

Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable
programmable performance counters and fixed counters in the core PMU. To enable counting with the
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for programmable counter ‘n’, or

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI
handler to use IA32_DEBUGCTL.Freeze_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 17-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary
interface to control all performance counters of the logical processor.

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting
IA32_PERF_GLOBAL_CTRL as the very last step to commence the overall operation after configuring the individual
counter registers, controls and PEBS facility. This does not only assure atomic monitoring but also avoids unneces-
sary complications (e.g. race conditions) when software attempts to change the core PMU configuration while some
counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor Trace
and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when a PMI
occurred due to a ToPA entry memory buffer was completely filled.

IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring oper-
ations with other side-band activities, which apply Intel SGX on processors that support SGX (For additional infor-
mation about Intel SGX, see “Intel® Software Guard Extensions Programming Reference”.):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured

performance counters (i.e. IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was
cleared).

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of
IA32_PERF_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

18.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in
IA32_PERF_GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with
architectural performance monitoring version 4, software can manage the overflow and other indicators in
IA32_PERF_GLOBAL_STATUS using separate interfaces to set or clear individual bits.

Figure 18-10. IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4

Reserved

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow

TraceToPAPMI

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

OvfUncore

61

IA32_PMC1 Overflow

60 59 58 55

ASCI

LBR_Frz
CTR_Frz

Vol. 3B 18-15

PERFORMANCE MONITORING

The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by
IA32_PERF_GLOBAL_STATUS_RESET (see Figure 18-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides
additional bit fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 18.2.4.1.

The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

18.2.4.3 IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s
performance monitoring facilities. The IA32_MISC_ENABLE.PERFMON_AVAILABLE[bit 7] interface could not serve
the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1, proposed
a cooperative sharing protocol that is voluntary for participating software agents.

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simplifies
the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 18-13.

Figure 18-11. IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4

Figure 18-12. IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

1. Available at http://www.intel.com/sdm

Reserved

62

Clr IA32_FIXED_CTR2 Ovf
Clr IA32_FIXED_CTR1 Ovf
Clr IA32_FIXED_CTR0 Ovf

Clr TraceToPAPMI

.. 1 0

Clr IA32_PMC0 Ovf

313233343563

Clr CondChgd
Clr OvfDSBuffer

..N

Clr Ovf
Clr IA32_PMC(N-1) Ovf

Clr OvfUncore

61

Clr IA32_PMC1 Ovf

60 59 58 55

Clr ASCI

Clr LBR_Frz
Clr CTR_Frz

Reserved
Set IA32_FIXED_CTR2 Ovf
Set IA32_FIXED_CTR1 Ovf
Set IA32_FIXED_CTR0 Ovf

Set TraceToPAPMI

.. 1 0

Set IA32_PMC0 Ovf

3132333435

Set OvfDSBuffer

..N

Set Ovf
Set IA32_PMC(N-1) Ovf

Set OvfUncore

Set IA32_PMC1 Ovf

55

Set ASCI

Set LBR_Frz
Set CTR_Frz

63 62 61 60 59 58

18-16 Vol. 3B

PERFORMANCE MONITORING

The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by a
profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of

(IA32_PERFEVTSEL0[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of

(IA32_PERFEVTSEL1[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of

(IA32_PERFEVTSEL2[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of

(IA32_PERFEVTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].
• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[1:0] != 0).
• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[5:4] != 0).
• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[9:8] != 0).
• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 63]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8].

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2.

— Any IA32_PEBS_ENABLES bit which enables PEBS for a general-purpose or fixed-function performance
counter.

18.2.5 Architectural Performance Monitoring Version 5
Processors supporting architectural performance monitoring version 5 also support versions 1, 2, 3 and 4, as well
as capability enumerated by CPUID leaf 0AH. Specifically, version 5 provides the following enhancements:
• Deprecation of Anythread mode, see Section 18.2.5.1.
• Individual enumeration of Fixed counters in CPUID.0AH, see Section 18.2.5.2.

18.2.5.1 AnyThread Mode Deprecation
With Architectural Performance Monitoring Version 5, a processor that supports AnyThread mode deprecation is
enumerated by CPUID.0AH.EDX[15]. If set, software will not have to follow guidelines in Section 18.2.3.1.

Figure 18-13. IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4

Reserved

PMI InUse
FIXED_CTR2 InUse
FIXED_CTR1 InUse

.. 1 0

PERFEVTSEL0 InUse

313233343563 ..N

 InUse
PERFEVTSEL(N-1) InUse

PERFEVTSEL1 InUse
FIXED_CTR0 InUse

N = CPUID.0AH:EAX[15:8]

Vol. 3B 18-17

PERFORMANCE MONITORING

18.2.5.2 Fixed Counter Enumeration
With Architectural Performance Monitoring Version 5, register CPUID.0AH.ECX indicates Fixed Counter enumera-
tion. It is a bit mask which enumerates the supported Fixed Counters in a processor. If bit 'i' is set, it implies that
Fixed Counter 'i' is supported. Software is recommended to use the following logic to check if a Fixed Counter is
supported on a given processor:

FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

18.2.6 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 18-63.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias
address starting at 4C1H for IA32_A_PMC0.

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] := EDX[COUNTERWIDTH-33:0]);
IA32_PMCi[31:0] := EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

18.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL®
XEON® PROCESSORS)

18.3.1 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem

Intel Core i7 processor family2 supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.3) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is based
on Intel® microarchitecture code name Nehalem, and provides four general-purpose performance counters
(IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2) in the processor core.

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-31.
Non-architectural performance monitoring events fall into two broad categories:
• Performance monitoring events in the processor core: These include many events that are similar to

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally,
there are several enhancements in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the
physical processor package. The off-core sub-systems in the physical processor package is loosely referred to
as “uncore“.

2. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code name Nehalem; the performance
monitoring facilities described in this section generally also apply.

18-18 Vol. 3B

PERFORMANCE MONITORING

• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor
cores in the physical processor package. It provides additional performance monitoring facility outside of
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread
qualification using bit 21 of IA32_PERFEVTSELx MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.3.

18.3.1.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs,

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of the
four performance counter can support processor event based sampling (PEBS) and thread-qualification of
architectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel micro-
architecture code name Nehalem has been enhanced to include new data format to capture additional infor-
mation, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency
facility in processors based on Intel microarchitecture code name Nehalem. This field measures the load latency
from load's first dispatch of till final data writeback from the memory subsystem. The latency is reported for
retired demand load operations and in core cycles (it accounts for re-dispatches). This facility is used in
conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

NOTE
The number of counters available to software may vary from the number of physical counters
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section
18.2.1.

Figure 18-14. IA32_PERF_GLOBAL_STATUS MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 00000000_00000000H

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]

Vol. 3B 18-19

PERFORMANCE MONITORING

18.3.1.1.1 Processor Event Based Sampling (PEBS)

All general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event supports
PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the performance
monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE provides 4
bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record to be
captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS
record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based
on Intel microarchitecture code name Nehalem is shown in Figure 18-15.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 18-63).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-63). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-3, and each field in the PEBS record is 64 bits long. The PEBS record
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

Figure 18-15. Layout of IA32_PEBS_ENABLE MSR

Table 18-3. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

18-20 Vol. 3B

PERFORMANCE MONITORING

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-32e
mode are written to zero.

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is indi-
cated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist
occurred. This value is written so software can determine which counters overflowed when this PEBS record was
written. Note that this field indicates the overflow status for all counters, regardless of whether they were
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events
are listed in Table 18-78. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

The recording of PEBS records may not operate properly if accesses to the linear addresses in the DS buffer
management area or in the PEBS buffer (see below) cause page faults, VM exits, or the setting of accessed or dirty
flags in the paging structures (ordinary or EPT). For that reason, system software should establish paging struc-
tures (both ordinary and EPT) to prevent such occurrences. Implications of this may be that an operating system
should allocate this memory from a non-paged pool and that system software cannot do “lazy” page-table entry
propagation for these pages. A virtual-machine monitor may choose to allow use of PEBS by guest software only if
EPT maps all guest-physical memory as present and read/write.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-16.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer

allocated by software. The processor reads this field to determine the base address of the PEBS buffer.
• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the

beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first
PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

50H R8 A8H Latency value (core cycles)

Table 18-3. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

Vol. 3B 18-21

PERFORMANCE MONITORING

the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to
continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be
modified by the PEBS assist.

Performance Counter Prioritization

Figure 18-16. PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset

18-22 Vol. 3B

PERFORMANCE MONITORING

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero (assuming
IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger. PEBS hard-
ware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 transition
of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.3.1.2). It is
possible for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the
processor core. Software must check core and uncore status registers to determine the exact origin of counter
overflow interrupts.

18.3.1.1.2 Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS
buffer, see Table 18-3. This field measures the load latency from load's first dispatch of till final data writeback from
the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts
for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

Vol. 3B 18-23

PERFORMANCE MONITORING

The load-latency information written into a PEBS record (see Table 18-3, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in

processor core clock domain.
• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The

encoding is shown in Table 18-4. In the descriptions, local memory refers to system memory physically
attached to a processor package, and remote memory refers to system memory physically attached to another
processor package.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-17.

Table 18-4. Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss.

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where no modified copies were found.

07H1

NOTES:
1. Bit 7 is supported only for processors with a CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is

reserved.

Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and were serviced by another
core with a cross core snoop where modified copies were found.

08H Reserved/L3 MISS. Local homed requests that missed the L3 cache and were serviced by forwarded data following a
cross package snoop where no modified copies were found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation.

0FH The request was to un-cacheable memory.

Figure 18-17. Layout of MSR_PEBS_LD_LAT MSR

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H

18-24 Vol. 3B

PERFORMANCE MONITORING

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they
are ignored. The minimum value that may be programmed in this field is 3.

18.3.1.1.3 Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only
one off-core response configuration MSR. Table 18-5 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-18. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

Table 18-5. Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

Figure 18-18. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Table 18-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as
demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction
fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a
write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

Vol. 3B 18-25

PERFORMANCE MONITORING

18.3.1.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in the physical processor
package that are shared by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache,
Intel QuickPath Interconnect link logic, and integrated memory controller. The performance monitoring facilities
inside the uncore operates in the same clock domain as the uncore (U-clock domain), which is usually different
from the processor core clock domain. The uncore performance monitoring facilities described in this section apply
to Intel Xeon processor 5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH
(see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4). An overview of the uncore performance monitoring facilities is described separately.

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global uncore performance counter
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the
rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in
the PCI configuration space register at offset C0H under device number 0 and Function 0.

18.3.1.2.1 Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function coun-
ters in the uncore. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is
shared by four processor cores in a physical package.
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter

MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

OTHER 7 Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes, WC or
non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions
required (snooping).

OTHER_CORE_HI
T_SNP

9 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another
core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another
core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data following
a cross package snoop where no modified copies found. (Remote home requests are not counted)

REMOTE_DRAM 13 L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

NON_DRAM 15 Non-DRAM requests that were serviced by IOH.

Table 18-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition (Contd.)

Bit Name Offset Description

18-26 Vol. 3B

PERFORMANCE MONITORING

• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive
an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow
is enabled by setting IA32_DEBUGCTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in
MSR_UNCORE_PERF_GLOBAL_CTRL upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 18-20 shows the
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request.
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register

has changed state.

Figure 18-19. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 00000000_00000000H

Vol. 3B 18-27

PERFORMANCE MONITORING

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the
UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global
status register are cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit
position in this register has no effect on the uncore PMU hardware.

Figure 18-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter
MSR_UNCORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing
a value other than 1 is ignored.

Figure 18-20. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 18-21. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 00000000_00000000H

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 00000000_00000000H

18-28 Vol. 3B

PERFORMANCE MONITORING

18.3.1.2.2 Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-22 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero.
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 18-23 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

Figure 18-22. Layout of MSR_UNCORE_PERFEVTSELx MSRs

Figure 18-23. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow
RESET Value — 00000000_00000000H

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 00000000_00000000H

Vol. 3B 18-29

PERFORMANCE MONITORING

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter
(MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages.
The event logic unit can filter event counts to specific regions of code or transaction types incoming to the home
node logic.

18.3.1.2.3 Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit.
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 18-24.

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode.

— Bits 47:44 specify the QPI message classes.
Table 18-7 lists the encodings supported in the opcode field.

Figure 18-24. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address
RESET Value — 00000000_00000000H

Opcode

18-30 Vol. 3B

PERFORMANCE MONITORING

• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware.

— 100B: Count if only the address field matches.

— 010B: Count if only the opcode field matches.

— 110B: Count if either opcode field matches or the address field matches.

— 001B: Count only if both opcode and address field match.

— Other encoding are reserved.

18.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility
The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series are
significantly different The uncore performance monitoring facility consist of many distributed units associated with
individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of the
various box units of the uncore is shown in Figure 18-25.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple
counters within each box.

Table 18-7. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Vol. 3B 18-31

PERFORMANCE MONITORING

Table 18-8 summarizes the number MSRs for uncore PMU for each box.

The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the
uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple
counters within the same box, this is somewhat similar the “global control“ programming interface,
IA32_PERF_GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for
multiple counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

Figure 18-25. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-8. Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels

18-32 Vol. 3B

PERFORMANCE MONITORING

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 2, “Model-Specific Registers (MSRs)”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, Table 2-17 under the general
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL,

MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS,

MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL,

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_CTR,

MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_EVNT_SEL,

MSR_S0_PMON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. MSR_M0_PMON_TIMESTAMP,

MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500
Series Uncore Performance Monitoring Guide“.

18.3.2 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere

All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities,
and uncore PMU) described in Section 18.6.3 also apply to processors based on Intel® microarchitecture code
name Westmere.

Table 18-5 describes a non-architectural performance monitoring event (event code 0B7H) and associated
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore
response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors
based on Intel microarchitecture code name Westmere. The event code and event mask definitions of Non-archi-
tectural performance monitoring events are listed in Table 19-31.

The load latency facility is the same as described in Section 18.3.1.1.2, but added enhancement to provide more
information in the data source encoding field of each load latency record. The additional information relates to
STLB_MISS and LOCK, see Table 18-13.

18.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as
those supported in the Intel Xeon processor 5600 series3. The uncore subsystem in the Intel Xeon processor E7
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-25, with the additional capability that up to 10 C-Box units are
supported.

3. Exceptions are indicated for event code 0FH in Table 19-23; and valid bits of data source encoding field of each load
latency record is limited to bits 5:4 of Table 18-13.

Vol. 3B 18-33

PERFORMANCE MONITORING

Table 18-9 summarizes the number MSRs for uncore PMU for each box.

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in the “Intel®
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

18.3.4 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance moni-
toring capability with version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.3.1.1 and Section 18.6.3, with some differ-
ences and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-10.

Table 18-9. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-10. Core PMU Comparison

Box
Intel® microarchitecture code
name Sandy Bridge

Intel® microarchitecture code
name Westmere Comment

of Fixed counters per
thread

3 3 Use CPUID to determine # of
counters. See Section 18.2.1.

of general-purpose
counters per core

8 8 Use CPUID to determine # of
counters. See Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 18.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 Use CPUID to determine # of
counters. See Section 18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based
Sampling (PEBS) Events

See Table 18-12. See Table 18-78. IA32_PMC4-IA32_PMC7 do
not support PEBS.

18-34 Vol. 3B

PERFORMANCE MONITORING

18.3.4.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number
performance counters/event select registers (See Section 18.2.1.1).

Figure 18-42 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN,
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer (see Figure 18-27). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has
occurred in the associated counter.

PEBS-Load Latency See Section 18.3.4.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding

PEBS-Precise Store Section 18.3.4.4.3 No

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended
request and response types.

MSR 1A6H and 1A7H, limited
response types.

Nehalem supports 1A6H
only.

Figure 18-26. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

Table 18-10. Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code
name Sandy Bridge

Intel® microarchitecture code
name Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3

Vol. 3B 18-35

PERFORMANCE MONITORING

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-28). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling.
• Reloading counter values to continue sampling.
• Disabling event counting or interrupt based sampling.

Figure 18-27. IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

Figure 18-28. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore

18-36 Vol. 3B

PERFORMANCE MONITORING

18.3.4.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each processor core implements eight
general-purpose counters. CPUID.0AH:EAX[15:8] will report the number of counters visible to software.

If a processor core is shared by two logical processors, each logical processors can access up to four counters
(IA32_PMC0-IA32_PMC3). This is the same as in the prior generation for processors based on Intel microarchitec-
ture code name Nehalem.

If a processor core is not shared by two logical processors, up to eight general-purpose counters are visible. If
CPUID.0AH:EAX[15:8] reports 8 counters, then IA32_PMC4-IA32_PMC7 would occupy MSR addresses 0C5H
through 0C8H. Each counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP.
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.3.4.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-width writes to the general-
purpose counters, IA32_PMCx. Support of full-width writes are enumerated by
IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 18.2.4).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results in a sign-extended 32-bit
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address IA32_A_PMCx
by testing IA32_PERF_CAPABILITIES[13].

18.3.4.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, similar to those offered in
prior generation, with several enhanced features. The key components and differences of PEBS facility relative to
Intel microarchitecture code name Westmere is summarized in Table 18-11.

Only IA32_PMC0 through IA32_PMC3 support PEBS.

Table 18-11. PEBS Facility Comparison

Box
Intel® microarchitecture code name
Sandy Bridge

Intel® microarchitecture
code name Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 18-29 Figure 18-15

PEBS record layout Physical Layout same as Table 18-3. Table 18-3 Enhanced fields at offsets 98H,
A0H, A8H.

PEBS Events See Table 18-12. See Table 18-78. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-4

PEBS-Precise Store Yes; see Section 18.3.4.4.3. No IA32_PMC3 only

PEBS-PDIR Yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Vol. 3B 18-37

PERFORMANCE MONITORING

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations.

18.3.4.4.1 PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 18-3, but the fields at offset 98H, A0H and
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load,

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H): When load latency is enabled, this field will contain three piece of

information (including an encoded value indicating the source which satisfied the load operation). The source
field encodings are detailed in Table 18-4. When precise store is enabled, this field will contain information
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel microarchitecture code name
Sandy Bridge is shown in Table 18-12.

Figure 18-29. Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

62

PS_EN (R/W)

18-38 Vol. 3B

PERFORMANCE MONITORING

18.3.4.4.2 Load Latency Performance Monitoring Facility

The load latency facility in Intel microarchitecture code name Sandy Bridge is similar to that in prior microarchitec-
ture. It provides software a means to characterize the average load latency to different levels of cache/memory
hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see
Table 18-3 and Section 18.3.4.4.1. This field measures the load latency from load's first dispatch of till final data
writeback from the memory subsystem. The latency is reported for retired demand load operations and in core
cycles (it accounts for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is

Table 18-12. PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

NOTES:
1. Only available on IA32_PMC1.

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

Vol. 3B 18-39

PERFORMANCE MONITORING

programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001.00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the
hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-3. The specificity of Data Source entry at
offset A0H has been enhanced to report three pieces of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 18-17.

18.3.4.4.3 Precise Store Facility

Processors based on Intel microarchitecture code name Sandy Bridge offer a precise store capability that comple-
ments the load latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise
memory reference events with linear address information for both loads and stores can help programmers improve
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware
captures the linear address and other status information of the next store that retires. This information is then
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture precise store information.
• Complete the PEBS configuration steps.

Table 18-13. Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-4

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved

18-40 Vol. 3B

PERFORMANCE MONITORING

• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3
(IA32_PMC3) supports collection of precise store information.

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and
enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, A0H and A8H of Table 18-3.
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information.

18.3.4.4.4 Precise Distribution of Instructions Retired (PDIR)

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to
sample where performance bottleneck happened and to help identify its location in instruction address space. Even
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space.
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge include a facility referred to
as precise distribution of Instruction Retired (PDIR).

The PDIR facility mitigates the “skid” problem by providing an early indication of when the INST_RETIRED counter
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the counter
overflow. On processors based on Intel microarchitecture code name Sandy Bridge skid is significantly reduced,
and can be as little as one instruction. On future implementations PDIR may eliminate skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and processors based on Sandy Bridge microarchitec-
ture must use IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the IA32_PEBS_ENABLE set to 1.
INST_RETIRED.ALL is a non-architectural performance event, it is not supported in prior generation microarchitec-
tures. Additionally, on processors with CPUID DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool
that programs PDIR should quiesce the rest of the programmable counters in the core when PDIR is active.

18.3.4.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-15 lists the event code, mask value and additional off-core configuration MSR that
must be programmed to count off-core response events using IA32_PMCx.

Table 18-14. Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set,
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a
locked access.

Reserved A8H Reserved

Vol. 3B 18-41

PERFORMANCE MONITORING

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-30 and Figure 18-31. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Table 18-15. Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)

Figure 18-30. Request_Type Fields for MSR_OFFCORE_RSP_x

Table 18-16. MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads of full and partial cachelines as well as demand data page
table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a
write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

OTHER 15 Any other request that crosses IDI, including I/O.

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

18-42 Vol. 3B

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit and a valid response type
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x
allow an agent software to program numerous combinations that meet the above guideline, not all combinations
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Figure 18-31. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x

Table 18-17. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

RSPNS_SUPPLIER — Local

Vol. 3B 18-43

PERFORMANCE MONITORING

18.3.4.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx,
Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter
register, similar in style as those described in Section 18.3.1.2.2. The ARB unit in the uncore also provides its local
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit
are shown in Figure 18-32.

Table 18-18. MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 No details on snoop-related information.

SNP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-line was
valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-line was
in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

Figure 18-32. Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H

18-44 Vol. 3B

PERFORMANCE MONITORING

The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local

uncore PMU counter, see Table 19-20.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to

MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1.
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control.

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software
must then write to bit 13 of IA32_DEBUGCTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI)

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request.

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable bit
(bit 29).

Figure 18-33. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0

Vol. 3B 18-45

PERFORMANCE MONITORING

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

18.3.4.6.1 Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.
• Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-20 can collect performance characteristics of transac-
tions initiated by processor core. In that respect, they are similar to various sub-events in the
OFFCORE_RESPONSE family of performance events in the core PMU. Information such as data supplier locality
(LLC HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qualified on a per-thread
basis.

On the other hand, uncore performance event logic cannot associate its counts with the same level of per-thread
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may
be less affected by artifacts, complex interactions and other factors.

18.3.4.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge-E. While the processor cores share the same microarchitecture as those of the Intel®
Xeon® Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor
series, the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the
Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.3.4.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in
Section 18.6.3 through Section 18.3.4.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response
Supplier Info field shown in Table 18-17 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown in
Table 18-20. Additionally, there are some small differences in the non-architectural performance monitoring events
(see Table 19-18).

Table 18-19. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed
Counter

N.A. N.A. 48 No Uncore

18-46 Vol. 3B

PERFORMANCE MONITORING

18.3.4.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the
uncore sub-system.

Table 18-21 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel®
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore PMU
interfaces are listed in Table 2-24.

18.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally
are the same as those described in Section 18.6.3 through Section 18.3.4.5. The non-architectural performance
monitoring events supported by the processor core are listed in Table 19-18.

18.3.5.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are based
on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor E5 family
based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance counter sets
are provided at logic control unit scope.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7 v2
families are available in “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Programming
Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 2-28.

Table 18-20. MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier Info NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Remote 30:23 Remote DRAM Controller (either all 0s or all 1s).

Table 18-21. Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Vol. 3B 18-47

PERFORMANCE MONITORING

18.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with version
ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Table 18-22. Core PMU Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

of Fixed counters per thread 3 3 Use CPUID to determine
of counters. See
Section 18.2.1.

of general-purpose counters
per core

8 8 Use CPUID to determine
of counters. See
Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

of programmable counters per
thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by
two threads)

Use CPUID to determine
of counters. See
Section 18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based Sampling
(PEBS) Events

See Table 18-12 and Section
18.3.6.5.1.

See Table 18-12. IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

PEBS-Precise Store No, replaced by Data Address
profiling.

Section 18.3.4.4.3

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL)

Yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP Yes No

Data Address Profiling Yes No

LBR Profiling Yes Yes

Call Stack Profiling Yes, see Section 17.11. No Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended
request and response types.

MSR 1A6H and 1A7H; extended
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. No

18-48 Vol. 3B

PERFORMANCE MONITORING

18.3.6.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-23.

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

18.3.6.2 PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 18-24. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Table 18-23. PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-15 Figure 18-29

PEBS record layout Table 18-24; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Table 18-3; enhanced fields at
offsets 98H, A0H, A8H.

Precise Events See Table 18-12. See Table 18-12. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-13

PEBS-Precise Store No, replaced by data address
profiling.

Yes; see Section 18.3.4.4.3.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Vol. 3B 18-49

PERFORMANCE MONITORING

The layout of PEBS records are almost identical to those shown in Table 18-3. Offset B0H is a new field that records
the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and the equivalent
capability of precise store in prior generation (see Section 18.3.6.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H,
and ABH.

18.3.6.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

Table 18-24. PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section
18.3.6.5.1)

Table 18-25. Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

18-50 Vol. 3B

PERFORMANCE MONITORING

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture
DataLA information.
• Complete the PEBS configuration steps.
• Program an event listed in Table 18-25 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H and A8H, as shown in Table 18-26.

18.3.6.3.1 EventingIP Record

The PEBS record layout for processors based on Intel microarchitecture code name Haswell adds a new field at
offset 0B0H. This is the eventingIP field that records the IP address of the retired instruction that triggered the
PEBS assist. The EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following
the PEBS assist.

18.3.6.4 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. The
event codes are listed in Table 18-15. Each event code for off-core response monitoring requires programming an
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according
to:
• Transaction request type encoding (bits 15:0): see Table 18-27.
• Supplier information (bits 30:16): see Table 18-28.
• Snoop response information (bits 37:31): see Table 18-18.

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Table 18-26. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 18-25.

Reserved A8H Always zero.

Table 18-25. Precise Events That Supports Data Linear Address Profiling (Contd.)
Event Name Event Name

Vol. 3B 18-51

PERFORMANCE MONITORING

The supplier information field listed in Table 18-28. The fields vary across products (according to CPUID signatures)
and is noted in the description.

Table 18-27. MSR_OFFCORE_RSP_x Request_Type Definition (Haswell microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count L2 data
read prefetches or instruction fetches.

DMND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership in
anticipation of a write.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

COREWB 3 Counts the number of modified cachelines written back.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_L3_DATA_RD 7 Counts the number of data cacheline reads generated by L3 prefetchers.

PF_L3_RFO 8 Counts the number of RFO requests generated by L3 prefetchers.

PF_L3_CODE_RD 9 Counts the number of code reads generated by L3 prefetchers.

SPLIT_LOCK_UC_
LOCK

10 Counts the number of lock requests that split across two cachelines or are to UC memory.

STRM_ST 11 Counts the number of streaming store requests electronically.

Reserved 14:12 Reserved

OTHER 15 Any other request that crosses IDI, including I/O.

Table 18-28. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

18-52 Vol. 3B

PERFORMANCE MONITORING

18.3.6.4.1 Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series

Table 18-28 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature
06_3FH).

18.3.6.5 Performance Monitoring and Intel® TSX
Chapter 16 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 describes the details of
Intel® Transactional Synchronization Extensions (Intel® TSX). This section describes performance monitoring
support for Intel TSX.

If a processor supports Intel TSX, the core PMU enhances its IA32_PERFEVTSELx MSR with two additional bit fields
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 18-34. The
two additional bit fields are:

Table 18-29. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_45H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 L4 Cache

Reserved 30:26 Reserved

Table 18-30. MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

L3_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved

Vol. 3B 18-53

PERFORMANCE MONITORING

• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region,
regardless of whether that region was aborted or committed. This bit may only be set if the processor supports
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for
IA32_PERFEVTSEL2.

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code
region for its aborted execution (if any) and completed execution.

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. See Table 2-29.

A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region
are discarded.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they are listed in Table 19-12.

18.3.6.5.1 Intel TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and
then the PEBS event is processed.

Two of the TSX performance monitoring events in Table 19-12 also support using PEBS facility to capture additional
information. They are:
• HLE_RETIRED.ABORT ED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS
events. In this scenario, a PEBS event is processed following the abort.

Figure 18-34. Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode

USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved
I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

34

IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSEL2 Only)

18-54 Vol. 3B

PERFORMANCE MONITORING

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will
be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP,
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-31.

18.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a
similar manner as those described in Section 18.3.4.6.

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event
select MSRs in the C-Boxes are identical as shown in Figure 18-32.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

Table 18-31. TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or
committed.

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded.

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the
transactional region that aborted.

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

Reserved 63:40 Reserved

Vol. 3B 18-55

PERFORMANCE MONITORING

The uncore performance events for the C-Box and ARB units are listed in Table 19-13.

18.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in “Intel®
Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore
PMU interfaces are listed in Table 2-33.

18.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility

The 5th Generation Intel® Core™ processor and the Intel® Core™ M processor families are based on the Broadwell
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU has the same capability as those described in Section 18.3.6. IA32_PERF_GLOBAL_STATUS provide
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace.

Details of Intel Processor Trace is described in Chapter 35, “Intel® Processor Trace”.
IA32_PERF_GLOBAL_OVF_CTRL MSR provide a corresponding reset control bit.

Table 18-32. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed Counter N.A. N.A. 48 No Uncore

Figure 18-35. IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_Buffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

Trace_ToPA_PMI

55

18-56 Vol. 3B

PERFORMANCE MONITORING

The specifics of non-architectural performance events are listed in Chapter 19, “Performance Monitoring Events”.

18.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor
Performance Monitoring Facility

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The 7th generation Intel®
Core™ processor is based on the Kaby Lake microarchitecture. The 8th generation Intel® Core™ processor is based
on the Coffee Lake microarchitecture. For these microarchitectures, the core PMU supports architectural perfor-
mance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-architectural monitoring
capabilities.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details
are described in Chapter 42, “Enclave Code Debug and Profiling”.

Figure 18-36. IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
ClrTraceToPA_PMI

61 55

Vol. 3B 18-57

PERFORMANCE MONITORING

Table 18-33. Core PMU Comparison

Box Intel® Microarchitecture Code Name
Skylake, Kaby Lake and Coffee Lake

Intel® Microarchitecture Code
Name Haswell and Broadwell

Comment

of Fixed counters per thread 3 3 Use CPUID to
determine # of
counters. See
Section 18.2.1.

of general-purpose counters
per core

8 8 Use CPUID to
determine # of
counters. See
Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

Use CPUID to
determine # of
counters. See
Section 18.2.1.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_LBR_on_PMI with
streamlined semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics
not supported with
version 4 or higher.

Counter and Buffer Overflow
Status Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_RESET

• Set via
IA32_PERF_GLOBAL_STATUS_SET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS
Indicators of
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow

(applicable to Broadwell
microarchitecture)

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATUS

• CTR_Frz
• LBR_Frz

NA See Section
18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section
18.2.4.3.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-PMC7
do not support
PEBS.

PEBS for front end events See Section 18.3.8.1.4. No

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.12

LBR Timing Yes No Section 17.12.1

Call Stack Profiling Yes, see Section 17.11 Yes, see Section 17.11 Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; Extended request
and response types.

MSR 1A6H and 1A7H; Extended
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. See Section 18.3.6.5.

18-58 Vol. 3B

PERFORMANCE MONITORING

18.3.8.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 6th generation, 7th generation and 8th generation Intel Core processors provides a number
enhancement relative to PEBS in processors based on Haswell/Broadwell microarchitectures. The key components
and differences of PEBS facility relative to Haswell/Broadwell microarchitecture is summarized in Table 18-34.

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTES
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

18.3.8.1.1 PEBS Data Format

The PEBS record format for the 6th generation, 7th generation and 8th generation Intel Core processors is
reporting with encoding 0011b in IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 18-35. The PEBS
record format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

Table 18-34. PEBS Facility Comparison

Box Intel® Microarchitecture Code
Name Skylake, Kaby Lake

and Coffee Lake

Intel® Microarchitecture Code
Name Haswell and Broadwell

Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-15 Figure 18-15

PEBS-EventingIP Yes Yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-35; enhanced fields
at offsets 98H- B8H; and TSC
record field at C0H.

Table 18-24; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS
resolution

PEBS record 90H resolves the
eventing counter overflow.

PEBS record 90H reflects
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

Data Address Profiling Yes Yes

FrontEnd event support FrontEnd_Retried event and
MSR_PEBS_FRONTEND.

No IA32_PMC0-PMC3 only.

Vol. 3B 18-59

PERFORMANCE MONITORING

The layout of PEBS records are largely identical to those shown in Table 18-24.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and data address
profiling (Section 18.3.6.3).

In the core PMU of the 6th generation, 7th generation and 8th generation Intel Core processors, load latency
facility and PDIR capabilities and data address profiling are unchanged relative to the 4th generation and 5th
generation Intel Core processors. Similarly, precise store is replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate multiple
PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS record entry
to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot of
the TSC that provides a time line annotation for each PEBS record entry.

18.3.8.1.2 PEBS Events

The list of precise events supported for PEBS in the Skylake, Kaby Lake and Coffee Lake microarchitectures is
shown in Table 18-36.

Table 18-35. PEBS Record Format for 6th Generation, 7th Generation
and 8th Generation Intel Core Processor Families

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 18.3.6.5.1)

58H R9 C0H TSC

60H R10

18-60 Vol. 3B

PERFORMANCE MONITORING

18.3.8.1.3 Data Address Profiling

The PEBS Data address profiling on the 6th generation, 7th generation and 8th generation Intel Core processors is
largely unchanged from the prior generation. When the DataLA facility is enabled, the relevant information written
into a PEBS record affects entries at offsets 98H, A0H and A8H, as shown in Table 18-26.

Table 18-36. Precise Events for the Skylake, Kaby Lake and Coffee Lake Microarchitectures
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.3.8.2
4. Instruction with at least one load uop experiencing the condition specified in the UMask.

Vol. 3B 18-61

PERFORMANCE MONITORING

18.3.8.1.4 PEBS Facility for Front End Events

In the 6th generation, 7th generation and 8th generation Intel Core processors, the PEBS facility has been
extended to allow capturing PEBS data for some microarchitectural conditions related to front end events. The
frontend microarchitectural conditions supported by PEBS requires the following interfaces:
• The IA32_PERFEVTSELx MSR must select “FrontEnd_Retired” (C6H) in the EventSelect field (bits 7:0) and

umask = 01H,
• The “FRONTEND_RETIRED” event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported

frontend event details, see Table 18-38.
• Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 18-38.

Table 18-37. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Table 18-38. FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

DSB_MISS 11H Retired Instructions which experienced decode stream buffer (DSB) miss.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional
requests to the same cache line as an in-flight L1I cache miss will not be counted.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration.

Latency controls the number of cycles and Threshold controls the number of allocation slots that
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at
least FE_TRESHOLD number of bubbles each.

18-62 Vol. 3B

PERFORMANCE MONITORING

The layout of MSR_PEBS_FRONTEND is given in Table 18-39.

18.3.8.1.5 FRONTEND_RETIRED

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include
the following:
• The event counts only retired (non-speculative) front-end events, i.e. events from just true program execution

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused

front-end misses, the count will be only 1 for that line.
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded

once. If there were additional misses in the second cacheline, they will not be counted separately.
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will

be counted once per that instruction.
• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted

once for the fused instruction.
• If a front-end (miss) event occurs outside instruction boundary (e.g. due to processor handling of architectural

event), it may be reported for the next instruction to retire.

18.3.8.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-40.
• Supplier information (bits 29:16): see Table 18-41.
• Snoop response information (bits 37:30): see Table 18-42.

Table 18-39. MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 18-38.

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when
counting IDQ_READ_BUBBLES event.

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event.

Reserved 63:23 Reserved

Vol. 3B 18-63

PERFORMANCE MONITORING

Table 18-41 lists the supplier information field that applies to 6th generation, 7th generation and 8th generation
Intel Core processors. (6th generation Intel Core processor CPUID signatures: 06_4EH, 06_5EH; 7th generation
and 8th generation Intel Core processor CPUID signatures: 06_8EH, 06_9EH).

Table 18-42 lists the snoop information field that apply to processors with CPUID signatures 06_4EH, 06_5EH,
06_8EH, 06_9E, and 06_55H.

Table 18-40. MSR_OFFCORE_RSP_x Request_Type Definition (Skylake, Kaby Lake
and Coffee Lake Microarchitectures)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count hw or
sw prefetches.

DMND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

Reserved 14:3 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 18-41. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(CPUID Signatures 06_4EH, 06_5EH and 06_8EH, 06_9EH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT 22 L4 Cache (if L4 is present in the processor).

Reserved 25:23 Reserved

DRAM 26 Local Node

Reserved 29:27 Reserved

SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).

18-64 Vol. 3B

PERFORMANCE MONITORING

18.3.8.2.1 Off-core Response Performance Monitoring for the Intel® Xeon® Processor Scalable Family

The following tables list the requestor and supplier information fields that apply to the Intel® Xeon® Processor
Scalable Family.
• Transaction request type encoding (bits 15:0): see Table 18-43.
• Supplier information (bits 29:16): see Table 18-44.
• Supplier information (bits 29:16) with support for Intel® Optane™ DC Persistent Memory support: see

Table 18-45.
• Snoop response information has not been changed and is the same as in (bits 37:30): see Table 18-42.

Table 18-42. MSR_OFFCORE_RSP_x Snoop Info Field Definition
(CPUID Signatures 06_4EH, 06_5EH, 06_8EH, 06_9E and 06_55H)

Subtype Bit Name Offset Description

Snoop Info SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).

SNOOP_NONE 31 No details on snoop-related information.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores.

-For LLC Miss, Rspl was returned by all sockets and data was returned
from DRAM.

SNOOP_HIT_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit
denotes a cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO).

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD).

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S).

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 A snoop was needed and data was forwarded from a remote socket.
This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss,
IFetch/Data_RD/RFT).

SNOOP_HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM
denotes a cache-line was in modified state before effect as a results
of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD).

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO).

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 Target was non-DRAM system address. This includes MMIO
transactions.

Vol. 3B 18-65

PERFORMANCE MONITORING

Table 18-44 lists the supplier information field that applies to the Intel Xeon Processor Scalable Family (CPUID
signature: 06_55H).

Table 18-45 lists the supplier information field that applies to the Intel Xeon Processor Scalable Family (CPUID
signature: 06_55H, Steppings 0x5H - 0xFH).

Table 18-43. MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Processor Scalable Family)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count
hw or sw prefetches.

DEMAND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DEMAND_CODE_RD 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline
prefetches.

Reserved 3 Reserved.

PF_L2_DATA_RD 4 Counts the number of prefetch data reads into L2.

PF_L2_RFO 5 Counts the number of RFO Requests generated by the MLC prefetches to L2.

Reserved 6 Reserved.

PF_L3_DATA_RD 7 Counts the number of MLC data read prefetches into L3.

PF_L3_RFO 8 Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved.

PF_L1D_AND_SW 10 Counts data cacheline reads generated by hardware L1 data cache prefetcher or software
prefetch requests.

Reserved 14:11 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 18-44. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_55H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

Reserved 25:22 Reserved

L3_MISS_LOCAL_DRAM 26 L3 Miss: local home requests that missed the L3 cache and were
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved

18-66 Vol. 3B

PERFORMANCE MONITORING

18.3.8.3 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake
Microarchitecture

Cannon Lake microarchitecture introduces LLC support of up to six processor cores. To support six processor cores
and eight LLC slices, existing MSRs have been rearranged and new CBo MSRs have been added. Uncore perfor-
mance monitoring software drivers from prior generations of Intel Core processors will need to update the MSR
addresses. The new MSRs and updated MSR addresses have been added to the Uncore PMU listing in Section
2.17.2, “MSRs Specific to 8th Generation Intel® Core™ i3 Processors” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

18.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
The 10th generation Intel® Core™ processor is based on Ice Lake microarchitecture. For this microarchitecture, the
core PMU supports architectural performance monitoring capability with version Id 5 (see Section 18.2.5) and a
host of non-architectural monitoring capabilities.

The core PMU's capability is similar to those described in Section 18.3.1 through Section 18.3.8, with some differ-
ences and enhancements summarized in Table 18-46.

Table 18-45. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(CPUID Signature 06_55H, Steppings 0x5H - 0xFH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

LOCAL_PMM 22 Local home requests that were serviced by local PMM.

REMOTE_HOP0_PMM 23 Hop 0 Remote supplier.

REMOTE_HOP1_PMM 24 Hop 1 Remote supplier.

REMOTE_HOP2P_PMM 25 Hop 2 or more Remote supplier.

L3_MISS_LOCAL_DRAM 26 L3 Miss: Local home requests that missed the L3 cache and were
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved

Table 18-46. PEBS Facility Comparison

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee
Lake Microarchitectures

Comment

Architectural Perfmon
version

5 4 See Section 18.2.5.

PEBS: Basic functionality Yes Yes See Section 18.3.9.1.

PEBS record format encoding 0100b 0011b See Section 18.6.2.4.2.

Vol. 3B 18-67

PERFORMANCE MONITORING

18.3.9.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 10th generation Intel Core processors provides a number of enhancements relative to PEBS
in processors based on the Skylake, Kaby Lake, and Coffee Lake microarchitectures. Enhancement of PEBS facility
with Extended PEBS and Adaptive PEBS features are described in detail in Section 18.9.

18.3.9.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-[N1].
• Response type encoding (bits 16-37) of

— Supplier information: see Table [18-N2].

— Snoop response information: see Table [18-N3].
• All transactions are tracked at cacheline granularity except some in request type OTHER.

Extended PEBS PEBS is extended to all Fixed
and General Purpose counters
and to all performance
monitoring events.

No See Section 18.9.1.

Adaptive PEBS Yes No See Section 18.9.2.

Performance Metrics Yes (4) No See Section 18.3.9.3.

PEBS-PDIR IA32_FIXED0 only
(Corresponding counter control
MSRs must be enabled.)

IA32_PMC1 only.

Table 18-46. PEBS Facility Comparison

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee
Lake Microarchitectures

Comment

18-68 Vol. 3B

PERFORMANCE MONITORING

Ice Lake microarchitecture has added a new category of Response subtype, called a Combined Response Info. To
count a feature in this type, all the bits specified must be set to 1.

A valid response type must be a non-zero value of the following expression:

Any | ['OR' of Combined Response Info Bits | [('OR' of Supplier Info Bits) & ('OR' of Snoop Info Bits)]]

If "ANY" bit[16] is set, other response type bits [17-39] are ignored.

Table 18-48 lists the supplier information field that applies to processors based on Ice Lake microarchitecture.

Table 18-47. MSR_OFFCORE_RSP_x Request_Type Definition
(Future Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data and page table entry reads.

DEMAND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership
in anticipation of a write.

DEMAND_CODE_RD 2 Counts demand instruction fetches and instruction prefetches targeting the L1 instruction
cache.

Reserved 3 Reserved

HWPF_L2_DATA_RD 4 Counts hardware generated data read prefetches targeting the L2 cache.

HWPF_L2_RFO 5 Counts hardware generated prefetches for exclusive ownership (RFO) targeting the L2
cache.

Reserved 6 Reserved

HWPF_L3 9:7 and 131 Counts hardware generated prefetches of any type targeting the L3 cache.

HWPF_L1D_AND_SWPF 10 Counts hardware generated data read prefetches targeting the L1 data cache and the
following software prefetches (PREFETCHNTA, PREFETCHT0/1/2).

STREAMING_WR 11 Counts streaming stores.

Reserved 12 Reserved

Reserved 14 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

NOTES:
1. All bits need to be set to 1 to count this type.

Table 18-48. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Combined
Response
Info

DRAM 26, 31, 321

NOTES:
1. All bits need to be set to 1 to count this type.

Requests that are satisfied by DRAM.

NON_DRAM 26, 371 Requests that are satisfied by a NON_DRAM system component. This includes
MMIO transactions.

L3_MISS 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33,
34, 35, 36, 371

Requests that were not supplied by the L3 Cache. The event includes some
currently reserved bits in anticipation of future memory designs.

Supplier
Info

L3_HIT 18,19, 201 Requests that hit in L3 cache. Depending on the snoop response the L3 cache
may have retrieved the cacheline from another core's cache.

Reserved 17, 21:25, 27:29 Reserved.

Vol. 3B 18-69

PERFORMANCE MONITORING

Table 18-49 lists the snoop information field that applies to processors based on Ice Lake microarchitecture.

18.3.9.3 Performance Metrics
The Ice Lake core PMU provides built-in support for Top-down Microarchitecture Analysis (TMA) method level 1
metrics. These metrics are always available to cross-validate performance observations, freeing general purpose
counters to count other events in high counter utilization scenarios. For more details about the method, refer to
Top-Down Analysis Method chapter (Appendix B.1) of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

A new MSR called MSR_PERF_METRICS reports the metrics directly. Software can check (and/or expose to its
guests) the availability of the PERF_METRICS feature using IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE
(bit 15).

This register exposes the four TMA Level 1 metrics. The lower 32 bits are divided into four 8-bit fields, as shown by
the above figure, each of which is an integer fraction of 255.

Table 18-49. MSR_OFFCORE_RSP_x Snoop Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Snoop
Info

Reserved 30 Reserved.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was sent and none of the snooped caches contained the cacheline.

SNOOP_HIT_NO_FWD 34 A snoop was sent and hit in at least one snooped cache. The unmodified
cacheline was not forwarded back, because the L3 already has a valid copy.

Reserved 35 Reserved.

SNOOP_HITM 36 A snoop was sent and the cacheline was found modified in another core's
caches. The modified cacheline was forwarded to the requesting core.

Figure 18-37. MSR_PERF_METRICS Definition

MSR_PERF_METRICS
Address: 329H
Scope: Thread

Reset value : 0x00000000 .00000000

63 55 47 39

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Reserved

18-70 Vol. 3B

PERFORMANCE MONITORING

To support built-in performance metrics, new bits have been added to the following MSRs:
• IA32_PERF_GLOBAL_CTRL. EN_PERF_METRICS[48]: If this bit is set and fixed counter 3 is enabled, built-in

performance metrics are enabled.
• IA32_PERF_GLOBAL_STATUS_SET. SET_OVF_PERF_METRICS[48]: If this bit is set, it will set the status bit in

the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS_RESET. RESET_OVF_PERF_METRICS[48]: If this bit is set, it will clear the status

bit in the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS. OVF_PERF_METRICS[48]: If this bit is set, it indicates that a PERF_METRICS-

related resource has overflowed and a PMI is triggered4. If this bit is clear, no such overflow has occurred.

NOTE
Software has to synchronize, e.g., re-start, fixed counter 3 as well as PERF_METRICS when either
bit 35 or 48 in IA32_PERF_GLOBAL_STATUS is set. Otherwise, PERF_METRICS may return
undefined values.

The values in MSR_PERF_METRICS are derived from fixed counter 3. Software should start both registers,
PERF_METRICS and fixed counter 3, from zero. Additionally, software is recommended to periodically clear both
registers in order to maintain accurate measurements for certain scenarios that involve sampling metrics at high
rates.

In order to save/restore PERF_METRICS, software should follow these guidelines:
• PERF_METRICS and fixed counter 3 should be saved and restored together.
• To ensure that PERF_METRICS and fixed counter 3 remain synchronized, both should be disabled during both

save and restore. Software should enable/disable them atomically, with a single write to
IA32_PERF_GLOBAL_CTRL to set/clear both EN_PERF_METRICS[bit 48] and EN_FIXED_CTR3[bit 35].

• On state restore, fixed counter 3 must be restored before PERF_METRICS, otherwise undefined results may be
observed.

18.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS)

NOTE
This section also applies to the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on
Knights Mill microarchitecture.

18.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring
The Intel® Xeon Phi™ processor 7200/5200/3200 series are based on the Knights Landing microarchitecture. The
performance monitoring capabilities are distributed between its tiles (pair of processor cores) and untile
(connecting many tiles in a physical processor package). Functional details of the tiles and untile of the Knights
Landing microarchitecture can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

A complete description of the tile and untile PMU programming interfaces for Intel Xeon Phi processors based on the
Knights Landing microarchitecture can be found in the Technical Document section at
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

A tile contains a pair of cores attached to a shared L2 cache and is similar to those found in Intel® Atom™ proces-
sors based on the Silvermont microarchitecture. The processor provides several new capabilities on top of the
Silvermont performance monitoring facilities.

4. An overflow of fixed counter 3 should normally happen first if software follows Intel’s recommendations.

Vol. 3B 18-71

PERFORMANCE MONITORING

The processor supports architectural performance monitoring capability with version ID 3 (see Section 18.2.3) and
a host of non-architectural performance monitoring capabilities. The processor provides two general-purpose
performance counters (IA32_PMC0, IA32_PMC1) and three fixed-function performance counters
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in the processor also uses the IA32_PERFEVTSELx MSR to configure a
set of non-architecture performance monitoring events to be counted by the corresponding general-purpose
performance counter.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1
and Section 18.2.3. The processor supports AnyThread counting in three architectural performance monitoring
events.

18.4.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ processor Tile
The Intel® Xeon Phi™ processor tile includes the following enhancements to the Silvermont microarchitecture.
• AnyThread support. This facility is limited to following three architectural events: Instructions Retired,

Unhalted Core Cycles, Unhalted Reference Cycles using IA32_FIXED_CTR0-2 and Unhalted Core Cycles,
Unhalted Reference Cycles using IA32_PERFEVTSELx.

• PEBS-DLA (Processor Event-Based Sampling-Data Linear Address) fields. The processor provides memory
address in addition to the Silvermont PEBS record support on select events. The PEBS recording format as
reported by IA32_PERF_CAPABILITIES [11:8] is 2.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor tile to subsystems outside the tile (untile). Counting off-core
response requires additional event qualification configuration facility in conjunction with IA32_PERFEVTSELx.
Two off-core response MSRs are provided to use in conjunction with specific event codes that must be specified
with IA32_PERFEVTSELx. Two cores do not share the off-core response MSRs. Knights Landing expands off-
core response capability to match the processor untile changes.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests. This facility is
updated to match the processor untile changes.

18.4.1.1.1 Processor Event-Based Sampling

The processor supports processor event based sampling (PEBS). PEBS is supported using IA32_PMC0 (see also
Section 17.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.6.2.4).

The list of PEBS events supported in the processor is shown in the following table.

Table 18-50. PEBS Performance Events for the Knights Landing Microarchitecture
Event Name Event Select Sub-event UMask Data Linear

Address Support

BR_INST_RETIRED C4H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

CALL F9H No

REL_CALL FDH No

IND_CALL FBH No

NON_RETURN_IND EBH No

FAR_BRANCH BFH No

RETURN F7H No

18-72 Vol. 3B

PERFORMANCE MONITORING

The PEBS record format 2 supported by processors based on the Knights Landing microarchitecture is shown in
Table 18-51, and each field in the PEBS record is 64 bits long.

18.4.1.1.2 Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-52 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

BR_MISP_RETIRED C5H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

IND_CALL FBH No

NON_RETURN_IND EBH No

RETURN F7H No

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H Yes

L2_MISS_LOADS 04H Yes

DLTB_MISS_LOADS 08H Yes

RECYCLEQ 03H LD_BLOCK_ST_FORWARD 01H Yes

LD_SPLITS 08H Yes

Table 18-51. PEBS Record Format for the Knights Landing Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H PSDLA

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-52. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Table 18-50. PEBS Performance Events for the Knights Landing Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask Data Linear

Address Support

Vol. 3B 18-73

PERFORMANCE MONITORING

Some of the MSR_OFFCORE_RESP [0,1] register bits are not valid in this processor and their use is reserved. The
layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 registers are defined in Table 18-53. Bits 15:0 specifies
the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 spec-
ifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details.

Table 18-53. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers

Main Sub-field Bit Name Description

Request Type 0 DEMAND_DATA_RD Demand cacheable data and L1 prefetch data reads.

1 DEMAND_RFO Demand cacheable data writes.

2 DEMAND_CODE_RD Demand code reads and prefetch code reads.

3 Reserved Reserved.

4 Reserved Reserved.

5 PF_L2_RFO L2 data RFO prefetches (includes PREFETCHW instruction).

6 PF_L2_CODE_RD L2 code HW prefetches.

7 PARTIAL_READS Partial reads (UC or WC).

8 PARTIAL_WRITES Partial writes (UC or WT or WP). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

9 UC_CODE_READS UC code reads.

10 BUS_LOCKS Bus locks and split lock requests.

11 FULL_STREAMING_STO
RES

Full streaming stores (WC). Valid only for OFFCORE_RESP_1
event. Should only be used on PMC1. This bit is reserved for
OFFCORE_RESP_0 event.

12 SW_PREFETCH Software prefetches.

13 PF_L1_DATA_RD L1 data HW prefetches.

14 PARTIAL_STREAMING_
STORES

Partial streaming stores (WC). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

15 ANY_REQUEST Account for any requests.

Response Type Any 16 ANY_RESPONSE Account for any response.

Data Supply from
Untile

17 NO_SUPP No Supplier Details.

18 Reserved Reserved.

19 L2_HIT_OTHER_TILE_N
EAR

Other tile L2 hit E Near.

20 Reserved Reserved.

21 MCDRAM_NEAR MCDRAM Local.

22 MCDRAM_FAR_OR_L2_
HIT_OTHER_TILE_FAR

MCDRAM Far or Other tile L2 hit far.

23 DRAM_NEAR DRAM Local.

24 DRAM_FAR DRAM Far.

18-74 Vol. 3B

PERFORMANCE MONITORING

18.4.1.1.3 Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0].

Refer to Section 18.5.2.3, “Average Offcore Request Latency Measurement,” for typical usage. Note that
MSR_OFFCORE_RESPx registers are not shared between cores in Knights Landing. This allows one core to measure
average latency while other core is measuring different offcore response events.

18.5 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS)

18.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting the
aggregate capabilities of versionID 1, 2, and 3; see Section 18.2.3) and a host of non-architectural monitoring
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters
(IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Data Supply from
within same tile

25 L2_HITM_THIS_TILE M-state.

26 L2_HITE_THIS_TILE E-state.

27 L2_HITS_THIS_TILE S-state.

28 L2_HITF_THIS_TILE F-state.

29 Reserved Reserved.

30 Reserved Reserved.

Snoop Info; Only
Valid in case of
Data Supply from
Untile

31 SNOOP_NONE None of the cores were snooped.

32 NO_SNOOP_NEEDED No snoop was needed to satisfy the request.

33 Reserved Reserved.

34 Reserved Reserved.

35 HIT_OTHER_TILE_FWD Snoop request hit in the other tile with data forwarded.

36 HITM_OTHER_TILE A snoop was needed and it HitM-ed in other core's L1 cache.
HitM denotes a cache-line was in modified state before
effect as a result of snoop.

37 NON_DRAM Target was non-DRAM system address. This includes MMIO
transactions.

Outstanding
requests

Weighted cycles 38 OUTSTANDING (Valid
only for
MSR_OFFCORE_RESP0.
Should only be used on
PMC0. This bit is
reserved for
MSR_OFFCORE_RESP1).

If set, counts total number of weighted cycles of any
outstanding offcore requests with data response. Valid only
for OFFCORE_RESP_0 event. Should only be used on PMC0.
This bit is reserved for OFFCORE_RESP_1 event.

Table 18-53. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers (Contd.)

Main Sub-field Bit Name Description

Vol. 3B 18-75

PERFORMANCE MONITORING

NOTE
The number of counters available to software may vary from the number of physical counters
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section
18.2.1.

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-31.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e. if
IA32_PERFEVTSELx.AnyThread =1, event counts include monitored conditions due to either logical processors in
the same processor core.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.3.

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the
same qualifying actions like those listed in Table 18-71, Table 18-72, Table 18-73, and Table 18-74. One or more
of these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-31 in
Chapter 19, “Performance Monitoring Events.” Precise Event Based Monitoring is supported using IA32_PMC0 (see
also Section 17.4.9, “BTS and DS Save Area”).

18.5.2 Performance Monitoring for Silvermont Microarchitecture
Intel processors based on the Silvermont microarchitecture report architectural performance monitoring versionID
= 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. Intel processors based on the
Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and
three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). Intel
Atom processors based on the Airmont microarchitecture support the same performance monitoring capabilities as
those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-30.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.3. Architectural and non-architectural performance monitoring events in the
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx
MSR.

18.5.2.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits.
• Off-core response counting facility. This facility in the processor core allows software to count certain

transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests.

18.5.2.1.1 Processor Event Based Sampling (PEBS)

In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using
IA32_PMC0 (see also Section 17.4.9).

18-76 Vol. 3B

PERFORMANCE MONITORING

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.6.2.4).

The list of precise events supported in the Silvermont microarchitecture is shown in Table 18-54.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchitec-
ture is shown in Table 18-55, and each field in the PEBS record is 64 bits long.

Table 18-54. PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-55. PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

Vol. 3B 18-77

PERFORMANCE MONITORING

18.5.2.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-56 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-38 and Figure 18-39. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details.

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-56. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Figure 18-38. Request_Type Fields for MSR_OFFCORE_RSPx

Table 18-55. PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W)

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — SW_PREFETCH (R/W)

18-78 Vol. 3B

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit (Table 18-57) and a valid
response type pattern (Table 18-58, Table 18-59). Otherwise, the event count reported will be zero. It is permis-
sible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

Table 18-57. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as
demand data page table entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by
a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT and
WP)

UC_IFETCH 9 Counts the number of UC instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

SW_PREFETCH 12 Counts software prefetch requests

PF_DATA_RD 13 Counts DCU hardware prefetcher data read requests

PARTIAL_STRM_ST 14 Streaming store requests

ANY 15 Any request that crosses IDI, including I/O.

Figure 18-39. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)

Vol. 3B 18-79

PERFORMANCE MONITORING

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

18.5.2.3 Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using two
performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corresponding
IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a request type in
MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white setting the
remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the same request
type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting
MSR_OFFCORE_RSP1.ANY_RESPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be
obtained by dividing the value of the IA32_PMCx register that counted weight cycles by the register that counted
requests.

Table 18-58. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 18-59. MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 No details on snoop-related information.

Reserved 32 Reserved

SNOOP_MISS 33 Counts the number of snoop misses when L2 misses.

SNOOP_HIT 34 Counts the number of snoops hit in the other module where no modified copies were
found.

Reserved 35 Reserved

HITM 36 Counts the number of snoops hit in the other module where modified copies were
found in other core's L1 cache.

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 Enable average latency measurement by counting weighted cycles of outstanding
offcore requests of the request type specified in bits 15:0 and any response (bits 37:16
cleared to 0).

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the
specified programmable counter IA32_PMCx and the occurrence of specified requests
are counted in the other programmable counter.

18-80 Vol. 3B

PERFORMANCE MONITORING

18.5.3 Performance Monitoring for Goldmont Microarchitecture
Intel Atom processors based on the Goldmont microarchitecture report architectural performance monitoring
versionID = 4 (see Section 18.2.4) and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.3. The Goldmont microarchitecture does not support Hyper-Threading and thus
architectural and non-architectural performance monitoring events ignore the AnyThread qualification regardless
of its setting in the IA32_PERFEVTSELx MSR. However, Goldmont does not set the AnyThread deprecation bit
(CPUID.0AH:EDX[15]).

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 18.5.2 , with
some differences and enhancements summarized in Table 18-60.

Table 18-60. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

of Fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
18.2.1.

of general-purpose
counters per core

4 2 Use CPUID to determine #
of counters. See Section
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 18.2.2.

Architectural Performance
Monitoring version ID

4 3 Use CPUID to determine #
of counters. See Section
18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_LBR_on_PMI with
streamlined semantics for
branch profiling.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

See Section 17.4.7.

Legacy semantics not
supported with version 4
or higher.

Counter and Buffer
Overflow Status
Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of
Overflow/Overhead/Interfer
ence

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATU
S

• CTR_Frz,
• LBR_Frz

No See Section 18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 18.2.4.3.

Processor Event Based
Sampling (PEBS) Events

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 18-61.

See Section 18.5.2.1.1. General-
Purpose Counter 0 only. Only
supports precise events (see
Table 18-54).

IA32_PMC0 only.

Vol. 3B 18-81

PERFORMANCE MONITORING

18.5.3.1 Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture,
PEBS is supported using IA32_PMC0 for all events (see Section 17.4.9).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time
the sample was generated.

Precise events work the same way on Goldmont microarchitecture as on the Silvermont microarchitecture. The
record will be generated after an instruction that causes the event when the counter is already overflowed and will
capture the architectural state at this point (see Section 18.6.2.4 and Section 17.4.9). The eventingIP in the record
will indicate the instruction that caused the event. The list of precise events supported in the Goldmont microarchi-
tecture is shown in Table 18-61.

In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will
be generated at the next opportunity and capture the state at the processor's current retirement point. It is likely
that the instruction fetch that caused the event to increment was beyond that current retirement point. Other
examples of non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED.
CPU_CLK_UNHALTED.CORE_P will increment each cycle that the processor is awake. When the counter over-flows,
there may be many instructions in various stages of execution. Additionally, zero, one or multiple instructions may
be retired the cycle that the counter overflows. HARDWARE_INTERRUPTS.RECEIVED increments independent of
any instructions being executed. For all non-precise events, the PEBS record will be generated at the next oppor-
tunity, after the counter has overflowed. The PEBS facility thus allows for identification of the instructions which
were executing when the event overflowed.

After generating a record for a non-precise event, the PEBS facility reloads the counter and resumes execution, just
as is done for precise events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect
the sample and reload the counter, the PEBS facility can collect samples even when interrupts are masked and
without using NMI. Since a PEBS record is generated immediately when a counter for a non-precise event is
enabled, it may also be generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

PEBS record format
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 18-62; enhanced fields at
offsets 90H- 98H; and TSC record
field at C0H.

Table 18-55.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core
has its own register.

MSR 1A6H and 1A7H, shared by a
pair of cores.

Nehalem supports 1A6H
only.

Table 18-60. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

18-82 Vol. 3B

PERFORMANCE MONITORING

The PEBS record format supported by processors based on the Intel Goldmont microarchitecture is shown in
Table 18-62, and each field in the PEBS record is 64 bits long.

Table 18-61. Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H

Vol. 3B 18-83

PERFORMANCE MONITORING

On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless of
processor mode.

With PEBS record format encoding 0011b, offset 90H reports the "Applicable Counter" field, which indicates which
counters actually requested generating a PEBS record. This allows software to correlate the PEBS record entry
properly with the instruction that caused the event even when multiple counters are configured to record PEBS
records and multiple bits are set in the field. Additionally, offset C0H captures a snapshot of the TSC that provides
a time line annotation for each PEBS record entry.

18.5.3.1.1 PEBS Data Linear Address Profiling

Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source
Encoding or Latency Value fields that are also part of Data Address Profiling; those fields are present in the record
but are reserved.

For Goldmont microarchitecture, the Data Linear Address field will record the linear address of memory accesses in
the previous instruction (e.g. the one that triggered a precise event that caused the PEBS record to be generated).
Goldmont microarchitecture may record a Data Linear Address for the instruction that caused the event even for
events not related to memory accesses. This may differ from other microarchitectures.

18.5.3.1.2 Reduced Skid PEBS

For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism miti-
gates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing the
machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly reducing
skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See Section
18.3.4.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including, INST_RETIRED, except
for UOPS_RETIRED. However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or
CMASK fields are set.

With Reduced Skid PEBS, the skid is precisely one event occurrence. Hence if counting INST_RETIRED, PEBS will
indicate the instruction that follows that which caused the counter to overflow.

Table 18-62. PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10

18-84 Vol. 3B

PERFORMANCE MONITORING

For the Reduced Skid mechanism to operate correctly, the performance monitoring counters should not be recon-
figured or modified when they are running with PEBS enabled. The counters need to be disabled (e.g. via
IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g. what event is specified in
IA32_PERFEVTSELx or whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR
write to IA32_PMCx and IA32_A_PMCx).

18.5.3.1.3 Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62]

In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the
PEBS_Interrupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when
PEBS_Index < PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound
condition is encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable
Counters, however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

18.5.3.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-56 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 18-63.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 18-58.
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in

Table 18-64.
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore

transaction requests using two programmable counter simultaneously; see Section 18.5.2.3 for details.

Table 18-63. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 Counts cacheline read for ownership (RFO) requests due to demand writes (excludes
prefetches).

DEMAND_CODE_RD 2 Counts demand instruction cacheline and I-side prefetch requests that miss the
instruction cache.

COREWB 3 Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.

PARTIAL_READS 7 Counts demand data partial reads, including data in uncacheable (UC) or uncacheable
(WC) write combining memory types.

PARTIAL_WRITES 8 Counts partial writes, including uncacheable (UC), write through (WT) and write
protected (WP) memory type writes.

UC_CODE_READS 9 Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 Counts bus lock and split lock requests.

FULL_STREAMING_STORES 11 Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 Counts cacheline requests due to software prefetch instructions.

Vol. 3B 18-85

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit (Table 18-57) and a valid
response type pattern (either Table 18-58 or Table 18-64). Otherwise, the event count reported will be zero. It is
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

Any_Response Bit | L2 Hit | ‘OR’ of Snoop Info Bits | Outstanding Bit

18.5.3.3 Average Offcore Request Latency Measurement
In Goldmont microarchitecture, measurement of average latency of offcore transaction requests is the same as
described in Section 18.5.2.3.

18.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
Intel Atom processors based on the Goldmont Plus microarchitecture report architectural performance monitoring
versionID = 4 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

Goldmont Plus performance monitoring capabilities are similar to Goldmont capabilities. The differences are in
specific events and in which counters support PEBS. Goldmont Plus introduces the ability for fixed performance
monitoring counters to generate PEBS records.

PF_L1_DATA_RD 13 Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMING_STORES 14 Counts partial cacheline writes due to streaming stores.

ANY_REQUEST 15 Counts requests to the uncore subsystem.

Table 18-64. MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MISS_O
R_NO_SNOOP_NEEDED

33 A true miss to this module, for which a snoop request missed the other module or
no snoop was performed/needed.

L2_MISS.HIT_OTHER_CO
RE_NO_FWD

34 A snoop hit in the other processor module, but no data forwarding is required.

Reserved 35 Reserved

L2_MISS.HITM_OTHER_C
ORE

36 Counts the number of snoops hit in the other module or other core's L1 where
modified copies were found.

L2_MISS.NON_DRAM 37 Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding
requests1

NOTES:
1. See Section 18.5.2.3, “Average Offcore Request Latency Measurement” for details on how to use this bit to extract average latency.

OUTSTANDING 38 Counts weighted cycles of outstanding offcore requests of the request type
specified in bits 15:0, from the time the XQ receives the request and any
response is received. Bits 37:16 must be set to 0. This bit is only available in
MSR_OFFCORE_RESP0.

Table 18-63. MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

18-86 Vol. 3B

PERFORMANCE MONITORING

Goldmont Plus will set the AnyThread deprecation CPUID bit (CPUID.0AH:EDX[15]) to indicate that the Any-Thread
bits in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL have no effect.

The core PMU's capability is similar to that of the Goldmont microarchitecture described in Section 18.6.3, with
some differences and enhancements summarized in Table 18-65.

18.5.4.1 Extended PEBS
The PEBS facility in Goldmont Plus microarchitecture provides a number of enhancements relative to PEBS in
processors from previous generations. Enhancement of PEBS facility with the Extended PEBS feature are de-
scribed in detail in section 18.9.

18.5.5 Performance Monitoring for Tremont Microarchitecture
Intel Atom processors based on the Tremont microarchitecture report architectural performance monitoring
versionID = 5 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 5 capabilities are described in Section 18.2.5.

Tremont performance monitoring capabilities are similar to Goldmont Plus capabilities, with the following exten-
sions:
• Support for Adaptive PEBS.
• Support for PEBS output to Intel® Processor Trace.
• Precise Distribution support on Fixed Counter0.
• Compatibility enhancements to off-core response MSRs, MSR_OFFCORE_RSPx.

The differences and enhancements between Tremont microarchitecture and Goldmont Plus microarchitecture are
summarized in Table 18-66.

Table 18-65. Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitectures

Box Goldmont Plus Microarchitecture Goldmont Microarchitecture Comment

of Fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
18.2.1.

of general-purpose
counters per core

4 4 Use CPUID to determine #
of counters. See Section
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change.

Architectural Performance
Monitoring version ID

4 4 No change.

Processor Event Based
Sampling (PEBS) Events

All General-Purpose and Fixed
counters. Each General-Purpose
counter supports all events (precise
and non-precise).

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 18-61.

Goldmont Plus supports
PEBS on all counters.

PEBS record format
encoding

0011b 0011b No change.

Vol. 3B 18-87

PERFORMANCE MONITORING

18.5.5.1 Adaptive PEBS
The PEBS record format and configuration interface has changed versus Goldmont Plus, as the Tremont microar-
chitecture includes support for the configurable Adaptive PEBS records; see Section 18.9.2.

18.5.5.2 PEBS output to Intel® Processor Trace
Intel Atom processors based on the Tremont microarchitecture introduce the following Precise Event-Based
Sampling (PEBS) extensions:
• A mechanism to direct PEBS output into the Intel® Processor Trace (Intel® PT) output stream. In this scenario,

the PEBS record is written in packetized form, in order to co-exist with other Intel PT trace data.
• New Performance Monitoring counter reload MSRs, which are used by PEBS in place of the counter reload

values stored in the DS Management area when PEBS output is directed into the Intel PT output stream.

Processors that indicate support for Intel PT by setting CPUID.07H.0.EBX[25]=1, and set the new
IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16] bit, support these extensions.

18.5.5.2.1 PEBS Configuration

PEBS output to Intel Processor Trace includes support for two new fields in IA32_PEBS_ENABLE.

Table 18-66. Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures

Box Tremont Microarchitecture Goldmont Plus Microarchitecture Comment

of fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
18.2.1.

of general-purpose
counters per core

4 4 Use CPUID to determine #
of counters. See Section
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change. See Section
18.2.2.

Architectural Performance
Monitoring version ID

5 4

PEBS record format
encoding

0100b 0011b See Section 18.6.2.4.2.

Reduce skid PEBS IA32_PMC0 and IA32_FIXED_CTR0 IA32_PMC0 only

Extended PEBS Yes Yes See Section 18.5.4.1.

Adaptive PEBS Yes No See Section 18.9.2.

PEBS output DS Save Area or Intel® Processor
Trace

DS Save Area only See Section 18.5.5.2.1.

PEBS record layout See Section 18.9.2.3 for output to
DS, Section 18.5.5.2.2 for output to
Intel PT.

Table 18-62; enhanced fields at
offsets 90H- 98H; and TSC record
field at C0H.

Off-core Response Event MSR 1A6H and 1A7H, each core
has its own register, extended
request and response types.

MSR 1A6H and 1A7H, each core has
its own register.

18-88 Vol. 3B

PERFORMANCE MONITORING

When PEBS_OUTPUT is set to 01B, the DS Management Area is not used and need not be configured. Instead, the
output mechanism is configured through IA32_RTIT_CTL and other Intel PT MSRs, while counter reload values are
configured in the MSR_RELOAD_PMCx MSRs. Details on configuring Intel PT can be found in Section 35.2.6.

18.5.5.2.2 PEBS Record Format in Intel® Processor Trace

The format of the PEBS record changes when output to Intel PT, as the PEBS state is packetized. Each PEBS
grouping is emitted as a Block Begin (BBP) and following Block Item (BIP) packets. A PEBS grouping ends when
either a new PEBS grouping begins (indicated by a BBP packet) or a Block End (BEP) packet is encountered. See
Section 35.4.1.1 for details of these Intel PT packets.

Because the packet headers describe the state held in the packet payload, PEBS state ordering is not fixed. PEBS
state groupings may be emitted in any order, and the PEBS state elements within those groupings may be emitted
in any order. Further, there is no packet that provides indication of “Record Format” or “Record Size”.

If Intel PT tracing is not enabled (IA32_RTIT_STATUS.TriggerEn=0), any PEBS records triggered will be dropped.
PEBS packets do not depend on ContextEn or FilterEn in IA32_RTIT_STATUS, any filtering of PEBS must be enabled
from within the PerfMon configuration. Counter reload will occur in all scenarios where PEBS is triggered, regardless
of TriggerEn.

Table 18-67. New Fields in IA32_PEBS_ENABLE

Field Description

PMI_AFTER_EACH_RECORD[60] Pend a PerfMon Interrupt (PMI) after each PEBS event.

PEBS_OUTPUT[62:61] Specifies PEBS output destination. Encodings:

00B: DS Save Area. Matches legacy PEBS behavior, output location defined by IA32_DS_AREA.

01B: Intel PT trace output.

10B: Reserved.

11B: Reserved.

Figure 18-40. IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor Trace

 m 1 063 62 61 60

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)

PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

n 32 31

Reserved RESET Value – 00000000 _00000000 H

PMI_AFTER_EACH_RECORD (R/W)

PEBS_OUTPUT (R/W)

● ● ● ● ● ●

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXEDn (R/W)

Vol. 3B 18-89

PERFORMANCE MONITORING

The PEBS threshold mechanism for generating PerfMon Interrupts (PMIs) is not available in this mode. However,
there exist other means to generate PMIs based on PEBS output. When the Intel PT ToPA output mechanism is
chosen, a PMI can optionally be pended when a ToPA region is filled; see Section 35.2.6.2 for details. Further, soft-
ware can opt to generate a PMI on each PEBS record by setting the new
IA32_PEBS_ENABLE.PMI_AFTER_EACH_RECORD[60] bit.

The IA32_PERF_GLOBAL_STATUS.OvfDSBuffer bit will not be set in this mode.

18.5.5.2.3 PEBS Counter Reload

When PEBS output is directed into Intel PT (IA32_PEBS_ENABLE.PEBS_OUTPUT = 01B), new MSR_RELOAD_PMCx
MSRs are used by the PEBS routine to reload PerfMon counters. The value from the associated reload MSR will be
loaded to the appropriate counter on each PEBS event.

18.5.5.3 Precise Distribution Support on Fixed Counter 0
The Tremont microarchitecture supports the PDIR (Precise Distribution of Retired Instructions) facility, as described
in Section 18.3.4.4.4, on Fixed Counter 0. Fixed Counter 0 counts the INST_RETIRED.ALL event. PEBS skid for
Fixed Counter 0 will be precisely one instruction.

This is in addition to the reduced skid PEBS behavior on IA32_PMC0; see Section 18.5.3.1.2.

18.5.5.4 Compatibility Enhancements to Offcore Response MSRs
The Off-core Response facility is similar to that described in Section 18.5.3.2.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as shown below. RequestType bits are
defined in Table 18-68, ResponseType bits in Table 18-69, and SnoopInfo bits in Table 18-70.

Table 18-68. MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based
prefetches for exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to L2 only) code reads.

Reserved 9:7 Reserved.

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch
requests and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

Reserved 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).

18-90 Vol. 3B

PERFORMANCE MONITORING

L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.

Table 18-69. MSR_OFFCORE_RSPx Response Type Definition

Bit Name Offset Description

ANY_RESPONSE 16 Catch all value for any response types.

L3_HIT_M 18 LLC/L3 Hit - M-state.

L3_HIT_E 19 LLC/L3 Hit - E-state.

L3_HIT_S 20 LLC/L3 Hit - S-state.

L3_HIT_F 21 LLC/L3 Hit - I-state.

LOCAL_DRAM 26 LLC/L3 Miss, DRAM Hit.

OUTSTANDING 63 Average latency of outstanding requests with the other counter counting number
of occurrences; can also can be used to count occupancy.

Table 18-70. MSR_OFFCORE_RSPx Snoop Info Definition

Bit Name Offset Description

SNOOP_NONE 31 None of the cores were snooped.

• LLC miss and Dram data returned directly to the core.

SNOOP_NOT_NEEDED 32 No snoop needed to satisfy the request.

• LLC hit and CV bit(s) (core valid) was not set.
• LLC miss and Dram data returned directly to the core.

SNOOP_MISS 33 A snoop was sent but missed.

• LLC hit and CV bit(s) was set but snoop missed (silent data drop in core), data
returned from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_NO_FWD 34 A snoop was sent but no data forward.

• LLC hit and CV bit(s) was set but no data forward from the core, data returned
from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_WITH_FWD 35 A snoop was sent and non-modified data was forward.

• LLC hit and CV bit(s) was set, non-modified data was forward from core.

SNOOP_HITM 36 A snoop was sent and modified data was forward.

• LLC hit E or M and the CV bit(s) was set, modified data was forward from core.

NON_DRAM_BIT 37 Target was non-DRAM system address, MMIO access.

• LLC miss and Non-Dram data returned.

Table 18-68. MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description

Vol. 3B 18-91

PERFORMANCE MONITORING

The Off-core Response capability behaves as follows:
• To specify a complete offcore response filter, software must properly program at least one RequestType and one

ResponseType. A valid request type must have at least one bit set in the non-reserved bits of 15:0 or 49:44. A
valid response type must be a non-zero value of one the following expressions:

• Read requests:

Any_Response Bit | (‘OR’ of Supplier Info Bits) ‘AND’ (‘OR’ of Snoop Info Bits) | Outstanding Bit

• Write requests:

Any_Response Bit | (‘OR’ of Supplier Info Bits) | Outstanding Bit
• When the ANY_RESPONSE bit in the ResponseType is set, all other response type bits will be ignored.
• True Demand Cacheable Loads include neither L1 Prefetches nor Software Prefetches.
• Bits 15:0 and Bits 49:44 specifies the request type of a transaction request to the uncore. This is described in

Table 18-68.
• Bits 30:16 specifies common supplier information.
• “Outstanding Requests” (bit 63) is only available on MSR_OFFCORE_RSP0; a #GP fault will occur if software

attempts to write a 1 to this bit in MSR_OFFCORE_RSP1. It is mutually exclusive with any ResponseType.
Software must guarantee that all other ResponseType bits are set to 0 when the “Outstanding Requests” bit is
set.

• “Outstanding Requests” bit 63 can enable measurement of the average latency of a specific type of off-core
transaction; two programmable counters must be used simultaneously and the RequestType programming for
MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 must be the same when using this Average Latency feature.
See Section 18.5.2.3 for further details.

18.6 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS)

18.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are
programmed using the same facilities (see Figure 18-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have
specificity related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a
microarchitectural condition and the originating core. This data is shown in Table 18-71. The two-bit encoding for
core-specificity is only supported for a subset of Umask values (see Chapter 19, “Performance Monitoring Events”)
and for Intel Core Duo processors. Such events are referred to as core-specific events.

Table 18-71. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved

18-92 Vol. 3B

PERFORMANCE MONITORING

Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some
bus events belong to this category, providing specificity between the originating physical processor (a bus agent)
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 18-72.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 18-73.

Some performance events may (a) support none of the three event-specific qualification encodings (b) may
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for
cache coherency state qualification is shown in Table 18-74. If no bits in the MESI qualification sub-field are set for
an event that requires setting MESI qualification bits, the event count will not increment.

18.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural
performance events can be collected using general-purpose performance counters (coupled with two
IA32_PERFEVTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section
18.6.2.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 18-1. Starting with Intel

Table 18-72. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 18-73. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 18-74. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Vol. 3B 18-93

PERFORMANCE MONITORING

Core 2 processor T 7700, fixed-function performance counters and associated counter control and status MSR
becomes part of architectural performance monitoring version 2 facilities (see also Section 18.2.2).

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values
that are model-specific. Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-
fields identical to those listed in Table 18-71, Table 18-72, Table 18-73, and Table 18-74. One or more of these
sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-27 in Chapter 19,
“Performance Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop
responses. Bits of the snoop response qualification sub-field are defined in Table 18-75.

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 18-76.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a
performance event.

NOTE
Software must write known values to the performance counters prior to enabling the counters. The
content of general-purpose counters and fixed-function counters are undefined after INIT or
RESET.

18.6.2.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. See Table
18-2 for details of the PMC addresses and what these events count.

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and
does not require specifying any event masks. Instead, the MSR IA32_FIXED_CTR_CTRL provides multiple sets of
4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See Figures
18-41. Two sub-fields are defined for each control. See Figure 18-41; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the

corresponding fixed-function performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.

Table 18-75. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-76. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

18-94 Vol. 3B

PERFORMANCE MONITORING

When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to
increment when the target condition associated with the architecture performance event occurs at ring greater
than 0.
Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective
of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception
through its local APIC on overflow condition of the respective fixed-function counter.

18.6.2.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs

(IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 18-42). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in
the respective IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL MSRs to start/stop the counting of respective coun-
ters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

Figure 18-41. Layout of IA32_FIXED_CTR_CTRL MSR

SDM30265

63 0123457891112

E
N

P
M
I

E
N

P
M
I

E
N

P
M
I

Cntr2 — Controls for IA32_FIXED_CTR2

Cntr1 — Controls for IA32_FIXED_CTR1

PMI — Enable PMI on overflow

Cntr0 — Controls for IA32_FIXED_CTR0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

Reserved

Vol. 3B 18-95

PERFORMANCE MONITORING

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 18-43). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has
occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-44). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

Figure 18-42. Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-43. Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

18-96 Vol. 3B

PERFORMANCE MONITORING

18.6.2.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions
that arise from speculative execution. The at-retirement events available in processors based on Intel Core micro-
architecture does not require special MSR programming control (see Section 18.6.3.6, “At-Retirement Counting”),
but is limited to IA32_PMC0. See Table 18-77 for a list of events available to processors based on Intel Core micro-
architecture.

18.6.2.4 Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state
information for the processor. The information provides architectural state of the instruction executed after the
instruction that caused the event (See Section 18.6.2.4.2 and Section 17.4.9).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in
Table 18-78. The procedure for detecting availability of PEBS is the same as described in Section 18.6.3.8.1.

Figure 18-44. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

Table 18-77. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

Vol. 3B 18-97

PERFORMANCE MONITORING

18.6.2.4.1 Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following
procedure to set up the processor and IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of
64-bit address entries. See Figure 17-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 18-78.

18.6.2.4.2 PEBS Record Format

The PEBS record format may be extended across different processor implementations. The
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format in
processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields of
IA32_PERF_CAPABILITES are defined in Table 2-2 of Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 4. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are
recorded. On processors based on Intel Core microarchitecture, this bit is always 1.

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS
record (See Section 18.6.3.8).

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency data.
(See Section 18.3.1.1.1).

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data,
and TSX tuning information. (See Section 18.3.6.2).

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC data,
and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (See Section
18.3.8.1.1).

— 0100B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 18.9.2.3).

Table 18-78. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

18-98 Vol. 3B

PERFORMANCE MONITORING

18.6.2.4.3 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the Inter-
rupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 17.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel
NetBurst microarchitectures is listed in Table 18-79.

18.6.2.4.4 Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

Table 18-79. Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Verify PEBS support of
processor/OS.

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled. On initial set up or changing event configurations,
write MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0.

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ is not
enabled.

• If IA32_DebugCTL.Freeze is enabled, counters are
automatically disabled.

Counters MUST be stopped before writing.1

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (38EH)
handle any overflow conditions.

Check OVF flag of each CCCR for overflow
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (38EH)
using IA32_PERF_GLOBAL_OVF_CTRL MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 - 0.
• Event programmed must be PEBS capable.

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4

support PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL MSR
(38FH).

Set each CCCR enable bit 12 - 1.

Vol. 3B 18-99

PERFORMANCE MONITORING

18.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is
different from that provided in the P6 family and Pentium processors. While the general concept of selecting,
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters.

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter.

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count

specific events.

Table 18-80 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to
be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19, “Perfor-
mance Monitoring Events.”

Table 18-80. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

18-100 Vol. 3B

PERFORMANCE MONITORING

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

Table 18-80. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

Vol. 3B 18-101

PERFORMANCE MONITORING

The types of events that can be counted with these performance monitoring facilities are divided into two classes:
non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-33) are events that occur any time during instruction execution (such as

bus transactions or cache transactions).
• At-retirement events (see Table 19-34) are events that are counted at the retirement stage of instruction

execution, which allows finer granularity in counting events and capturing machine state.
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular
performance event during instruction execution. Tagging allows events to be sorted between those that
occurred on an execution path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually cancelled and never committed to
architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models
described below. The first two models can be used to count both non-retirement and at-retirement events; the
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the

counter is counting, software reads the counter at selected intervals to determine the number of events that
have been counted between the intervals.

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not

available on later versions.

Table 18-80. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

18-102 Vol. 3B

PERFORMANCE MONITORING

• Interrupt-based event sampling — A performance counter is configured to count one or more types of
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a
modulus value that will cause the counter to overflow after a specific number of events have been counted.
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the
VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural
state of the processor to a memory buffer after the counter overflows. The records of architectural state
provide additional information for use in performance tuning. Processor-based event sampling can be used to
count only a subset of at-retirement events. PEBS captures more precise processor state information compared
to interrupt based event sampling, because the latter need to use the interrupt service routine to re-construct
the architectural states of processor.

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4
and Intel Xeon processors.

18.6.3.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-80) allow software to select specific events to be countered. Each ESCR is usually
associated with a pair of performance counters (see Table 18-80) and each performance counter has several ESCRs
associated with it (allowing the events counted to be selected from a variety of events).

Figure 18-45 shows the layout of an ESCR MSR. The functions of the flags and fields are:
• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level

(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events
are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

Figure 18-45. Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved

Vol. 3B 18-103

PERFORMANCE MONITORING

When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired
branches. The event mask field is then used to select one or more of the specific events within the class to be
counted. For example, when counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR
using the WRMSR instruction. Table 18-80 gives the addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of
the CCCR includes selecting the ESCR and enabling the counter.

18.6.3.2 Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a partic-
ular subset of events and ESCR’s (see Table 18-80). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 18.6.3.5.6, “Cascading Coun-
ters”). The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-46). The RDPMC instruction is intended to allow reading
of either the full counter-width (40-bits) or, if ECX[31] is set to 1, the low 32-bits of the counter. Reading the low
32-bits is faster than reading the full counter width and is appropriate in situations where the count is small enough
to be contained in 32 bits. In such cases, counter bits 31:0 are written to EAX, while 0 is written to EDX.

The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be
restricted to only programs and procedures running at privilege level 0.

18-104 Vol. 3B

PERFORMANCE MONITORING

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter.
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

18.6.3.3 CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 18-80). The CCCRs control
the filtering and counting of events as well as interrupt generation. Figure 18-47 shows the layout of an CCCR MSR.
The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.

When set, event counts that are less than or equal to the threshold value result in a single count being delivered
to the performance counter; when clear, counts greater than the threshold value result in a count being
delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The complement flag is not
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

Figure 18-46. Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter

Vol. 3B 18-105

PERFORMANCE MONITORING

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and filtered by the following flags and
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more
event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it,
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next.
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.6.3.5, “Programming the
Performance Counters for Non-Retirement Events.”

Figure 18-47. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved

18-106 Vol. 3B

PERFORMANCE MONITORING

18.6.3.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning
programs. The DS mechanism can be used to collect two types of information: branch records and processor event-
based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS
feature flag (bit 21) returned by the CPUID instruction.

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.6.3.8, “Processor Event-Based Sampling (PEBS),”
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See
Section 17.4.9, “BTS and DS Save Area.”

18.6.3.5 Programming the Performance Counters for Non-Retirement Events
The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR restrictions row in Table
19-33, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-33 to a value listed in Table 18-80; select a CCCR and
performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which they are to be
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler
for the interrupt must be in place.

8. Enable the counter to begin counting.

18.6.3.5.1 Selecting Events to Count

Table 19-34 in Chapter 19 lists a set of at-retirement events for processors based on Intel NetBurst microarchitec-
ture. For each event listed in Table 19-34, setup information is provided. Table 18-81 gives an example of one of
the events.

Table 18-81. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select
any combination of branch taken, not-taken, predicted and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The
performance counters and corresponding CCCRs can be obtained from
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]

Vol. 3B 18-107

PERFORMANCE MONITORING

For Table 19-33 and Table 19-34 in Chapter 19, the name of the event is listed in the Event Name column and
parameters that define the event and other information are listed in the Event Parameters column. The Parameter
Value and Description columns give specific parameters for the event and additional description information.
Entries in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is

needed to count an event.
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 18-80

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to

be counted. The parameter value column defines the documented bits with relative bit position offset starting
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of
the ESCR from the Number column in Table 18-80.

• Event specific notes — Gives additional information about the event, such as the name of the same or a
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events
listed in Table 19-34.)

• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to
count the events (only supplied for the at-retirement events listed in Table 19-34.)

NOTE
The performance-monitoring events listed in Chapter 19, “Performance Monitoring Events,” are
intended to be used as guides for performance tuning. The counter values reported are not
guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known
discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure
is continued through the following four sections.

Using information in Table 19-33, Chapter 19, an event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR
addresses of the counter, CCCR, and ESCR from Table 18-80.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Table 18-81. Event Example (Contd.)
Event Name Event Parameters Parameter Value Description

18-108 Vol. 3B

PERFORMANCE MONITORING

NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however,
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.6.3.5.2, “Filtering Events.”

18.6.3.5.2 Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The counter
treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value of 4, and
input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value on each
clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to
the counter is always 1, not the input value that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-to-
true transition. Figure 18-48 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge filter.
This procedure is a continuation of the setup procedure introduced in Section 18.6.3.5.1, “Selecting Events to
Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.6.3.5.3, “Starting Event Counting.”

Figure 18-48. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock

Vol. 3B 18-109

PERFORMANCE MONITORING

18.6.3.5.3 Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues
until it is stopped (see Section 18.6.3.5.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure
introduced in Section 18.6.3.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 18.6.3.5.4, “Reading a Performance Counter’s
Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 18.6.3.5.6, “Cascading Counters”).

18.6.3.5.4 Reading a Performance Counter’s Count

Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the
RDPMC instruction (including fast read) are described in Section 18.6.3.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 18.6.3.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number
obtained from Table 18-80 used as an operand.

This setup procedure is continued in the next section, Section 18.6.3.5.5, “Halting Event Counting.”

18.6.3.5.5 Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps
around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates
that the counter has overflowed at least once since the OVF bit was last cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure
introduced in Section 18.6.3.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

18.6.3.5.6 Cascading Counters

As described in Section 18.6.3.2, “Performance Counters,” eighteen performance counters are implemented in
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ
(see Table 18-80). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events.
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in
the CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter
located in another pair in the same block (see Figure 18-47 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14

18-110 Vol. 3B

PERFORMANCE MONITORING

cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter
17.

Example 18-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In the
above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in
the basic performance counter setup procedure that begins in Section 18.6.3.5.1, “Selecting Events to Count.”
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow.
This is described in Section 18.6.3.5.8, “Generating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then
continues on the second counter after the first counter overflows. This technique doubles the number of event
counts that can be recorded, since the contents of the two counters can be added together.

18.6.3.5.7 EXTENDED CASCADING

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID
DisplayFamily_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the IQ
block. See Table 18-82.

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the
erratum applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 18-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined
below:

Table 18-82. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5

Vol. 3B 18-111

PERFORMANCE MONITORING

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

18.6.3.5.8 Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program
when overflow occurred. This information can then be used with a tool like the Intel® VTune™ Performance
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set.
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset
value is to write a negative number into the counter, as described in Section 18.6.3.5.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on
every counter increment, which in turn triggers an interrupt after every counter increment.

18.6.3.5.9 Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than
no_event, which generally has a select value of 0).

18-112 Vol. 3B

PERFORMANCE MONITORING

18.6.3.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural
state and ignoring work that was performed speculatively and later discarded.

One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter
was set up to count all executed instructions, the count would include instructions whose results were canceled as
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those
tagged events that represent committed results. This mechanism is called “at-retirement counting.”

Tables 19-34 through 19-38 list predefined at-retirement events and event metrics that can be used to for tagging
events when using at retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired”
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state
changes as required by the program being executed. Thus instructions and μops are either bogus or non-bogus,
but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such as,
Instruction_Retired and Uops_Retired in Table 19-34) can count instructions or μops that are retired based on
the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so they
can be counted at retirement. During the course of execution, the same event can happen more than once per
μop and a direct count of the event would not provide an indication of how many μops encountered that event.
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at retirement.
The retired suffix is used for performance metrics that increment a count once per μop, rather than once per
event. For example, a μop may encounter a cache miss more than once during its life time, but a “Miss Retired”
metric (that counts the number of retired μops that encountered a cache miss) will increment only once for that
μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a
particular instruction sequence. Details of various performance metrics and how these can be constructed using
the Pentium 4 and Intel Xeon processors performance events are provided in the Intel Pentium 4 Processor
Optimization Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the Pentium
4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay causes are
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number
of replays is common and unavoidable. An excessive number of replays is an indication of a performance
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The
hardware must internally modify the format of the operands in order to perform the computation. Assists clear
the entire machine of μops before they begin and are costly.

18.6.3.6.1 Using At-Retirement Counting

Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a
specified event. For a subset of the at-retirement events listed in Table 19-34, a μop may be tagged when it
encounters that event. The tagging mechanisms can be used in Interrupt-based event sampling, and a subset of
these mechanisms can be used in PEBS. There are four independent tagging mechanisms, and each mechanism
uses a different event to count μops tagged with that mechanism:
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for

example, trace cache and instruction counts) and are counted with the Front_end_event event.
• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events (for

example, instruction types) and are counted with the Execution_Event event.

Vol. 3B 18-113

PERFORMANCE MONITORING

• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a
cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be counted
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging
mechanism should be used at a time.

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far
transfers.

Table 19-34 lists the performance monitoring events that support at-retirement counting: specifically the
Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired events. The following sections
describe the tagging mechanisms for using these events to tag μop and count tagged μops.

18.6.3.6.2 Tagging Mechanism for Front_end_event

The Front_end_event counts μops that have been tagged as encountering any of the following events:
• μop decode events — Tagging μops for μop decode events requires specifying bits in the ESCR associated with

the performance-monitoring event, Uop_type.
• Trace cache events — Tagging μops for trace cache events may require specifying certain bits in the

MSR_TC_PRECISE_EVENT MSR (see Table 19-36).

Table 19-34 describes the Front_end_event and Table 19-36 describes metrics that are used to set up a
Front_end_event count.

The MSRs specified in the Table 19-34 that are supported by the front-end tagging mechanism must be set and one
or both of the NBOGUS and BOGUS bits in the Front_end_event event mask must be set to count events. None of
the events currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

18.6.3.6.3 Tagging Mechanism For Execution_event

Table 19-34 describes the Execution_event and Table 19-37 describes metrics that are used to set up an
Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using
Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the
mask is set, the related counter is incremented by one. This mechanism is summarized in the Table 19-37 metrics
that are supported by the execution tagging mechanism. The tag enable and tag value bits are irrelevant for the
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted in
Section 18.6.3.8.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example,
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18-114 Vol. 3B

PERFORMANCE MONITORING

18.6.3.7 Tagging Mechanism for Replay_event
Table 19-34 describes the Replay_event and Table 19-38 describes metrics that are used to set up an Replay_event
count.

The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.

The Table 19-38 lists the metrics that are support the replay tagging mechanism and the at-retirement events that
use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The replay tags
defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 17.4.9). Each of these replay
tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_ENABLE_MSR. Each of
these metrics requires that the Replay_Event (see Table 19-34) be used to count the tagged μops.

18.6.3.8 Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section
17.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in
the precise event records buffer, which is part of the DS save area (see Section 17.4.9, “BTS and DS Save Area”).
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using IA32_PMC0
and IA32_PERFEVTSEL0 MSRs (See Section 18.6.2.4).

18.6.3.8.1 Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the

PEBS facilities, including the MSR_PEBS_ENABLE MSR.
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.6.3.8.2 Setting Up the DS Save Area

Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

18.6.3.8.3 Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the
processor and this counter for PEBS:

Vol. 3B 18-115

PERFORMANCE MONITORING

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields
of the DS buffer management area (see Figure 17-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for PEBS
as described in Tables 19-34 through 19-38.

18.6.3.8.4 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

18.6.3.8.5 Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and
INIT.

The DS mechanism is available in real address mode.

18.6.3.9 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis.
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring
on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records
need to have an association with the corresponding process. One solution requires the ability for the DS specific
operating system module to be chained to the context switch. A separate buffer can then be maintained for each
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context
switch.

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors,
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is
enabled/disabled appropriately in the context switch code.

18.6.4 Performance Monitoring and Intel Hyper-Threading Technology in Processors Based
on Intel NetBurst® Microarchitecture

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting
Intel Hyper-Threading Technology is similar to that described in Section 18.6.3. However, the capability is extended
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs.
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor.

The sections below describe performance counters, event qualification by logical processor ID, and special purpose
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and
MSR_TC_PRECISE_EVENT.

18-116 Vol. 3B

PERFORMANCE MONITORING

18.6.4.1 ESCR MSRs
Figure 18-49 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology.

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and
unprotected operating system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL
of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 8.4.5, “Identifying
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor
basis (see Section 18.6.4.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits)
are counted or sampled without regard to which logical processor is associated with the detected event.

18.6.4.2 CCCR MSRs
Figure 18-50 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The
functions of the flags and fields are as follows:

Figure 18-49. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon Processor
and Intel Xeon Processor MP Supporting Hyper-Threading Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved

Vol. 3B 18-117

PERFORMANCE MONITORING

• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on
reset

• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with
the counter associated with the CCCR.

• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active
(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical
processors. The encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive.

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result in a single count being
delivered to the performance counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The compare flag is
not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

Figure 18-50. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF
OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved

18-118 Vol. 3B

PERFORMANCE MONITORING

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0.
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1.
Note that the PMI is generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

18.6.4.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture,
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic
processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a
specific logical processor. This is to prevent these kernel mode components from migrating between different
logical processors due to OS scheduling.

18.6.4.4 Performance Monitoring Events
All of the events listed in Table 19-33 and 19-34 are available in an Intel Xeon processor MP. When Intel Hyper-
Threading Technology is active, many performance monitoring events can be can be qualified by the logical
processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of the
logical processors. However, not all the events have this logic processor specificity, or thread specificity.

Here, each event falls into one of two categories:
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical

processor.

Table 19-39 gives logical processor specific information (TS or TI) for each of the events described in Tables 19-33
and 19-34. If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table
18-83) depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event
counter. The T1_USR and T1_OS flags have no effect on the count.

Vol. 3B 18-119

PERFORMANCE MONITORING

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in
Table 15-6. For events that are marked as TI in Chapter 19, the effect of selectively specifying T0_USR, T0_OS,
T1_USR, T1_OS bits is shown in Table 18-84.

18.6.4.5 Counting Clocks on systems with Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture

18.6.4.5.1 Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on
Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.6.4.5.2 Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other
than “no_event”; the counter may be disabled if this is not done.

Table 18-83. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR
or T1 in USR

Counts while (a) T0 in
USR or (b) T1 in OS or (c)
T1 in USR

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or
USR

Counts while (a) T0 in OS
or (b) T0 in USR or (c) T1
in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) or T0 in USR or (c)
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in
USR

Counts while (a)T0 in Os
or (b) T1 in OS or (c) T1
in USR

Counts while (a) T0 in OS
or (b) T1 in OS

Table 18-84. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 01 Counts while (a) T0 in
USR or (b) T1 in USR

Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 11 Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 0 Counts while (a) T0 in OS
or (b) T1 in OS

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS

18-120 Vol. 3B

PERFORMANCE MONITORING

3. Turn threshold comparison on in the CCCR by setting the compare bit to “1”.

4. Set the threshold to “15” and the complement to “1” in the CCCR. Since no event can exceed this threshold, the
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can
support two or more logical processors. Current implementation of Intel HT Technology provides two logical proces-
sors for each physical processor. While both logical processors can execute two threads simultaneously, one logical
processor may halt to allow the other logical processor to execute without sharing execution resources between
two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor
to enter into a power-saving state by using an OS service that transfers control to an OS's idle loop. The idle loop
then may place the processor into a power-saving state after an implementation-dependent period if there is no
work for the processor.

18.6.5 Performance Monitoring and Dual-Core Technology
The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but
two logical processors in the same core share performance monitoring resources (see Section 18.6.4, “Perfor-
mance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitec-
ture”).

18.6.6 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model [03H
or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same
values (see Section 18.1 and Section 18.6.4) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 18-51.

Vol. 3B 18-121

PERFORMANCE MONITORING

Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit.

It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 18-52.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit.
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 18-53.

Figure 18-51. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3

Figure 18-52. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

iBUSQ and iSNPQ

System Bus

3rd Level Cache

8 or 4 -way

IOQ

iFSB

Processor Core

(Front end, Execution,

Retirement, L1, L2

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1
32 bit event count

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
31 0

18-122 Vol. 3B

PERFORMANCE MONITORING

• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in
the upper 32-bits of the MSR. See Figure 18-54.

• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event.
See Figure 18-55.

Figure 18-53. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

Figure 18-54. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved
63 56 55 48 3257585960 3539

Agent_match

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

32 bit event count

031

Other

49 3850 37 36 3334

Saturate

Own
Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Vol. 3B 18-123

PERFORMANCE MONITORING

18.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and
programming interfaces that are largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon
processor 7400 series have six processor cores that share an L3 cache.

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core.

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through
additional control logic. See Figure 18-56 for the block configuration of six processor cores and the L3/Caching bus
controller sub-system in Intel Xeon processor 7400 series. Figure 18-56 shows the block configuration of two
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor
7100 series.

Figure 18-55. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count

18-124 Vol. 3B

PERFORMANCE MONITORING

Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures
(see Section 18.1 and Section 18.6.4) apply to Intel Xeon processor 7100 series. The MSRs used by performance
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are
described in this section.

Figure 18-56. Block Diagram of Intel Xeon Processor 7400 Series

Figure 18-57. Block Diagram of Intel Xeon Processor 7100 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor

Vol. 3B 18-125

PERFORMANCE MONITORING

18.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controller
The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition,
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation
of any combination of these event select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs
across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the
event logic, the matched condition signals the counter logic to increment the associated event count field. The
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter
registers.

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs.

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore
performance counter/control registers.

18.6.7.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 18-58. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.

18-126 Vol. 3B

PERFORMANCE MONITORING

• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state.
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon

processor 7100 and 7400.
For Intel Xeon processor 7100 series,

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series,

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are

— 0B: Match any transactions

— 1B: Match cross snoop transactions

Figure 18-58. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved
63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state

Vol. 3B 18-127

PERFORMANCE MONITORING

For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

18.6.7.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 18-59. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical
package. Bit 37 specifies central agent transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state.
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear,

Core_Module_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly
between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical
package.

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package.
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.

18-128 Vol. 3B

PERFORMANCE MONITORING

18.6.7.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 18-60. Counting
starts after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration
event increments at most once per cycle.

18.6.7.4.1 FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package.
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical

package.
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical

package.

Figure 18-59. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 18-60. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved
63 56 55 47 3257585960 53 39

Agent_match

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select

32 bit event count

031

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

32 bit event count

031

Vol. 3B 18-129

PERFORMANCE MONITORING

• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical
package.

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions.
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions.
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions.
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY).
• FSB_DRDY (bit 45): Count DRDY assertions by this processor.
• FSB_BNR (bit 46): Count BNR assertions by this processor.
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty.
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full.
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ.
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY).
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent.
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent.
• FSB_other_BNR (bit 57): Count BNR assertions from another agent.

18.6.7.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field.

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 18-58 for example) is
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it.

18.6.8 Performance Monitoring (P6 Family Processor)
The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored
simultaneously. These can either count events or measure duration. When counting events, a counter increments
each time a specified event takes place or a specified number of events takes place. When measuring duration, it
counts the number of processor clocks that occur while a specified condition is true. The counters can count events
or measure durations that occur at any privilege level.

Table 19-42, Chapter 19, lists the events that can be counted with the P6 family performance monitoring counters.

18-130 Vol. 3B

PERFORMANCE MONITORING

NOTE
The performance-monitoring events listed in Chapter 19 are intended to be used as guides for
performance tuning. Counter values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs
(PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be
read from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using these
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any privilege
level using the RDPMC (read performance-monitoring counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed in Table 19-42 are
model-specific for P6 family processors. They are not guaranteed to be available in other IA-32
processors.

18.6.8.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one
register used to set up each counter. They specify the events to be counted, how they should be counted, and the
privilege levels at which counting should take place. Figure 18-61 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural

conditions (see Table 19-42, for a list of events and their 8-bit codes).
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is
used as a MESI-protocol qualifier of cache states (see Table 19-42).

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism
allows software to measure not only the fraction of time spent in a particular state, but also the average length
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 18-61. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

Vol. 3B 18-131

PERFORMANCE MONITORING

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set,
performance counting is enabled in both performance-monitoring counters; when clear, both counters are
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock).
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that
occurred that cycle.

18.6.8.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

18.6.8.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs.
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

18.6.8.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking.
• Initialize and start counters.
• Stop counters.
• Read the event counters.
• Read the time-stamp counter.

18-132 Vol. 3B

PERFORMANCE MONITORING

The event monitor feature determination procedure must check whether the current processor supports the perfor-
mance-monitoring counters and time-stamp counter. This procedure compares the family and model of the
processor returned by the CPUID instruction with those of processors known to support performance monitoring.
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction are
supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting
counts. The stop counters procedure stops the performance counters (see Section 18.6.8.3, “Starting and Stopping
the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and
RDPMC instructions that allow application code to read the counters.

18.6.8.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the processor for which performance
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis
of the performance of the profiled application.

18.6.9 Performance Monitoring (Pentium Processors)
The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of the
counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-43 are model-specific for the
Pentium processor.

The performance-monitoring events listed in Chapter 19 are intended to be used as guides for
performance tuning. Counter values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are documented where applicable.

Vol. 3B 18-133

PERFORMANCE MONITORING

18.6.9.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0
and CTR1 and the associated pins (see Figure 18-62). To control each counter, the CESR register contains a 6-bit
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1).
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field)

up to two events to be monitored. See Table 19-43 for a list of available event codes.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter.
Control codes are as follows:

000 — Count nothing (counter disabled).

001 — Count the selected event while CPL is 0, 1, or 2.

010 — Count the selected event while CPL is 3.

011 — Count the selected event regardless of CPL.

100 — Count nothing (counter disabled).

101 — Count clocks (duration) while CPL is 0, 1, or 2.

110 — Count clocks (duration) while CPL is 3.

111 — Count clocks (duration) regardless of CPL.
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the
counter has been incremented. These flags permit the pins to be individually programmed to indicate the
overflow or incremented condition. The external signaling of the event on the pins will lag the internal event by
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed,
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At
reset, all bits in the CESR register are cleared.

18.6.9.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high)
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the

Figure 18-62. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10

18-134 Vol. 3B

PERFORMANCE MONITORING

entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter.
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired,
the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these
pins to indicate breakpoint matches.

18.6.9.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.

18.7 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms the basis for measuring how long a program takes to execute.
Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may stop
ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions.
• Enhanced Intel SpeedStep Technology transitions (P-state transitions).

For Intel processors that support TM2, the processor core clocks may operate at a frequency that differs from the
Processor Base frequency (as indicated by processor frequency information reported by CPUID instruction). See
Section 18.7.2 for more detail.

Due to the above considerations there are several important clocks referenced in this manual:
• Base Clock — The frequency of this clock is the frequency of the processor when the processor is not in turbo

mode, and not being throttled via Intel SpeedStep.
• Maximum Clock — This is the maximum frequency of the processor when turbo mode is at the highest point.
• Bus Clock — These clockticks increment at a fixed frequency and help coordinate the bus on some systems.

Vol. 3B 18-135

PERFORMANCE MONITORING

• Core Crystal Clock — This is a clock that runs at fixed frequency; it coordinates the clocks on all packages
across the system.

• Non-halted Clockticks — Measures clock cycles in which the specified logical processor is not halted and is
not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a
per-logical-processor basis. There are also performance events on dual-core processors that measure
clockticks per logical processor when the processor is not halted.

• Non-sleep Clockticks — Measures clock cycles in which the specified physical processor is not in a sleep
mode or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp Counter — See Section 17.17, “Time-Stamp Counter”.
• Reference Clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor

features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 17.17, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time
stamp counter (the timestamp counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a
program, including those periods when the machine halts while waiting for I/O.

18.7.1 Non-Halted Reference Clockticks
Software can use UnHalted Reference Cycles on either a general purpose performance counter using event mask
0x3C and umask 0x01 or on fixed function performance counter 2 to count at a constant rate. These events count
at a consistent rate irrespective of P-state, TM2, or frequency transitions that may occur to the processor. The
UnHalted Reference Cycles event may count differently on the general purpose event and fixed counter.

18.7.2 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the
Processor Base frequency.

The following items are expected to hold true irrespective of when opportunistic processor operation causes state
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which is

equal to the product of scalable bus frequency and maximum non-turbo ratio.

18-136 Vol. 3B

PERFORMANCE MONITORING

18.7.3 Determining the Processor Base Frequency
For Intel processors in which the nominal core crystal clock frequency is enumerated in CPUID.15H.ECX and the
core crystal clock ratio is encoded in CPUID.15H (see Table 3-8 “Information Returned by CPUID Instruction”), the
nominal TSC frequency can be determined by using the following equation:

Nominal TSC frequency = (CPUID.15H.ECX[31:0] * CPUID.15H.EBX[31:0]) ÷ CPUID.15H.EAX[31:0]

For Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated but CPUID.15H.ECX
is not enumerated, Table 18-85 can be used to look up the nominal core crystal clock frequency.

18.7.3.1 For Intel® Processors Based on Microarchitecture Code Name Sandy Bridge, Ivy Bridge,
Haswell and Broadwell

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 100 MHz.

18.7.3.2 For Intel® Processors Based on Microarchitecture Code Name Nehalem
The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 133.33 MHz.

18.7.3.3 For Intel® Atom™ Processors Based on the Silvermont Microarchitecture (Including Intel
Processors Based on Airmont Microarchitecture)

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by the scalable bus frequency. The scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] for Intel Atom processors based on the Silvermont microarchitecture,
and in bit field MSR_FSB_FREQ[3:0] for processors based on the Airmont microarchitecture; see Chapter 2,
“Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

Table 18-85. Nominal Core Crystal Clock Frequency

Processor Families/Processor Number Series1

NOTES:
1. For any processor in which CPUID.15H is enumerated and MSR_PLATFORM_INFO[15:8] (which gives the scalable bus frequency) is

available, a more accurate frequency can be obtained by using CPUID.15H.

Nominal Core Crystal Clock Frequency

Intel® Xeon® Processor Scalable Family with CPUID signature 06_55H. 25 MHz

6th and 7th generation Intel® Core™ processors and Intel® Xeon® W Processor Family. 24 MHz

Next Generation Intel® Atom™ processors based on Goldmont Microarchitecture with
CPUID signature 06_5CH (does not include Intel Xeon processors).

19.2 MHz

Vol. 3B 18-137

PERFORMANCE MONITORING

18.7.3.4 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core
Microarchitecture

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4. The maximum resolved bus ratio can be read from the
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It

corresponds to the Processor Base frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STATUS[44:40], it

corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If
MSR_PERF_STATUS[31] is set, XE operation is enabled. The MSR_PERF_STATUS[31] field is read-only.

18.8 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 18-63; it provides enumeration of a variety of
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section

17.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist; see Section

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers; see Section

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records; see

Section 18.6.2.4.2.
• IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is

supported if 1, see Section 18.8.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for

updating bits 32 and above of IA32_PMCx; see Section 18.2.6.
• IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14]: If set, the following is true:

— The IA32_PEBS_ENABLE MSR (address 3F1H) exists and all architecturally enumerated fixed and general-
purpose counters have corresponding bits in IA32_PEBS_ENABLE that enable generation of PEBS records.
The general-purpose counter bits start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at bit
IA32_PEBS_ENABLE[32].

— The format of the PEBS record is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section
18.6.2.4.2.

— Extended PEBS is supported. All counters support the PEBS facility, and all events (both precise and non-
precise) can generate PEBS records when PEBS is enabled for that counter. Note that not all events may be
available on all counters.

— Adaptive PEBS is supported. The PEBS_DATA_CFG MSR (address 3F2H) and adaptive record enable bits
(IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record) are supported.
The definition of the PEBS_DATA_CFG MSR, including which bits are supported and how they affect the
record, is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section 18.9.2.3.

• IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[15]: If set, indicates that the architecture provides
built in support for TMA L1 metrics through the PERF_METRICS MSR, see Section 18.3.9.3.

• IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16]: If set on parts that enumerate support for Intel PT
(CPUID.0x7.0.EBX[25]=1), setting IA32_PEBS_ENABLE.PEBS_OUTPUT to 01B will result in PEBS output being
written into the Intel PT trace stream. See Section 18.5.5.2.

18-138 Vol. 3B

PERFORMANCE MONITORING

18.8.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 17.5, “Last Branch, Interrupt,
and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processors)”) are enabled, these facilities
capture event counts, branch records and branch trace messages occurring in a logical processor. The occurrence
of interrupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these
facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system soft-
ware using performance monitoring and/or branch profiling facilities to filter out the effects of servicing system
management interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored , after the SMI handler issues RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM[bit 14] to 1 only supported as indicated
by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

18.9 PEBS FACILITY

18.9.1 Extended PEBS
• The Extended PEBS feature supports Processor Event Based Sampling (PEBS) on all counters, both fixed

function and general purpose; and all performance monitoring events, both precise and non-precise. PEBS can
be enabled for the general purpose counters using PEBS_EN_PMCi bits of IA32_PEBS_ENABLE (i = 0, 1,..n).
PEBS can be enabled for 'i' fixed function counters using the PEBS_EN_FIXEDi bits of IA32_PEBS_ENABLE (i =
0, 1, ...m).

Figure 18-63. Layout of IA32_PERF_CAPABILITIES MSR

5 4 3 2 1 063 7 611 816 15 13 12

PEBS_TRAP (R/O)

PEBS_ARCH_REG (R/O)

PEBS_REC_FMT (R/O)

SMM_FREEZE (R/O)

FW_WRITE (R/O)

LBR_FMT (R/O)

Reserved

PERF_METRICS_AVAILABLE (R/O)
PEBS_OUTPUT_PT_AVAIL (R/O)

Vol. 3B 18-139

PERFORMANCE MONITORING

A PEBS record due to a precise event will be generated after an instruction that causes the event when the counter
has already overflowed. A PEBS record due to a non-precise event will occur at the next opportunity after the
counter has overflowed, including immediately after an overflow is set by an MSR write.

Currently, IA32_FIXED_CTR0 counts instructions retired and is a precise event. IA32_FIXED_CTR1,
IA32_FIXED_CTR2 … IA32_FIXED_CTRm count as non-precise events.

The Applicable Counter field in the Basic Info Group of the PEBS record indicates which counters caused the PEBS
record to be generated. It is in the same format as the enable bits for each counter in IA32_PEBS_ENABLE. As an
example, an Applicable Counter field with bits 2 and 32 set would indicate that both general purpose counter 2 and
fixed function counter 0 generated the PEBS record.
• To properly use PEBS for the additional counters, software will need to set up the counter reset values in PEBS

portion of the DS_BUFFER_MANAGEMENT_AREA data structure that is indicated by the IA32_DS_AREA
register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-65. When a counter
generates a PEBS records, the appropriate counter reset values will be loaded into that counter. In the above
example where general purpose counter 2 and fixed function counter 0 generated the PEBS record, general
purpose counter 2 would be reloaded with the value contained in PEBS GP Counter 2 Reset (offset 50H) and
fixed function counter 0 would be reloaded with the value contained in PEBS Fixed Counter 0 Reset (offset
80H).

Figure 18-64. Layout of IA32_PEBS_ENABLE MSR

1 063

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

PEBS_EN_FIXEDn (R/W)

n 32 31 m

Reserved RESET Value – 00000000 _00000000 H

● ● ● ● ● ●

18-140 Vol. 3B

PERFORMANCE MONITORING

Extended PEBS support debuts on Intel® Atom processors based on the Goldmont Plus microarchitecture and
future Intel® Core™ processors based on the Ice Lake microarchitecture.

18.9.2 Adaptive PEBS
The PEBS facility has been enhanced to collect the following CPU state in addition to GPRs, EventingIP, TSC and
memory access related information collected by legacy PEBS:
• XMM registers
• LBR records (TO/FROM/INFO)

The PEBS record is restructured where fields are grouped into Basic group, Memory group, GPR group, XMM group
and LBR group. A new register MSR_PEBS_DATA_CFG provides software the capability to select data groups of
interest and thus reduce the record size in memory and record generation latency. Hence, a PEBS record's size and
layout vary based on the selected groups. The MSR also allows software to select LBR depth for branch data
records.

By default, the PEBS record will only contain the Basic group. Optionally, each counter can be configured to
generate a PEBS records with the groups specified in MSR_PEBS_DATA_CFG.

Figure 18-65. PEBS Programming Environment

00H

08H

10H

18H

20H

28H

30H

38H

40H

●●●

PEBS Fixed Counter 0 Reset

63 BTS Buffer Base 0

BTS Index

BTS Absolute Maximum

BTS Interrupt Threshold

PEBS Buffer Base

PEBS Index

PEBS Absolute Maximum

PEBS Interrupt Threshold

PEBS GP Counter 0 Reset

PEBS GP Counter 1 Reset

●●●

PEBS GP Counter m Reset

PE
B

S
 C

onfig B
uffer

DS Buffer Management

Branch Record 0

Branch Record 1

Branch Record N

BTS Buffer

PEBS Record 0

PEBS Record 1

PEBS Record N

PEBS Buffer

IA32_DS_AREA MSR

80H

PEBS Fixed Counter n Reset

Vol. 3B 18-141

PERFORMANCE MONITORING

Details and examples for the Adaptive PEBS capability follow below.

18.9.2.1 Adaptive_Record Counter Control
• IA32_PERFEVTSELx.Adaptive_Record[34]: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_PMCx is set for

the corresponding GP counter, an overflow of PMCx results in generation of an adaptive PEBS record with state
information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a basic record is
generated.

• IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_FIXEDx is
set for the corresponding Fixed counter, an overflow of FixedCtrx results in generation of an adaptive PEBS
record with state information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a
basic record is generated.

18.9.2.2 PEBS Record Format
The data fields in the PEBS record are aggregated into five groups which are described in the sub-sections below.
Processors that support Adaptive PEBS implement a new MSR called MSR_PEBS_DATA_CFG which allows software
to select the data groups to be captured. The data groups are not placed at fixed locations in the PEBS record, but
are positioned immediately after one another, thus making the record format/size variable based on the groups
selected.

Figure 18-66. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBS

IA32_Fixed_CTR_CTRL
Address: 38DH
Scope: Thread

Reset value : 0x00000000 .00000000

63 55 47 39

31 23 15 7 0
FC

3_
A

D
A

P
TI

VE
_R

EC
O

R
D

FC
2_

A
D

A
PT

IV
E

_R
E

C
O

R
D

FC
1_

AD
AP

TI
VE

_R
E

C
O

R
D

FC
0_

A
D

A
PT

IV
E

_R
E

C
O

R
D

Reserved

32

PM
I_

FC
3

An
yT

hr
_F

C3

EN
_F

C
3

PM
I_

FC
2

An
yT

hr
_F

C2

EN
_F

C
2

PM
I_

FC
1

An
yT

hr
_F

C
1

EN
_F

C
1

PM
I_

FC
0

An
yT

hr
_F

C
0

EN
_F

C
0

18-142 Vol. 3B

PERFORMANCE MONITORING

18.9.2.2.1 Basic Info

The Basic group contains essential information for software to parse a record along with several critical fields. It is
always collected.

18.9.2.2.2 Memory Access Info

This group contains the legacy PEBS memory-related fields; see Section 18.3.1.1.2.

18.9.2.2.3 GPRs

This group is captured when the GPR bit is enabled in MSR_PEBS_DATA_CFG. GPRs are always 64 bits wide. If they
are selected for non 64-bit mode, the upper 32-bit of the legacy RAX - RDI and all contents of R8-15 GPRs will be
filled with 0s. In 64bit mode, the full 64 bit value of each register is written.

Table 18-86. Basic Info Group

Field Name Bit Width Description

Record Format [47:0] This field indicates which data groups are included in the record. The field is zero if
none of the counters that triggered the current PEBS record have their
Adaptive_Record bit set. Otherwise it contains the value of MSR_PEBS_DATA_CFG.

[63:48] This field provides the size of the current record in bytes. Selected groups are
packed back-to-back in the record without gaps or padding for unselected groups.

Instruction Pointer [63:0] This field reports the Eventing Instruction Pointer (EventingIP) of the retired
instruction that triggered the PEBS record generation. Note that this field is
different than R/EIP which records the instruction pointer of the next instruction
to be executed after record generation. The legacy R/EIP field has been removed.

Applicable Counters [63:0] The Applicable Counters field indicates which counters triggered the generation of
the PEBS record, linking the record to specific events. This allows software to
correlate the PEBS record entry properly with the instruction that caused the
event, even when multiple counters are configured to generate PEBS records and
multiple bits are set in the field.

TSC [63:0] This field provides the time stamp counter value when the PEBS record was
generated.

Table 18-87. Memory Access Info Group

Field Name Bit Width Description

Memory Access Address [63:0] This field contains the linear address of the source of the load, or linear address of
the destination (target) of the store. This value is written as a 64-bit address in
canonical form.

Memory Auxiliary Info [63:0] When MEM_TRANS_RETIRED.* event is configured in a General Purpose counter,
this field contains an encoded value indicating the memory hierarchy source which
satisfied the load. These encodings are detailed in Table 18-4 and Table 18-13. If
the PEBS assist was triggered for a store uop, this field will contain information
indicating the status of the store, as detailed in Table 18-14.

Memory Access Latency [63:0] When MEM_TRANS_RETIRED.* event is configured in a General Purpose counter,
this field contains the latency to service the load in core clock cycles.

TSX Auxiliary Info [31:0] This field contains the number of cycles in the last TSX region, regardless of
whether that region had aborted or committed.

[63:31] This field contains the abort details. Refer to Section 18.3.6.5.1.

Vol. 3B 18-143

PERFORMANCE MONITORING

The order differs from legacy. The table below shows the order of the GPRs in Ice Lake microarchitecture.

The machine state reported in the PEBS record is the committed machine state immediately after the instruction
that triggers PEBS completes.

For instance, consider the following instruction sequence:

MOV eax, [eax]; triggers PEBS record generation

NOP

If the mov instruction triggers PEBS record generation, the EventingIP field in the PEBS record will report the
address of the mov, and the value of EAX in the PEBS record will show the value read from memory, not the target
address of the read operation. And the value of RIP will contain the linear address of the nop.

18.9.2.2.4 XMMs

This group is captured when the XMM bit is enabled in MSR_PEBS_DATA_CFG and SSE is enabled. If SSE is not
enabled, the fields will contain zeroes. XMM8-XMM15 will also contain zeroes if not in 64-bit mode.

Table 18-88. GPRs in Ice Lake Microarchitecture

Field Name Bit Width

RFLAGS [63:0]

RIP [63:0]

RAX [63:0]

RCX* [63:0]

RDX* [63:0]

RBX* [63:0]

RSP* [63:0]

RBP* [63:0]

RSI* [63:0]

RDI* [63:0]

R8 [63:0]

... ...

R15 [63:0]

18-144 Vol. 3B

PERFORMANCE MONITORING

18.9.2.2.5 LBRs

To capture LBR data in the PEBS record, the LBR bit in MSR_PEBS_DATA_CFG must be enabled. The number of LBR
entries included in the record can be configured in the LBR_entries field of MSR_PEBS_DATA_CFG.

LBR entries are recorded into the record starting at LBR[TOS] and proceeding to LBR[TOS-1] and following. Note
that LBR index is modulo the number of LBRs supporting on the processor.

18.9.2.3 MSR_PEBS_DATA_CFG
Bits in MSR_PEBS_DATA_CFG can be set to include data field blocks/groups into adaptive records. The Basic Info
group is always included in the record. Additionally, the number of LBR entries included in the record is configu-
rable.

Table 18-89. XMMs

Field Name Bit Width

XMM0 [127:0]

... ...

XMM15 [127:0]

Table 18-90. LBRs

Field Name Bit Width Description

LBR[].FROM [63:0] Branch from address.

LBR[].TO [63:0] Branch to address.

LBR[].INFO [63:0] Other LBR information, like timing. This field is described in more
detail in Section 17.12.1, “MSR_LBR_INFO_x MSR”.

Vol. 3B 18-145

PERFORMANCE MONITORING

Figure 18-67. MSR_PEBS_DATA_CFG

Table 18-91. MSR_PEBS_CFG Programming1

NOTES:
1. A write to the MSR will be ignored when IA32_MISC_ENABLE.PERFMON_AVAILABLE is zero (default).

Bit Bit Index Access Description

Memory Info 0 R/W Setting this bit will capture memory information such as the linear address,
data source and latency of the memory access in the PEBS record.

GPRs 1 R/W Setting this bit will capture the contents of the General Purpose registers
in the PEBS record.

XMMs 2 R/W Setting this bit will capture the contents of the XMM registers in the PEBS
record.

LBRs 3 R/W Setting this bit will capture LBR TO, FROM and INFO in the PEBS record.

Reserved2

2. Writing to the reserved bits will cause a GP fault.

23:4 NA Reserved

LBR Entries 31:24 R/W Set the field to the desired number of entries minus 1. For example, if the
LBR_entries field is 0, a single entry will be included in the record. To
include 32 LBR entries, set the LBR_entries field to 31 (0x1F). To ensure
all PEBS records are 16-byte aligned, it is recommended to select an even
number of LBR entries (programmed into LBR_entries as an odd number).

MSR_PEBS_DATA_CFG
Address: 3F2H
Scope: Thread

Reset value: 0x00000000 .00000000

63 55 47 39

31 23 15 7 31

LB
R

 E
nt

rie
s

Reserved

63

LB
Rs

XM
M

s

G
PR

s

M
em

or
y

In
fo

18-146 Vol. 3B

PERFORMANCE MONITORING

18.9.2.4 PEBS Record Examples
The following example shows the layout of the PEBS record when all data groups are selected (all valid bits in
MSR_PEBS_DATA_CFG are set) and maximum number of LBRs are selected. There are no gaps in the PEBS record
when a subset of the groups are selected, thus keeping the layout compact. Implementations that do not support
some features will have to pad zeroes in the corresponding fields.

Table 18-92. PEBS Record Example 1

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 Memory Info Memory Access Address DLA

0x28 Memory Auxiliary Info DATA_SRC

0x30 Memory Access Latency Load Latency

0x38 TSX Auxiliary Info HLE Information

0x40 GPRs RFLAGS

0x48 RIP

0x50 RAX

... ...

0x88 RDI

0x90 R8

... ...

0xC8 R15

0xD0 XMMs XMM0 New

... ...

0x1C0 XMM15

0x1D0 LBRs LBR[TOS].FROM New

0x1D8 LBR[TOS].TO

0x1E0 LBR[TOS].INFO

... ...

0x4B8 LBR[TOS +1].FROM

0x4C0 LBR[TOS +1].TO

0x4C8 LBR[TOS +1].INFO

Vol. 3B 18-147

PERFORMANCE MONITORING

The following example shows the layout of the PEBS record when Basic, GPR, and LBR group with 3 LBR entries are
selected.

18.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
Precise Distribution of Instructions Retired Facility is available via PEBS on some microarchitectures. Refer to
Section 18.3.4.4.4. Counters that support PDIR also vary. See the processor specific sections for availability.

18.9.4 Reduced Skid PEBS
Processors based on Goldmont Plus microarchitecture support the Reduced Skid PEBS feature described in Section
18.5.3.1.2 on the IA32_PMC0 counter. Although Extended PEBS adds support for generating PEBS records for
precise events on additional general-purpose and fixed-function performance counters, those counters do not
support the Reduced Skid PEBS feature.

Table 18-93. PEBS Record Example 2

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 GPRs RFLAGS

0x28 RIP

0x30 RAX

... ...

0x68 RDI

0x70 R8

... ...

0xA8 R15

0xB0 LBRs LBR[TOS].FROM New

0xB8 LBR[TOS].TO

0xC0 LBR[TOS].INFO

... ...

0xE0 LBR[TOS +1].FROM

0xE8 LBR[TOS +1].TO

0xF0 LBR[TOS +1].INFO

18-148 Vol. 3B

PERFORMANCE MONITORING

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

20.Updates to Chapter 24, Volume 3B
Change bars and green text show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Addition of WBNOINVD details.

Vol. 3C 24-1

CHAPTER 24
VIRTUAL MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD,
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the
processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction,

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so,
but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current
VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS
whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding VMCS
region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction,

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there

is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.

24-2 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g.,
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 24-1.

Figure 24-1. States of VMCS X

Table 24-1. Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 24.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VMPTRLD X

VMCLEAR X

VMLAUNCH

VMCLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

VM
PTR

LD X

VM
PTR

LD Y

VM
PTR

LD X

VM
PTR

LD Y

Vol. 3C 24-3

VIRTUAL MACHINE CONTROL STRUCTURES

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.1 Processors that maintain
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-
ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.2 Bit 31
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for
this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future
implementations may allow or require a different memory type3. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the

nature of VM exits. On some processors, these fields are read-only.4

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred
to collectively as VMX controls.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was 0.

2. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

3. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

4. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

24-4 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. VM entries load processor state from
these fields and VM exits store processor state into these fields. See Section 26.3.2 and Section 27.3 for details.

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode.
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

Vol. 3C 24-5

VIRTUAL MACHINE CONTROL STRUCTURES

The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the
segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

On some processors, executions of VMWRITE ignore attempts to write non-zero values to any of bits 11:8 or
bits 31:17. On such processors, VMREAD always returns 0 for those bits, and VM entry treats those bits as if
they were all 0 (see Section 26.3.1.2).

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

— IA32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of the
“load IA32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

— IA32_RTIT_CTL (64 bits). This field is supported only on processors that support either the 1-setting of the
“load IA32_RTIT_CTL” VM-entry control or that of the “clear IA32_RTIT_CTL” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
supported only on processors that support the 1-setting of the “load CET state” VM-entry control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
entry control.

— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load
PKRS” VM-entry control.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Table 24-2. Format of Access Rights (Contd.)

Bit Position(s) Field

24-6 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-entry
control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault2 or some other serious
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this
field are given in Table 24-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks maskable interrupts on the instruction boundary
following its execution.1 Setting this bit indicates that this blocking is in effect.

1 Blocking by
MOV SS

See Section 6.8.3, “Masking Exceptions and Interrupts When Switching Stacks,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks or suppresses certain debug exceptions as well
as interrupts (maskable and nonmaskable) on the instruction boundary following its execution.
Setting this bit indicates that this blocking is in effect.2 This document uses the term “blocking
by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2, “System Management Interrupt (SMI).” System-management interrupts
(SMIs) are disabled while the processor is in system-management mode (SMM). Setting this bit
indicates that blocking of SMIs is in effect.

Vol. 3C 24-7

VIRTUAL MACHINE CONTROL STRUCTURES

• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32
processors may recognize one or more debug exceptions without immediately delivering them.1 This field
contains information about such exceptions. This field is described in Table 24-4.

3 Blocking by NMI See Section 6.7.1, “Handling Multiple NMIs,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A and Section 34.8, “NMI Handling While in SMM.”

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

4 Enclave
interruption

Set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-
management interrupts, INIT signals, and exceptions occurring in enclave mode as well as
exceptions encountered during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit
unmodified.

31:5 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

NOTES:
1. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an

execution of STI.
2. System-management interrupts may also be inhibited on the instruction boundary following such an execution of MOV or POP.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

Table 24-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name Notes

24-8 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• VMCS link pointer (64 bits). If the “VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.7.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor treats
this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies that
there is no such interrupt.)

See Chapter 29 for more information on the use of this field.
• PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML”

VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the
page-modification log comprises 512 entries, the PML index is typically a value in the range 0–511. Details of
the page-modification log and use of the PML index are given in Section 28.2.6.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the

host-state area for the LDTR selector.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP)
occurred inside an RTM region while advanced debugging of RTM transactional regions was
enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).1

63:17 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this

field sets the bit to indicate that condition.

Table 24-4. Format of Pending-Debug-Exceptions (Contd.)

Bit
Position(s)

Bit Name Notes

Vol. 3C 24-9

VIRTUAL MACHINE CONTROL STRUCTURES

• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support
Intel 64 architecture).

• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support the 1-setting of the “load
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support the 1-setting of the “load
IA32_EFER” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
supported only on processors that support the 1-setting of the “load CET state” VM-exit control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
exit control.

— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load
PKRS” VM-exit control.

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-exit
control.

In addition to the state identified here, some processor state components are loaded with fixed values on every
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for details
of how state is loaded on VM exits.

24.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described in Section 24.6.1 through
Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events
(for example: interrupts).1 Table 24-5 lists the controls. See Chapter 27 for how these controls affect processor
behavior in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).

24-10 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4. The
VMX capability MSR IA32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchronous
events, mainly those caused by the execution of specific instructions.1 These are the primary processor-based
VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

Table 24-5. Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally
through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF
does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are
delivered normally using descriptor 2 of the IDT. This control also determines interactions
between IRET and blocking by NMI (see Section 25.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also
interacts with the “NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see
Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.

7 Process posted
interrupts

If this control is 1, the processor treats interrupts with the posted-interrupt notification vector
(see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests
(see Section 29.6).

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

Vol. 3C 24-11

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT,
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-based VM-execution controls are
used. If this control is 0, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

24-12 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD and WBNOINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
Section 29.5.

9 Virtual-interrupt
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
Section 25.5.6.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

15 Enable ENCLS
exiting

If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether
the instruction causes a VM exit. See Section 24.6.16 and Section 25.1.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an
entry to the page-modification log. See Section 28.2.6.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.7.

19 Conceal VMX from
PT

If this control is 1, Intel Processor Trace suppresses from PIPs an indication that the processor
was in VMX non-root operation and omits a VMCS packet from any PSB+ produced in VMX non-
root operation (see Chapter 35).

20 Enable
XSAVES/XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

22 Mode-based
execute control for
EPT

If this control is 1, EPT execute permissions are based on whether the linear address being
accessed is supervisor mode or user mode. See Chapter 28.

23 Sub-page write
permissions for
EPT

If this control is 1, EPT write permissions may be specified at the granularity of 128 bytes. See
Section 28.2.4.

24 Intel PT uses guest
physical addresses

If this control is 1, all output addresses used by Intel Processor Trace are treated as guest-
physical addresses and translated using EPT. See Section 25.5.4.

Vol. 3C 24-13

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B (each of which are
4 KBytes in size). I/O bitmap A contains one bit for each I/O port in the range 0000H through 7FFFH; I/O bitmap B
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 1. If the bitmaps are used,
execution of an I/O instruction causes a VM exit if any bit in the I/O bitmaps corresponding to a port it accesses is
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset and Multiplier
The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls
executions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field.
If this control is 1 (and the “RDTSC exiting” control is 0 and the “use TSC offsetting” control is 1), this field also
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 25 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4 registers. These
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW).
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the
TSC multiplier field (see Section 24.6.5 and Section 25.3).

26 Enable user wait
and pause

If this control is 0, any execution of TPAUSE, UMONITOR, or UMWAIT causes a #UD.

28 Enable ENCLV
exiting

If this control is 1, executions of ENCLV consult the ENCLV-exiting bitmap to determine whether
the instruction causes a VM exit. See Section 24.6.17 and Section 25.1.3.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

24-14 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits
in the corresponding read shadow cause VM exits.

• Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not. The
CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability
MSR IA32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization
There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and
Location” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A and Intel® 64
Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page.

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be
virtualized by the processor. See Section 29.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page.
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual
interrupts; see Chapter 29.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.

Vol. 3C 24-15

VIRTUAL MACHINE CONTROL STRUCTURES

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow”
VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold.
See Section 29.1.2.
The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized
writes to the APIC’s EOI register cause VM exits:

— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address

in the range 00000000H to 00001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of RDMSR
applied to that MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each
MSR address in the range 00000000H to 00001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.

24-16 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2.
VM entries that return from SMM use this field as described in Section 34.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting of
the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution
control fields include the following 32-bit fields:

Table 24-8. Format of Extended-Page-Table Pointer

Bit
Position(s)

Field

2:0 EPT paging-structure memory type (see Section 28.2.7):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-

ture memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.5)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

7 Setting this control to 1 enables enforcement of access rights for supervisor shadow-stack pages (see Section
28.2.3.2)3

3. Not all processors enforce access rights for shadow-stack pages. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

11:8 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table4

4. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved

Vol. 3C 24-17

VIRTUAL MACHINE CONTROL STRUCTURES

• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive
executions of PAUSE in a loop.

• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to
execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See
Section 25.1.3 for more details regarding PAUSE-loop exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.6 for more details of how these controls affect processor
behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.6.3).

24.6.15 VMCS Shadowing Bitmap Addresses
On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 ENCLS-Exiting Bitmap
The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution of
ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction
executes normally. See Section 25.1.3 for more information.

24.6.17 ENCLV-Exiting Bitmap
The ENCLV-exiting bitmap is a 64-bit field. If the “enable ENCLV exiting” VM-execution control is 1, execution of
ENCLV causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction
executes normally. See Section 25.1.3 for more information.

Table 24-9. Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list.
See Section 25.5.6.3.

24-18 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.6.18 Control Field for Page-Modification Logging
The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the
page-modification logging are given in Section 28.2.6.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

24.6.19 Controls for Virtualization Exceptions
On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the

virtualization-exception information area. When a logical processor encounters a virtualization exception,
it saves virtualization-exception information at the virtualization-exception information address; see Section
25.5.7.2.

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field
(see Section 25.5.6.3).

24.6.20 XSS-Exiting Bitmap
On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

24.6.21 Sub-Page-Permission-Table Pointer (SPPTP)
If the sub-page write-permission feature of EPT is enabled, EPT write permissions may be determined at a 128-
byte granularity (see Section 28.2.4). These permissions are determined using a hierarchy of sub-page-permission
structures in memory.

The root of this hierarchy is referenced by a VM-execution control field called the sub-page-permission-table
pointer (SPPTP). The SPPTP contains the address of the base of the root SPP table (see Section 28.2.4.2). The
format of this field is shown in Table 24-8.

The SPPTP exists only on processors that support the 1-setting of the “sub-page write permissions for EPT” VM-
execution control.

Table 24-10. Format of Sub-Page-Permission-Table Pointer

Bit
Position(s)

Field

11:0 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned root SPP table

63:N1

NOTES:
1. N is the processor’s physical-address width. Software can determine this width by executing CPUID with 80000008H in EAX. The

physical-address width is returned in bits 7:0 of EAX.

Reserved

Vol. 3C 24-19

VIRTUAL MACHINE CONTROL STRUCTURES

24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section
24.7.2.

24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-11 lists the
controls supported. See Chapter 27 for complete details of how these controls affect VM exits.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11,
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1.

Table 24-11. Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug controls This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-
setting of this control.

9 Host address-space
size

On processors that support Intel 64 architecture, this control determines whether a logical
processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

NOTES:
1. Since the Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and

since CR0.PG is always 1 in VMX root operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX root operation.

12 Load
IA32_PERF_GLOBAL_
CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and the
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX-
preemption timer
value

This control determines whether the value of the VMX-preemption timer is saved on
VM exit.

23 Clear IA32_BNDCFGS This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.

24 Conceal VMX from PT If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP)
on a VM exit or a VMCS packet on an SMM VM exit (see Chapter 35).

25 Clear IA32_RTIT_CTL This control determines whether the IA32_RTIT_CTL MSR is cleared on VM exit.

28 Load CET state This control determines whether CET-related MSRs and SPP are loaded on VM exit.

29 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM exit.

24-20 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is
recommended that this count not exceed 512.1 Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-store
count. The format of each entry is given in Table 24-12. If the VM-exit MSR-store count is not zero, the address
must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load
count (see Table 24-12). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through
24.8.3.

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-13 lists
the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Vol. 3C 24-21

VIRTUAL MACHINE CONTROL STRUCTURES

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12.
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that
support the 0-settings of any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this
functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry
MSR-load count. The format of entries is described in Table 24-12. If the VM-entry MSR-load count is not zero,
the address must be 16-byte aligned.

Table 24-13. Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM)
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

16 Load
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.

17 Conceal VMX from
PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on
a VM entry or a VMCS packet on a VM entry that returns from SMM (see Chapter 35).

18 Load
IA32_RTIT_CTL

This control determines whether the IA32_RTIT_CTL MSR is loaded on VM entry.

20 Load CET state This control determines whether CET-related MSRs and SPP are loaded on VM entry.

22 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control
(see Section 27.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

24-22 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have
been loaded). This process is called event injection and is controlled by the following three VM-entry control
fields:
• VM-entry interruption-information field (32 bits). This field provides details about the event to be injected.

Table 24-14 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM
should use the type hardware exception for all exceptions other than the following:

• breakpoint exceptions (#BP; a VMM should use the type software exception);

• overflow exceptions (#OF a VMM should use the use type software exception); and

• those debug exceptions (#DB) that are generated by INT1 (a VMM should use the use type privileged
software exception).1

The type other event is used for injection of events that are not delivered through the IDT.2

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on every
VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on
the stack.

See Section 26.6 for details regarding the mechanics of event injection, including the use of the interruption type
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

Table 24-14. Format of the VM-Entry Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception (e.g,. #PF)
4: Software interrupt (INT n)
5: Privileged software exception (INT1)
6: Software exception (INT3 or INTO)
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

1. The type hardware exception should be used for all other debug exceptions.

2. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with values 1 or 3 for n.

Vol. 3C 24-23

VIRTUAL MACHINE CONTROL STRUCTURES

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).1

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-15.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 16 is always cleared to 0.

— Bit 27 is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1). See Section 27.2.1 for details.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can
happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.8), software
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains
additional information about the cause of VM exits due to the following: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT;
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; control-
register accesses; MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the
VM exit. See Section 27.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

1. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

Table 24-15. Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

16 Always cleared to 0

26:17 Not currently defined

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Not currently defined

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

24-24 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations.
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored events: exceptions (including
those generated by the instructions INT3, INTO, INT1, BOUND, UD0, UD1, and UD2); external interrupts that occur
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This informa-
tion is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic information associated with the event

causing the VM exit. Table 24-16 describes this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This
information is provided in the following fields:

Table 24-16. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Not used
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Not currently defined

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.6.1.2.

Vol. 3C 24-25

VIRTUAL MACHINE CONTROL STRUCTURES

• IDT-vectoring information (32 bits). This field receives basic information associated with the event that was
being delivered when the VM exit occurred. Table 24-17 describes this field.

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.4 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution, this field receives the

length in bytes of the instruction whose execution led to the VM exit.1 See Section 27.2.5 for details of when
and how this field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS,
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section
27.2.5 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for
VM exits due to SMIs that arrive immediately after retirement of I/O instructions. They provide information about
that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that addressed the I/O instruction).

Table 24-17. Format of the IDT-Vectoring Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

30:12 Not currently defined

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

24-26 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of
one of the VMX instructions.

24.10 VMCS TYPES: ORDINARY AND SHADOW
Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when

the current VMCS is a shadow VMCS fail (see Section 26.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES
This section details guidelines that software should observe when using a VMCS and related structures. It also
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.

Vol. 3C 24-27

VIRTUAL MACHINE CONTROL STRUCTURES

memory operations, in part because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS.

Results may vary from time to time or from logical processor to logical processor.
• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS.

Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 25 and may

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor

to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given,
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields
and their function in the VMCS. See Table 24-18.

Table 24-18. Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)

24-28 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information.
(The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and
access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination
operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source
operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode,
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.
• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support

Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode,
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first

Vol. 3C 24-29

VIRTUAL MACHINE CONTROL STRUCTURES

use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use
VMWRITE with the high access type (establishing bits 63:32 of the field).

24.11.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a
VMCS region. Because the format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that

VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR

for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS
from one logical processor to another.

24.11.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are
referenced by pointers in a VMCS (for example, the I/O bitmaps). While the pointers to these data structures are
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior
(including behaviors identified in Section 24.11.1). Exceptions are made for the following data structures (subject
to detailed discussion in the sections indicated): EPT paging structures and the data structures used to locate SPP
vectors (Section 28.3.3); the virtual-APIC page (Section 29.1); the posted interrupt descriptor (Section 29.6); and
the virtualization-exception information area (Section 25.5.7.2).

24.11.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

24-30 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.1,2

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should
use a separate region for each logical processor and should not access or modify the VMXON region of a logical
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

21.Updates to Chapter 25, Volume 3C
Change bars and green text show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--
Changes to this chapter: Addition of WBNOINVD details.

Vol. 3C 25-1

CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to
root operation). The differences between VMX non-root operation and ordinary processor operation are described
in the following sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “Other Causes of VM Exits”
• Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.4, “Other Changes in VMX Non-Root Operation”
• Section 25.5, “Features Specific to VMX Non-Root Operation”
• Section 25.6, “Unrestricted Guests”

Chapter 26, “VM Entries,” describes the data control structures that govern VMX non-root operation. Chapter 26,
“VM Entries,” describes the operation of VM entries by which the processor transitions from VMX root operation to
VMX non-root operation. Chapter 25, “VMX Non-Root Operation,” describes the operation of VM exits by which the
processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in VMX
non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state
is updated by the instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section
25.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus
can never be executed in VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 24.6).

25.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on

privilege level,1 and general-protection exceptions that are based on checking I/O permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception
and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on
the contents of those operands (see LMSW in Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional I/O
exiting” VM-execution control is 1 or because the “use I/O bitmaps control is 1) have priority over the following
faults:

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that
mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.

25-2 Vol. 3C

VMX NON-ROOT OPERATION

— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a

non-existent MSR with CPL = 0 generates a VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that may lead to a VM exit, it is
assumed that the instruction does not incur a fault that takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1
INVD, and XSETBV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID,
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:3

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both
the CR0 guest/host mask and the CR0 read shadow.

• ENCLS. The ENCLS instruction causes a VM exit if the “enable ENCLS exiting” VM-execution control is 1 and
one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLS-exiting bitmap is 1 (see Section
24.6.16).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLS-exiting bitmap is 1.
• ENCLV. The ENCLV instruction causes a VM exit if the “enable ENCLV exiting” VM-execution control is 1 and

one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLV-exiting bitmap is 1 (see Section
24.6.17).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLV-exiting bitmap is 1.
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these instruc-

tions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” VM-execution
controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution control
is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX.
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM.
See Section 34.15.2.

3. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.

Vol. 3C 25-3

VMX NON-ROOT OPERATION

causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps”
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID”

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table

exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/host mask and the source
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/host mask and the
values of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, for
the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If every
bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution control
is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. Only the
first n CR3-target values are considered, where n is the CR3-target count. If the “CR3-load exiting” VM-
execution control is 1 and the CR3-target count is 0, MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine whether
an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, for
the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE. The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control
is 1).

25-4 Vol. 3C

VMX NON-ROOT OPERATION

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE that
was considered to be the first in a loop. If this amount of time exceeds the value of the VM-execution
control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate as
the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, where
n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• TPAUSE. The TPAUSE instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause”
VM-execution controls are both 1.

• UMWAIT. The UMWAIT instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause”
VM-execution controls are both 1.

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.

Vol. 3C 25-5

VMX NON-ROOT OPERATION

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WBNOINVD. The WBNOINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1,
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control

is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the
XSS-exiting bitmap (see Section 24.6.20).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is
1 and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-
exiting bitmap (see Section 24.6.20).

25.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see Section

24.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception bitmap. If
the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest IDT. This use
of the exception bitmap applies also to exceptions generated by the instructions INT1, INT3, INTO, BOUND,
UD0, UD1, and UD2.1

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks if
PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap is
followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This
applies to the case in which the double-fault exception was generated within VMX non-root operation, the case
in which the double-fault exception was generated during event injection by VM entry, and to the case in which
VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution
control is 1. (See Section 25.6 for an exception.) Otherwise, the interrupt is delivered normally through the

1. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.

25-6 Vol. 3C

VMX NON-ROOT OPERATION

IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external interrupts are blocked.
The interrupt is not delivered through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1.
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally
associated with these events. Such exits do not modify register state or clear pending events as they would
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of
the normal operations associated with those events: they do not modify register state as they would outside of
VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. See Section 25.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for details
of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window
exiting” VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt.
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction

if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section 26.7.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control.
VM exits caused by this control take priority over external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specifi-
cally, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if
there is no virtual-NMI blocking and there is no blocking of events by MOV SS and no blocking of events by STI
(see Table 24-3). Such a VM exit occurs immediately after VM entry if the above conditions are true (see
Section 26.7.6).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused by
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.
These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they wake
a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions.
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside SMM.
If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 34.14.1.

Vol. 3C 25-7

VMX NON-ROOT OPERATION

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in the
CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does not
change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID”
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).
This exception takes priority over any other exception the instruction may incur.

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case,
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not clear

CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host mask.
An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 23.8)
causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.

25-8 Vol. 3C

VMX NON-ROOT OPERATION

guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case,
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses the
result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use the
guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are true:
(1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window exiting” VM-
execution control is 0; and (b) the logical processor has not recognized a pending virtual interrupt (see
Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause
the processor to enter an implementation-dependent optimized state if either the “interrupt-window
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt;
instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Vol. 3C 25-9

VMX NON-ROOT OPERATION

• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the value returned is determined by the setting of the “use TSC scaling”
VM-execution control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the
TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDPID. Behavior of the RDPID instruction is determined first by the setting of the “enable RDTSCP”
VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDPID causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, RDPID operates normally.
• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC

offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, the
value returned is determined by the setting of the “use TSC scaling” VM-execution control:

• If the control is 0, RDTSC loads EAX:EDX with the sum of the value of the IA32_TIME_STAMP_COUNTER
MSR and the value of the TSC offset.

• If the control is 1, RDTSC first computes the product of the value of the IA32_TIME_STAMP_COUNTER
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP”

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD). This
exception takes priority over any other exception the instruction may incur.

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC exiting”
and “use TSC offsetting” VM-execution controls:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1,
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the
TSC offset.

In either case, RDTSCP also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.

25-10 Vol. 3C

VMX NON-ROOT OPERATION

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each
position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask,
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if every
bit is cleared in the CR0 guest/host mask, SMSW reads normally from CR0; if every bit is set in the CR0
guest/host mask, SMSW returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of the
CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set
when reading directly from CR0.

• TPAUSE. Behavior of the TPAUSE instruction is determined first by the setting of the “enable user wait and
pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, TPAUSE causes an invalid-opcode exception
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, the instruction delays for an amount of time called
here the physical delay. The physical delay is first computed by determining the virtual delay (the
time to delay relative to the guest’s timestamp counter).

If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling”
VM-execution controls:

— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, TPAUSE causes a VM exit.
• UMONITOR. Behavior of the UMONITOR instruction is determined by the setting of the “enable user wait and

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMONITOR causes an invalid-opcode
exception (#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, UMONITOR operates normally.
• UMWAIT. Behavior of the UMWAIT instruction is determined first by the setting of the “enable user wait and

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMWAIT causes an invalid-opcode exception
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, and if the instruction causes a delay, the amount of
time delayed is called here the physical delay. The physical delay is first computed by determining the
virtual delay (the time to delay relative to the guest’s timestamp counter).

If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling”
VM-execution controls:

Vol. 3C 25-11

VMX NON-ROOT OPERATION

— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, UMWAIT causes a VM exit.
• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an

execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root
operation.

— On processors that support Intel PT but which do not allow it to be used in VMX operation, if ECX contains
570H (indicating the IA32_RTIT_CTL MSR), the instruction causes a general-protection exception.1

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode exception
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.20):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable

XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.20):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, the
IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

25.4 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as described in the following
sections.

25.4.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control the blocking of

external interrupts. In this case, an external interrupt that is not blocked for other reasons causes a VM exit
(even if RFLAGS.IF = 0).

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in
VMX operation (see Appendix A.6).

25-12 Vol. 3C

VMX NON-ROOT OPERATION

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or may not be blocked by
STI or by MOV SS (behavior is implementation-specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or may not be blocked by
STI or by MOV SS (behavior is implementation-specific).

25.4.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root oper-
ation causes a VM exit. However, the following checks are performed (in the order indicated), possibly resulting in
a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, INT1, INT3, INTO, or JMP accesses a task gate in IA-32e mode, a general-protection
exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, privilege-levels checks are
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state
segment (TSS) descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege levels are checked on the
TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT in
IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside IA-32e mode, no
privilege checks are performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is accessed directly and no
privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a VM exit
due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementation-
specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing either
TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if accessing
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused
the VM exit is recorded in the VM-exit interruption-information fields. See Section 27.2. The fact that a task gate
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 27.2.

Vol. 3C 25-13

VMX NON-ROOT OPERATION

25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 25.5.1) and the monitor trap flag (Section 25.5.2), translation of guest-physical
addresses (Section 25.5.3 and Section 25.5.4), APIC virtualization (Section 25.5.5), VM functions (Section
25.5.6), and virtualization exceptions (Section 25.5.7).

25.5.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption timer” VM-execution control,
the VMX-preemption timer counts down (from the value loaded by VM entry; see Section 26.7.4) in VMX non-
root operation. When the timer counts down to zero, it stops counting down and a VM exit occurs (see Section
25.2).

The VMX-preemption timer counts down at rate proportional to that of the timestamp counter (TSC). Specifically,
the timer counts down by 1 every time bit X in the TSC changes due to a TSC increment. The value of X is in the
range 0–31 and can be determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates in the shutdown and wait-for-
SIPI states. If the timer counts down to zero in any state other than the wait-for SIPI state, the logical processor
transitions to the C0 C-state and causes a VM exit; the timer does not cause a VM exit if it counts down to zero in
the wait-for-SIPI state. The timer is not decremented in C-states deeper than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and system-management mode
(SMM) depends on whether the treatment of SMIs and SMM:
• If the default treatment of SMIs and SMM (see Section 34.14) is active, the VMX-preemption timer counts

across an SMI to VMX non-root operation, subsequent execution in SMM, and the return from SMM via the RSM
instruction. However, the timer can cause a VM exit only from VMX non-root operation. If the timer expires
during SMI, in SMM, or during RSM, a timer-induced VM exit occurs immediately after RSM with its normal
priority unless it is blocked based on activity state (Section 25.2).

• If the dual-monitor treatment of SMIs and SMM (see Section 34.15) is active, transitions into and out of SMM
are VM exits and VM entries, respectively. The treatment of the VMX-preemption timer by those transitions is
mostly the same as for ordinary VM exits and VM entries; Section 34.15.2 and Section 34.15.4 detail some
differences.

25.5.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction
boundary in VMX non-root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section

26.6.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the
VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 26.6.2), an MTF VM exit is pending on the
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor
trap flag” VM-execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending
on the instruction boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction
boundary after that iteration.

25-14 Vol. 3C

VMX NON-ROOT OPERATION

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the fallback
instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced debugging
of RTM transactional regions has been enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery of
the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following
execution of that instruction. If the instruction is INT1, INT3, or INTO, this boundary follows delivery of any
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF VM exit
would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes
precedence or the MTF VM exit is blocked due to the activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF

VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.
• No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. If

a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state without
causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section
42.2 for details.

25.5.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT mechanism are given in Section 28.2.

25.5.4 Translation of Guest-Physical Addresses Used by Intel Processor Trace
As described in Chapter 35, Intel® Processor Trace (Intel PT) captures information about software execution using
dedicated hardware facilities.

Intel PT can be configured so that the trace output is written to memory using physical addresses. For example,
when the ToPA (table of physical addresses) output mechanism is used, the IA32_RTIT_OUTPUT_BASE MSR
contains the physical address of the base of the current ToPA. Each entry in that table contains the physical address
of an output region in memory. When an output region becomes full, the ToPA output mechanism directs subse-
quent trace output to the next output region as indicated in the ToPA.

When the “Intel PT uses guest physical addresses” VM-execution control is 1, the logical processor treats the
addresses used by Intel PT (the output addresses as well as those used to discover the output addresses) as guest-
physical addresses, translating to physical addresses using EPT before trace output is written to memory.

Translating these addresses through EPT implies that the trace-output mechanism may cause EPT violations and
VM exits; details are provided in Section 25.5.4.1. Section 25.5.4.2 describes a mechanism that ensures that these
VM exits do not cause loss of trace data.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD0, UD1, and UD2 instructions and a BOUND-
range exceeded exception—#BR—generated by the BOUND instruction.

Vol. 3C 25-15

VMX NON-ROOT OPERATION

25.5.4.1 Guest-Physical Address Translation for Intel PT: Details
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are
treated as guest-physical addresses and translated using EPT. These addresses include the addresses of the output
regions as well as the addresses of the ToPA entries that contain the output-region addresses.

Translation of accesses by the trace-output process may result in EPT violations or EPT misconfigurations (Section
28.2.3), resulting in VM exits. EPT violations resulting for the trace-output process always cause VM exits and are
never converted to virtualization exceptions (Section 25.5.7.1).

If no EPT violation or EPT misconfiguration occurs and if page-modification logging (Section 28.2.6) is enabled, the
address of an output region may be added to the page-modification log. If the log is full, a page-modification log-
full event occurs, resulting in a VM exit.

If the “virtualize APIC accesses” VM-execution control is 1, a guest-physical address used by the trace-output
process may be translated to an address on the APIC-access page. In this case, the access by the trace-output
process causes an APIC-access VM exit as discussed in Section 29.4.6.1.

25.5.4.2 Trace-Address Pre-Translation (TAPT)
Because it buffers trace data produced by Intel PT before it is written to memory, the processor ensures that buff-
ered data is not lost when a VM exit disables Intel PT. Specifically, the processor ensures that there is sufficient
space left in the current output page for the buffered data. If this were not done, buffered trace data could be lost
and the resulting trace corrupted.

To prevent the loss of buffered trace data, the processor uses a mechanism called trace-address pre-translation
(TAPT). With TAPT, the processor translates using EPT the guest-physical address of the current output region
before that address would be used to write buffered trace data to memory.

Because of TAPT, no translation (and thus no EPT violation) occurs at the time output is written to memory; the
writes to memory use translations that were cached as part of TAPT. (The details given in Section 25.5.4.1 apply to
TAPT.) TAPT ensures that, if a write to the output region would cause an EPT violation, the resulting VM exit is deliv-
ered at the time of TAPT, before the region would be used. This allows software to resolve the EPT violation at that
time and ensures that, when it is necessary to write buffered trace data to memory, that data will not be lost due
to an EPT violation.

TAPT (and resulting VM exits) may occur at any of the following times:
• When software in VMX non-root operation enables tracing by loading the IA32_RTIT_CTL MSR to set the

TraceEn bit, using the WRMSR instruction or the XRSTORS instruction.
Any VM exit resulting from TAPT in this case is trap-like: the WRMSR or XRSTORS completes before the
VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the
next instruction).

• At an instruction boundary when one output region becomes full and Intel PT transitions to the next output
region.
VM exits resulting from TAPT in this case take priority over any pending debug exceptions. Such a VM exit will
save information about such exceptions in the guest-state area of the VMCS.

• As part of a VM entry that enables Intel PT. See Section 26.5 for details.

TAPT may translate not only the guest-physical address of the current output region but those of subsequent
output regions as well. (Doing so may provide better protection of trace data.) This implies that any VM exits
resulting from TAPT may result from the translation of output-region addresses other than that of the current
output region.

25.5.5 APIC Virtualization
APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor emulates
many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in VMX non-
root operation without a VM exit.

25-16 Vol. 3C

VMX NON-ROOT OPERATION

Details of the APIC virtualization are given in Chapter 29.

25.5.6 VM Functions
A VM function is an operation provided by the processor that can be invoked from VMX non-root operation without
a VM exit. VM functions are enabled and configured by the settings of different fields in the VMCS. Software in VMX
non-root operation invokes a VM function with the VMFUNC instruction; the value of EAX selects the specific
VM function being invoked.

Section 25.5.6.1 explains how VM functions are enabled. Section 25.5.6.2 specifies the behavior of the VMFUNC
instruction. Section 25.5.6.3 describes a specific VM function called EPTP switching.

25.5.6.1 Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-execution control. A specific
VM function is enabled by setting the corresponding VM-function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0; see Section 24.6.14).To do
so, it must set the “activate secondary controls” VM-execution control (bit 31 of the primary processor-based VM-
execution controls), the “enable VM functions” VM-execution control (bit 13 of the secondary processor-based VM-
execution controls) and the “EPTP switching” VM-function control (bit 0 of the VM-function controls).

25.5.6.2 General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable VM functions” VM-execution
controls is 01 or the value of EAX is greater than 63 (only VM functions 0–63 can be enable). Otherwise, the instruc-
tion causes a VM exit if the bit at position EAX is 0 in the VM-function controls (the selected VM function is not
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”, and the length of
the VMFUNC instruction is saved into the VM-exit instruction-length field. If the instruction causes neither an
invalid-opcode exception nor a VM exit due to a disabled VM function, it performs the functionality of the
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause a general-protection excep-
tion if CPL > 0). In addition, specific VM functions may include checks that might result in a VM exit. If such a
VM exit occurs, VM-exit information is saved as described in the previous paragraph. The specification of a
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in VM exits) is given in
Section 25.5.6.3.

25.5.6.3 EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a
VM exit if ECX ≥ 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

Vol. 3C 25-17

VMX NON-ROOT OPERATION

tent_EPTP := 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VM exit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
use tent_EPTP as the new EPTP value for address translation;
IF processor supports the 1-setting of the “EPT-violation #VE” VM-execution control

THEN
write ECX[15:0] to EPTP-index field in current VMCS;
use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 25.5.7.2);

FI;
FI;

FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

If the “Intel PT uses guest physical addresses” VM-execution control is 1 and IA32_RTIT_CTL.TraceEn = 1, any
execution of the EPTP-switching VM function causes a VM exit.1

As noted in Section 25.5.6.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into the
VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical
processor starts creating and using guest-physical and combined mappings associated with the new value of bits
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these are
not changed by VMFUNC).2 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC invalidates
combined mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the value
of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or 4-level paging3 is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate execu-
tion of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT (because
bit 6 is clear) and that is identical to the new value on bits 51:12.

1. Such a VM exit ensures the proper recording of trace data that might otherwise be lost during the change of EPT paging-structure
hierarchy. Software handling the VM exit can change emulate the VM function and then resume the guest.

2. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.

3. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

25-18 Vol. 3C

VMX NON-ROOT OPERATION

IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 25.5.7.2);

25.5.7 Virtualization Exceptions
A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that would
normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to generate
virtualization exceptions instead of VM exits. Section 25.5.7.1 provides the details of how the processor determines
whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 25.5.7.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any
other exception; see Section 25.5.7.3 for details.

25.5.7.1 Convertible EPT Violations
If the “EPT-violation #VE” VM-execution control is 0 (e.g., on processors that do not support this feature), EPT
violations always cause VM exits. If instead the control is 1, certain EPT violations may be converted to cause virtu-
alization exceptions instead; such EPT violations are convertible.

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically,
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:
• If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present.1 If the processor encounters

such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is
convertible if and only if bit 63 of the entry is 0.

• If an EPT paging-structure entry is present, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the
processor encounters such an entry while translating a guest-physical address, it causes an EPT misconfig-
uration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:

• If bit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such
an entry to translate a guest-physical address, and if an access to that address causes an EPT violation,
the EPT violation is convertible if and only if bit 63 of the entry is 0.

• If bit 7 of the entry is 0 and the entry is not an EPT PTE, the entry references another EPT paging
structure. The processor does not use the value of bit 63 of the entry to determine whether any
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps a
page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
• CR0.PE = 1;
• the logical processor is not in the process of delivering an event through the IDT;
• the EPT violation does not result from the output process of Intel Processor Trace (Section 25.5.4); and

1. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or
bit 10 is 1.

Vol. 3C 25-19

VMX NON-ROOT OPERATION

• the 32 bits at offset 4 in the virtualization-exception information area are all 0.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception informa-
tion area (see Section 25.5.7.2). Thus, once a virtualization exception occurs, another can occur only if software
clears this field.

25.5.7.2 Virtualization-Exception Information
Virtualization exceptions save data into the virtualization-exception information area (see Section 24.6.19).
Table 25-1 enumerates the data saved and the format of the area.

A VMM may allow guest software to access the virtualization-exception information area. If it does, the guest soft-
ware may modify that memory (e.g., to clear the 32-bit value at offset 4; see Section 25.5.7.1). (This is an excep-
tion to the general requirement given in Section 24.11.4.)

25.5.7.3 Delivery of Virtualization Exceptions
After saving virtualization-exception information, the processor treats a virtualization exception as it does other
exceptions:
• If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see

below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.
• Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on

the stack.
• With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a

virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault
(#DF) is generated. See Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.
It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 25.5.7.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section
27.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is 0 in the exception bitmap and delivery of
the exception generates an event that causes a VM exit), information about the exception is saved normally in the

Table 25-1. Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit
occurred instead of the virtualization exception

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 24.6.19 and Section
25.5.6.3)

25-20 Vol. 3C

VMX NON-ROOT OPERATION

IDT-vectoring information field in the VMCS (see Section 27.2.4). Specifically, the event is reported as a hardware
exception with vector 20 and no error code.

25.6 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in VMX operation (see Section
23.8). This restriction implies that guest software cannot be run in unpaged protected mode or in real-address
mode. Later processors support a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software to run in unpaged protected
mode or in real-address mode. The following items describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply because it would set either

CR0.PE and CR0.PG to 0. See Section 25.3 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root operation just as it does outside

VMX operation. Thus, if CR0.PE = 0, the processor operates as it does normally in real-address mode (for
example, it uses the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, the processor
operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root operation and by the settings
of the VM-execution controls just as it is in protected mode or when paging is enabled. Instructions, interrupts,
and exceptions that cause VM exits in protected mode or when paging is enabled also do so in real-address
mode or when paging is disabled. The following examples should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and do not cause VM exits:
INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for translation to a physical
address.2 The guest memory type passed on to the EPT mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unrestricted guest” VM-execution control is 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

22.Updates to Chapter 26, Volume 3C
Change bars and green text show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

Changes to this chapter: Update to section 26.3.1.4, “Checks on Guest RIP, RFLAGS, and SSP”.

Vol. 3C 26-1

CHAPTER 26
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions VMLAUNCH and VMRESUME.
VMLAUNCH can be used only with a VMCS whose launch state is clear and VMRESUME can be used only with a
VMCS whose the launch state is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation and that the VMCS is correctly configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the VM entry completes, the state of the
logical processor is consistent with IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. If the “Intel PT uses guest physical addresses” VM-execution control is 1, trace-address pre-translation (TAPT)
may occur (see Section 25.5.4 and Section 26.5).

7. An event may be injected in the guest context (Section 26.6).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur in one of the following three
ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example, an invalid-opcode exception).

Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause control to pass to the instruction

following the VM-entry instruction. The failure is indicated by setting RFLAGS.ZF1 (if there is a current VMCS)
or RFLAGS.CF (if there is no current VMCS). If there is a current VMCS, an error number indicating the cause of
the failure is stored in the VM-instruction error field. See Chapter 30 for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded from the host-state area of the
VMCS (as would be done on a VM exit). Information about the failure is stored in the VM-exit information fields.
See Section 26.8 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug exception only if failure of one of the
checks in Section 26.1 and Section 26.2 causes control to pass to the following instruction. A VM-entry does not
generate a single-step debug exception in any of the following cases: (1) the instruction generates a fault; (2)
failure of one of the checks in Section 26.3 or in loading MSRs causes processor state to be loaded from the host-
state area of the VMCS; or (3) the instruction passes all checks in Section 26.1, Section 26.2, and Section 26.3 and
there is no failure in loading MSRs.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, code running in SMM returns using VM entries instead of the RSM
instruction. A VM entry returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control is 0.
VM entries that return from SMM differ from ordinary VM entries in ways that are detailed in Section 34.15.4.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP,
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

26-2 Vol. 3C

VM ENTRIES

26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

4. If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 24.10), RFLAGS.CF is set to 1
and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not launched
If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 30 for the error
numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state areas of the VMCS are
checked to ensure that they are proper for supporting VMX non-root operation, that the VMCS is correctly config-
ured to support the next VM exit, and that, after the next VM exit, the processor’s state is consistent with the Intel
64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next instruction,
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with an error number that
indicates whether the failure was due to the controls or the host-state area (see Chapter 30).

These checks may be performed in any order. Thus, an indication by error number of one cause (for example, host
state) does not imply that there are not also other errors. Different processors may thus give different error
numbers for the same VMCS. Some checks prevent establishment of settings (or combinations of settings) that are
currently reserved. Future processors may allow such settings (or combinations) and may not perform the corre-
sponding checks. The correctness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The checks on the controls and the host-state area are presented in Section 26.2.1 through Section 26.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references are to
fields in the host-state area.

26.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary pro-
cessor-based VM-execution control were 0.

Vol. 3C 26-3

VM ENTRIES

• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of VTPR
(see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control
to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from
the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.6

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0:
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.7

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

6. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

26-4 Vol. 3C

VM ENTRIES

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:1

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address
width.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.
• If the “enable PML” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.5 In

addition, the PML address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.
• If either the “unrestricted guest” VM-execution control or the “mode-based execute control for EPT” VM-

execution control is 1, the “enable EPT” VM-execution control must also be 1.6

• If the “sub-page write permissions for EPT” VM-execution control is 1, the “enable EPT” VM-execution control
must also be 1.7 In addition, the SPPTP VM-execution control field (see Table 24-10 in Section 24.6.21) must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

1. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

2. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

5. “Enable PML” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary processor-based
VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

6. All these controls are secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if all these controls were 0. See Section 24.6.2.

7. “Sub-page write permissions for EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based
VM-execution controls is 0, VM entry functions as if the “sub-page write permissions for EPT” VM-execution control were 0. See Sec-
tion 24.6.2.

Vol. 3C 26-5

VM ENTRIES

— The address should not set any bits beyond the processor’s physical-address width.
• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function

controls must be clear.1 Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
must each satisfy the following checks:2

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must

satisfy the following checks:3

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of

VM entry, the “load IA32_RTIT_CTL” VM-entry control must be 0.
• If the “Intel PT uses guest physical addresses” VM-execution control is 1, the following controls must also be 1:

the “enable EPT” VM-execution control; the “load IA32_RTIT_CTL” VM-entry control; and the “clear
IA32_RTIT_CTL” VM-exit control.4

• If the “use TSC scaling” VM-execution control is 1, the TSC-multiplier must not be zero.5

26.2.1.2 VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult the VMX capability MSRs to

determine the proper settings (see Appendix A.4).
• If the “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-preemption timer value” VM-

exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the VM-exit MSR-store count field is

non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address should not set any bits beyond
the processor’s physical-address width.6

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

2. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

3. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

4. “Intel PT uses guest physical addresses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-
based VM-execution controls is 0, VM entry functions as if the “Intel PT uses guest physical addresses” VM-execution control were
0. See Section 24.6.2.

5. “Use TSC scaling” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “use TSC scaling” VM-execution control were 0. See Section 24.6.2.

26-6 Vol. 3C

VM ENTRIES

— The address of the last byte in the VM-exit MSR-store area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-exit MSR-store address + (MSR count * 16) – 1.
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• The following checks are performed for the VM-exit MSR-load address if the VM-exit MSR-load count field is
non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address should not set any bits beyond
the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-exit MSR-load address + (MSR count * 16) – 1.
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

26.2.1.3 VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs to

determine the proper settings (see Appendix A.5).
• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-

information field (see Table 24-14 in Section 24.8.3), the VM-entry exception error code, and the VM-entry
instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following must
hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if each of the following holds: (1) the interruption type is
hardware exception; (2) bit 0 (corresponding to CR0.PE) is set in the CR0 field in the guest-state area;
(3) IA32_VMX_BASIC[56] is read as 0 (see Appendix A.1); and (4) the vector indicates one of the following
exceptions: #DF (vector 8), #TS (10), #NP (11), #SS (12), #GP (13), #PF (14), or #AC (17).

— The field's deliver-error-code bit is 0 if any of the following holds: (1) the interruption type is not hardware
exception; (2) bit 0 is clear in the CR0 field in the guest-state area; or (3) IA32_VMX_BASIC[56] is read as
0 and the vector is in one of the following ranges: 0–7, 9, 15, 16, or 18–31.

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:16 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the
VM-entry instruction-length field is in the range 0–15. A VM-entry instruction length of 0 is allowed only if
IA32_VMX_MISC[30] is read as 1; see Appendix A.6.

• The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field is
non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond
the processor’s physical-address width.1

6. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

Vol. 3C 26-7

VM ENTRIES

— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) –
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

26.2.2 Checks on Host Control Registers, MSRs, and SSP
The following checks are performed on fields in the host-state area that correspond to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• On processors that support Intel 64 architecture, the CR3 field must be such that bits 63:52 and bits in the

range 51:32 beyond the processor’s physical-address width must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP
field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT MSR must be one that could
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR must be 0 in the field for that
register. In addition, the values of the LMA and LME bits in the field must each be that of the “host address-
space size” VM-exit control.

• If the “load CET state” VM-exit control is 1, the IA32_S_CET field must not set any bits reserved in the
IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) in the field cannot both be
set.

• If the “load CET state” VM-exit control is 1, bits 1:0 must be 0 in the SSP field.
• If the “load PKRS” VM-exit control is 1, bits 63:32 must be 0 in the IA32_PKRS field.

26.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond to segment and descriptor-
table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the TI flag (bit 2) must

be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control is 0.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the values of these bits are not changed
by VM exit; see Section 27.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to
MOV to CR3 is used to determine whether cached translation information is invalidated.

26-8 Vol. 3C

VM ENTRIES

• On processors that support Intel 64 architecture, the base-address fields for FS, GS, GDTR, IDTR, and TR must
contain canonical addresses.

26.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to address-space size are performed
on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time of VM entry, the following

must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of VM entry, the “host address-

space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field are 0.

— If the “load CET state” VM-exit control is 1, bits 63:32 in the IA32_S_CET field and in the SSP field are 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

— If the “load CET state” VM-exit control is 1, the IA32_S_CET field and the SSP field contain canonical
addresses.

• If the “load CET state” VM-exit control is 1, the IA32_INTERRUPT_SSP_TABLE_ADDR field contains a canonical
address.

On processors that do not support Intel 64 architecture, checks are performed to ensure that the “IA-32e mode
guest” VM-entry control and the “host address-space size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 26.2), the following operations take
place concurrently: (1) the guest-state area of the VMCS is checked to ensure that, after the VM entry completes,
the state of the logical processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is loaded
from the guest-state area or as specified by the VM-entry control fields; and (3) address-range monitoring is
cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after some state has
been loaded. For this reason, the logical processor responds to such failures by loading state from the host-state
area, as it would for a VM exit. See Section 26.8.

26.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These checks may be performed in any
order. Some checks prevent establishment of settings (or combinations of settings) that are currently reserved.
Future processors may allow such settings (or combinations) and may not perform the corresponding checks. The
correctness of software should not rely on VM-entry failures resulting from the checks documented in this section.

The following subsections reference fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

Vol. 3C 26-9

VM ENTRIES

26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The following

are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE)
must be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.

— If the “load CET state” VM-entry control is 1, the IA32_S_CET field and the
IA32_INTERRUPT_SSP_TABLE_ADDR field must contain canonical addresses.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the
IA32_EFER MSR:

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.6

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to
MOV to CR3 is used to determine whether cached translation information is invalidated.

26-10 Vol. 3C

VM ENTRIES

• If the “load IA32_BNDCFGS” VM-entry control is 1, the following checks are performed on the field for the
IA32_BNDCFGS MSR:

— Bits reserved in the IA32_BNDCFGS MSR must be 0.

— The linear address in bits 63:12 must be canonical.
• If the “load IA32_RTIT_CTL” VM-entry control is 1, bits reserved in the IA32_RTIT_CTL MSR must be 0 in the

field for that register (see Table 35-6).
• If the “load CET state” VM-entry control is 1, the IA32_S_CET field must not set any bits reserved in the

IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) of the field cannot both be
set.

• If the “load PKRS” VM-entry control is 1, bits 63:32 must be 0 in the IA32_PKRS field.

26.3.1.2 Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The following terms are
used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is possible only on

processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-rights field for that

register.

The following are the checks on these fields:
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-execution control is 0, the RPL
(bits 1:0) must equal the RPL of the selector field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the selector field shifted left
4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 architecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.
• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.
• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

6. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

Vol. 3C 26-11

VM ENTRIES

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit 0 in the CR0 field (corresponding to CR0.PE) is
0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 – 11 (data segment or non-conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode and the L bit (bit 13) in the
access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary processor-based VM-execution
controls is 0: (1) bit 0 in the CR0 field must be 1 if the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in
VMX operation; and (2) the Type in the access-rights field for CS cannot be 3.

26-12 Vol. 3C

VM ENTRIES

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit busy TSS) or 11 (32-bit busy
TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

26.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4 Checks on Guest RIP, RFLAGS, and SSP
The following checks are performed on fields in the guest-state area corresponding to RIP, RFLAGS, and SSP
(shadow-stack pointer):
• RIP. The following checks are performed on processors that support Intel 64 architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L bit (bit 13) in the access-
rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the “IA-32e mode guest”
VM-entry control is 1 and the L bit in the access-rights field for CS is 1.1 (No check applies if the processor
supports 64 linear-address bits.) The guest RIP value is not required to be canonical; the value of bit N-1
may differ from that of bit N.

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 architecture), bit 15, bit 5 and
bit 3 must be 0 in the field, and reserved bit 1 must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry control is 1 or if bit 0 in the CR0
field (corresponding to CR0.PE) is 0.2

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

Vol. 3C 26-13

VM ENTRIES

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry interruption-information field
is 1 and the interruption type (bits 10:8) is external interrupt.

• SSP. The following checks are performed if the “load CET state” VM-entry control is 1

— Bits 1:0 must be 0.

— If the processor supports the Intel 64 architecture, bits 63:N must be identical, where N is the CPU’s
maximum linear-address width. (This check does not apply if the processor supports 64 linear-address
bits.) The guest SSP value is not required to be canonical; the value of bit N-1 may differ from that of bit N.

26.3.1.5 Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by the
implementation (see Section 24.4.2). Future processors may include support for other activity states.
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS
is not 0.1

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered
(as defined by interruption type and vector) must not be one that would normally be blocked while a logical
processor is in the activity state corresponding to the contents of the activity-state field. The following
items enumerate the interruptions (as specified in the VM-entry interruption-information field) whose
injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-14 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 1.
• Interruptibility state.

— The reserved bits (bits 31:5) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0,
indicating external interrupt, or value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).

26-14 Vol. 3C

VM ENTRIES

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in the
VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has value 2
(indicating NMI).

— If bit 4 (enclave interruption) is 1, bit 1 (blocking by MOV-SS) must be 0 and the processor must support
for SGX by enumerating CPUID.(EAX=07H,ECX=0):EBX.SGX[bit 2] as 1.

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid bit
in the VM-entry interruption-information field is 1 and the interruption type in that field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 architecture)
must be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field indicates
blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by MOV SS
(bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the
IA32_DEBUGCTL field is 1.

— The following checks are performed if bit 16 (RTM) is 1:

• Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

• The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[bit 11] as 1.

• The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).
• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the
executive-VMCS pointer.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was 0.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

Vol. 3C 26-15

VM ENTRIES

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, the logical processor uses PAE paging (see Section 4.4 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).1 When PAE paging is in use, the
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3
when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) is set in the CR0 field in the
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest”
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the CR3

field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value of CR3
is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-
state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with
MOV to CR3 when PAE paging is in use.3 If MOV to CR3 would cause a general-protection exception due to the
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents (see Section
26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These sections reference VMCS fields
that correspond to processor state. Unless otherwise stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the VM-entry MSR-load
area (see Section 26.4). This loading occurs only after the state loading described in this section and the checking
of VMCS contents described in Section 26.3.1.

26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on VM entry:

ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).4 The values of these bits in the CR0
field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits.
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one of the PDPTEs, bits 63:1 of that
PDPTE are ignored.

4. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of
CR0 are always 0 and CR0.ET is always 1.

26-16 Vol. 3C

VM ENTRIES

• If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that
bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

• The following describes how certain MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the IA32_DEBUGCTL MSR is loaded from the
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32 bits,
bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture,
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded
from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.

— If the “load IA32_BNDCFGS” VM-entry control is 1, the IA32_BNDCFGS MSR is loaded from the
IA32_BNDCFGS field.

— If the “load IA32_RTIT_CTL” VM-entry control is 1, the IA32_RTIT_CTL MSR is loaded from the
IA32_RTIT_CTL field.

— If the “load CET” VM-entry control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs
are loaded from the IA32_S_CET field and the IA32_INTERRUPT_SSP_TABLE_ADDR field, respectively. On
processors that do not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the MSRs
are cleared to 0.

— If the “load PKRS” VM-entry control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field.
With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

Vol. 3C 26-17

VM ENTRIES

26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for TR (see Section 26.3.1.2).
If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-protection exception or
stack-fault exception) outside 64-bit mode, just as they would had the segment been loaded using a null
selector. This bit does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all modes, just as they would
had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value does not cause a fault
(general-protection exception or stack-fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and (from the access-rights field) the
L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined after VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
• If the unusable bit is 1, the base address, the segment limit, and the remainder of the access rights are

undefined after VM entry with the following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be the current privilege level
(CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corresponding fields in the VMCS. On
processors that support Intel 64 architecture, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address for LDTR is set to an undefined
but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the base addresses for SS, DS, and
ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3 Loading Guest RIP, RSP, RFLAGS, and SSP
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field, respectively.

If the “load CET” VM-entry control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

The following items regard the upper 32 bits of these fields on VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor may ignore the contents of

bits 63:32 of the RSP field on VM entries that are not to 64-bit mode.
• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 on VM entries that are not to

64-bit mode. (The same is true for SSP for VM entries that are not to 64-bit mode when the “load CET” VM-
entry control is 1.)

26-18 Vol. 3C

VM ENTRIES

26.3.2.4 Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural
registers based on the setting of the “enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical

address in the value of CR3 being loaded by the VM entry (see Section 26.3.2.1). The values loaded are treated
as physical addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section
24.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

26.3.2.5 Updating Non-Register State
Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs
and paging-structure caches. The following items detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the
guest interrupt-status field in the VMCS (see Section 24.4.2). After doing so, the logical processor first causes PPR
virtualization (Section 29.1.3) and then evaluates pending virtual interrupts (Section 29.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry
(including any specified event injection) completes; see Section 26.7.5. See Section 29.2.2 for details regarding
the delivery of virtual interrupts.

26.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. VM entries clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2). Specifically each entry in that
area (up to the number specified in the VM-entry MSR-load count) is processed in order by loading the MSR indexed
by bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register

when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the

VM entry did not commence in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-specific reasons. A

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4.

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to modify it using the VM-entry MSR-
load area are also ignored.

Vol. 3C 26-19

VM ENTRIES

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection

exception if executed via WRMSR with CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to such failures by loading state
from the host-state area, as it would for a VM exit. See Section 26.8.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so
that, after VM entry, the logical processor will not use any translations that were cached before the transition.

26.5 TRACE-ADDRESS PRE-TRANSLATION (TAPT)
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are
treated as guest-physical addresses, and these are translated to physical addresses using EPT.

VM entry uses trace-address pre-translation (TAPT) to prevent buffered trace data from being lost due to an
EPT violation; see Section 25.5.4.2. VM entry uses TAPT only if Intel PT will be enabled following VM entry
(IA32_RTIT_CTL.TraceEn = 1) and only if the “Intel PT uses guest physical addresses” VM-execution control is 1

As noted in Section 25.5.4, TAPT may cause a VM exit due to an EPT violation, EPT misconfiguration, page-modifi-
cation log-full event, or APIC access. If such a VM exit occurs as a result of TAPT during VM entry, the VM exit oper-
ates as if it had occurred in VMX non-root operation after the VM entry completed (in the guest context).

If TAPT during VM entry causes a VM exit, the VM entry does not perform event injection (Section 26.6), even if the
valid bit in the VM-entry interruption-information field is 1. Such VM exits save the contents of VM-entry interrup-
tion-information and VM-entry exception error code fields into the IDT-vectoring information and IDT-vectoring
error code fields, respectively.

26.6 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is 1, VM entry causes an event to
be delivered (or made pending) after all components of guest state have been loaded (including MSRs) and after
the VM-execution control fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable interrupt); 3 (hardware

exception), 4 (software interrupt), 5 (privileged software exception), or 6 (software exception), the event is
delivered as described in Section 26.6.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an MTF VM exit is pending after
VM entry. See Section 26.6.2.

26.6.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by VM entry. This means that
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution
control fields have been established.2 The event is delivered using the vector in that field to select a descriptor in
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 26.6.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had
been generated normally.

1. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. If VM entry has
established CR0.PG = 1, the IA32_EFER MSR should not be included in the VM-entry MSR-load area for the purpose of modifying the
LME bit.

2. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control fields
(such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, a
nested exception encountered during event delivery may cause a VM exit; see Section 26.6.1.1.

26-20 Vol. 3C

VM ENTRIES

If event delivery encounters a nested exception (for example, a general-protection exception because the vector
indicates a descriptor beyond the IDT limit), the exception bitmap is consulted using the vector of that exception:
• If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is

benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated,
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 6,
“Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.1

• If the bit for the nested exception is 1, a VM exit occurs. Section 26.6.1.2 details cases in which event injection
causes a VM exit.

26.6.1.1 Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption information field (format
given in Table 24-14), the VM-entry exception error-code field, and the VM-entry instruction-length field. The
following items provide details of the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded from the guest-state area. The

value pushed for the RF flag is not modified based on the type of event being delivered. However, the pushed
value of RFLAGS may be modified if a software interrupt is being injected into a guest that will be in virtual-
8086 mode (see below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is modified as
is done normally when delivering an event through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event and whether nested exceptions
occur during its delivery. The term current guest RIP refers to the value to be loaded from the guest-state
area. The value pushed is determined as follows:2

— If VM entry successfully injects (with no nested exception) an event with interruption type external
interrupt, NMI, or hardware exception, the current guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption type software
interrupt, privileged software exception, or software exception, the current guest RIP is incremented by the
VM-entry instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does not cause a VM exit,
the current guest RIP is pushed on the stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field, the contents of the
VM-entry exception error-code field is pushed on the stack as an error code would be pushed during delivery of
an exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if the event has vector 1
(normal deliveries of debug exceptions, which have vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode (RFLAGS.VM = 1), no
general-protection exception can occur due to RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL
before injecting such an event and, if desired, inject a general-protection exception instead of a software
interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode with virtual-8086 mode
extensions (RFLAGS.VM = CR4.VME = 1), event delivery is subject to VME-based interrupt redirection based
on the software interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the interrupt is directed to
an 8086 program interrupt handler: the processor uses a 16-bit interrupt-vector table (IVT) located at
linear address zero. If the value of RFLAGS.IOPL is less than 3, the following modifications are made to the
value of RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

1. Hardware exceptions with the following unused vectors are considered benign: 15 and 21–31. A hardware exception with vector 20
is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control; in that case, it
has the same severity as page faults.

2. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined normally.

Vol. 3C 26-21

VM ENTRIES

— If bit n in the bitmap is set (where n is the number of the software interrupt), the interrupt is directed to a
protected-mode interrupt handler. (In other words, the injection is treated as described in the next item.)
In this case, the software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a general-
protection exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an injected
software interrupt to cause such a exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege

checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3,
or INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest
will be in virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with
interruption type external interrupt, NMI, hardware exception, and privileged software exception, or with inter-
ruption type software interrupt and being redirected as described above, do not perform these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” VM-execution control is 1,
virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the IA32_DEBUGCTL MSR. This is
true even for events such as debug exceptions, which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of the LBR bit in the
IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally clear the LBR bit before they are
delivered, and therefore do not normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception, the value of the EXT bit (bit 0) in any error code for that
nested exception is determined as follows:

— If event being injected has interruption type external interrupt, NMI, hardware exception, or privileged
software exception and encounters a nested exception (but does not produce a double fault), the error code
for that exception sets the EXT bit.

— If event being injected is a software interrupt or a software exception and encounters a nested exception,
the error code for that exception clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that exception encounters another
exception (but does not produce a double fault), the error code for that exception sets the EXT bit.

— If a double fault is produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.6.1.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls. For
example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task

switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX
non-root operation (see Section 25.4.2).

• If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the
exception bitmap (see Section 25.2).

• If event delivery generates a double-fault exception (due to a nested exception); the logical processor
encounters another nested exception while attempting to call the double-fault handler; and that exception does
not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section 25.2).

• If event delivery injects a double-fault exception and encounters a nested exception that does not cause a
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 25.2).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the APIC-
access page, that access is treated as described in Section 29.4 and may cause a VM exit.1

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

26-22 Vol. 3C

VM ENTRIES

If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected event
directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a VM exit,
information about the injected event is saved in the IDT-vectoring information field (see Section 27.2.4).

26.6.1.3 Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as would normally be done in real-
address mode.1 Specifically, VM entry uses the vector provided in the VM-entry interruption-information field to
select a 4-byte entry from an interrupt-vector table at the linear address in IDTR.base. Further details are provided
in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must be 0 if CR0.PE will be 0 after
VM entry (see Section 26.2.1.3), vectored events injected with CR0.PE = 0 do not push an error code on the stack.
This is consistent with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the fault is treated as if it had
occurred during event delivery in VMX non-root operation. Such a fault may lead to a VM exit as discussed in
Section 26.6.1.2.

26.6.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other event) and the vector field is 0,
VM entry causes an MTF VM exit to be pending on the instruction boundary following VM entry. This is the case
even if the “monitor trap flag” VM-execution control is 0. See Section 25.5.2 for the treatment of pending MTF
VM exits.

26.7 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following terminology: a VM entry is vectoring if
the valid bit (bit 31) of the VM-entry interruption information field is 1 and the interruption type in the field is 0
(external interrupt), 2 (non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged
software exception), or 6 (software exception).

26.7.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 24-3) contains bits that control blocking by STI,
blocking by MOV SS, and blocking by NMI. This field impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the VM entry, regardless of the

contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1. This blocking is cleared
after the guest executes one instruction or incurs an exception (including a debug exception made pending
by VM entry; see Section 26.7.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is 1. This may affect the
treatment of pending debug exceptions; see Section 26.7.3. This blocking is cleared after the guest
executes one instruction or incurs an exception (including a debug exception made pending by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, VM entry must be loading CR0.PE
with 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are
both 1.

Vol. 3C 26-23

VM ENTRIES

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if bit 3 (blocking by NMI) in the
interruptibility-state field is 1. If the “NMI exiting” VM-execution control is 0, execution of the IRET
instruction removes this blocking (even if the instruction generates a fault). If the “NMI exiting” control is
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interruptibility-state field if the
“virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs are not blocked in VMX non-
root operation (except for ordinary blocking for other reasons, such as by the MOV SS instruction, the
wait-for-SIPI state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after VM entry. If the bit is 1, virtual-
NMI blocking is in effect after VM entry. If the bit is 0, there is no virtual-NMI blocking after VM entry
unless the VM entry is injecting an NMI (see Section 26.6.1.1). Execution of IRET removes virtual-NMI
blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.
• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI blocking is unchanged by
VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only if the bit 2 in the inter-
ruptibility-state field is 1.

26.7.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the logical processor is active or in
one of the inactive states identified in Section 24.4.2. The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after VM entry. While the consistency

checks described in Section 26.3.1.5 on the activity-state field do apply in this case, the contents of the
activity-state field do not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the activity state specified in the guest-
state area. If VM entry ends with the logical processor in an inactive activity state, the VM entry generates any
special bus cycle that is normally generated when that activity state is entered from the active state. If
VM entry would end with the logical processor in the shutdown state and the logical processor is in SMX
operation,1 an Intel® TXT shutdown condition occurs. The error code used is 0000H, indicating “legacy
shutdown.” See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking is in effect after any VM entry
that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the active state
and in VMX non-root operation are discarded and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the HLT state and
in VMX non-root operation are discarded and do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive while a logical
processor is in the shutdown state and in VMX non-root operation do not cause VM exits even if the
“external-interrupt exiting” VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs), INIT signals, and
system-management interrupts (SMIs). Such events do not cause VM exits if they arrive while a logical
processor is in the wait-for-SIPI state and in VMX non-root operation.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

26-24 Vol. 3C

VM ENTRIES

26.7.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that have
not yet been delivered (see Section 24.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:
• The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable

interrupt (NMI), hardware exception, or privileged software exception.
• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either of

the following interruption type: software interrupt or software exception.
• The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been

encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking
by MOV SS), a debug exception is delivered after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug
exceptions are held pending or lost as would normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#OF) — or
a privileged software exception with vector 1 (#DB) — the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corresponding instruction (INT1, INT3,
or INTO) were executed after a MOV SS that encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered after
VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction”
(see Section 6.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT
signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by
the TPR threshold (see Section 26.7.7) and pending MTF VM exits (see Section 26.7.8. The exception takes priority
over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-settings
of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception
bitmap. If it does not cause a VM exit, it updates DR6 normally.

26.7.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the VMX-preemption timer with
the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value in the VMX-preemption
timer-value field is zero). If this happens (and if the VM entry was not to the wait-for-SIPI state), a VM exit occurs
with its normal priority after any event injection and before execution of any instruction following VM entry. For
example, any pending debug exceptions established by VM entry (see Section 26.7.3) take priority over a timer-
induced VM exit. (The timer-induced VM exit will occur after delivery of the debug exception, unless that exception
or its delivery causes a different VM exit.)

See Section 25.5.1 for details of the operation of the VMX-preemption timer in VMX non-root operation, including
the blocking and priority of the VM exits that it causes.

Vol. 3C 26-25

VM ENTRIES

26.7.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery
If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 25.2 for details). If the “interrupt-window exiting” VM-execution control is 0 but
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after
VM entry (see Section 26.3.2.5 and Section 29.2.1).

The following items detail the treatment of these events:
• These events occur after any event injection specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take

priority over external interrupts and lower priority events.
• These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section

26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.7.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur immediately after VM entry (see
Section 25.2 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 26.7.3) and higher priority events take priority over VM exits caused by

this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.

• VM exits caused by this control wake the logical processor if it just entered either the HLT state or the shutdown
state because of a VM entry (see Section 26.7.2). They do not occur if the logical processor just entered the
wait-for-SIPI state.

26.7.7 VM Exits Induced by the TPR Threshold
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-interrupt
delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 29.1.1).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in guest-

state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and

lower priority events. They thus have priority over the VM exits described in Section 26.7.5, Section 26.7.6,
and Section 26.7.8, as well as any interrupts or debug exceptions that may be pending at the time of VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section
26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

• The basic exit reason is “TPR below threshold.”

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

26-26 Vol. 3C

VM ENTRIES

26.7.8 Pending MTF VM Exits
As noted in Section 26.6.2, VM entry may cause an MTF VM exit to be pending immediately after VM entry. The
following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these

VM exits. These VM exits take priority over debug-trap exceptions and lower priority events.
• These VM exits wake the logical processor if it just entered the HLT state because of a VM entry (see Section

26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.7.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

26.8 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE
VM-entry failures due to the checks identified in Section 26.3.1 and failures during the MSR loading identified in
Section 26.4 are treated differently from those that occur earlier in VM entry. In these cases, the following steps
take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general
cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section
26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs (see Section
26.4).

41. VM-entry failure due to machine-check event. A machine-check event occurred during VM entry
(see Section 26.9).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is cleared to 0. The
following non-zero values are used in the cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 26.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a guest that is blocking
events through the STI blocking bit in the interruptibility-state field.

4. Failure was due to an invalid VMCS link pointer (see Section 26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order. Thus, an indication by exit
qualification of one cause does not imply that there are not also other errors. Different processors
may give different exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate which entry in the
VM-entry MSR-load area caused the problem (1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If this results in
[CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-pointer-table entries (PDPTEs) may be checked
and loaded (see Section 27.5.4).

Vol. 3C 26-27

VM ENTRIES

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur for these
VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.9 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the IDT.
• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.8. The basic exit reason is 41, for “VM-entry failure due to

machine-check event.”

The first option is not used if the machine-check event occurs after any guest state has been loaded. The second
option is used only if VM entry is able to load all guest state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

26-28 Vol. 3C

VM ENTRIES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

23.Updates to Chapter 27, Volume 3C
Change bars and green text show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

Changes to this chapter: Addition of WBNOINVD details and updates to section 27.2.1, “Basic VM-Exit
Information”, update to Table 27-6, “Exit Qualification for APIC-Access VM Exits from Linear Accesses and
Guest-Physical Accesses”, and typo corrections as necessary.

Vol. 3C 27-1

CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 25.1
through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control
fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM exits
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are
detailed in Section 27.2 through Section 27.6.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap.

A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly.
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section
29.4), EPT violation, EPT misconfiguration, page-modification log-full event (see Section 28.2.6), or SPP-
related event (see Section 28.2.4) that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not

caused the VM exit:

— A debug exception does not update DR6, DR7, or IA32_DEBUGCTL. (Information about the nature of the
debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

27-2 Vol. 3C

VM EXITS

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending,
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from
being updated. These are updated by the machine-check event itself and not the resulting machine-check
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some
events may be blocked but others may return the logical processor to the active state. Unblocked events
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.7.8) are not blocked in the HLT activity state. If an MTF
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are considered
pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit
commences, generates any special bus cycle that is normally generated when the active state is entered
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the IDT
(before it can encounter a nested exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead
to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have
become active before the VM exit.

Vol. 3C 27-3

VM EXITS

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a
nested exception, double fault, task switch, EPT violation, EPT misconfiguration, page-modification log-full
event, or SPP-related event, or APIC access that causes a VM exit, virtual-NMI blocking is in effect before the
VM exit commences.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any
blocking by NMI is cleared before the VM exit commences. However, the previous state of blocking by NMI may
be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 27.2.3.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1,
virtual-NMI blocking is cleared before the VM exit commences. However, the previous state of blocking by NMI
may be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 27.2.3.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, page-
modification log-full event, or SPP-related event that is encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information about them may be saved in the
pending debug exceptions field (unless the VM exit clears that field; see Section 27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions (data breakpoints) whose recognition was delayed by blocking by
MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only from
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for low
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs.
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-state
field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 39, “Enclave
Exiting Events”). An AEX modifies architectural state (Section 39.3). In particular, the processor establishes the
following architectural state as indicated:
• The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.
• FS and GS are restored to the values they had prior to the most recent enclave entry.
• RIP is loaded with the AEP of interrupted enclave thread.
• RSP is loaded from the URSP field in the enclave’s state-save area (SSA).

27-4 Vol. 3C

VM EXITS

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information
fields. Section 27.2.1 to Section 27.2.5 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the IA32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits include those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 26:16) is cleared to 0 (certain SMM VM exits may set some
of these bits; see Section 34.15.2.3).2

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
execution of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; WBINVD;
WBNOINVD; XRSTORS; XSAVES; control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the
APIC-access page (see Section 29.4); EPT violations (see Section 28.2.3.2); EOI virtualization (see Section
29.1.4); APIC-write emulation (see Section 29.4.3.3); page-modification log full (see Section 28.2.6); and
SPP-related events (see Section 28.2.4). For all other VM exits, this field is cleared. The following items provide
details:

— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 27-1.

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.

2. Bit 31 of this field is set on certain VM-entry failures; see Section 26.8.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Not currently defined.

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

Vol. 3C 27-5

VM EXITS

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of
the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in
Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not
in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This
address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the

15 Not currently defined.

16 RTM. When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP) occurred
inside an RTM region while advanced debugging of RTM transactional regions was enabled (see Section
16.3.7, “RTM-Enabled Debugger Support,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).1

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this

field sets the bit to indicate that condition.

Table 27-2. Exit Qualification for Task Switches

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Not currently defined

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

Table 27-1. Exit Qualification for Debug Exceptions (Contd.)

Bit Position(s) Contents

27-6 Vol. 3C

VM EXITS

displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.5) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64
architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

— WBINVD and WBNOINVD use the same basic exit reason (see Appendix C). For WBINVD, the exit qualifi-
cation is 0, while for WBNOINVD it is 1.

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and not
during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution)
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data
write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access
caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is
“data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

1. The exit qualification is undefined if the access was part of the logging of a branch record or a processor-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.

Table 27-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

Vol. 3C 27-7

VM EXITS

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the
access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

• For an APIC-access VM exit caused directly by an access to a linear address in the DS save area (BTS or
PEBS), the access type is “linear access for monitoring.”

• For an APIC-access VM exit caused by a guest-physical access performed for an access to the DS save
area (e.g., to access a paging structure to translate a linear address), the access type is “guest-physical
access for monitoring or trace.”

• For an APIC-access VM exit caused by trace-address pre-translation (TAPT) when the “Intel PT uses
guest physical addresses” VM-execution control is 1, the access type is “guest-physical access for
monitoring or trace.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.4) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation
and has the format given in Table 27-7.

As noted in that table, the format and meaning of the exit qualification depends on the setting of the
“mode-based execute control for EPT” VM-execution control and whether the processor supports advanced
VM-exit information for EPT violations.1

7 Not currently defined

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Not currently defined

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

1. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

Table 27-3. Exit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents

27-8 Vol. 3C

VM EXITS

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data
write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implementation,
may differ for different kinds of read-modify-write operations.

Bit 12 reports “NMI unblocking due to IRET”; see Section 27.2.3.

Bit 16 is set if the VM exit occurs during trace-address pre-translation (TAPT); see Section 25.5.4.

Table 27-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Not currently defined

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Not currently defined

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

Table 27-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Not currently defined

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

Vol. 3C 27-9

VM EXITS

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

— For a VM exit due to a page-modification log-full event (Section 28.2.6), bit 12 of the exit qualification
reports “NMI unblocking due to IRET.” Bit 16 is set if the VM exit occurs during TAPT. All other bits of the exit
qualification are undefined.

— For a VM exit due to an SPP-related event (Section 28.2.4), bit 11 of the exit qualification indicates the type
of event: 0 indicates an SPP misconfiguration and 1 indicates an SPP miss. Bit 12 of the exit qualification
reports “NMI unblocking due to IRET.” Bit 16 is set if the VM exit occurs during TAPT. All other bits of the
exit qualification are undefined.

• Guest linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The
field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor
was not in 64-bit mode before the VM exit.

Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
4 = linear access for monitoring
10 = guest-physical access during event delivery
11 = guest-physical access for monitoring or trace
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

16 If the APIC-access VM exit is due to a guest-physical access, this bit is set if the access was asynchronous to
instruction execution and not part of event delivery. (The bit is set if the access is related to trace output by
Intel PT; see Section 25.5.4.) Otherwise, this bit is cleared.

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write
VM exit is 3F0H.

Table 27-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

27-10 Vol. 3C

VM EXITS

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates whether the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates whether the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation.

If the “mode-based execute control for EPT” VM-execution control is 0, this indicates whether the guest-physical
address was executable. If that control is 1, this indicates whether the guest-physical address was executable
for supervisor-mode linear addresses.

6 If the “mode-based execute control” VM-execution control is 0, the value of this bit is undefined. If that control is
1, this bit is the logical-AND of bit 10 in the EPT paging-structure entries used to translate the guest-physical
address of the access causing the EPT violation. In this case, it indicates whether the guest-physical address was
executable for user-mode linear addresses.

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the
guest PDPTEs as part of the execution of the MOV CR instruction and those due to trace-address pre-translation
(TAPT; Section 25.5.4).

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

9 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if the linear address is a supervisor-mode linear address and 1 if it is a user-mode linear address. (If CR0.PG = 0,
the translation of every linear address is a user-mode linear address and thus this bit will be 1.) Otherwise, this
bit is undefined.

10 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if paging translates the linear address to a read-only page and 1 if it translates to a read/write page. (If CR0.PG =
0, every linear address is read/write and thus this bit will be 1.) Otherwise, this bit is undefined.

11 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if paging translates the linear address to an executable page and 1 if it translates to an execute-disable page. (If
CR0.PG = 0, CR4.PAE = 0, or IA32_EFER.NXE = 0, every linear address is executable and thus this bit will be 0.)
Otherwise, this bit is undefined.

12 NMI unblocking due to IRET (see Section 27.2.3).

13 Set if the access causing the EPT violation was a shadow-stack access.

14 If supervisor shadow-stack control is enabled (by setting bit 7 of EPTP), this bit is the same as bit 60 in the EPT
paging-structure entry that maps the page of the guest-physical address of the access causing the EPT violation.
Otherwise (or if translation of the guest-physical address terminates before reaching an EPT paging-structure
entry that maps a page), this bit is undefined.

15 Not currently defined.

16 This bit is set if the access was asynchronous to instruction execution not the result of event delivery. (The bit is
set if the access is related to trace output by Intel PT; see Section 25.5.4.) Otherwise, this bit is cleared.

Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents

Vol. 3C 27-11

VM EXITS

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR
instruction and those due to TAPT). The linear address may translate to the guest-physical address whose
access caused the EPT violation. Alternatively, translation of the linear address may reference a paging-
structure entry whose access caused the EPT violation. Bits 63:32 are cleared if the logical processor was
not in 64-bit mode before the VM exit.

If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery of
an event incident to enclave mode), bits 11:0 of this field are cleared.

— VM exits due to SPP-related events.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation, an EPT misconfiguration, or an SPP-related

event, this field receives the guest-physical address that caused the EPT violation or EPT misconfiguration. For
all other VM exits, the field is undefined.
If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions (including
those generated by the instructions INT1, INT3, INTO, BOUND, UD0, UD1, and UD2); external interrupts that occur
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs).1 Such
VM exits include those that occur on an attempt at a task switch that causes an exception before generating the
VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-16). The following items detail how this field is

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 5
(privileged software exception), or 6 (software exception). Hardware exceptions comprise all exceptions
except the following:

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions.
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of
INT1 in enclave mode.)

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with

regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the
EPT violation is not present (see Section 28.2.2).

3. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

1. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.

Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents

27-12 Vol. 3C

VM EXITS

• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO);
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware
exception.)

BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD)
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see
below).

— Bit 12 reports “NMI unblocking due to IRET”; see Section 27.2.3. The value of this bit is undefined if the
VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information
field, this field receives the error code that would have been pushed on the stack had the event causing the
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information About NMI Unblocking Due to IRET
A VM exit may occur during execution of the IRET instruction for reasons including the following: faults, EPT viola-
tions, page-modification log-full events, or SPP-related events.

An execution of IRET that commences while non-maskable interrupts (NMIs) are blocked will unblock NMIs even if
a fault or VM exit occurs; the state saved by such a VM exit will indicate that NMIs were not blocked.

VM exits for the reasons enumerated above provide more information to software by saving a bit called “NMI
unblocking due to IRET.” This bit is defined if (1) either the “NMI exiting” VM-execution control is 0 or the “virtual
NMIs” VM-execution control is 1; (2) the VM exit does not set the valid bit in the IDT-vectoring information field
(see Section 27.2.4); and (3) the VM exit is not due to a double fault. In these cases, the bit is defined as follows:
• The bit is 1 if the VM exit resulted from a memory access as part of execution of the IRET instruction and one

of the following holds:

— The “virtual NMIs” VM-execution control is 0 and blocking by NMI (see Table 24-3) was in effect before
execution of IRET.

— The “virtual NMIs” VM-execution control is 1 and virtual-NMI blocking was in effect before execution of
IRET.

• The bit is 0 for all other relevant VM exits.

For VM exits due to faults, NMI unblocking due to IRET is saved in bit 12 of the VM-exit interruption-information
field (Section 27.2.2). For VM exits due to EPT violations, page-modification log-full events, and SPP-related
events, NMI unblocking due to IRET is saved in bit 12 of the exit qualification (Section 27.2.1).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

Vol. 3C 27-13

VM EXITS

(Executions of IRET may also incur VM exits due to APIC accesses and EPT misconfigurations. These VM exits do
not report information about NMI unblocking due to IRET.)

27.2.4 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the
IDT and as a result of any of the following cases:1

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the
initial checks of the task switch pass (see Section 25.4.2).

• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-related event that occurs

during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section
26.6.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-17). The following items detail how this field is established

for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31).
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except the following:2

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions.
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of
INT1 in enclave mode.)

• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO);
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware
exception.)

BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD)
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in
real-address mode (CR0.PE=0).3 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error
code (see below).

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).

2. In the following items, INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or
3 for n.

27-14 Vol. 3C

VM EXITS

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field,
this field receives the error code that would have been pushed on the stack by the event that was being
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set
normally.

— For other VM exits, the value of this field is undefined.

27.2.5 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT,
LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC,
RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, TPAUSE, UMWAIT, VMCALL, VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD,
WBNOINVD, WRMSR, XRSTORS, XSETBV, and XSAVES.1

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO) or privileged
software exceptions (those generated by executions of INT1).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For APIC-access VM exits and for VM exits caused by EPT violations, page-modification log-full events, and
SPP-related events encountered during delivery of a software interrupt, privileged software exception, or
software exception.2

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function controls;
see Section 25.5.6.2).

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the
“virtualize x2APIC mode” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

Vol. 3C 27-15

VM EXITS

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section
25.5.6.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any instruction
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or
software exception include those encountered during delivery of events injected as part of VM entry (see
Section 26.6.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID,
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in
Table 27-11.

— For VM exits due to attempts to execute RDRAND, RDSEED, TPAUSE, or UMWAIT, the field has the format
is given in Table 27-12.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES,
the field has the format is given in Table 27-13.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC
(see Appendix A.1).

27-16 Vol. 3C

VM EXITS

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in
Table 27-14.

For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the
field is cleared.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section
34.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Vol. 3C 27-17

VM EXITS

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

27-18 Vol. 3C

VM EXITS

31:30 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)
Bit Position(s) Content

Vol. 3C 27-19

VM EXITS

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for RDRAND, RDSEED, TPAUSE, and
UMWAIT

Bit Position(s) Content

2:0 Undefined.

6:3 Operand register (destination for RDRAND and RDSEED; source for TPAUSE and UMWAIT):

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,
VMXON, XRSTORS, and XSAVES

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)
Bit Position(s) Content

27-20 Vol. 3C

VM EXITS

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

2 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,
VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s) Content

Vol. 3C 27-21

VM EXITS

27.3 SAVING GUEST STATE
VM exits save certain components of processor state into corresponding fields in the guest-state area of the VMCS
(see Section 24.4). On processors that support Intel 64 architecture, the full value of each natural-width field (see
Section 24.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See
Section 27.1 for a discussion of which architectural updates occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how various components of processor state are saved.
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)
Bit Position(s) Content

27-22 Vol. 3C

VM EXITS

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP

MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the IA32_SYSENTER_ESP and
IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the
1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding
field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the
“clear IA32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_RTIT_CTL” VM-entry control or that of the “clear
IA32_RTIT_CTL” VM-exit control, the contents of the IA32_RTIT_CTL MSR are saved into the corresponding
field.

• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the IA32_S_CET and
IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are saved into the corresponding fields. On processors that do not
support Intel 64 architecture, bits 63:32 of these MSRs are not saved.

• If the processor supports the 1-setting of the “load PKRS” VM-entry control, the contents of the IA32_PKRS
MSR are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are undefined: (1) base address;

(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base
addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are those which were in the register

before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.
• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is

unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.

Vol. 3C 27-23

VM EXITS

27.3.3 Saving RIP, RSP, RFLAGS, and SSP
The contents of the RIP, RSP, RFLAGS, and SSP (shadow-stack pointer) registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the
remaining items do not apply).

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment had
the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state
segment had the event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO) or a privileged software
exception (due to an execution of INT1), the value saved references the INT3, INTO, or INT1 instruction
that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by
execution of a software interrupt (INT n), software exception (due to execution of INT3 or INTO), or
privileged software exception (due to execution of INT1) that encountered a task gate in the IDT. The value
saved references the instruction that caused the task switch (CALL, IRET, JMP, INT n, INT3, INTO, INT1).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was
encountered for any reason except the direct access by a software interrupt or software exception. The
value saved is that which would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the value
saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC access
as part of instruction execution, the value saved references the instruction following the one whose
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit occurred in enclave mode, the value saved is 0 (the remaining items do not apply).

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment had

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16
bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or
16 bits.

27-24 Vol. 3C

VM EXITS

the event been delivered through a task gate) had the event been delivered through the IDT. See below for
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task
switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one
that was configured to do with a VM-execution control, the value saved is 0.1

— For APIC-access VM exits and for VM exits caused by EPT violations, EPT misconfigurations, page-modifi-
cation log-full events, or SPP-related events, the value saved depends on whether the VM exit occurred
during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur
during delivery of an event through the IDT; see Section 27.2.4), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur
during delivery of an event through the IDT), the value saved is the value that would have appeared in
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.
• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the SSP register are

saved into the SSP field.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.2 See Section 27.1

for details of how events leading to a VM exit may affect the activity state.
• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.

— See Section 27.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave
mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

1. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.

2. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP
by that VM exit will reference the following instruction.

Vol. 3C 27-25

VM EXITS

— A VM exit with basic exit reason “TPR below threshold”,1 “virtualized EOI”, “APIC write”, or “monitor trap
flag.”

— A VM exit due to trace-address pre-translation (TAPT; see Section 25.5.4). Such VM exits can have basic
exit reason “APIC access,” “EPT violation,” “EPT misconfiguration,” “page-modification log full,” or “SPP-
related event.” When due to TAPT, these VM exits (with the exception of those due to EPT misconfigura-
tions) set bit 16 of the exit qualification, indicating that they are asynchronous to instruction execution and
not part of event delivery.

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 26.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:

— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section
26.7.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging of
RTM transactional regions had been enabled (see Section 16.3.7, “RTM-Enabled Debugger
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). (This does
not apply to VM exits with basic exit reason “monitor trap flag.”)

In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a single
instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

• Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any
debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that
which was loaded on VM entry (see Section 26.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug
exceptions (see Section 26.7.3) and the VM exit occurred before those exceptions were either delivered
or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented
(see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value

1. This item includes VM exits that occur as a result of certain VM entries (Section 26.7.7).

27-26 Vol. 3C

VM EXITS

0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit
does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of
the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the
field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time
of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register

when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 2, “Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31
of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control were 0.
See Section 24.6.2.

Vol. 3C 27-27

VM EXITS

On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These sections reference VMCS fields that
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If
the logical processor was in IA-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section
27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 27.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see
Section 27.6). This loading occurs only after the state loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the

following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and
15:6; and any bits that are fixed in VMX operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32
bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP and
IA32_SYSENTER_EIP fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set
to the value of bit N–1.3

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

27-28 Vol. 3C

VM EXITS

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their
reserved values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits
that are reserved in that MSR are maintained with their reserved values.

— If the “clear IA32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to
00000000_00000000H; otherwise, it is not modified.

— If the “clear IA32_RTIT_CTL” VM-exit control is 1, the IA32_RTIT_CTL MSR is cleared to
00000000_00000000H; otherwise, it is not modified.

— If the “load CET” VM-exit control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are
loaded from the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set
to the value of bit N–1.

— If the “load PKRS” VM-exit control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field. Bits 63:32
of that MSR are maintained with zeroes.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The

checks specified Section 26.3.1.2 limit the selector values that may be loaded. In particular, CS and TR are
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that
support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments
marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits,
each of bits 63:N is set to the value of bit N–1.1 The values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.

— TR. Set to 00000067H.
• The type field and S bit are set as follows:

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

Vol. 3C 27-29

VM EXITS

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3 and S set to 1
(read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.
• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
• On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space

size” VM-exit control. Because the value of this control is also loaded into IA32_EFER.LMA (see Section 27.5.1),
no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the
selector is cleared to 0000H, the segment is marked unusable and is otherwise undefined (although the base
address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N–1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, RFLAGS, and SSP
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is
always set.

If the “load CET” VM-exit control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 4.4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use,
the physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor
(into internal, non-architectural registers).

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits.
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

27-30 Vol. 3C

VM EXITS

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the host-
state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check the
validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must check
their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing as a
result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the
PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would
MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 24-3). Other
VM exits do not affect blocking by NMI. (See Section 27.1 for the case in which an NMI causes a VM exit
indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). Specifically each entry in that area
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H (the IA32_GS_BASE

MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register

when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the

VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-

Vol. 3C 27-31

VM EXITS

specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection

exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data
are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS
region of the VMCS whose misconfiguration caused the failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that
the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host address-space size” VM-exit control
was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the
loading of such state may be done in any order (see Section 27.5) a VM exit that might lead to a VMX abort for
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on
whether the logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is
000DH, indicating “VMX abort.” See Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort
shutdown state. The following events do not affect a logical processor in this state: machine-check events;

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

27-32 Vol. 3C

VM EXITS

INIT signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-
management interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.
• A VMX abort is generated (see Section 27.7). The logical processor blocks events as done normally in

VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second
option is used only if VM entry is able to load all host state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

24.Updates to Chapter 32, Volume 3C
Change bars show changes to Chapter 32 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--
Changes to chapter: Small typo correction in Section 32.3.3 “Virtualizing Virtual Memory by Brute Force”.

Vol. 3C 32-1

CHAPTER 32
VIRTUALIZATION OF SYSTEM RESOURCES

32.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential interactions between soft-
ware components using the same system resources. These interactions can require the virtualization of resources.
This chapter describes the virtualization of system resources. These include: debugging facilities, address transla-
tion, physical memory, and microcode update facilities.

32.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES
The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint instructions, exception conditions,
register flags, debug registers, control registers and storage buffers for functions related to debugging system and
application software. In VMX operation, a VMM can support debugging system and application software from within
virtual machines if the VMM properly virtualizes debugging facilities. The following list describes features relevant
to virtualizing these facilities.
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it gets control on debug functions

(like breakpoint exceptions occurring while executing guest code such as INT3 instructions). Normally, debug
exceptions modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug exceptions cause
VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section 26.6 to inject debug or
breakpoint exceptions to the guest. See Section 32.2.1 for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field (see Section 24.6.2) can be
enabled by the VMM to cause VM exits on explicit guest access of various processor debug registers (for
example, MOV to/from DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches cause VM exits, a VMM can
control any indirect guest access or modification of debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as IA32_DEBUGCTL MSR) can be
trapped by the VMM through MSR access control features (such as the MSR-bitmaps that are part of processor-
based VM-execution controls). See Section 31.10 for details on MSR virtualization.

• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly modified by the guest (through
MOV-DR or WRMSR instructions) or modified implicitly by the processor as part of generating debug
exceptions. The current values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of VMCS on
every VM exit. Pending debug exceptions are debug exceptions that are recognized by the processor but not yet
delivered. See Section 26.7.3 for details on pending debug exceptions.

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area of the VMCS on every VM
entry. This allows the VMM to properly virtualize debug registers when injecting debug exceptions to guest.
Similarly, the RFLAGS1 register is loaded on every VM entry (or pushed to stack if injecting a virtual event) from
guest-state area of the VMCS. Pending debug exceptions are also loaded from guest-state area of VMCS so that
they may be delivered after VM entry is completed.

32.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step or data or I/O breakpoint), it
should cause that trap to be delivered. The VMM should not inject the debug exception using VM-entry event injec-
tion, but should set the appropriate bits in the pending debug exceptions field. This method will give the trap the

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).

32-2 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES

right priority with respect to other events. (If the exception bitmap was programmed to cause VM exits on debug
exceptions, the debug trap will cause a VM exit. At this point, the trap can be injected during VM entry with the
proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regardless of the values of RFLAGS.TF
or IA32_DEBUGCTL.BTF. The values of these bits do not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR) to IA32_DEBUGCTL to modify
BTF if this is occurring with RFLAGS.TF = 1 and after a MOV SS or POP SS instruction (for example: while debug
exceptions are blocked). Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions blocked, a single-step trap will

occur after WRMSR. A VMM emulating such an instruction should set the BS bit (see Table 24-4) in the pending
debug exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions blocked, neither a single-step
trap nor a taken-branch trap can occur after WRMSR. A VMM emulating such an instruction should clear the BS
bit (see Table 24-4) in the pending debug exceptions field before VM entry.

32.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest physical addresses in host physical
address space for virtualization. Memory virtualization allows the VMM to enforce control of physical memory and
yet support guest OSs’ expectation to manage memory address translation.

32.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor operating modes. This includes:
protected mode with paging, protected mode with no paging, real-mode and any other transient execution modes.
VMX allows guest operation in protected-mode with paging enabled and in virtual-8086 mode (with paging
enabled) to support guest real-mode execution. Guest execution in transient operating modes (such as in real
mode with one or more segment limits greater than 64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging (through CR0 and CR4 fixed bits),
the VMM may utilize paging structures to support memory virtualization. To support guest real-mode execution,
the VMM may establish a simple flat page table for guest linear to host physical address mapping. Memory virtual-
ization algorithms may also need to capture other guest operating conditions (such as guest performing A20M#
address masking) to map the resulting 20-bit effective guest physical addresses.

32.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical address space starting zero and
extending to the maximum address supported by the guest virtual processor’s physical address width. The VMM
utilizes guest physical to host physical address mapping to locate all or portions of the guest physical address space
in host memory. The VMM is responsible for the policies and algorithms for this mapping which may take into
account the host system physical memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest memory uses (such as: accessing
DRAM, accessing memory-mapped registers of virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest physical addresses to host-DRAM

regions. The VMM also requires the guest to host memory mapping to be at page granularity.
• Virtual devices (I/O devices or platform core logic) emulated by the VMM may claim specific regions in the guest

physical address space to locate memory-mapped registers. Guest access to these virtual registers may be
configured to cause page-fault induced VM-exits by marking these regions as always not present. The VMM
may handle these VM exits by invoking appropriate virtual device emulation code.

Vol. 3C 32-3

VIRTUALIZATION OF SYSTEM RESOURCES

32.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory accesses. VMX allows the
VMM to trap guest accesses to the PAT (Page Attribute Table) MSR and the MTRR (Memory Type Range Registers).
This control allows the VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CR0.CD and CR0.NW bits, as well as by trapping guest execution of the INVD
instruction. The VMM can trap guest CR3 loads and stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control over the processor’s address-
translation mechanisms. Specifically, this means that only the VMM can access CR3 (which contains the base of the
page directory) and can execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating system will also expect to perform
normal memory management functions. It will access CR3, execute INVLPG, and modify (what it believes to be)
page directories and page tables. Virtualization of address translation must tolerate and support guest attempts to
control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access address-translation hardware
trap to the VMM where such operations can be properly emulated. It must ensure that accesses to page directories
and page tables also get trapped. This may be done by protecting these in-memory structures with conventional
page-based protection. The VMM can do this because it can locate the page directory because its base address is
in CR3 and the VMM receives control on any change to CR3; it can locate the page tables because their base
addresses are in the page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-memory translation structures
may be cumbersome. The VMM may maintain these structures with different values (e.g., different page base
addresses) than guest software. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to these reads. There must also
be traps on modifications to these structures even if the translations they effect are never used. All this implies
considerable overhead that should be avoided.

32.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without causing traps to the VMM.
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any
potential problems arising from inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely access page directories and
page tables. Traps occur on CR3 accesses and executions of INVLPG. They also occur when necessary to ensure
that guest modifications to the translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the functionality of the processor’s phys-
ical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. While the page-table hierarchy
defines the relationship between physical to linear address, it does not directly control the address translation of
each memory access. Instead, translation is controlled by the TLB, which is occasionally filled by the processor with
translations derived from the page-table hierarchy. With a virtual TLB, the page-table hierarchy established by
guest software (specifically, the guest operating system) does not control translation, either directly or indirectly.
Instead, translation is controlled by the processor (through its TLB) and by the VMM (through a page-table hier-
archy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively caches translations derived
from the hierarchy maintained by guest software. The remainder of this document refers to the former as the
active page-table hierarchy (because it is referenced by CR3 and may be used by the processor to load its TLB) and
the latter as the guest page-table hierarchy (because it is maintained by guest software). The entries in the active
hierarchy may resemble the corresponding entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without causing VM exits to the VMM.
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any
potential problems arising from any inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB. Note the following:

32-4 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES

• Suppose the guest page-table hierarchy allows more access than active hierarchy (for example: there is a
translation for a linear address in the guest hierarchy but not in the active hierarchy); this is analogous to a
situation in which the TLB allows less access than the page-table hierarchy. If an access occurs that would be
allowed by the guest hierarchy but not the active one, a page fault occurs; this is analogous to a TLB miss. The
VMM gains control (as it handles all page faults) and can update the active page-table hierarchy appropriately;
this corresponds to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active hierarchy; this is analogous to a
situation in which the TLB allows more access than the page-table hierarchy. This situation can occur only if the
guest operating system has modified a page-table entry to reduce access (for example: by marking it not-
present). Because the older, more permissive translation may have been cached in the TLB, the processor is
architecturally permitted to use the older translation and allow more access. Thus, the VMM may (through the
active page-table hierarchy) also allow greater access. For the new, less permissive translation to take effect,
guest software should flush any older translations from the TLB either by executing INVLPG or by loading CR3.
Because both these operations will cause a trap to the VMM, the VMM will gain control and can remove from the
active page-table hierarchy the translations indicated by guest software (the translation of a specific linear
address for INVLPG or all translations for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache translations in the TLB. It also writes to
the hierarchy to main the accessed (A) and dirty (D) bits in the PDEs and PTEs. The virtual TLB emulates this
behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE (or PDE for a 4-MByte page) in

the active page-table hierarchy will be set by the processor (the same is true for PDEs when active page tables
are accessed by the processor). For guest software to operate properly, the VMM should update the A bit in the
guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) marked not-present until it has
set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or PDE for a 4-MByte page) in
the active page-table hierarchy will be set by the processor. For guest software to operate properly, the VMM
should update the D bit in the guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE)
marked read-only until it has set the D bit in the guest entry. This solution is valid for guest software running at
privilege level 3; support for more privileged guest software is described in Section 32.3.5.

32.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It explains how an active page-table
hierarchy is initialized and how it is maintained in response to page faults, uses of INVLPG, and accesses to CR3.
The mechanisms described here are the minimum necessary. They may not result in the best performance.

Vol. 3C 32-5

VIRTUALIZATION OF SYSTEM RESOURCES

As noted above, the VMM maintains an active page-table hierarchy for each virtual machine that it supports. It also
maintains, for each machine, values that the machine expects for control registers CR0, CR2, CR3, and CR4 (they
control address translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest software. The term guest address
refers to an address installed by guest software in the guest CR3, in a guest PDE (as a page table base address or
a page base address), or in a guest PTE (as a page base address). While guest software considers these to be
specific physical addresses, the VMM may map them differently.

32.3.5.1 Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in CR0 and CR4 (using the CR0

and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

When guest software first enables paging, the VMM creates an aligned 4-KByte active page directory that is invalid
(all entries marked not-present). This invalid directory is analogous to an empty TLB.

32.3.5.2 Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the VMM to an inconsistency
between the active and guest page-table hierarchy. In such cases, the VMM can update the former and re-execute
the faulting instruction. In other cases, the hierarchies are already consistent and the fault should be handled by
the guest operating system. The VMM can detect this and use an established mechanism for raising a page fault to
guest software.

The VMM can handle a page fault by following these steps (The steps below assume the guest is operating in a
paging mode without PAE. Analogous steps to handle address translation using PAE or four-level paging mecha-

Figure 32-1. Virtual TLB Scheme

refill on
TLB miss

CR3

PD

PT

PT

F

F

F

F

PD

"Virtual TLB"

Active Guest

INVLPG
MOV to CR3
task switch

refill on
page fault

set accessed
and dirty bits

TLB

PD = page directory
PT = page table
F = page frame

INVLPG
MOV to

CR3
task switch

Active Page-Table Hierarchy Guest Page-Table Hierarchy

PT

PT

F

F

F

F

CR3

set dirty
accessed

OM19040

32-6 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES

nisms can be derived by VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the faulting address and the current
value of CR3. The active PDE is the source of the fault if it is marked not present or if its R/W bit and U/S bits
are inconsistent with the attempted guest access (the guest privilege level and the values of CR0.WP and
CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE using the same 10 bits from the
faulting address and the physical address that corresponds to the guest address in the guest CR3. If the guest
PDE would cause a page fault (for example: it is marked not present), then raise a page fault to the guest
operating system.
The following steps assume that the guest PDE would not have caused a page fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-table base address (if PS = 0)
or page base address (PS = 1), a guest address that the VMM has chosen not to support; then raise a machine
check (or some other abort) to the guest operating system.
The following steps assume that the guest address in the guest PDE is supported for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then allocate an aligned 4-KByte active
page table marked completely invalid and set the page-table base address in the active PDE to be the
physical address of the newly allocated page table.

b. If the active PDE contains a page base address (if PS = 1), then set the page base address in the active PDE
to be the physical page base address that corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page table), then set the R/W bit in
the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted access is a write; then set
R/W in the active PDE as in the guest PDE and set D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; then set R/W = 0 in the active
PDE.

i. After modifying the active PDE, re-execute the faulting instruction.
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte page (PS = 1), the attempted
access is a write; D = 0 in the guest PDE, and the active PDE has caused a fault solely because it has R/W = 0;
then set R/W in the active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the faulting
instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, then raise a page fault of the
guest operating system.
The remaining steps assume that the source of the original page fault is not the active PDE.

NOTE
It is possible that the active PDE might be causing a fault even though the guest PDE would not.
However, this can happen only if the guest operating system increased access in the guest PDE and
did not take action to ensure that older translations were flushed from the TLB. Such translations
might have caused a page fault if the guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the fault, then the fault resulted
from an inconsistency between the active page-table hierarchy and the processor’s TLB. Since the transition to

Vol. 3C 32-7

VIRTUALIZATION OF SYSTEM RESOURCES

the VMM caused an address-space change and flushed the processor’s TLB, the VMM can simply re-execute the
faulting instruction.
The remaining steps assume that PS = 0 in the active and guest PDEs.

8. Consult the active PTE, which can be located using the next 10 bits of the faulting address (bits 21–12) and the
physical page-table base address in the active PDE. The active PTE is the source of the fault if it is marked not-
present or if its R/W bit and U/S bits are inconsistent with the attempted guest access (the guest privilege level
and the values of CR0.WP and CR4.SMEP should also be taken into account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an inconsistency between the
active page-table hierarchy and the processor’s TLB. Since the transition to the VMM caused an address-space
change and flushed the processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting address and the physical address
that correspond to the guest page-table base address in the guest PDE. If the guest PTE would cause a page
fault (it is marked not-present), the raise a page fault to the guest operating system.
The following steps assume that the guest PTE would not have caused a page fault.

11. If the guest PTE contains, as page base address, a physical address that is not valid for the virtual machine
being supported; then raise a machine check (or some other abort) to the guest operating system.
The following steps assume that the address in the guest PTE is valid for the virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to guest PTE:

a. Set the page base address in the active PTE to be the physical address that corresponds to the guest page
base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in the active PTE as in the guest
PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction.
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the active PTE has caused a fault
solely because it has R/W = 0 (read-only); then set R/W in the active PTE as in the guest PTE, set D = 1 in the
guest PTE and re-execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating system.

32.3.5.3 Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction takes a linear address as an
operand and software expects any cached translations for the address to be flushed. A VMM should set the
processor-based VM-execution control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute
INVLPG will trap to the VMM. The VMM can then modify the active page-table hierarchy to emulate the desired
effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the guest invocation of INVLPG
would not fault and only if the guest software is running at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address and the current value of CR3. If
the PDE refers to a 4-MByte page (PS = 1), then set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the relevant active PTE using the next
10 bits of the operand address (bits 21–12) and the page-table base address in the PDE. Set P = 0 in the PTE.

32-8 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES

Examine all PTEs in the page table; if they are now all marked not-present, de-allocate the page table and set
P = 0 in the PDE (this step may be optional).

32.3.5.4 Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a TLB flush and a possible page
table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance reasons.

32.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the operation of a platform. Typically,
the BIOS invokes the facility on all processors during the BIOS boot process. This is sufficient to boot the BIOS and
operating system. As a microcode update more current than the system BIOS may be available, system software
should provide another mechanism for invoking the microcode update facility. The implications of the microcode
update mechanism on the design of the VMM are described in this section.

NOTE
Microcode updates must not be performed during VMX non-root operation. Updates performed in
VMX non-root operation may result in unpredictable system behavior.

32.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot process. Loading the microcode
update early provides the opportunity to correct errata affecting the boot process but the technique generally
requires a reboot of the software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such image loaders do not run on
every logical processor, so this method effects only one logical processor. Later in the VMM or OS boot process,
after bringing all application processors on-line, the VMM or OS needs to invoke the microcode update facility for all
application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update facility may be invoked by the
VMM or the guest OS. For example, if the guest OS boots first and then loads the VMM, the guest OS may invoke
the microcode update facility on all the logical processors. If a VMM boots before its guests, then the VMM may
invoke the microcode update facility during its boot process. In both cases, the VMM or OS should invoke the micro-
code update facilities soon after performing the multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS image or, the VMM or OS may
manage a separate database or file of microcode updates. Maintaining a separate microcode update image data-
base has the advantage of reducing the number of required VMM or OS releases as a result of microcode update
releases.

32.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows system software to activate the
microcode update at anytime without requiring a system reboot. This scenario does not allow the microcode update
to correct errata which affect the processor’s boot process but does allow high-availability systems to activate
microcode updates without interrupting the availability of the system. In this late load scenario, either the VMM or
a designated guest may load the microcode update. If the guest is loading the microcode update, the VMM must

Vol. 3C 32-9

VIRTUALIZATION OF SYSTEM RESOURCES

make sure that the entire guest memory buffer (which contains the microcode update image) will not cause a page
fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the current set of microcode updates.
These updates could be part of the VMM image or could be contained in a separate microcode update image data-
base (for example: a database file on disk or in memory). Again, maintaining a separate microcode update image
database has the advantage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish to support the microcode
update requested by a guest using emulation (without actually loading the microcode update). To prevent micro-
code update loading, the VMM may return a microcode update signature value greater than the value of
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older microcode update. The VMM may
also drop the guest attempts to write to IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any
microcode updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could emulate the micro-
code update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of features that may be enhanced
by a microcode update.

32-10 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

25.Updates to Chapter 34, Volume 3C
Change bars and green text show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

Changes to this chapter: Removal of erroneous information in section 34.8, “”NMI Handling While in SMM”.

Vol. 3C 34-1

CHAPTER 34
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was
introduced into the IA-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors).

34.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide functions like power management,
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the
processor (the processor’s context), then switches to a separate operating environment defined by a new address
space. The system management software executive (SMI handler) starts execution in that environment, and the
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space.
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI handler
can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 34.5 describes in
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES
Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of
an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of SMIs
and SMM is active; see Section 34.15.)

34-2 Vol. 3C

SYSTEM MANAGEMENT MODE

34.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 34.2 through Section 34.13).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine
can support its own software stack of executive and application software. On processors that support VMX, virtual-
machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one
of two ways:
• Default treatment. System firmware handles SMIs. The processor saves architectural states and critical

states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMIs, it uses
RSM to resume VMX operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while
in VMX operation) to support system-management functions. The former is referred to as executive monitor,
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 34.14, “Default Treatment of SMIs and SMM with VMX Operation and
SMX Operation”. Dual-monitor treatment of SMM is described in Section 34.15, “Dual-Monitor Treatment of SMIs
and SMM”.

34.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in
SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), it is in
a mode where SMIs are masked. However if a SMI is received while an application processor is in
the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

34.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected,
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always
returns to the mode it was in when the SMI occurred.

34.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” point in program execution
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 34.4), enters SMM, and begins to execute the SMI handler.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

Vol. 3C 34-3

SYSTEM MANAGEMENT MODE

Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-
ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled.
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while
in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program
control back to the interrupted program.

NOTE
On processors that support the shadow-stack feature, RSM loads the SSP register from the state
save image in SMRAM (see Table 34-3). The value is made canonical by sign-extension before
loading it into SSP.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI

handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family
processors.

• CR4.CET would be set to 1 and CR0.WP to 0.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted.
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR
and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action is
taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section
34.11).

34-4 Vol. 3C

SYSTEM MANAGEMENT MODE

34.4 SMRAM
Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE +
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and
Intel486 processors) when the processor receives an SMI (see Section 34.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space
(that is, load the SMI handler) before executing the SMI handler during SMM.

34.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the
state save area of the SMRAM. The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to
[SMBASE + 8000H + 7E00H]. Table 34-1 shows the state save map. The offset in column 1 is relative to the
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior).
An SMI handler should not rely on any values stored in an area that is marked as reserved.

Figure 34-1. SMRAM Usage

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point

Vol. 3C 34-5

SYSTEM MANAGEMENT MODE

The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:

Table 34-1. SMRAM State Save Map

Offset
(Added to SMBASE + 8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 34.7 No

7FA0H I/O Memory Address Field, see Section 34.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

34-6 Vol. 3C

SYSTEM MANAGEMENT MODE

• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for

the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage.
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore
them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based
power-down and restoration should only be performed with operating systems that do not use or
rely on the values of these registers.
Operating system developers should be aware of this fact and ensure that their operating-system
assisted power-down and restoration software is immune to unexpected changes in these register
values.

34.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7C00H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save
map is shown in Table 34-3.

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2. Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo
processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel® Atom™ processors

Vol. 3C 34-7

SYSTEM MANAGEMENT MODE

Table 34-3. SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

34-8 Vol. 3C

SYSTEM MANAGEMENT MODE

34.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before entering SMM or before
exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and
in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Any of the following three methods of locating the SMRAM in system memory will guar-
antee cache coherency.
• Place the SMRAM in a dedicated section of system memory that the operating system and applications are

prevented from accessing. Here, the SMRAM can be designated as cacheable (WB, WT, or WC) for optimum
processor performance, without risking cache incoherence when entering or exiting SMM.

• Place the SMRAM in a section of memory that overlaps an area used by the operating system (such as the video
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to
maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

• Place the SMRAM in a section of system memory that overlaps an area used by the operating system and/or
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM
is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon
entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7ECC0H Reserved No

7EC8H SSP Yes

7EC7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 34-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE + 8000H)

Register Writable?

Vol. 3C 34-9

SYSTEM MANAGEMENT MODE

located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for
optimum processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH#
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced
first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior
to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate
cache contents before entering SMM, the processor will prefetch at least one cache line in between
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion
of SMIACT#.
It is the obligation of the system to ensure that these lines are not cached by returning KEN#
inactive to the Pentium processor.

34.4.2.1 System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface
can be configured only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

34.5 SMI HANDLER EXECUTION ENVIRONMENT
Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its
execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI
handler can make to its execution environment. Section 34.5.3 discusses Control-flow Enforcement Technology
(CET) interactions in the environment.

34.5.1 Initial SMM Execution Environment
After saving the current context of the processor, the processor initializes its core registers to the values shown in
Table 34-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the processor
in an environment similar to real-address mode. The differences between the SMM execution environment and the
real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes).
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space

to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 34-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

34-10 Vol. 3C

SYSTEM MANAGEMENT MODE

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override
prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 GBytes.
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps,
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts,
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 34.6).

34.5.2 SMI Handler Operating Mode Switching
Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond
that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI
handler to change modes explicitly prior to executing RSM.

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Table 34-4. Processor Register Initialization in SMM

Vol. 3C 34-11

SYSTEM MANAGEMENT MODE

34.5.3 Control-flow Enforcement Technology Interactions
On processors that support CET shadow stacks, when the processor enters SMM, the processor saves the SSP
register to the SMRAM state save area (see Table 34-3) and clears CR4.CET to 0. Thus, the initial execution envi-
ronment of the SMI handler has CET disabled and all of the CET state of the interrupted program is still in the
machine. An SMM that uses CET is required to save the interrupted program’s CET state and restore the CET state
prior to exiting SMM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being

generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-

tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or
data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts
(with the INT n, INTO, INT1, INT3, or BOUND instructions) or generate exceptions.

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control

to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed

onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler
to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must ensure that an SMM accessible debug
handler is available and save the current contents of debug registers DR0 through DR3 (for later restoration).
Debug registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must ensure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to
SMM, so they do not need to be enabled.

34-12 Vol. 3C

SYSTEM MANAGEMENT MODE

34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an
SMI handler to distinguish between a synchronous SMI (triggered during an I/O instruction) and an asynchronous
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM
state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described
below.

34.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI is either taken
immediately after a successful I/O instruction or is taken after a successful iteration of a REP I/O instruction (the
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function).
When set, the IO_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case,
the SMM State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O Port
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was
indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an
asynchronous SMI might coincidentally be taken after an I/O instruction. In such a case, the IO_SMI bit would still
be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map (Table 34-5).
The IO_SMI bit also serves as a valid bit for the rest of the I/O information fields. The contents of these I/O infor-
mation fields are not defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 34-6)

Table 34-5. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or higher) Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 34-6. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000

Vol. 3C 34-13

SYSTEM MANAGEMENT MODE

34.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler.
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed,
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 architec-
ture.

34.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported
by the processor (see Figure 34-2). The SMM revision identifier is written during SMM entry and can be examined
in SMRAM space at offset 7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If the I/O instruction restart flag
(bit 16) is set, the processor supports the I/O instruction restart (see Section 34.12); if the SMBASE relocation flag
(bit 17) is set, SMRAM base address relocation is supported (see Section 34.11).

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Figure 34-2. SMM Revision Identifier

Table 34-6. I/O Instruction Type Encodings (Contd.)
Instruction Encoding

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15

34-14 Vol. 3C

SYSTEM MANAGEMENT MODE

34.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag is
located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the
processor was in the HALT state), the SMI handler has two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the

HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI.
(This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the
instruction following the HLT instruction.

These options are summarized in Table 34-7. If the processor was not in a HALT state when the SMI was received
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions
for the same HLT instruction.

34.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this
state is a maskable hardware interrupt or a hardware reset.

34.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in the
saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state

Figure 34-3. Auto HALT Restart Field

Table 34-7. Auto HALT Restart Flag Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1

Vol. 3C 34-15

SYSTEM MANAGEMENT MODE

save area (from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE
register to 30000H on a RESET, but does not change it on an INIT.)

In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the
SMBASE (see Section 34.9).

34.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the I/O instruction
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/O
device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 34-5) controls I/O instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the I/O instruction that received the SMI request. The processor will then automatically re-execute
the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to ensure that re-
execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is executed, then the processor
begins program execution with the instruction following the I/O instruction. (When a repeat prefix is being used,
the next instruction may be the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O instruction restart field to 00H
upon entering SMM. Table 34-8 summarizes the states of the I/O instruction restart field.

Figure 34-4. SMBASE Relocation Field

Figure 34-5. I/O Instruction Restart Field

031

SMM Base Register Offset
7EF8H

015

I/O Instruction Restart Field Register Offset
7F00H

34-16 Vol. 3C

SYSTEM MANAGEMENT MODE

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI
handler to examine the state of the processor to determine the cause of the SMI and to determine if an I/O instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O instruc-
tion boundary, setting the I/O instruction restart field to FFH prior to executing the RSM instruction will likely result
in a program error.

34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used
If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an I/O instruction
boundary, the processor will service the new SMI request before restarting the originally interrupted I/O instruc-
tion. If the I/O instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point
to an address different from the originally interrupted I/O instruction, which will likely lead to a program error. To
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when
I/O instruction restart is being used and ensure that the handler sets the I/O instruction restart field to 00H prior
to returning from the second invocation of the SMI handler.

34.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that

each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family
processors because they do not require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface.

The APIC interface can distribute SMIs to different processors.
• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM

processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM
spaces. This can be done by using the SMBASE Relocation feature (see Section 34.11).

34.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details
those interactions. It also explains how this treatment affects SMX operation.

Table 34-8. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

Vol. 3C 34-17

SYSTEM MANAGEMENT MODE

34.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions.
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE := 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H
are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following:
(1) SS.DPL (the current privilege level); (2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see
Table 24-3 in Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending
(see Section 25.5.2). These data may be saved internal to the processor or in the VMCS region of the current
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit 0 of the 32-bit field
at offset SMBASE + 8000H + 7EE0H (SMBASE + FEE0H; see Table 34-3).3 If the logical processor was not in VMX
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 34.14 and Section 34.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, SMI functions as the “enable EPT” VM-execution control were 0. See Section 24.6.2.

34-18 Vol. 3C

SYSTEM MANAGEMENT MODE

34.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated

for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);
IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as

saved)
THEN unlock the TXT private space;

FI;
CR4.VMXE := value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of

NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMIs are not

blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such
VM exits occur with their normal priority. See Section 25.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be
pending following RSM:

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the values that were loaded from SMRAM regardless of what is
reported in the capability MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

Vol. 3C 34-19

SYSTEM MANAGEMENT MODE

• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF
VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events.

• These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see
Section 34.10). They do not occur if the logical processor just entered the shutdown state.

34.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software
cannot use VMX instructions or enter VMX operation while in SMM.

34.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 34.15.1) and only outside
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.15.5 for details regarding this MSR).1 Section 34.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC
(see Appendix A.6) to determine whether this is allowed.

34.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability
MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

34.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 34.15.2. SMM
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its
own guests. This is done all inside SMM (see Section 34.15.3). The STM returns from SMM, not by using the RSM
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 34.15.4.

Initially, there is no STM and the default treatment (Section 34.14) is used. The dual-monitor treatment is not used
until it is enabled and activated. The steps to do this are described in Section 34.15.5 and Section 34.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 34.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS
pointer is established when the dual-monitor treatment is activated.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s valid
bit (bit 0).

34-20 Vol. 3C

SYSTEM MANAGEMENT MODE

34.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an
SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX
root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section
34.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM
VM exit activates the dual-monitor treatment (see Section 34.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 34.15.2.1 through 34.15.2.5.
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described
in Section 34.15.6.

34.15.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to
SMRAM as they do under the default treatment.

34.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS.
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

34.15.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences
follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit:
I/O SMI (an SMI arrived immediately after retirement of an I/O instruction), other SMI, or VMCALL. See
Appendix C, “VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this
information is stored in bit 29 of the exit-reason field (see Table 24-15 in Section 24.9.1). The bit is set by
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an I/O

instruction, the exit qualification contains information about the I/O instruction that retired immediately before
the SMI. It has the format given in Table 34-9.

• Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override

Vol. 3C 34-21

SYSTEM MANAGEMENT MODE

prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit
mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI that arrives immediately after
the retirement of an I/O instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O instruction.

34.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

34.15.2.5 Updating State
If an SMM VM exit is from VMX non-root operation and the “Intel PT uses guest physical addresses” VM-execution
control is 1, the IA32_RTIT_CTL MSR is cleared to 00000000_00000000H.1 This is done even if the “clear
IA32_RTIT_CTL” VM-exit control is 0.

SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution

of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of
the “virtual NMIs” VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see
Section 34.15.4).

Table 34-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.

1. In this situation, the value of this MSR was saved earlier into the guest-state area. All VM exits save this MSR if the 1-setting of the
“load IA32_RTIT_CTL” VM-entry control is supported (see Section 27.3.1), which must be the case if the “Intel PT uses guest physi-
cal addresses” VM-execution control is 1 (see Section 26.2.1.1).

34-22 Vol. 3C

SYSTEM MANAGEMENT MODE

SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs.
Combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 28.3). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-execu-
tion control is 1; see Section 27.5.5.)

34.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 34.15.1, the
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 25.1.3, it causes a
VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 34.15.4).

34.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 34.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 34.15.4.1 through
34.15.4.10.

34.15.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does not

contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 24.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must
contain the VMXON pointer (see Section 34.15.7).3

34.15.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 26.2.1.1. They do not apply the checks to the current VMCS. Instead,
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.

Vol. 3C 34-23

SYSTEM MANAGEMENT MODE

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the checks are not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

34.15.4.3 Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry
control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root
operation), the VM-entry interruption-information field must not indicate injection of a pending MTF VM exit (see
Section 26.6.2). Specifically, the following cannot all be true for that field:
• the valid bit (bit 31) is 1
• the interruption type (bits 10:8) is 7 (other event); and
• the vector (bits 7:0) is 0 (pending MTF VM exit).

34.15.4.4 Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”).
VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be
performed at all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

34.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs.
Combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section
28.3). (Ordinary VM entries are required to perform such invalidation only for VPID 0000H and are not required to
do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

34.15.4.6 VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value
field in the current VMCS.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.

34-24 Vol. 3C

SYSTEM MANAGEMENT MODE

34.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer.
Following this, they load the current-VMCS pointer from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),

the current-VMCS pointer is loaded from the VMCS-link pointer field.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root

operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the
VM-entry control fields in the VMCS that was current when the VM entry commenced.

34.15.4.8 VM Exits Induced by VM Entry
Section 26.6.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit.
Section 26.7.3 to Section 26.7.7 describe other situations that may cause a VM exit to occur immediately after a
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the
VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry
(see Section 34.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the STM.

34.15.4.9 SMI Blocking
VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if

the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the

logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMIs blocked.
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMIs.

34.15.4.10 Failures of VM Entries That Return from SMM
Section 26.8 describes the treatment of VM entries that fail during or after loading guest state. Such failures record
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the
logical processor remains in SMM.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.

Vol. 3C 34-25

SYSTEM MANAGEMENT MODE

34.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also
responsible for enabling the dual-monitor treatment.

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is

used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM.

Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 34.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted left 12 bits, is the physical address of MSEG (the MSEG base

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.1

On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault
(#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is
given in Table 34-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.

Table 34-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

34-26 Vol. 3C

SYSTEM MANAGEMENT MODE

To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable
memory. Future implementations may allow or require a different memory type.1 Software should consult the VMX
capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR)
only after establishing the content of the MSEG header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-

fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses
by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will be
in IA-32e mode after the STM is activated (see Section 34.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section
34.15.6.5). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization
code.

34.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 34.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM
VM exit and other SMM VM exits are discussed in Sections 34.15.6.1 through 34.15.6.6. See also “VMCALL—Call to
VM Monitor” in Chapter 30.

34.15.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;2 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

Such an execution of VMCALL begins with some initial checks. These checks are performed before updating the
current-VMCS pointer and the executive-VMCS pointer field (see Section 34.15.2.2).

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX
capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical
processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG
revision identifier.

1. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

2. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.

Vol. 3C 34-27

SYSTEM MANAGEMENT MODE

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

34.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 34.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

34.15.6.3 Saving Guest State
As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does not
end in SMM.

34.15.6.4 Saving MSRs
The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
saved into that area.

34.15.6.5 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed
values or loaded based on the content of the MSEG header (see Table 34-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that support IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are
ignored).

34-28 Vol. 3C

SYSTEM MANAGEMENT MODE

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE, PGE, CET, and PCIDE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set,
PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS
selector was FFF8H), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, ES, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode SMM
feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, ES, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although the

base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header

(bits 63:32 are always cleared on processors that support IA-32e mode). GDTR.limit is set to the corresponding
field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.

Vol. 3C 34-29

SYSTEM MANAGEMENT MODE

• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain
the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

34.15.6.6 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
loaded from that area.

34.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 34.14). It does this by executing a VM entry with the “deactivate dual-monitor
treatment” VM-entry control set to 1.

As noted in Section 26.2.1.3 and Section 34.15.4.1, an attempt to deactivate the dual-monitor treatment fails in
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 34.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends
on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by
the VMXOFF instruction (see Section 34.14.4) or by certain leaf functions of the GETSEC instruction (see
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2D).

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT
On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State
Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1),
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler
code to properly preserve the state information (including CR4.OSXSAVE, XCR0, and possibly processor extended
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13,
“Managing State Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

34.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT
This section describes enhancement of system management features that apply only to the 4th generation Intel
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate
DisplayFamily_DisplayModel signature when programming with these interfaces.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

34-30 Vol. 3C

SYSTEM MANAGEMENT MODE

34.17.1 SMM Handler Code Access Control
The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see
Section 34.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE).

The interface to enable SMM handler code access check resides in a per-package scope model-specific register
MSR_SMM_FEATURE_CONTROL at address 4E0H. An attempt to access MSR_SMM_FEATURE_CONTROL outside of
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 2-29 in
Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4.

34.17.2 SMI Delivery Delay Reporting
Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 2-29 in Chapter 2,
“Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

34.17.3 Blocked SMI Reporting
A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI).
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM will
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 2-29 in Chapter 2, “Model-Specific Registers
(MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

26.Updates to Chapter 35, Volume 3C
Change bars and green text show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

Changes to chapter: Typo corrections throughout the chapter.

Vol. 3C 35-1

INTEL® PROCESSOR TRACE

CHAPTER 35
INTEL® PROCESSOR TRACE

35.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include
timing, program flow information (e.g. branch targets, branch taken/not taken indications) and program-induced
mode related information (e.g. Intel TSX state transitions, CR3 changes). These packets may be buffered internally
before being sent to the memory subsystem or other output mechanism available in the platform. Debug software
can process the trace data and reconstruct the program flow.
Intel Processor Trace was first introduced in Intel® processors based on Broadwell microarchitecture and Intel
Atom® processors based on Goldmont microarchitecture. Later generations include additional trace sources,
including software trace instrumentation using PTWRITE, and Power Event tracing.

35.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code
regions (basic blocks).
Intel PT can also be configured to log software-generated packets using PTWRITE, and packets describing
processor power management events. Further, Precise Event-Based Sampling (PEBS) can be configured to log
PEBS records in the Intel PT trace; see Section 18.5.5.2.
In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional
and performance debugging of applications. Intel PT has several control and filtering capabilities available to
customize the tracing information collected and to append other processor state and timing information to enable
debugging. For example, there are modes that allow packets to be filtered based on the current privilege level
(CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are
enumerated by CPUID, see Section 35.3. Details of the MSRs for configuring Intel PT are described in Section
35.2.7.

35.1.1.1 Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace
information in the following categories of packets (for more details on the packets, see Section 35.4):
• Packets about basic information on program execution; these include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information,
along with information from the operating system on the CR3 value of each process, allows the debugger
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion
of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.

35-2 Vol. 3C

INTEL® PROCESSOR TRACE

— Mini Time Counter (MTC) packets: MTC packets provide periodic indication of the passing of wall-clock time.

— Cycle Count (CYC) packets: CYC packets provide indication of the number of processor core clock cycles
that pass between packets.

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow,
resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to
respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
other branches or events. These packets can contain the IP, although that IP value may be compressed by
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
more detail in Section 35.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so that
it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of formats
that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

• Packets inserted by software:

— PTWRITE (PTW) packets: includes the value of the operand passed to the PTWRITE instruction (see
“PTWRITE - Write Data to a Processor Trace Packet” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

• Packets about processor power management events:

— MWAIT packets: Indicate successful completion of an MWAIT operation to a C-state deeper than C0.0.

— Power State Entry (PWRE) packets: Indicate entry to a C-state deeper than C0.0.

— Power State Exit (PWRX) packets: Indicate exit from a C-state deeper than C0.0, returning to C0.

— Execution Stopped (EXSTOP) packets: Indicate that software execution has stopped, due to events such as
P-state change, C-state change, or thermal throttling.

• Packets containing groups of processor state values:

— Block Begin Packets (BBP): Indicate the type of state held in the following group.

— Block Item Packets (BIP): Indicate the state values held in the group.

— Block End Packets (BEP): Indicate the end of the current group.

35.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it
operates.

35.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this
block of code need not be traced, as the processor will execute them from start to end without redirecting code
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow.
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.

Vol. 3C 35-3

INTEL® PROCESSOR TRACE

The following subsections describe the COFI events that result in trace packet generation. Table 35-1 lists branch
instruction by COFI types. For detailed description of specific instructions, see Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

35.2.1.1 Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is
embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the
program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor
will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a
TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct
jumps that toggle Intel PT enables (see Section 35.2.5).

35.2.1.2 Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or
memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer
until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the
target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for
debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address
(see Section 35.3.1.1).
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch.
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory
location. Therefore, the processor must generate a packet that includes this target address to allow the
decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of
the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software

Table 35-1. COFI Type for Branch Instructions

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL,
JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2), RET (C3, C2 xx)

Far Transfers INT1, INT3, INT n, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx),
SYSCALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME

35-4 Vol. 3C

INTEL® PROCESSOR TRACE

can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the
CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding” defined
as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET
target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a Target
IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that
correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical
processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 35.4.2.2.

35.2.1.3 Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the
event was taken. Table 35-24 indicates exactly which IP will be included in the FUP generated by a far transfer.

35.2.2 Software Trace Instrumentation with PTWRITE
PTWRITE provides a mechanism by which software can instrument the Intel PT trace. PTWRITE is a ring3-acces-
sible instruction that can be passed to a register or memory variable, see “PTWRITE - Write Data to a Processor
Trace Packet” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B for details. The
contents of that variable will be used as the payload for the PTW packet (see Table 35-41 “PTW Packet Definition”),
inserted at the time of PTWRITE retirement, assuming PTWRITE is enabled and all other filtering conditions are
met. Decode and analysis software will then be able to determine the meaning of the PTWRITE packet based on the
IP of the associated PTWRITE instruction.
PTWRITE is enabled via IA32_RTIT_CTL.PTWEn[12] (see Table 35-6). Optionally, the user can use
IA32_RTIT_CTL.FUPonPTW[5] to enable PTW packets to be followed by FUP packets containing the IP of the asso-
ciated PTWRITE instruction. Support for PTWRITE is introduced in Intel® Atom™ processors based on the Goldmont
Plus microarchitecture.

35.2.3 Power Event Tracing
Power Event Trace is a capability that exposes core- and thread-level sleep state and power down transition infor-
mation. When this capability is enabled, the trace will expose information about:

— Scenarios where software execution stops.

• Due to sleep state entry, frequency change, or other powerdown.

• Includes the IP, when in the tracing context.

— The requested and resolved hardware thread C-state.

• Including indication of hardware autonomous C-state entry.

— The last and deepest core C-state achieved during a sleep session.

— The reason for C-state wake.
This information is in addition to the bus ratio (CBR) information provided by default after any powerdown, and the
timing information (TSC, TMA, MTC, CYC) provided during or after a powerdown state.
Power Event Trace is enabled via IA32_RTIT_CTL.PwrEvtEn[4]. Support for Power Event Tracing is introduced in
Intel® Atom™ processors based on the Goldmont Plus microarchitecture.

Vol. 3C 35-5

INTEL® PROCESSOR TRACE

35.2.4 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced.

35.2.4.1 Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when
CPL > 0, or regardless of CPL.
CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet
(see the discussion of TIP.PGD in Section 35.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 35.2.5.1 for details.

35.2.4.2 Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can
be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single applica-
tion without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with
multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating
system does not provide context-switch support) to separate the output for the different threads (see Section
35.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter
is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other
packets can be generated when ContextEn is 0; see Section 35.2.5.3 for details. When CR3 does match
IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0
(although it could be 0 due to other filters or modes).
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value
of CR0.PG.
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

35.2.4.3 Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1.
Intel PT can be configured to enable the generation of packets containing architectural states only when the
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 35.2.7.2), where the digit
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures
the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 35.2.7.5).
IA32_RTIT_ADDRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is
enabled. Thus each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A,
IA32_RTIT_ADDRn_B]. There can be multiple such ranges, software can query CPUID (Section 35.3.1) for the
number of ranges supported on a processor.
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to
enable IP filtering (see Section 35.3.1), tracing will commence when a taken branch or event is seen whose target
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the

35-6 Vol. 3C

INTEL® PROCESSOR TRACE

next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section
35.2.5.5 for more details on FilterEn.
Note that these address range base and limit values are inclusive, such that the range includes the first and last
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause
different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 35.3.1.1 for
details. Software can query CPUID to determine filters are based on linear or effective address (Section 35.3.1).
Note that some packets, such as MTC (Section 35.3.7) and other timing packets, do not depend on FilterEn. For
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 35.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is
intended for cases where unexpected code is executed, and the user wishes to immediately stop generating
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison
logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate
that the condition was hit.
If a TraceStop condition is encountered during buffer overflow (Section 35.3.8), it will not be dropped, but will
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal
buffers. To ensure that this has occurred, the user should clear TraceEn.
To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing
resumed.
Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 35.2.6.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of Range-
Base, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable
ADDRn range as a FilterEn range).

Table 35-2. IP Filtering Packet Example

Code Flow Packets

Bar:

jmp RangeBase // jump into filter range

RangeBase:

jcc Foo // not taken

add eax, 1

Foo:

jmp RangeLimit+1 // jump out of filter range

RangeLimit:

nop

jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)

Vol. 3C 35-7

INTEL® PROCESSOR TRACE

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code
executing in the overlapping range will get TraceStop behavior.

35.2.5 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most
packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hardware in
response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of
PacketEn to the software-visible controls in the configuration MSRs is described in this section.

35.2.5.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring. PacketEn is composed of other
states according to this relationship:

PacketEn := TriggerEn AND ContextEn AND FilterEn AND BranchEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 35.2.6 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0), FilterEn
is treated as always set.

35.2.5.2 Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software.
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set.
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 35.3.9).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

35.2.5.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is
defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is gener-
ated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation
Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 35.4.2.16 and Section

1. Trace packets generation is disabled in a production enclave, see Section 35.2.8.5. See Intel® Software Guard
Extensions Programming Reference about differences between a production enclave and a debug enclave.

35-8 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when
ContextEn is set, see Section 35.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

35.2.5.4 Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well
as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of
what software is running.

35.2.5.5 Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch.
Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration
and use of IP filtering, see Section 35.2.4.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for
indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long
as they are within context.
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP,
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section
35.4.1.
After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e.,
CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and ContextEn=1, and when
at least one range is configured for IP filtering.

35.2.6 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available
for trace output can vary across processor generations and platforms.
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit
fields of IA32_RTIT_CTL (see Section 35.2.7.2):
• A single, contiguous region of physical address space.
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that
they don't consume precious cache space, but they do not have the serializing aspects associated with un-cache-
able (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as
this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe perfor-
mance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so
ensures that all buffered packets are flushed out of the processor.

Vol. 3C 35-9

INTEL® PROCESSOR TRACE

35.2.6.1 Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single,
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in
IA32_RTIT_OUTPUT_BASE (Section 35.2.7.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section
35.2.7.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM.
• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint

(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept
these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each
other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer.

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] := IA32_RTIT_OUTPUT_BASE[63:0]

OutputMask[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])

OutputOffset[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])

trace_store_phys_addr := (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 35.3.9) will
be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS[31:0] > 0.

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value
IA32_RTIT_OUTPUT_MASK_PTRS[31:0].

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section
35.2.6.4.

35.2.6.2 Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The
ToPA mechanism uses a linked list of tables; see Figure 35-1 for an illustrative example. Each entry in the table
contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table
may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array)
or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that
a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the
latest value of proc_trace_table_base.

35-10 Vol. 3C

INTEL® PROCESSOR TRACE

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads the value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS into bits 27:3 of proc_trace_table_offset. While tracing is
enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to
proc_trace_table_offset, but these updates may not be synchronous to software execution. When tracing is
disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Figure 35-1 provides an illustration (not to scale) of the table and associated pointers.

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr := Base address from current ToPA table entry +
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA

Figure 35-1. ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset:

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

64K OutputBaseX
4K OutputBaseY
END=1 TableBaseB

ToPA Table A

OutputRegionY

OutputRegionX

 IA32_RTIT_OUTPUT_MASK_PRS.MaskOrTableOffset<<3

Vol. 3C 35-11

INTEL® PROCESSOR TRACE

table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Table
35-3 and the section that follows for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = 0FFFFFF8H). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that the output MSR values account for all packets generated to that point, after which the processor will
cease updating the output MSR values until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 35-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 35-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause these writes to be globally observed.

Figure 35-2. Layout of ToPA Table Entry

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63

35-12 Vol. 3C

INTEL® PROCESSOR TRACE

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 35.2.7.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that
would produce an operational error if the configuration remained when tracing is re-enabled with
IA32_RTIT_STATUS.Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI)
when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to
the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

Table 35-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table
entry.

Vol. 3C 35-13

INTEL® PROCESSOR TRACE

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The
Freeze_Perfmon_on_PMI and Freeze_LBRs_on_PMI settings in IA32_DEBUGCTL will be applied on ToPA PMI just as
on other PMIs, and hence Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, or wishes to modify any Intel
PT MSRs, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets
are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to deter-
mine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-
enabled before the IRET if continued tracing is desired.
In rare cases, it may be possible to trigger a second ToPA PMI before the first is handled. This can happen if another
ToPA region with INT=1 is filled before, or shortly after, the first PMI is taken, perhaps due to EFLAGS.IF being
cleared for an extended period of time. This can manifest in two ways: either the second PMI is triggered before the
first is taken, and hence only one PMI is taken, or the second is triggered after the first is taken, and thus will be
taken when the handler for the first completes. Software can minimize the likelihood of the second case by clearing
TraceEn at the beginning of the PMI handler. Further, it can detect such cases by then checking the Interrupt
Request Register (IRR) for PMI pending, and checking the ToPA table base and off-set pointers (in
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) to see if multiple entries with INT=1 have been
filled.

PMI Preservation

In some cases a ToPA PMI may be taken after completion of an XSAVES instruction that saves Intel PT state, and
in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT
context is later restored with XRSTORS. To account for such a scenario, the PMI Preservation feature has been
added. Support for this feature is indicated by CPUID.(EAX=14H, ECX=0):EBX[bit 6].
When IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, PMI preservation is enabled. When a ToPA region with
INT=1 is filled, a PMI is pended and the new IA32_RTIT_STATUS.PendToPAPMI[7] is set to 1. If this bit is set when
Intel PT is enabled, such that IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a ToPA PMI is pended. This
behavior ensures that any ToPA PMI that is pended during XSAVES, and hence can't be properly handled, will be re-
pended when the saved PT state is restored.
When this feature is enabled, the PMI handler should take the following actions:

1. Ignore ToPA PMIs that are taken when TraceEn = 0. This indicates that the PMI was pended during Intel PT
disable, and the PendToPAPMI flag will ensure that the PMI is re-pended once Intel PT is re-enabled in the same
context. For this reason, the PendToPAPMI bit should be left set to 1.

2. If TraceEn=1 and the PMI can be properly handled, clear the new PendTopaPMI bit. This will ensure that
additional, spurious ToPA PMIs are not taken. It is required that PendToPAPMI is cleared before the PMI LVT
mask is cleared in the APIC, and before any clearing of either LBRS_FROZEN or COUNTERS_FROZEN in
IA32_PERF_GLOBAL_STATUS.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible that, in rare cases, the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 35-3); this will disable tracing once the region is
filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill
and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

35-14 Vol. 3C

INTEL® PROCESSOR TRACE

ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state,
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT
context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT output
configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs. On proces-
sors that support PMI preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsb-
PmiOnEnable[56] = 1 will ensure that a PMI that is pending at the time PT is disabled will be recorded by setting
IA32_RTIT_STATUS.PendTopaPMI[7] = 1. A PMI will then be pended when the saved PT context is later restored.
Table 35-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling
ToPA PMIs that may arrive between XSAVES and XRSTORS, if PMI preservation is not in use. This algorithm is flex-
ible to allow software to choose between adding entries to the current ToPA table, adding a new ToPA table, or using
the current ToPA table as a circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry
in the table, which is the recommended treatment.

ToPA Errors

When a malformed ToPA entry is found, an operational error results (see Section 35.3.9). A malformed entry can
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 35.2.6.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0), for ToPA entries with END=0.

c. ToPA entry base address sets upper physical address bits not supported by the processor.

Table 35-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)

 Save IA32_RTIT_CTL value;

 IF (IA32_RTIT_CTL.TraceEN)

 Disable Intel PT by clearing TraceEn;

 FI;

 IF (there is space available to grow the current ToPA table)

 Add one or more ToPA entries after the last entry in the ToPA table;

 Point new ToPA entry address field(s) to new output region base(s);

 ELSE

 Modify an upcoming ToPA entry in the current table to have END=1;

 IF (output should transition to a new ToPA table)

 Point the address of the “END=1” entry of the current table to the new table base;

 ELSE

 /* Continue to use the current ToPA table, make a circular. */

 Point the address of the “END=1”l entry to the base of the current table;

 Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;

 /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */

 FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;

Vol. 3C 35-15

INTEL® PROCESSOR TRACE

3. Illegal ToPA Output Offset.
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.
In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
35.2.6.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 35.4.2.26.

35.2.6.3 Trace Transport Subsystem
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration
options should refer to the specific platform documentation. The FabricEn bit is available to be set if
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

35.2.6.4 Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 35-5 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the
IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the
SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries inter-
nally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again,
meaning one could potentially route packet output to a newly restricted region. Software can ensure that any
cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

Table 35-5. Behavior on Restricted Memory Access

Scenario Description

ToPA output region
overlaps with
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read
from that restricted region will return all 1s. The processor also may signal an error (Section 35.3.9) and disable
tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output
region is larger than the restricted memory region).

ToPA table overlaps
with SMRR

The processor will signal an error (Section 35.3.9) and disable tracing when the ToPA write pointer
(IA32_RTIT_OUTPUT_BASE + proc_trace_table_offset) enters the restricted region.

35-16 Vol. 3C

INTEL® PROCESSOR TRACE

35.2.7 Enabling and Configuration MSRs

35.2.7.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 35.3.1), RDMSR or WRMSR of the

IA32_RTIT_* MSRs will cause #GP.
• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP

fault. Packet generation must be disabled before the configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a warm or cold RESET.

— If CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1, only the TraceEn bit is cleared on warm RESET; though this
may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the trace configu-
ration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to
these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to
IA32_RTIT_CTL.TraceEn by XSAVES (Section 35.3.5.2).

35.2.7.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 35-6.

Table 35-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers.
A further store, fence, or architecturally serializing instruction may be required to ensure that
packet data can be observed at the trace endpoint. See Section 35.2.7.3 for details of
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section 35.2.8.3) and warm reset. Other
MSR bits of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these
events.

1 CYCEn 0 0: Disables CYC Packet (see Section 35.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

4 PwrEvtEn 0 0: Power Event Trace packets are disabled.

1: Power Event Trace packets are enabled (see Section 35.2.3, “Power Event Tracing”).

Vol. 3C 35-17

INTEL® PROCESSOR TRACE

5 FUPonPTW 0 0: PTW packets are not followed by FUPs.

1: PTW packets are followed by FUPs.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored.
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 0] (“CR3 Filtering Support”) is 0.

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2]
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 35.2.6.2) if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 35.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 35.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 35.2.1.2).

12 PTWEn 0 0: PTWRITE packet generation disabled.

1: PTWRITE packet generation enabled (see Table 35-41 “PTW Packet Definition”).

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

See Section 35.2.5.4 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7),
8: ART(8), 9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15:

ART(15)
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

18 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

35-18 Vol. 3C

INTEL® PROCESSOR TRACE

22:19 CycThresh 0 CYC packet threshold, see Section 35.3.6 for details. CYC packets will be sent with the first
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64,
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

23 Reserved 0 Must be 0.

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel
PT packet bytes output, so this field allows the user to determine the increment of
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that
PSB insertion is not precise, but the average output bytes per PSB should approximate the
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K,
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

31:28 Reserved 0 Must be 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 1.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

Vol. 3C 35-19

INTEL® PROCESSOR TRACE

35.2.7.3 Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated.
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A
full PSB+ (see Section 35.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section
35.4.1.1).
In addition to the packets discussed above, if and when PacketEn (Section 35.2.5.1) transitions from 0 to 1 (which
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 35.4.2.3) will be generated.
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason,
software should disable packet generation before making modifications to the ToPA tables (or changing the config-
uration of restricted memory regions). See Section 35.7 for more details of packets that may be generated with
modifications to TraceEn.

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

55:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

56 InjectPsbPmi
OnEnable

0 1: Enables use of IA32_RTIT_STATUS bits PendPSB[6] and PendTopaPMI[7], see Section
35.2.7.4, “IA32_RTIT_STATUS MSR” for behavior of these bits.

0: IA32_RTIT_STATUS bits 6 and 7 are ignored.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

59:57 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

63:60 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

35-20 Vol. 3C

INTEL® PROCESSOR TRACE

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure
that the packet data is globally observed. No special packets are generated by disabling packet generation, though
a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the
same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a #GP,
even if TraceEn remains set.

35.2.7.4 IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, though some fields cannot be modified by soft-
ware. See Table 35-7 for details. The WRMSR instruction ignores these bits in the source operand (attempts to
modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with
WRMSR).

Table 35-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP,
see Section 35.2.5.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See
Section 35.2.5.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 35.2.5.2. Writes are
ignored.

3 Reserved 0 Must be 0.

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see
“ToPA Errors” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered.
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details,
see “ToPA STOP” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

6 PendPSB 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the
threshold for a PSB+ to be inserted has been reached. The processor will clear this bit when
the PSB+ has been inserted into the trace. If PendPSB = 1 and InjectPsbPmiOnEnable = 1
when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PSB+ will be inserted into the
trace.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

Vol. 3C 35-21

INTEL® PROCESSOR TRACE

35.2.7.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG
fields in IA32_RTIT_CTL (see Section 35.2.7.2). The number of these register pairs is enumerated by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

• Processors that enumerate support for 3 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B

• Processors that enumerate support for 4 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B

Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is in
canonical form, otherwise a general-protection fault (#GP) fault will result.
Each MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP).

35.2.7.6 IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of
this register, see Section 35.2.4.2.
This MSR is accessible if CPUID.(EAX=14H, ECX=0):EBX[bit 0], “CR3 Filtering Support”, is 1. This MSR can be
written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

7 PendTopaPMI 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the
threshold for a ToPA PMI to be inserted has been reached. Software should clear this bit once
the ToPA PMI has been handled, see “ToPA PMI” for details. If PendTopaPMI = 1 and
InjectPsbPmiOnEnable = 1 when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PMI will
be pended.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

31:8 Reserved 0 Must be 0.

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent
out. The processor also uses this field to determine when the next PSB packet should be
inserted. Note that the processor may clear or modify this field at any time while
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 35.4.2.17 for details.

This field is reserved when CPUID.(EAX=14H,ECX=0):EBX[bit 1] (“Configurable PSB and
CycleAccurate Mode Supported”) is 0.

63:49 Reserved 0 Must be 0.

Table 35-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

35-22 Vol. 3C

INTEL® PROCESSOR TRACE

IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR causes a
#GP.

35.2.7.7 IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width
(MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and
those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered
unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

35.2.7.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See
Section 35.2.6.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 35-8. IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region.
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of
the 1s in the mask value(Section 35.2.7.8) overlap with 1s in the base address. If
the base is not aligned, an operational error will result (see Section 35.3.9).

1: The base physical address of the current ToPA table. The address must be 4K
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in
Section 35.2.6.2 as well as Section 35.3.9.

63:MAXPHYADDR Reserved 0 Must be 0.

Vol. 3C 35-23

INTEL® PROCESSOR TRACE

35.2.8 Interaction of Intel® Processor Trace and Other Processor Features

35.2.8.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock
elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace
output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region
that is later aborted. For this reason, debugging software will need indication of the beginning and end of a trans-
actional region; this will allow software to understand when instructions are part of a transactional region and
whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 35-10 for
details.

Table 35-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored.

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the
OutputOffset field to determine the next write address. All 1s in this field should be
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an
operational error (Section 35.3.9) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region.
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address
at which the next byte of packet output data will be written. This value must be less than or
equal to the MaskOrTableOffset field, otherwise an operational error (Section 35.3.9) will be
signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This
value will be added to the output region base field, found in the current ToPA table entry, to
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section
35.3.9) will be signaled when TraceEn is set.

Table 35-10. TSX Packet Scenarios

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP)

Transaction
Commit

Either XEND or XRELEASE lock, if transactional execution
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)

35-24 Vol. 3C

INTEL® PROCESSOR TRACE

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to be
executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

35.2.8.2 TSX and IP Filtering
A complication with tracking transactions is handling transactions that start or end outside of the tracing region.
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts.
But a transaction can start within the IP filter region and end outside it.
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indi-
cate the current transaction status.

35.2.8.3 System Management Mode (SMM)
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM
code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection.
Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either
protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of IA32_RTIT_CTL.TraceEn
into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 35.2.7.2).

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-evalu-
ated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was
disabled or re-enabled. See Table 35.7 for more information about packets entering and leaving SMM.
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that
restrict use of Intel PT with LBRs (see Section 35.3.1.2), any RSM that results in enabling of both will cause a shut-
down.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 35.6.

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP),
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these
cases.

Table 35-10. TSX Packet Scenarios

TSX Event Instruction Packets

Vol. 3C 35-25

INTEL® PROCESSOR TRACE

35.2.8.4 Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears
IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL in VMX operation causes a general-protection
exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of
tracing in VMX operation are described in Section 35.4.2.26.

35.2.8.5 Intel® Software Guard Extensions (Intel® SGX)
Intel SGX provides an application with the ability to instantiate a protective container (an enclave) with confidenti-
ality and integrity (see the Intel® Software Guard Extensions Programming Reference). On a processor with both
Intel PT and Intel SGX enabled, when executing code within a production enclave, no control flow packets are
produced by Intel PT. An enclave entry will clear ContextEn, thereby blocking control flow packet generation. A
TIP.PGD packet will be generated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be
generated to indicate that tracing is resumed.
During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or
CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 35.7.

Debug Enclaves

Intel SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see the
Intel® Software Guard Extensions Programming Reference. In a debug enclave, Intel PT continues to function
normally. Specifically, ContextEn is not impacted by an enclave entry or exit. Hence, the generation of ContextEn-
dependent packets within a debug enclave is allowed.

35.2.8.6 SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup.
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will
be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

35.2.8.7 Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets
that indicate the source and destination IPs.

35.3 CONFIGURATION AND PROGRAMMING GUIDELINE

35.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID
function 14H is dedicated to enumerate the resource and capability of processors that report
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined
variation in capabilities. Table 35-11 describes details of the enumerable capabilities that software must use across
generations of processors that support Intel Processor Trace.

35-26 Vol. 3C

INTEL® PROCESSOR TRACE

Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf.

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 35.2.7.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any
access to IA32_RTIT_CR3_MATCH, will #GP fault.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to
select the preferred PSB frequency (see below for allowed values). (b)
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and
will be incremented by the processor when tracing to indicate progress
towards the next PSB. If trace packet generation is enabled by setting
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c)
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode.
See Section 35.2.7.

0: (a) Any attempt to write a non-zero value to IA32_RTIT_CTL.PSBFreq
or IA32_RTIT_STATUS.PacketByteCnt will #GP fault. (b) If trace packet
generation is enabled by setting TraceEn, a PSB is always generated. (c)
Any attempt to write a non-zero value to IA32_RTIT_CTL.CYCEn or
IA32_RTIT_CTL.CycThresh will #GP fault.

2 IP Filtering and TraceStop
supported, and Preserve Intel
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to
configure the corresponding address range MSRs for IP Filtering or IP
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2
inclusive. The number of ADDRn_CFG fields is reported by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to
configure address ranges for IP filtering or IP TraceStop. (c) On warm
reset, all Intel PT MSRs will retain their pre-reset values, though
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in
Section 35.2.7.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A
and IA32_RTIT_ADDRn_B, will #GP fault. (c) On warm reset, all Intel PT
MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be
generated. See Section 35.2.7.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq
to a non-zero value will #GP fault.

4 PTWRITE Supported 1: Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5]
(FUPonPTW), and PTWRITE can generate packets.

0: Writes that set IA32_RTIT_CTL[12] or IA32_RTIT_CTL[5] will #GP,
and PTWRITE will #UD fault.

5 Power Event Trace Supported 1: Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event
Trace packet generation.

0: Writes that set IA32_RTIT_CTL[4] will #GP.

Vol. 3C 35-27

INTEL® PROCESSOR TRACE

If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are
described in the sub-leaves of CPUID leaf 14H.

6 PSB and PMI Preservation
Supported

1: Writes can set IA32_RTIT_CTL[56] (InjectPsbPmiOnEnable), enabling
the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or
PSBs otherwise lost due to Intel PT disable. Writes can also set
PendToPAPMI and PendPSB.

0: Writes that set IA32_RTIT_CTL[56], IA32_RTIT_STATUS[7], or
IA32_RTIT_STATUS[6] will #GP.

31:7 Reserved

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing
the ToPA output scheme (Section 35.2.6.2) IA32_RTIT_OUTPUT_BASE
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS.
MSRs will #GP fault.

1 ToPA Tables Allow Multiple
Output Entries

1: ToPA tables can hold any number of output entries, up to the
maximum allowed by the MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed
by an END=1 entry which points back to the base of the table.

Further, ToPA PMIs will be delivered before the region is filled. See ToPA
PMI in Section 35.2.6.2.

If there is more than one output entry before the END entry, or if the
END entry has the wrong base address, an operational error will be
signaled (see “ToPA Errors” in Section 35.2.6.2).

2 Single-Range Output
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs
will #GP fault.

3 Output to Trace Transport
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to
IA32_RTIT_CTL.FabricEn will #GP fault.

30:4 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which
are the offset from CS base.

EDX 31:0 Reserved

Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities (Contd.)

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

35-28 Vol. 3C

INTEL® PROCESSOR TRACE

Table 35-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in
IA32_RTIT_CTL and the number of register pair
IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering
and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

31:16 Bitmap of supported MTC
Period Encodings

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.MTCFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 1 (MTC Packet generation is
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause
#GP fault.

EBX 15:0 Bitmap of supported Cycle
Threshold values

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.CycThresh field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Cycle-Accurate Mode is
Supported), otherwise the CycThresh field is reserved to 0. See Section
35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit
CycThresh field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported
Configurable PSB Frequency
encoding

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.PSBFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Configurable PSB is
supported), otherwise the PSBFreq field is reserved to 0. See Section
35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved

Vol. 3C 35-29

INTEL® PROCESSOR TRACE

35.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset
and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected
mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type
is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 35-11).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on
those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e.
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

35.3.1.2 Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM,
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume.
Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_LIP, MSR_LER_TO_LIP
• MSR_LBR_SELECT
For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

35.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the
capabilities described in Section 35.3.1.
Based on the capability queried from Section 35.3.1, software must configure a number of model-specific regis-
ters. This section describes programming considerations related to those MSRs.

35.3.2.1 Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel
PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if
TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any
values that may have persisted from prior trace packet collection contexts. See Section 35.2.7.2 for details of
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 35.3.9), there may be a delay after the WRMSR
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet genera-
tion is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

35-30 Vol. 3C

INTEL® PROCESSOR TRACE

35.3.2.2 Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR
(Section 35.2.7.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software

should check the source of the error (by examining the output MSR values), correct the source of the problem,
and then attempt to gather the trace again. For details on operational errors, see Section 35.3.9. Software
should clear IA32_RTIT_STATUS.Error before re-enabling packet generation.

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 35.2.4.3) or the ToPA
Stop condition (see “ToPA STOP” in Section 35.2.6.2) before packet generation was disabled.

35.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Genera-
tion” in Section 35.2.7.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues
an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or
serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a
read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on
the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While
TraceEn is set, these MSRs may hold stale values. Further, if a ToPA region with INT=1 is filled, meaning a ToPA PMI
has been triggered, IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI[55] will be set by the time the flush completes.

35.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in
IA32_RTIT_STATUS).

35.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context,
software can save and restore the states of the trace configuration MSRs across the process or thread context
switch boundary. The principle is the same as saving and restoring the typical architectural processor states across
context switches.

35.3.5.1 Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must
clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed
values to memory

Vol. 3C 35-31

INTEL® PROCESSOR TRACE

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with
WRMSR

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

35.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be
saved using XSAVES and restored by XRSTORS, in conjunction with the bit field associated with supervisory state
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.
The layout of the trace configuration component state in the XSAVE area is shown in Table 35-13.1

The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 8] is set, system software operating at CPL=
0 can use XSAVES/XRSTORS with the appropriate requested-feature bitmap (RFBM) to manage supervisor state
components in the XSAVE map. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

35.3.6 Cycle-Accurate Mode
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 35.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC
packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The
CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC, PTWRITE, EXSTOP
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the
number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except
that they will be sent before the wrap occurs. An illustration is given below.

1. Table 35-13 documents support for the MSRs defining address ranges 0 and 1. Processors that provide XSAVE support for Intel Processor
Trace support only those address ranges.

Table 35-13. Memory Layout of the Trace Configuration State Component

Offset within
Component Area

Field Offset within
Component Area

Field

0H IA32_RTIT_CTL 08H IA32_RTIT_OUTPUT_BASE

10H IA32_RTIT_OUTPUT_MASK_PTRS 18H IA32_RTIT_STATUS

20H IA32_RTIT_CR3_MATCH 28H IA32_RTIT_ADDR0_A

30H IA32_RTIT_ADDR0_B 38H IA32_RTIT_ADDR1_A

40H IA32_RTIT_ADDR1_B 48H–End Reserved

35-32 Vol. 3C

INTEL® PROCESSOR TRACE

35.3.6.1 Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter is
implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point
where clocks are disabled, and resume counting once they are re-enabled.

35.3.6.2 Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time.
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or

after, the CYC time.
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream.
Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those packets
represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional branches
and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides the
retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle as
that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be
generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC
and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 35.8.3.2 to understand how to
interpret the payload values

Multi-packet Instructions or Events

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a
task switch on a software interrupt, is shown below.

Example 35-1. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet

Vol. 3C 35-33

INTEL® PROCESSOR TRACE

35.3.6.3 Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the
expense of precision. This is done by utilizing a cycle threshold (see Section 35.2.7.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in
which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated
number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold
options for CycThresh, see Section 35.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be gener-
ated before a CYC will be inserted. Table 35-14 illustrates the threshold behavior.

35.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 35.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in
the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can
result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log
properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack,
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 35.4.2.18). One or more packets may
be generated in between those two packets, and these inform the decoder of the current state of the processor.
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the

Example 35-2. An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?),

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

Table 35-14. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP

35-34 Vol. 3C

INTEL® PROCESSOR TRACE

normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1.
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Information Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the

logical processor is in VMX non-root operation and the “conceal VMX from PT” VM-execution control is 0.
• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation

and the “conceal VMX from PT” VM-execution control is 0.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1.
• MODE.Exec, if PacketEn=1.
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within
PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their
meanings are the same as outside PSB+.
A PSB+ can be lost in some scenarios. If IA32_RTIT_STATUS.TriggerEn is cleared just as the PSB threshold is
reached, e.g., due to TraceEn being cleared, the PSB+ may not be generated. On processors that support PSB pres-
ervation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will
ensure that a PSB+ that is pending at the time PT is disabled will be recorded by setting
IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will be inserted, and PendPSB cleared, when PT is later re-enabled
while PendPSB = 1.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason,
the OVF packet should also be viewed as terminating PSB+. If IA32_RTIT_STATUS.TriggerEn is cleared just as the
PSB threshold is reached, the PSB+ may not be generated. TriggerEn can be cleared by a WRMSR that clears
IA32_RTIT_CTL.TraceEn, a VM-exit that clears IA32_RTIT_CTL.TraceEn, an #SMI, or any time that either
IA32_RTIT_STATUS.Stopped is set (e.g., by a TraceStop or ToPA stop condition) or IA32_RTIT_STATUS.Error is set
(e.g., by an Intel PT output error). On processors that support PSB preservation (CPUID.(EAX=14H,
ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will ensure that a PSB+ that is
pending at the time PT is disabled will be recorded by setting IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will then
be pended when the saved PT context is later restored.

35.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation
resumes.
When the buffer overflow is cleared, an OVF packet (Section 35.4.2.16) is generated, and the processor ensures
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that
were lost.
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon
which tracing resumes after the overflow is cleared. If the overflow resolves while PacketEn=1, only timing packets
may come between the OVF and the FUP. If the overflow resolves while PacketEn=0, any other packets that are not
dependent on PacketEn may come between the OVF and the TIP.PGE.

35.3.8.1 Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 35.2.4.3), continue during a
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets,

Vol. 3C 35-35

INTEL® PROCESSOR TRACE

however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further,
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be
dropped.

35.3.8.2 Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are
lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly understand
the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter
wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter
counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the
cycle counter wrapped during the overflow, which could render this CYC misleading.

35.3.9 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment issues,
ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in Section
35.2.6.2 for details on ToPA errors, and Section 35.2.6.4 for details on restricted memory errors. Operational
errors are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically,
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable genera-
tion of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the
processor encounters the problematic configuration. This could be as soon as packet generation is enabled but
could also be later when the problematic entry or field needs to be used.
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the error
condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

35.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the
interpretation code that will decode the data packets and apply it to the traced source code.

35.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP,
TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions)
to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between
packets, and to use this packet context to determine how to bind the packet.
Section 35.4.1.1 below provides detailed descriptions of the packets, including how packets bind to IPs in the
disassembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are gener-
ated in only a few scenarios. Those that require more consideration are typically part of “compound packet events”,
such as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination
address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.

35-36 Vol. 3C

INTEL® PROCESSOR TRACE

Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3
or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes
indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound
packet events is provided in Table 35-15; see Section 35.4.1.1 for more per-packet details and Section 35.7 for
more detailed packet generation examples.

35.4.1.1 Packet Blocks
Packet blocks are a means to dump one or more groups of state values. Packet blocks begin with a Block Begin
Packet (BBP), which indicates what type of state is held within the block. Following each BBP there may be one or
more Block Item Packets (BIPs), which contain the state values. The block is terminated by either a Block End
Packet (BEP) or another BBP indicating the start of a new block.
The BIP packet includes an ID value that, when combined with the Type field from the BBP that preceded it,
uniquely identifies the state value held in the BIP payload. The size of each BIP packet payload is provided by the
Size field in the preceding BBP packet.
Each block type can have up to 32 items defined for it. There is no guarantee, however, that each block of that type
will hold all 32 items. For more details on which items to expect, see documentation on the specific block type of
interest.
See the BBP packet description (Section 35.4.2.26) for details on packet block generation scenarios.
Packet blocks are entirely generated within an instruction or between instructions, which dictates the types of
packets (aside from BIPs) that may be seen within a packet block. Packets that indicate control flow changes, or
other indication of instruction completion, cannot be generated within a block. These are listed in the following
table. Other packets, including timing packets, may occur between BBP and BEP.

It is possible to encounter an internal buffer overflow in the middle of a block. In such a case, it is guaranteed that
packet generation will not resume in the middle of a block, and hence the OVF packet terminates the current block.
Depending on the duration of the overflow, subsequent blocks may also be lost.

Table 35-15. Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional,
uncompressed

control-flow
transfer

FUP or none Any combination
of PIP, VMCS,
MODE.Exec, or
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets
may vary.

PIP/VMCS/MODE only if the operation modifies the state
tracked by these respective packets.

TSX Update MODE.TSX, and
(FUP or none)

None TIP, TIP.PGD, or
none

FUP

TIP/TIP.PGD only for TSX abort cases.

Overflow OVF PSB, PSBEND, or
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Table 35-16. Packets Forbidden Between BBP and BEP

TNT

TIP, TIP.PGE, TIP.PGD

MODE.Exec, MODE.TSX

PIP, VMCS

TraceStop

PSB, PSBEND

PTW

MWAIT

Vol. 3C 35-37

INTEL® PROCESSOR TRACE

Decoder Implications

When a Block Begin Packet (BBP) is encountered, the decoder will need to decode some packets within the block
differently from those outside a block. The Block Item Packet (BIP) header byte has the same encoding as a TNT
packet outside of a block, but must be treated as a BIP header (with following payload) within one.
When an OVF packet is encountered, the decoder should treat that as a block ending condition. Packet generation
will not resume within a block.

35.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 35-3 explains how to interpret them.
Packet bits listed as “RSVD” are not guaranteed to be 0.

Figure 35-3. Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other
bits (Section 35.2.5).

Generation Scenario Which instructions, events, or other
scenarios can cause this packet to be
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number

35-38 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.1 Taken/Not-taken (TNT) Packet

Table 35-17. TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 35.4.2.2) results, such that B1 is oldest
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain from
1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below. An implementation may choose to use long TNTs, short TNTs, or both.

Dependencies PacketEn Generation
Scenario

On a conditional branch or compressed RET, if it fills the TNT.
Also, partial TNTs may be generated at any time, as a result of
other packets being generated, or certain micro-architectural
conditions occurring, before the TNT is full.

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Vol. 3C 35-39

INTEL® PROCESSOR TRACE

35.4.2.2 Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the
use of IP compression. IP compression is an optional compression technique the processor may choose to employ
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP
sent out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address
bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state
of the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the “Last IP” state in

Description Provides the taken/not-taken results for the last 1..6 (Short TNT) or 1..47 (Long TNT) conditional branches (Jcc,
J*CXZ, or LOOP) or compressed RETs (Section 35.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch
TNT payload bits are stored internal to the processor in a TNT buffer, until either the buffer is filled or another
packet is to be generated. In either case a TNT packet holding the buffered bits will be emitted, and the TNT buffer
will be marked as empty.

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should
be applied to (and hence provide the destination for) the next N conditional branches or RETs.

Table 35-18. IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt,
exception, INIT, SIPI, VM exit, VM entry, TSX abort, EENTER, EEXIT, ERE-
SUME, AEX1.

NOTES:

1. EENTER, EEXIT, ERESUME, AEX would be possible only for a debug enclave.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which
will bind to the TIP packet. See the packet application descriptions for other packets for details.

Table 35-17. TNT Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

35-40 Vol. 3C

INTEL® PROCESSOR TRACE

software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero, hence if the first IP
in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are
provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a
TIP/FUP packet is shown in the table below.

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 35-19), or compressed against
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the full
address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that
applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code.
In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0.
When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet
with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits
(IPBytes <= 010b).

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can
deduce the target IP by maintaining a CALL/RET stack of its own.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because the RET generates no TIP
packet, it also does not update the internal Last IP value, and thus the decoder should treat it the same way. If the
RET is not compressed, it will generate a TIP packet (just like when RET compression is disabled, via
IA32_RTIT_CTL.DisRETC).
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets.

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry off
the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have
matching RETs.

3. For near RETs, pop the top (youngest) entry off the stack. This will be the expected target of the RET.
In cases where a RET is compressed, the RET target is guaranteed to match the expected target from 3) above. If
the target is not compressed, a TIP packet will be generated with the RET target, which may differ from the
expected target in some cases.

Table 35-19. FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved

Vol. 3C 35-41

INTEL® PROCESSOR TRACE

The hardware ensures that packets read by the decoder will always have seen the CALL that corresponds to any
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where Pack-
etEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last PSB, etc.,
will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP
packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack, and
a later RET uses this target.
For processors that employ deferred TIPs (Section 35.4.2.3), an uncompressed RET will not be deferred, and hence
will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and make clear to the decoder whether
the near RET was compressed, and hence a bit in the in-progress TNT should be consumed, or uncompressed, in
which case there will be no in-progress TNT and thus a TIP should be consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode,
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the CALL’s
Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should match
this behavior.

35.4.2.3 Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g.,
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other
packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out
the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth
consumption, and hence the performance impact, incurred by tracing.

Table 35-20. TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c),
TIP(0xcc00)

TNT(0b00100), TIP(0x1308),
TIP(0x1100), FUP(0x110c),
TIP(0xcc00)

35-42 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.4 Packet Generation Enable (TIP.PGE) Packet

Table 35-21. TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE) Packet

Packet Format

Dependencies PacketEn transitions to 1 Generation
Scenario

Any branch instruction, control flow transfer, or MOV
CR3 that sets PacketEn, a WRMSR that enables
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3. The
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of
the branch.

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

Vol. 3C 35-43

INTEL® PROCESSOR TRACE

35.4.2.5 Packet Generation Disable (TIP.PGD) Packet

Table 35-22. TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD) Packet

Packet Format

Dependencies PacketEn transitions to
0

Generation
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears
PacketEn, a WRMSR that disables packet generation and clears PacketEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the
“IPBytes” field will have the value 0.

• FilterEn: This is cleared when software jumps out of the tracing region. This region is defined by enabling IP
filtering in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3.
The IP payload will depend on the type of the branch. For conditional branches, the payload is suppressed
(IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other type of branch,
the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See
Section 35.2.4.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes”
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or
TNT bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced
instead by the TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn.
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce.
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e.,
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload,
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should
apply to the next branch or MOV CR3 instruction.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

35-44 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.6 Flow Update (FUP) Packet

Table 35-23. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn & ContextEn.
(Typically depends on
BranchEn and FilterEn as well,
see Section 35.2.4 for details.)

Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit,
#MC), PSB+, XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, EENTER,
EEXIT, ERESUME, EEE, AEX,1, INTO, INT1, INT3, INT n, a WRMSR that
disables packet generation.

NOTES:

1. EENTER, EEXIT, ERESUME, EEE, AEX apply only if Intel Software Guard Extensions is supported.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 35.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 35.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) packet will provide the destination
IP. Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]

Vol. 3C 35-45

INTEL® PROCESSOR TRACE

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do
not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the
source address cannot be inferred from the source, and hence a FUP will be sent. Table 35-24 illustrates cases
where FUPs are sent, and which IP can be expected in those cases.

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is
consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the
stack or VMCS.

Table 35-24. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value and also the EIP value which is saved onto
the stack.

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value and also the EIP value which is
saved onto the stack.

Software Interrupt Address of the software interrupt instruction
(Current IP)

This matches the similar functionality of LBR
FROM field value, but does not match the EIP
value which is saved onto the stack (Next
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave
Exiting Event (EEE), AEX1

NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3D.

Current IP of the instruction This matches the LBR FROM field value and also
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn, PSB+ Current IP

35-46 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.7 Paging Information (PIP) Packet

Table 35-25. PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn &&
IA32_RTIT_CTL.OS

Generation
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+, VM exit,
VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus
included. For other paging modes (32-bit and 4-level paging1), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit, if “conceal VMX from PT” VM-exit control is 0 (see Section 35.5.1)
• VM entry, if “conceal VMX from PT” VM-entry control is 0
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section 35.2.8.3 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper
binaries to the linear addresses that are being traced.
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX from PT” VM-execution control is 0 (see Section 35.5.1). All other PIPs clear the NR bit.

NOTES:

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it,
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section
35.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]

Vol. 3C 35-47

INTEL® PROCESSOR TRACE

35.4.2.8 MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a
header and a mode byte, as shown below.

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 35-26. General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 35-27. MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Far branch, interrupt, exception, VM exit, and VM entry, if the mode changes.
PSB+, and any scenario that can generate a TIP.PGE, such that the mode may have
changed since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values.
Essential for the decoder to properly disassemble the associated binary.

MODE.Exec is sent at the time of a mode change, if PacketEn=1 at the time, or when tracing resumes, if necessary.
In the former case, the MODE.Exec packet is generated along with other packets that result from the far transfer
operation that changes the mode. In cases where the mode changes while PacketEn=0, the processor will send out
a MODE.Exec along with the TIP.PGE when tracing resumes. The processor may opt to suppress the MODE.Exec
when tracing resumes if the mode matches that from the last MODE.Exec packet, if there was no PSB in between.

Application MODE.Exec always immediately precedes a TIP or TIP.PGE. The mode change applies to the IP address in the payload
of the next TIP or TIP.PGE.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode

35-48 Vol. 3C

INTEL® PROCESSOR TRACE

MODE.TSX Packet

Table 35-28. MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn and ContextEn Generation
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if InTX
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX
generated before TIP.PGE need be applied.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally

Vol. 3C 35-49

INTEL® PROCESSOR TRACE

35.4.2.9 TraceStop Packet

35.4.2.10 Core:Bus Ratio (CBR) Packet

Table 35-29. TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region.
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn
before examining output. See Section 35.2.4.3 for more details.

Application If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 35-30. CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

After any frequency change, on C-state wake up, PSB+, and after
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application The CBR packet indicates the point in the trace when a frequency transition has occurred. On some implementa-
tions, software execution will continue during transitions to a new frequency, while on others software execution
ceases during frequency transitions. There is not a precise IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved

35-50 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.11 Timestamp Counter (TSC) Packet

Table 35-31. TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn &&
TriggerEn

Generation
Scenario

Sent after any event that causes the processor clocks or Intel PT timing
packets (such as MTC or CYC) to stop, This may include P-state changes,
wake from C-state, or clock modulation. Also on transition of TraceEn
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake,
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]

Vol. 3C 35-51

INTEL® PROCESSOR TRACE

35.4.2.12 Mini Time Counter (MTC) Packet

Table 35-32. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
TriggerEn

Generation
Scenario

Periodic, based on the core crystal clock, or Always Running Timer
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common
Timestamp Copy) payload value is set to (ART >> N) & FFH. The frequency of the ART is related to the Maximum
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 35.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq
field (see Section 35.2.7.2) to a supported value using the lookup enumerated by CPUID (see Section 35.3.1).
See Section 35.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet.
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]

35-52 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.13 TSC/MTC Alignment (TMA) Packet

Table 35-33. TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp
counter ticks have passed since the last TSC or MTC packet. See Section 35.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]

Vol. 3C 35-53

INTEL® PROCESSOR TRACE

35.4.2.14 Cycle Count (CYC) Packet

Table 35-34. Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn &&
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is
sent per core clock cycle. See Section 35.3.6 for CYC-eligible packets.

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length.
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0. And so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 35.2.7.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see
Section 35.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first
branch in the TNT packet.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)

35-54 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.15 VMCS Packet

Table 35-35. VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on PSB+, SMM
VM exits, and VM entries that return from SMM (see Section 35-
51).

Description The VMCS packet provides a VMCS pointer for a decoder to determine the transition of code contexts:

• On a successful VMPTRLD (i.e., a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the
logical processor’s VMCS pointer established by VMPTRLD (for subsequent execution of a VM guest context).

• An SMM VM exit loads the logical processor’s VMCS pointer with the SMM-transfer VMCS pointer. If the “conceal
VMX from PT” VM-exit control is 0 (see Section 35.5.1), a VMCS packet provides this pointer. See Section 35.6 on
tracing inside and outside STM.

• A VM entry that returns from SMM loads the logical processor’s VMCS pointer from a field in the SMM-transfer
VMCS. If the “conceal VMX from PT” VM-entry control is 0, a VMCS packet provides this pointer. Whether the
VM entry is to VMX root operation or VMX non-root operation is indicated by the PIP.NR bit.

A VMCS packet generated before a VMCS pointer has been loaded, or after the VMCS pointer has been cleared will
set all 64 bits in the VMCS pointer field.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context
in situations that CR3 may not be unique.
When a VMCS packet is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section
35.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP.

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS pointer [19:12]

3 VMCS pointer [27:20]

4 VMCS pointer [35:28]

5 VMCS pointer [43:36]

6 VMCS pointer [51:44]

Vol. 3C 35-55

INTEL® PROCESSOR TRACE

35.4.2.16 Overflow (OVF) Packet

35.4.2.17 Packet Stream Boundary (PSB) Packet

Table 35-36. OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See
Section 35.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP
packet that preceded the overflow.

Table 35-37. PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0

35-56 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.18 PSBEND Packet

Dependencies TriggerEn Generation
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software
selected threshold after that. May be sent for other micro-architectural conditions
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via
IA32_RTIT_CTL.PSBFreq (see Section 35.2.7.2). Note, however, that the PSB period is not precise, it simply reflects
the average number of output bytes that should pass between PSBs. The processor will make a best effort to
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 35.3.7).

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is
included.

Table 35-38. PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 35.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

Table 35-37. PSB Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1

Vol. 3C 35-57

INTEL® PROCESSOR TRACE

35.4.2.19 Maintenance (MNT) Packet

35.4.2.20 PAD Packet

Table 35-39. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies TriggerEn Generation Sce-
nario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this
packet should simply be ignored. It does not bind to any IP.

Table 35-40. PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0

35-58 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.21 PTWRITE (PTW) Packet

Table 35-41. PTW Packet Definition

Name PTW Packet

Packet Format

The PayloadBytes field indicates the number of bytes of payload that follow the header bytes. Encodings are as fol-
lows:

IP bit indicates if a FUP, whose payload will be the IP of the PTWRITE instruction, will follow.

Dependencies TriggerEn & ContextEn & FilterEn
& PTWEn

Generation
Scenario

PTWRITE Instruction

Description Contains the value held in the PTWRITE operand.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application Binds to the associated PTWRITE instruction. The IP of the PTWRITE will be provided by a following FUP, when
PTW.IP=1.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP PayloadBytes 1 0 0 1 0

2 Payload[7:0]

3 Payload[15:8]

4 Payload[23:16]

5 Payload[31:24]

6 Payload[39:32]

7 Payload[47:40]

8 Payload[55:48]

9 Payload[63:56]

PayloadBytes Bytes of Payload

‘00 4

‘01 8

‘10 Reserved

‘11 Reserved

Vol. 3C 35-59

INTEL® PROCESSOR TRACE

35.4.2.22 Execution Stop (EXSTOP) Packet

Table 35-42. EXSTOP Packet Definition

Name EXSTOP Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

C-state entry, P-state change, or other processor clock power-
down. Includes :
• Entry to C-state deeper than C0.0
• TM1/2
• STPCLK#
• Frequency change due to IA32_CLOCK_MODULATION, Turbo

Description This packet indicates that software execution has stopped due to processor clock powerdown. Later packets will
indicate when execution resumes.
If EXSTOP is generated while ContextEn is set, the IP bit will be set, and EXSTOP will be followed by a FUP packet
containing the IP at which execution stopped. More precisely, this will be the IP of the oldest instruction that has
not yet completed.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application If a FUP follows EXSTOP (hence IP bit set), the EXSTOP can be bound to the FUP IP. Otherwise the IP is not known.
Time of powerdown can be inferred from the preceding CYC, if CYCEn=1. Combined with the TSC at the time of
wake (if TSCEn=1), this can be used to determine the duration of the powerdown.

IP bit indicates if a FUP will follow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 1 1 0 0 0 1 0

35-60 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.23 MWAIT Packet

Table 35-43. MWAIT Packet Definition

Name MWAIT Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn & Contex-
tEn

Generation
Scenario

MWAIT, UMWAIT, or TPAUSE instructions, or I/O redirection to
MWAIT, that complete without fault or VMexit.

Description Indicates that an MWAIT operation to C-state deeper than C0.0 completed. The MWAIT hints and extensions passed
in by software are exposed in the payload. For UMWAIT and TPAUSE, the EXT field holds the input register value
that determines the optimized state requested.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no MWAIT packet is generated.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application The binding for the upcoming EXSTOP packet also applies to the MWAIT packet. See Section 35.4.2.22.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0

2 MWAIT Hints[7:0]

3 Reserved

4 Reserved

5 Reserved

6 Reserved EXT[1:0]

7 Reserved

8 Reserved

9 Reserved

Vol. 3C 35-61

INTEL® PROCESSOR TRACE

35.4.2.24 Power Entry (PWRE) Packet

Table 35-44. PWRE Packet Definition

Name PWRE Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

Transition to a C-state deeper than C0.0.

Description Indicates processor entry to the resolved thread C-state and sub C-state indicated. The processor will remain in this
C-state until either another PWRE indicates the processor has moved to a C-state deeper than C0.0, or a PWRX
packet indicates a return to C0.0.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no PWRE packet is generated.
Note that some CPUs may allow MWAIT to request a deeper C-state than is supported by the core. These deeper C-
states may have platform-level implications that differentiate them. However, the PWRE packet will provide only
the resolved thread C-state, which will not exceed that supported by the core.
If the C-state entry was initiated by hardware, rather than a direct software request (such as MWAIT, UMWAIT,
TPAUSE, HLT, or shutdown), the HW bit will be set to indicate this. Hardware Duty Cycling (see Section 14.5, “Hard-
ware Duty Cycling (HDC)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B) is an
example of such a case.

Application When transitioning from C0.0 to a deeper C-state, the PWRE packet will be followed by an EXSTOP. If that EXSTOP
packet has the IP bit set, then the following FUP will provide the IP at which the C-state entry occurred. Subsequent
PWRE packets generated before the next PWRX should bind to the same IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0

2 HW Reserved

3 Resolved Thread C-State Resolved Thread Sub C-State

35-62 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.25 Power Exit (PWRX) Packet

Table 35-45. PWRX Packet Definition

Name PWRX Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

Transition from a C-state deeper than C0.0 to C0.

Description Indicates processor return to thread C0 from a C-state deeper than C0.0.
For return from some highly optimized C0 sub-C-states, such as C0.1, no PWRX packet is generated.
The Last Core C-State field provides the MWAIT encoding for the core C-state at the time of the wake. The Deepest
Core C-State provides the MWAIT encoding for the deepest core C-state achieved during the sleep session, or since
leaving thread C0. MWAIT encodings for C-states can be found in Table 4-11 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B. Note that these values reflect only the core C-state, and hence will
not exceed the maximum supported core C-state, even if deeper C-states can be requested.
The Wake Reason field is one-hot, encoded as follows:

Application PWRX will always apply to the same IP as the PWRE. The time of wake can be discerned from (optional) timing pack-
ets that precede PWRX.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0

2 Last Core C-State Deepest Core C-State

3 Reserved Wake Reason

4 Reserved

5 Reserved

6 Reserved

Bit Field Meaning

0 Interrupt Wake due to external interrupt received.

1 Timer Deadline Wake due to timer expiration, such as
UMWAIT/TPAUSE TSC-quanta.

2 Store to Monitored Address Wake due to store to monitored address.

3 HW Wake Wake due to hardware autonomous condition,
such as HDC.

Vol. 3C 35-63

INTEL® PROCESSOR TRACE

35.4.2.26 Block Begin Packet (BBP)

Table 35-46. Block Begin Packet Definition

Name BBP

Packet Format

Dependencies TriggerEn Generation
Scenario

PEBS event, if IA32_PEBS_ENABLE.OUTPUT=1.

Description This packet indicates the beginning of a block of packets which are collectively tied to a single event or instruction.
The size of the block item payloads within this block is provided by the Size (SZ) bit:
SZ=0: 8-byte block items
SZ=1: 4-byte block items
The meaning of the BIP payloads is provided by the Type field:

Application A BBP will always be followed by a Block End Packet (BEP), and when the block is generated while ContextEn=1
that BEP will have IP=1 and be followed by a FUP that provides the IP to which the block should be bound. Note
that, in addition to BEP, a block can be terminated by a BBP (indicating the start of a new block) or an OVF packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 1

2 SZ Reserved Type[4:0]

BBP.Type Block name

0x00 Reserved

0x01 General-Purpose Registers

0x02..0x03 Reserved

0x04 PEBS Basic

0x05 PEBS Memory

0x06..0x07 Reserved

0x08 LBR Block 0

0x09 LBR Block 1

0x0A LBR Block 2

0x0B..0x0F Reserved

0x10 XMM Registers

0x11..0x1F Reserved

35-64 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.27 Block Item Packet (BIP)

BIP State Value Encodings

The table below provides the encoding values for all defined block items. State items that are larger than 8 bytes,
such as XMM register values, are broken into multiple 8-byte components. BIP packets with Size=1 (4 byte
payload) will provide only the lower 4 bytes of the associated state value.

Table 35-47. Block Item Packet Definition

Name BIP

Packet Format If the preceding BBP.SZ=0:

If the preceding BBP.SZ=1:

Dependencies TriggerEn Generation
Scenario

See BBP.

Description The size of the BIP payload is determined by the Size field in the preceding BBP packet.
The BIP header provides the ID value that, when combined with the Type field from the preceding BBP, uniquely
identifies the state value held in the BIP payload. See Table 35-48 below for the complete list.

Application See BBP.

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

General-Purpose Registers

0x01 0x00 R/EFLAGS

0x01 0x01 R/EIP

0x01 0x02 R/EAX

0x01 0x03 R/ECX

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

5 Payload[39:32]

6 Payload[47:40]

7 Payload[55:48]

8 Payload[63:56]

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

Vol. 3C 35-65

INTEL® PROCESSOR TRACE

0x01 0x04 R/EDX

0x01 0x05 R/EBX

0x01 0x06 R/ESP

0x01 0x07 R/EBP

0x01 0x08 R/ESI

0x01 0x09 R/EDI

0x01 0x0A R8

0x01 0x0B R9

0x01 0x0C R10

0x01 0x0D R11

0x01 0x0E R12

0x01 0x0F R13

0x01 0x10 R14

0x01 0x11 R15

PEBS Basic Info (Section 18.9.2.2.1)

0x04 0x00 Instruction Pointer

0x04 0x01 Applicable Counters

0x04 0x02 Timestamp

PEBS Memory Info (Section 18.9.2.2.2)

0x05 0x00 MemAccessAddress

0x05 0x01 MemAuxInfo

0x05 0x02 MemAccessLatency

0x05 0x03 TSXAuxInfo

LBR_0

0x08 0x00 LBR[TOS-0]_FROM_IP

0x08 0x01 LBR[TOS-0]_TO_IP

0x08 0x02 LBR[TOS-0]_INFO

0x08 0x03 LBR[TOS-1]_FROM_IP

0x08 0x04 LBR[TOS-1]_TO_IP

0x08 0x05 LBR[TOS-1]_INFO

0x08 0x06 LBR[TOS-2]_FROM_IP

0x08 0x07 LBR[TOS-2]_TO_IP

0x08 0x08 LBR[TOS-2]_INFO

0x08 0x09 LBR[TOS-3]_FROM_IP

0x08 0x0A LBR[TOS-3]_TO_IP

0x08 0x0B LBR[TOS-3]_INFO

0x08 0x0C LBR[TOS-4]_FROM_IP

0x08 0x0D LBR[TOS-4]_TO_IP

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

35-66 Vol. 3C

INTEL® PROCESSOR TRACE

0x08 0x0E LBR[TOS-4]_INFO

0x08 0x0F LBR[TOS-5]_FROM_IP

0x08 0x10 LBR[TOS-5]_TO_IP

0x08 0x11 LBR[TOS-5]_INFO

0x08 0x12 LBR[TOS-6]_FROM_IP

0x08 0x13 LBR[TOS-6]_TO_IP

0x08 0x14 LBR[TOS-6]_INFO

0x08 0x15 LBR[TOS-7]_FROM_IP

0x08 0x16 LBR[TOS-7]_TO_IP

0x08 0x17 LBR[TOS-7]_INFO

0x08 0x18 LBR[TOS-8]_FROM_IP

0x08 0x19 LBR[TOS-8]_TO_IP

0x08 0x1A LBR[TOS-8]_INFO

0x08 0x1B LBR[TOS-9]_FROM_IP

0x08 0x1C LBR[TOS-9]_TO_IP

0x08 0x1D LBR[TOS-9]_INFO

0x08 0x1E LBR[TOS-10]_FROM_IP

0x08 0x1F LBR[TOS-10]_TO_IP

LBR_1

0x09 0x00 LBR[TOS-10]_INFO

0x09 0x01 LBR[TOS-11]_FROM_IP

0x09 0x02 LBR[TOS-11]_TO_IP

0x09 0x03 LBR[TOS-11]_INFO

0x09 0x04 LBR[TOS-12]_FROM_IP

0x09 0x05 LBR[TOS-12]_TO_IP

0x09 0x06 LBR[TOS-12]_INFO

0x09 0x07 LBR[TOS-13]_FROM_IP

0x09 0x08 LBR[TOS-13]_TO_IP

0x09 0x09 LBR[TOS-13]_INFO

0x09 0x0A LBR[TOS-14]_FROM_IP

0x09 0x0B LBR[TOS-14]_TO_IP

0x09 0x0C LBR[TOS-14]_INFO

0x09 0x0D LBR[TOS-15]_FROM_IP

0x09 0x0E LBR[TOS-15]_TO_IP

0x09 0x0F LBR[TOS-15]_INFO

0x09 0x10 LBR[TOS-16]_FROM_IP

0x09 0x11 LBR[TOS-16]_TO_IP

0x09 0x12 LBR[TOS-16]_INFO

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

Vol. 3C 35-67

INTEL® PROCESSOR TRACE

0x09 0x13 LBR[TOS-17]_FROM_IP

0x09 0x14 LBR[TOS-17]_TO_IP

0x09 0x15 LBR[TOS-17]_INFO

0x09 0x16 LBR[TOS-18]_FROM_IP

0x09 0x17 LBR[TOS-18]_TO_IP

0x09 0x18 LBR[TOS-18]_INFO

0x09 0x19 LBR[TOS-19]_FROM_IP

0x09 0x1A LBR[TOS-19]_TO_IP

0x09 0x1B LBR[TOS-19]_INFO

0x09 0x1C LBR[TOS-20]_FROM_IP

0x09 0x1D LBR[TOS-20]_TO_IP

0x09 0x1E LBR[TOS-20]_INFO

0x09 0x1F LBR[TOS-21]_FROM_IP

LBR_2

0x0A 0x00 LBR[TOS-21]_TO_IP

0x0A 0x01 LBR[TOS-21]_INFO

0x0A 0x02 LBR[TOS-22]_FROM_IP

0x0A 0x03 LBR[TOS-22]_TO_IP

0x0A 0x04 LBR[TOS-22]_INFO

0x0A 0x05 LBR[TOS-23]_FROM_IP

0x0A 0x06 LBR[TOS-23]_TO_IP

0x0A 0x07 LBR[TOS-23]_INFO

0x0A 0x08 LBR[TOS-24]_FROM_IP

0x0A 0x09 LBR[TOS-24]_TO_IP

0x0A 0x0A LBR[TOS-24]_INFO

0x0A 0x0B LBR[TOS-25]_FROM_IP

0x0A 0x0C LBR[TOS-25]_TO_IP

0x0A 0x0D LBR[TOS-25]_INFO

0x0A 0x0E LBR[TOS-26]_FROM_IP

0x0A 0x0F LBR[TOS-26]_TO_IP

0x0A 0x10 LBR[TOS-26]_INFO

0x0A 0x11 LBR[TOS-27]_FROM_IP

0x0A 0x12 LBR[TOS-27]_TO_IP

0x0A 0x13 LBR[TOS-27]_INFO

0x0A 0x14 LBR[TOS-28]_FROM_IP

0x0A 0x15 LBR[TOS-28]_TO_IP

0x0A 0x16 LBR[TOS-28]_INFO

0x0A 0x17 LBR[TOS-29]_FROM_IP

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

35-68 Vol. 3C

INTEL® PROCESSOR TRACE

0x0A 0x18 LBR[TOS-29]_TO_IP

0x0A 0x19 LBR[TOS-29]_INFO

0x0A 0x1A LBR[TOS-30]_FROM_IP

0x0A 0x1B LBR[TOS-30]_TO_IP

0x0A 0x1C LBR[TOS-30]_INFO

0x0A 0x1D LBR[TOS-31]_FROM_IP

0x0A 0x1E LBR[TOS-31]_TO_IP

0x0A 0x1F LBR[TOS-31]_INFO

XMM Registers

0x10 0x00 XMM0_Q0

0x10 0x01 XMM0_Q1

0x10 0x02 XMM1_Q0

0x10 0x03 XMM1_Q1

0x10 0x04 XMM2_Q0

0x10 0x05 XMM2_Q1

0x10 0x06 XMM3_Q0

0x10 0x07 XMM3_Q1

0x10 0x08 XMM4_Q0

0x10 0x09 XMM4_Q1

0x10 0x0A XMM5_Q0

0x10 0x0B XMM5_Q1

0x10 0x0C XMM6_Q0

0x10 0x0D XMM6_Q1

0x10 0x0E XMM7_Q0

0x10 0x0F XMM7_Q1

0x10 0x10 XMM8_Q0

0x10 0x11 XMM8_Q1

0x10 0x12 XMM9_Q0

0x10 0x13 XMM9_Q1

0x10 0x14 XMM10_Q0

0x10 0x15 XMM10_Q1

0x10 0x16 XMM11_Q0

0x10 0x17 XMM11_Q1

0x10 0x18 XMM12_Q0

0x10 0x19 XMM12_Q1

0x10 0x1A XMM13_Q0

0x10 0x1B XMM13_Q1

0x10 0x1C XMM14_Q0

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

Vol. 3C 35-69

INTEL® PROCESSOR TRACE

35.4.2.28 Block End Packet (BEP)

35.5 TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. The VMM can
configure specific VMX controls to control what virtualization-specific data is included within the trace packets (see
Section 35.5.1 for details). The VMM can also configure the VMCS to limit tracing to non-root operation, or to trace
across both root and non-root operation. The VMCS controls exist to simplify virtualization of Intel PT for guest use,
including the “Clear IA32_RTIT_CTL” exit control (See Section 24.7.1), “Load IA32_RTIT_CTL” entry control (See
Section 24.8.1), and “Intel PT uses guest physical addresses” execution control (See Section 25.5.3).
For older processors that do not support these VMCS controls, the MSR-load areas used by VMX transitions can be
employed by the VMM to restrict tracing to the desired context. See Section 35.5.2 for details. Tracing with SMM
Transfer Monitor is described in Section 35.6.

35.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, a decoder in the host or VMM context can identify the occurrences of VMX
transitions with the aid of VMX-specific packets. There are two kinds of packets relevant to VMX:
• VMCS packet. The VMX transitions of individual VMs can be distinguished by a decoder using the VMCS-

pointer field in a VMCS packet. A VMCS packet is sent on a successful execution of VMPTRLD, and its VMCS-
pointer field stores the VMCS pointer loaded by that execution. See Section 35.4.2.15 for details.

• The NR (non-root) bit in a PIP packet. Normally, the NR bit is set in any PIP packet generated in VMX non-
root operation. In addition, PIP packets are generated with each VM entry and VM exit. Thus a transition of the
NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of
a VM exit.

There are VMX controls that a VMM can set to conceal some of this VMX-specific information (by suppressing its
recording) and thereby prevent it from leaking across virtualization boundaries. There is one of these controls
(each of which is called “conceal VMX from PT”) of each type of VMX control.

0x10 0x1D XMM14_Q1

0x10 0x1E XMM15_Q0

0x10 0x1F XMM15_Q1

Table 35-49. Block End Packet Definition

Name BEP

Packet Format

Dependencies TriggerEn Generation
Scenario

See BBP.

Description Indicates the end of a packet block. The IP bit indicates if a FUP will follow, and will be set if ContextEn=1.

Application The block, from initial BBP to the BEP, binds to the FUP IP, if IP=1, and consumes the FUP.

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 0 1 1 0 0 1 1

35-70 Vol. 3C

INTEL® PROCESSOR TRACE

The 0-settings of these VMX controls enable all VMX-specific packet information. The scenarios that would use
these default settings also do not require the VMM to use VMX MSR-load areas to enable and disable trace-packet
generation across VMX transitions.
If IA32_VMX_MISC[bit 14] reports 0, the 1-settings of the VMX controls in Table 35-50 are not supported, and
VM entry will fail on any attempt to set them.

35.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host executive
can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be modi-
fied across VMX transitions.
For tracing scenarios that collect packets only within VMX root operation or only within VMX non-root operation, the
VMM can toggle IA32_RTIT_CTL.TraceEn on VMX transitions.

35.5.2.1 System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the relevant VMX
controls clear to allow VMX-specific packets to provide information across VMX transitions.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are
shown in Table 35-51.

Table 35-50. VMX Controls For Intel Processor Trace

Type of VMX
Control

Bit
Position1

NOTES:

1. These are the positions of the control bits in the relevant VMX control fields.

Value Behavior

Secondary
processor-based
VM-execution
control

19 0 Each PIP generated in VM non-root operation will set the NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure that the decoder
knows which guest is currently in use.

1 Each PIP generated in VMX non-root operation will clear the NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

VM-exit control 24 0 Each VM exit generates a PIP in which the NR bit is clear.

In addition, SMM VM exits generate VMCS packets.

1 VM exits do not generate PIPs, and no VMCS packets are generated on SMM VM exits.

VM-entry control 17 0 Each VM entry generates a PIP in which the NR bit is set (except VM entries that return
from SMM to VMX root operation).

In addition, VM entries that return from SMM generate VMCS packets.

1 VM entries do not generate PIPs, and no VMCS packets are generated on VM entries that
return from SMM.

Vol. 3C 35-71

INTEL® PROCESSOR TRACE

Since the VMX controls that suppress packet generation are cleared, a VMCS packet will be included in all PSB+ for
this usage scenario. Additionally, VMPTRLD will generate such a packet. Thus the decoder can distinguish the
execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report
CPUID.(EAX=07H, ECX=0):EBX[bit 26] as 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a
VMM’s use of the TSC offsetting or TSC scaling VMX controls (see Chapter 25, “VMX Non-Root Operation”). In this
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC
packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in
VMX root operation. The VMM can supply this information to the decoder.

35.5.2.2 Guest-Only Tracing
A VMM can configure trace-packet generation while in VMX non-root operation for guests executing normally. This
is accomplished by utilizing VMCS controls to manipulate the guest IA32_RTIT_CTL value on VMX transitions. For
older processors that do not support these VMCS controls, a VMM can use the VMX MSR-load areas on VM exits
(see Section 24.7.2, “VM-Exit Controls for MSRs”) and VM entries (see Section 24.8.2, “VM-Entry Controls for
MSRs”) to limit trace-packet generation to the guest environment.
For this usage, VM-entry is programmed to enable trace packet generation, while VM-exit is programmed to clear
IA32_RTIT_CTL.TraceEn so as to disable trace-packet generation in the host. Further, if it is preferred that the
guest packet stream contain no indication that execution was in VMX non-root operation, the VMM should set to
1 all the VMX controls enumerated in Table 35-50.

35.5.2.3 Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state,
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet
normally generated on the CR3 write will be missing.

Table 35-51. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the guest flow the VM exit occurred. This is important,
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that the logical processor
is entering VMX root operation. This allows the decoder to identify the change of executing
context from guest to host and load the appropriate set of binaries to continue decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX root
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new guest CR3 value, as well as indication that the logical
processor is entering VMX non-root operation. This allows the decoder to identify the change
of executing context from host to guest and load the appropriate set of binaries to continue
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX non-
root operation. This should match the RIP loaded from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

35-72 Vol. 3C

INTEL® PROCESSOR TRACE

To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it
into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned
with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

35.5.2.4 TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in CPUID
leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will allow the
decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose frequency is
indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency to the Max
Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be unable to prop-
erly track time in the trace. See Section 35.8.3 for details on tracking time within an Intel PT trace.

35.5.2.5 Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be
generated, depending on implementation choice, and the point of failure.

35.5.2.6 VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some packets
(FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

35.6 TRACING AND SMM TRANSFER MONITOR (STM)
The SMM-transfer monitor (STM) is a VMM that operates inside SMM while in VMX root operation. An STM operates
in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a
VM entry to the VM in VMX non-root operation or the executive monitor in VMX root operation.
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 35.5.
As a result, on a SMM VM exit resulting from #SMI, TraceEn is neither saved nor cleared by default. Software can
save the state of the trace configuration MSRs and clear TraceEn using the MSR load/save lists.

Table 35-52. Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall
through to next IP)

Late Failure (VM-exit like)

System-Wide No use of “Load
IA32_RTIT_CTL” entry
control or VM-entry
MSR-load area

TIP (NextIP) PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section
35.2.7.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only “Load IA32_RTIT_CTL”
entry control or VM-
entry MSR-load area
used to clear TraceEn

TIP (NextIP) TraceEn 0->1 Packets (See Section 35.2.7.3), TIP(HostIP)

VM Only “Load IA32_RTIT_CTL”
entry control or VM-
entry MSR-load area
used to set TraceEn

None None

Vol. 3C 35-73

INTEL® PROCESSOR TRACE

35.7 PACKET GENERATION SCENARIOS
Table 35-53 and Table 35-55 illustrate the packets generated in various scenarios. In the heading row, PacketEn is
abbreviated as PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while Trig-
gerEn=1 and Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet
generation are marked “D.C.” Packets followed by a “?” imply that these packets depend on additional factors,
which are listed in the “Other Dependencies” column.
There are additional scenarios, not covered below, where PSB+ packets (Section 35.3.7) may be generated. These
include periodic PSB+ as well as use of IA32_RTIT_CTL.InjectPsbPmiOnEnable[56]=1 to preserve PSBs.
The following acronyms are used in the packet examples below:
• CLIP - Current LIP
• NLIP - Next Sequential LIP
• BLIP - Branch Target LIP
In Table 35-53, PktEn is evaluated based on TriggerEn & ContextEn & FilterEn & BranchEn.

Table 35-53. Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

1a Normal non-jump operation 0 0 D.C. None

1b Normal non-jump operation 1 1 1 None

2a WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

2b WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

PSB, PSBEND (see Sec-
tion 35.4.2.17)

2d WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
MODE.Exec, TIP.PGE(NLIP)

2e WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 1 1 MODE.Exec,
TIP.PGE(NLIP), PSB,
PSBEND (see Section
35.4.2.8, 35.4.2.7,
35.4.2.13,35.4.2.15,
35.4.2.17)

3a WRMSR that changes TraceEn 1 -> 0 0 0 D.C. None

3b WRMSR that changes TraceEn 1 -> 0 1 0 D.C. FUP(CLIP), TIP.PGD()

5a MOV to CR3 0 0 0 None

5b MOV to CR3 0 1 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?),
MODE.Exec?,
TIP.PGE(NLIP)

5c MOV to CR3 1 0 0 TIP.PGD()

5d MOV to CR3 1 1 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0

PIP(NewCR3, NR?)

35-74 Vol. 3C

INTEL® PROCESSOR TRACE

5e MOV to CR3 1 0 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0
*TraceStop if executed in a
TraceStop region

PIP(NewCR3, NR?),
TIP.PGD(NLIP), TraceStop?

5f MOV to CR3 0 0 1 TraceStop if executed in a
TraceStop region

PIP(NewCR3,NR?), Trace-
Stop?

6a Unconditional direct near branch 0 0 D.C. None

6b Unconditional direct near branch 1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

6c Unconditional direct near branch 0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

6d Unconditional direct near branch 1 1 1 None

7a Conditional taken jump or compressed
RET that does not fill up the internal
TNT buffer

0 0 D.C. None

7b Conditional taken jump or compressed
RET

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

7d Conditional taken jump or compressed
RET that fills up the internal TNT buf-
fer

1 1 1 TNT

7e Conditional taken jump or compressed
RET, with empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(), TraceStop?

7f Conditional taken jump or compressed
RET, with non-empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TNT, TIP.PGD(), TraceS-
top?

8a Conditional non-taken jump 0 0 D.C. None

8d Conditional not-taken jump that fills up
the internal TNT buffer

1 1 1 TNT

9a Near indirect jump (JMP, CALL, or
uncompressed RET)

0 0 D.C. None

9b Near indirect jump (JMP, CALL, or
uncompressed RET)

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

9c Near indirect jump (JMP, CALL, or
uncompressed RET)

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

9d Near indirect jump (JMP, CALL, or
uncompressed RET)

1 1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET/SYS*/IRET) 0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-75

INTEL® PROCESSOR TRACE

10b Far Branch (CALL/JMP/RET/SYS*/IRET) 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?,
TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET/SYS*/IRET) 1 0 0 TIP.PGD()

10d Far Branch (CALL/JMP/RET/SYS*/IRET) 1 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?),
TIP.PGD(BLIP), TraceStop?

10e Far Branch (CALL/JMP/RET/SYS*/IRET) 1 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

PIP(NewCR3, NR?)?,
MODE.Exec?, TIP(BLIP)

10f Far Branch (CALL/JMP/RET/SYS*/IRET) 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

11a HW Interrupt 0 0 0 None

11b HW Interrupt 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?,
TIP.PGE(BLIP)

11c HW Interrupt 1 0 0 FUP(NLIP), TIP.PGD()

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-76 Vol. 3C

INTEL® PROCESSOR TRACE

11d HW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(NLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop?

11e HW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(NLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

11f HW Interrupt 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

12a SW Interrupt 0 0 0 None

12b SW Interrupt 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?,
TIP.PGE(BLIP)

12c SW Interrupt 1 0 0 FUP(CLIP), TIP.PGD()

12d SW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop?

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-77

INTEL® PROCESSOR TRACE

12e SW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

12f SW Interrupt 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?,
TraceStop?

13a Exception/Fault 0 0 0 None

13b Exception/Fault 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?,
TIP.PGE(BLIP)

13c Exception/Fault 1 0 0 FUP(CLIP), TIP.PGD()

13d Exception/Fault 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop?

13e Exception/Fault 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-78 Vol. 3C

INTEL® PROCESSOR TRACE

13f Exception/Fault 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?,
TraceStop?

14a SMI (TraceEn cleared) 0 0 D.C. None

14b SMI (TraceEn cleared) 1 0 0 FUP(SMRAM.LIP),
TIP.PGD()

14c SMI (TraceEn cleared) 1 1 1 NA

14f SMI (TraceEn cleared) 1 0 1 NA

15a RSM, TraceEn restored to 0 0 0 0 None

15b RSM, TraceEn restored to 1 0 0 D.C. See WRMSR cases for
packets on enable

15c RSM, TraceEn restored to 1 0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
SMRAM.LIP

15d RSM (TraceEn=1, goes to shutdown) 1 1 1 None

15e RSM (TraceEn=1, goes to shutdown) 1 0 0 None

15f RSM (TraceEn=1, goes to shutdown) 1 0 1 None

16a VM exit 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

PIP(HostCR3, NR=0)?,
TraceStop?

16b VM exit, MSR list sets TraceEn=1 0 0 0 See WRMSR cases for
packets on enable. FUP IP
is VMCSh.LIP

16c VM exit, MSR list sets TraceEn=1 0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
VMCSh.LIP

16e VM exit 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(HostCR3, NR=0)?,
MODE.Exec?,
TIP.PGE(VMCSh.LIP)

16f VM exit, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-79

INTEL® PROCESSOR TRACE

16g VM exit 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD(VMCSh.LIP),
TraceStop?

16h VM exit 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
MODE.Exec,
TIP(VMCSh.LIP)

16i VM exit 0 0 0 None

16j VM exit, ContextEN 1->0 1 0 0 FUP(VMCSg.LIP), TIP.PGD

17a VM entry 0 0 0 None

17b VM entry 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TraceStop?

17c VM entry, MSR load list sets
TraceEn=1

0 0 1 See WRMSR cases for
packets on enable. FUP IP
is VMCSg.LIP

17d VM entry, MSR load list sets
TraceEn=1

0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
VMCSg.LIP

17f VM entry, FilterEN 0->1 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec?,
TIP.PGE(VMCSg.LIP)

17g VM entry, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;

PIP(GuestCR3, NR=1)?,
TIP.PGD

17h VM entry 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TIP.PGD(VMCSg.LIP),
TraceStop?

17i VM entry 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec,
TIP(VMCSg.LIP)

17j VM entry, ContextEN 0->1 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec,
TIP.PGE(VMCSg.LIP)

20a EENTER/ERESUME to non-debug
enclave

0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-80 Vol. 3C

INTEL® PROCESSOR TRACE

20c EENTER/ERESUME to non-debug
enclave

1 0 0 FUP(CLIP), TIP.PGD()

21a EEXIT from non-debug enclave 0 0 D.C. None

21b EEXIT from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

22a AEX/EEE from non-debug enclave 0 0 D.C. None

22b AEX/EEE from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(AEP.LIP)

23a EENTER/ERESUME to debug enclave 0 0 D.C. None

23b EENTER/ERESUME to debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

23c EENTER/ERESUME to debug enclave 1 0 0 FUP(CLIP), TIP.PGD()

23d EENTER/ERESUME to debug enclave 0 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

23e EENTER/ERESUME to debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24b EEXIT from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

24d EEXIT from debug enclave 1 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

24e EEXIT from debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24f EEXIT from debug enclave 0 0 D.C. None

25a AEX/EEE from debug enclave 0 0 D.C. None

25b AEX/EEE from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

 MODE.Exec?,
TIP.PGE(AEP.LIP)

25d AEX/EEE from debug enclave 1 0 1 *For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP),
TIP.PGD(AEP.LIP)

25e AEX/EEE from debug enclave 1 1 1 *MODE.Exec if the value is
different, since last TIP.PGD
*For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP), MODE.Exec?,
TIP(AEP.LIP)

26a XBEGIN/XACQUIRE 0 0 D.C. None

26d XBEGIN/XACQUIRE that does not set
InTX

1 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 1 MODE.TSX(InTX=1,
TXAbort=0), FUP(CLIP)

27a XEND/XRELEASE 0 0 D.C. None

27d XEND/XRELEASE that does not clear
InTX

1 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 1 MODE.TSX(InTX=0,
TXAbort=0), FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-81

INTEL® PROCESSOR TRACE

In Table 35-54, PktEn is evaluated based on (TriggerEn & ContextEn & PwrEvtEn).

28b XABORT(Async XAbort, or other) 0 1 1 MODE.TSX(InTX=0,
TXAbort=1),
TIP.PGE(BLIP)

28c XABORT(Async XAbort, or other) 1 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE.TSX(InTX=0,
TXAbort=1), TIP.PGD
(BLIP), TraceStop?

28d XABORT(Async XAbort, or other) 1 1 1 MODE.TSX(InTX=0,
TXAbort=1), FUP(CLIP),
TIP(BLIP)

28e XABORT(Async XAbort, or other) 0 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE.TSX(InTX=0,
TXAbort=1), TraceStop?

30a INIT (BSP) 0 0 0 None

30b INIT (BSP) 0 0 1 *TraceStop if RESET.LIP is in
a TraceStop region

PIP(0), TraceStop?

30c INIT (BSP) 0 1 1 * MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, PIP(0),
TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 0 FUP(NLIP), TIP.PGD()

30e INIT (BSP) 1 0 1 * PIP if OS=1
*TraceStop if RESET.LIP is in
a TraceStop region

FUP(NLIP), PIP(0),
TIP.PGD, TraceStop?

30f INIT (BSP) 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB
* PIP if OS=1

FUP(NLIP), PIP(0)?,
MODE.Exec?,
TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. D.C. None

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. D.C. * PIP if OS=1 FUP(NLIP), PIP(0)

32a SIPI 0 0 0 None

32c SIPI 0 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP.PGE(SIPI-
LIP)

32d SIPI 1 0 0 TIP.PGD

32e SIPI 1 0 1 *TraceStop if SIPI LIP is in a
TraceStop region

TIP.PGD(SIPILIP); TraceS-
top?

32f SIPI 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP(SIPILIP)

33a MWAIT (to C0) D.C. D.C. D.C. None

33b MWAIT (to higher-numbered C-State,
packet sent on wake)

D.C. D.C. D.C. *TSC if TSCEn=1
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-82 Vol. 3C

INTEL® PROCESSOR TRACE

Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

16.1 MWAIT or I/O redir to MWAIT, gets
#UD or #GP fault

D.C. D.C. D.C. None

16.2 MWAIT or I/O redir to MWAIT,
VM exits

D.C. D.C. D.C. See VM exit examples
(16[a-z] in Table 35-53)
for BranchEn packets.

16.3 MWAIT or I/O redir to MWAIT,
requests C0, or monitor not armed,
or VMX virtual-interrupt delivery

D.C. D.C. D.C. None

16.4a MWAIT(X) or I/O redir to MWAIT,
goes to C-state Y (Y>0)

D.C. 0 0 PWRE(Cx), EXSTOP

16.4b MWAIT(X) or I/O redir to MWAIT,
goes to C-state Y (Y>0)

D.C. D.C. 1 MWAIT(Cy), PWRE(Cx),
EXSTOP(IP), FUP(CLIP)

16.5a MWAIT(X) or I/O redir to MWAIT,
Pending event after resolving to go
to C-state Y (Y>0)

D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP, TSC?,
TMA?, CBR, PWRX(LCC,
DCC, 0)

16.5b MWAIT(X) or I/O redir to MWAIT,
Pending event after resolving to go
to C-state Y (Y>0)

D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP(IP),
FUP(CLIP), TSC?, TMA?,
CBR, PWRX(LCC, DCC, 0)

16.6a MWAIT(5) or I/O redir to MWAIT,
other thread(s) in core in C0/C1

D.C. 0 0 PWRE(C1), EXSTOP

16.6b MWAIT(5) or I/O redir to MWAIT,
other thread(s) in core in C0/C1

D.C. D.C. 1 MWAIT(5), PWRE(C1),
EXSTOP(IP), FUP(CLIP)

16.9a HLT, Triple-fault shutdown, #MC
with CR4.MCE=0, RSM to Cx (x>0)

D.C. 0 0 PWRE(C1), EXSTOP

16.9b HLT, Triple-fault shutdown, #MC
with CR4.MCE=1, RSM to Cx (x>0)

D.C. D.C. PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.10a VMX abort D.C. 0 0 See “VMX Abort” (cases
16* and 18* in Table 35-
53) for BranchEn packets
that precede

PWRE(C1), EXSTOP

16.10b VMX abort D.C. D.C. 1 See “VMX Abort” (cases
16* and 18* in Table 35-
53) for BranchEn packets
that precede

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.11a RSM to Shutdown D.C. 0 0 See “RSM to Shutdown”
(cases 15[def] in Table
35-53) for BranchEn
packets that precede

PWRE(C1), EXSTOP

Vol. 3C 35-83

INTEL® PROCESSOR TRACE

16.11b RSM to Shutdown D.C. D.C. 1 See “RSM to Shutdown”
(cases 15[def] in Table
35-53) for BranchEn
packets that precede

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.12a INIT (BSP) D.C. 0 0 See “INIT (BSP)” (cases
30[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP

16.12b INIT (BSP) D.C. D.C. 1 See “INIT (BSP)” (cases
30[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP(IP),
FUP(NLIP)

16.13a INIT (AP, goes to Wait-for-SIPI) D.C. 0 0 See “INIT (AP, goes to
Wait-for-SIPI)” (cases
31[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP

16.13b INIT (AP, goes to Wait-for-SIPI) D.C. D.C. 1 See “INIT (AP, goes to
Wait-for-SIPI)” (cases
31[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP(IP),
FUP(NLIP)

16.14a Hardware Duty Cycling (HDC) D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXSTOP,
TSC?, TMA?, CBR,
PWRX(CC6, CC6, 0x8)

16.14b Hardware Duty Cycling (HDC) D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXS-
TOP(IP), FUP(NLIP), TSC?,
TMA?, CBR, PWRX(CC6,
CC6, 0x8)

16.15a VM entry to HLT or Shutdown D.C. 0 0 See “VM entry” (cases
17[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP

Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-84 Vol. 3C

INTEL® PROCESSOR TRACE

In Table 35-55, PktEn is evaluated based on (TriggerEn & ContextEn & FilterEn & PTWEn).

16.15b VM entry to HLT or Shutdown D.C. D.C. 1 See “VM entry” (cases
17[a-z] in Table 35-53)
for BranchEn packets that
precede

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.16a EIST in C0, S1/TM1/TM2, or STP-
CLK#

D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP, TSC?, TMA?, CBR

16.16b EIST in C0, S1/TM1/TM2, or STP-
CLK#

D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP(IP), FUP(NLIP),
TSC?, TMA?, CBR

16.17 EIST in Cx (x>0) D.C. D.C. D.C. None

16.18 INTR during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0x1)

See “HW Interrupt” (cases
11[a-z] in Table 35-53)
for BranchEn packets that
follow.

16.18 SMI during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases
14[a-z] in Table 35-53)
for BranchEn packets that
follow.

16.19 NMI during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases
11[a-z] in Table 35-53)
for BranchEn packets that
follow.

16.20 Store to monitored address during
Cx (x>0)

D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0x4)

16.22 #MC, IERR, TSC deadline timer
expiration, or APIC counter under-
flow during Cx (x>0)

D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

Table 35-55. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

16.24a PTWRITE rm32/64, no fault D.C. D.C. D.C. None

16.24b PTWRITE rm32/64, no fault D.C. 0 0 None

Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-85

INTEL® PROCESSOR TRACE

35.8 SOFTWARE CONSIDERATIONS

35.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in
Section Section 35.2.8.3, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to
enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follow:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM.

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible
LIP vs RIP confusion.

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any
other configuration MSRs that were modified.

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and
the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 35.3.1.2), any RSM
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

35.8.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor
that supports Intel PT but may run under any operating system.
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transition
of single-use hardware resources, similar to how performance monitoring tools handle performance monitoring
hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see architec-

tural MSRs with the prefix “IA32_RTIT_” in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4, where “in-use” can be determined by reading the
“enable bits” in the configuration MSRs.

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration
MSRs.

16.24d PTWRITE rm32, no fault D.C. 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 4B,
rm32_value), FUP(CLIP)?

16.24e PTWRITE rm64, no fault D.C. 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 8B,
rm64_value), FUP(CLIP)?

16.25a PTWRITE mem32/64, fault D.C. D.C. D.C. See “Exception/fault”
(cases 13[a-z] in Table
35-53) for BranchEn
packets.

Table 35-55. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-86 Vol. 3C

INTEL® PROCESSOR TRACE

35.8.3 Tracking Time
This section describes the relationships of several clock counters whose update frequencies reside in different
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregu-
larity of the occurrences of various timing packets that store those clock counters.
Intel PT provides time information for three different but related domains:
• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp
counter will continue to increment when the processor is in deep C-States, with the exception of processors
reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can be calculated as
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower than
that of the timestamp counter. The periodic MTC packet is generated based on software-selected multiples of
the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides
elapsed time as measured in processor core clock cycles relative to the last CYC packet.

A decoder can use all or some combination of these packets to track time at different resolutions throughout the
trace packets.

35.8.3.1 Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset;

The CoreCrystalClockValue, also known as the Always Running Timer (ART) value, can provide the coarse-grained
component of the TSC value. P, or the TSC/ART ratio, can be derived from CPUID leaf 15H, as described in Section
35.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum
Non-Turbo (or P1) frequency.
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as
IA32_TSC_ADJUST.

35.8.3.2 Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula
provided in Section 35.8.3.1 above provides the framework for how such an estimate can be calculated from the
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means
to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles
passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the
TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the Adjust-

Vol. 3C 35-87

INTEL® PROCESSOR TRACE

edProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core
crystal clock value of the TSC packet.
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
The TMA.FastCounter field provides the number of AdjustedProcessorCycles since the last crystal clock rising edge,
from which it can be determined the percentage of the next crystal clock cycle that had passed at the time of the
TSC packet.
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by
providing an indication of the time passed between other timing packets (MTCs or TSCs).
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC
values can be used to estimate the AdjustedProcessorCycles component of the timestamp value. The accumulated
CPU cycles will have to be adjusted to account for the difference in frequency between the processor core clock and
the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the CBR
packet, by multiplying the accumulated cycle count value by P1/CBRpayload.
Note that stand-alone TSC packets (that is, TSC packets that are not a part of a PSB+) are typically generated only
when generation of other timing packets (MTCs and CYCs) has ceased for a period of time. Example scenarios
include when Intel PT is re-enabled, or on wake after a sleep state. Thus any calculated estimate of the timestamp
value leading up to a TSC packet will likely result in a discrepancy, which the TSC packet serves to correct.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 35.8.3.4 below for
a method to do so using Intel PT packets.
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in
estimated TSC precision.

35.8.3.3 VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 25, “VMX Non-
Root Operation” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 35.5.2.4 for details.

35.8.3.4 Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it
can be applied to determine the CPU frequency. See Section 35.8.3.1 above for details on the relationship between
TSC, MTC, and CYC.

35-88 Vol. 3C

INTEL® PROCESSOR TRACE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

27.Updates to Chapter 40, Volume 3D
Change bars show changes to Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Typo correction in the EDBGWR instruction.

Vol. 3D 40-1

SGX INSTRUCTION REFERENCES

CHAPTER 40
SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions
(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor), ENCLU
(user), and the ENCLV (virtualization operation) instruction mnemonics. Different leaf functions are encoded by
specifying an input value in the EAX register of the respective instruction mnemonic.

40.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS, ENCLU and ENCLV instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one
or more of the general purpose registers.

40.1.1 ENCLS Register Usage Summary
Table 40-1 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 40-1. Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

ERDINFO 010H (In) RDINFO (In, EA*) EPCPAGE (In, EA)

ETRACKC 011H (In) EPCPAGE (In, EA)

ELDBC 012H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

ELDUC 013H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

EA: Effective Address

40-2 Vol. 3D

SGX INSTRUCTION REFERENCES

40.1.2 ENCLU Register Usage Summary
Table 40-2 summarizes the implicit register usage of user mode enclave instructions.

40.1.3 ENCLV Register Usage Summary
Table 40-3 summarizes the implicit register usage of virtualization operation enclave instructions.

40.1.4 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 40-4 shows the various codes
and the instruction which generated the code. Details of the meaning of the code is provided in the individual
instruction.

Table 40-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 40-3. Register Usage of Virtualization Operation Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EDECVIRTCHILD 00H (In) EPCPAGE (In, EA) SECS (In, EA)

EINCVIRTCHILD 01H (In) EPCPAGE (In, EA) SECS (In, EA)

ESETCONTEXT 02H (In) EPCPAGE (In, EA) Context Value (In, EA)

EA: Effective Address

Table 40-4. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLKSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK, ERDINFO, ETRACKC

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, ERDINFO , EDECVIRTCHILD, EINCVIRTCHILD, ELDBC,
ELDUC, ESETCONTEXT, ETRACKC

Vol. 3D 40-3

SGX INSTRUCTION REFERENCES

40.1.5 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 40-5 appear at various
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU, ELDBC, ELDUC

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK, ETRACKC

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INVALID_COUNTER 25 EDECVIRTCHILD

SGX_PG_NONEPC 26 ERDINFO

SGX_TRACK_NOT_REQUIRED 27 ETRACKC

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 40-5. List of Internal CREG
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

Table 40-4. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

40-4 Vol. 3D

SGX INSTRUCTION REFERENCES

40.1.6 Concurrent Operation Restrictions
Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are
some examples of concurrency that are not allowed.
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves.

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being

removed.
When disallowed operation is detected, a leaf function may do one of the following:
• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.
• Cause a #GP(0) exception.
To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing
the same EPC page.

40.1.6.1 Concurrency Tables of Intel® SGX Instructions
The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the
table has a separate line for each of the EPC pages the leaf function accesses.
For each such EPC page, the base concurrency requirements are detailed as follows:
• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target
page it accesses.

• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page may
be executed concurrently. Other leaf functions that require shared access may run concurrently. For example,
EADD requires a shared access to the SECS page it accesses.

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

CR_CET_SAVE_AREA_PA 64 LP

CR_ENCLAVE_SS_TOKEN_PA 64 LP

CR_SAVE_IA32_U_CET 64 LP

CR_SAVE_SSP 64 LP

Table 40-5. List of Internal CREG
Name Size (Bits) Scope

Vol. 3D 40-5

SGX INSTRUCTION REFERENCES

• Concurrent Access means that any other leaf function that requires any access to the same EPC page may be
executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST page.

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply
only to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EXTEND
and EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.
The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not
met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause an
exception. In addition, the tables detail those conflicts where a VM Exit may be triggered, and list the Exit Qualifi-
cation code that is provided in such cases.

Table 40-6. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EENTERTCS SECS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

40-6 Vol. 3D

SGX INSTRUCTION REFERENCES

EDLBC/ELDUC Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RBX]PAGEINFO.
SECS

Shared SGX_EPC_PAGE
_CONFLICT

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ETRACK SECS [DS:RCX] Shared #GP

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

SECS Implicit Concurrent

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict Access
On

Conflict Access
On

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Table 40-6. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

Vol. 3D 40-7

SGX INSTRUCTION REFERENCES

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EENTERTCS SECS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EDLBC/ELDUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EMODT Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict

40-8 Vol. 3D

SGX INSTRUCTION REFERENCES

40.2 INTEL® SGX INSTRUCTION REFERENCE

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS Implicit Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

NOTES:

1. SGX_CONFLICT VM Exit Qualification =TRACKING_RESOURCE_CONFLICT.

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict

Vol. 3D 40-9

SGX INSTRUCTION REFERENCES

ENCLS—Execute an Enclave System Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 0
results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).
Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF (CPL > 0)
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 CF
ENCLS

ZO V/V NA This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.3

40-10 Vol. 3D

SGX INSTRUCTION REFERENCES

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

Vol. 3D 40-11

SGX INSTRUCTION REFERENCES

ENCLU—Execute an Enclave User Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper
32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 3
results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, or
if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not available
exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE := 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

(* If enclosing app has CET indirect branch tracking enabled then if it is not ERESUME leaf cause a #CP fault *)
(* If the ERESUME is not successful it will leave tracker in WAIT_FOR_ENDBRANCH *)
TRACKER = (CPL == 3) ? IA32_U_CET.TRACKER : IA32_S_CET.TRACKER
IF EndbranchEnabledAndNotSuppressed(CPL) and TRACKER = WAIT_FOR_ENDBRANCH and
 (EAX != ERESUME or CR0.TS or (in SMM) or (CPUID.SGX_LEAF.0:EAX.SE1 = 0) or (CPL < 3))

THEN
Handle CET State machine violation (* see Section 18.3.6, “Legacy Compatibility Treatment” in the

 Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. *)
FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D7
ENCLU

ZO V/V NA This instruction is used to execute non-privileged Intel SGX leaf
functions.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.4

40-12 Vol. 3D

SGX INSTRUCTION REFERENCES

IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE := IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and (CS.D = 0 or DS.B = 0)

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, or EACCEPTCOPY *)

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Vol. 3D 40-13

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.

40-14 Vol. 3D

SGX INSTRUCTION REFERENCES

ENCLV—Execute an Enclave VMM Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLV instruction invokes the virtualization SGX leaf functions for managing enclaves in a virtualized environ-
ment. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The regis-
ters RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In non 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLV instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, if it is
executed in system-management mode (SMM), or not in VMX operation. Additionally, any attempt to execute the
instruction when CPL > 0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG
= 0 or if an attempt is made to invoke an undefined leaf function.
Software in VMX root mode of operation can enable execution of the ENCLV instruction in VMX non-root mode by
setting enable ENCLV execution control in the VMCS. If enable ENCLV execution control in the VMCS is clear, execu-
tion of the ENCLV instruction in VMX non-root mode results in #UD.
When execution of ENCLV instruction in VMX non-root mode is enabled, software in VMX root operation can inter-
cept the invocation of various ENCLV leaf functions in VMX non-root operation by setting the corresponding bits in
the ENCLV-exiting bitmap.
Addresses and operands are 32 bits in 32-bit mode (IA32_EFER.LMA == 0 || CS.L == 0) and are 64 bits in 64-bit
mode (IA32_EFER.LMA == 1 && CS.L == 1). CS.D value has no impact on address calculation.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.OSS = 0
THEN #UD; FI;

IF not in VMX Operation or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD; FI;

IF (CPL > 0)
THEN #UD; FI;

IF in VMX non-root operation
 IF “enable ENCLV exiting“ VM-execution control is 1
 THEN
 IF EAX < 63 and ENCLV_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLV_exiting_bitmap[63] = 1
 THEN VM exit;
 FI;
 ELSE
 #UD; FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 C0
ENCLV

ZO V/V NA This instruction is used to execute privileged SGX leaf functions
that are reserved for VMM use. They are used for managing the
enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.3

Vol. 3D 40-15

SGX INSTRUCTION REFERENCES

FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions.

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLV is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLV is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

40-16 Vol. 3D

SGX INSTRUCTION REFERENCES

40.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-17

SGX INSTRUCTION REFERENCES

EADD—Add a Page to an Uninitialized Enclave

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following:

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted
by Non Enclave

Read/Write access permit-
ted by Enclave

Read access permitted
by Non Enclave

Read access permitted
by Non Enclave

Write access permitted
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 40-8. Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

40-18 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO := DS:TMP_SECINFO;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or

Table 40-9. Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Exclusive #GP Concurrent

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Vol. 3D 40-19

SGX INSTRUCTION REFERENCES

! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)))
THEN #GP(0); FI;

(* If PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST OR

SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST) AND CR4.CET == 0)
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is not available for EADD)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH))) #GP(0); FI;
(* Ensure TCS.PREVSSP is zero *)
IF (CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1) and (DS:RCX.PREVSSP != 0) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

PT_SS_FIRST:
PT_SS_REST:
(* SS pages cannot created on first or last page of ELRANGE *)

40-20 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (TMP_LINADDR = DS:TMP_SECS.BASEADDR or TMP_LINADDR = (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))
THEN #GP(0); FI;

IF (DS:RCX[4087:0] != 0) #GP(0); FI;
IF (SCRATCH_SECINFO.FLAGS.PT == PT_SS_FIRST)

THEN
(* Check that valid RSTORSSP token exists *)
IF (DS:RCX[4095:4088] != ((TMP_LINADDR + 0x1000) | DS:TMP_SECS.ATTRIBUTES.MODE64BIT)) #GP(0); FI;
(* Check the 8 bytes are zero *)
IF (DS:RCX[4095:4088] != 0) #GP(0); FI;

FI;
IF (SCRATCH_SECINFO.FLAGS.W = 0 OR SCRATCH_SECINFO.FLAGS.R = 0 OR
 SCRATCH_SECINFO.FLAGS.X = 1) #GP(0); FI;

BREAK;
ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
SCRATCH_SECINFO.FLAGS.R := 0;
SCRATCH_SECINFO.FLAGS.W := 0;
SCRATCH_SECINFO.FLAGS.X := 0;
(DS:RCX).FLAGS.DBGOPTIN := 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA := 0;
DS:RCX.AEP := 0;
DS:RCX.STATE := 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET := TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] := 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;

Vol. 3D 40-21

SGX INSTRUCTION REFERENCES

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

40-22 Vol. 3D

SGX INSTRUCTION REFERENCES

EAUG—Add a Page to an Initialized Enclave

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following:

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0DH
ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave

Read/Write access permit-
ted by Enclave

Must be zero
Read access permitted by

Non Enclave
Write access permitted by

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 40-10. Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

Vol. 3D 40-23

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
IF (DS:RBX.SECINFO is not 0)

THEN
IF (DS:TMP_SECINFO is not 64B aligned)

THEN #GP(0); FI;
FI;

TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF DS:RBX.SRCPAGE is not 0
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)

Table 40-11. Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

40-24 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (EPC page in use)
THEN

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
FI:

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* copy SECINFO contents into a scratch SECINFO *)
IF (DS:RBX.SECINFO is 0)

THEN
(* allocate and initialize a new scratch secinfo structure *)
SCRATCH_SECINFO.PT := PT_REG;
SCRATCH_SECINFO.R := 1;
SCRATCH_SECINFO.W := 1;
SCRATCH_SECINFO.X := 0;
<< zero out remaining fields of SCRATCH_SECINFO >>

ELSE
(* copy SECINFO contents into scratch secinfo *)
SCRATCH_SECINFO := DS:TMP_SECINFO;
(* check SECINFO flags for misconfiguration *)
(* reserved flags must be zero *)
(* SECINFO.FLAGS.PT must either be PT_SS_FIRST, or PT_SS_REST *)
IF ((SCRATCH_SECINFO reserved fields are not 0) OR
 (SCRATCH_SECINFO.PT is not PT_SS_FIRST, or PT_SS_REST) OR
 ((SCRATCH_SECINFO.FLAGS.R is 0) OR (SCRATCH_SECINFO.FLAGS.W is 0) OR (SCRATCH_SECINFO.FLAGS.X is 1)))

THEN #GP(0); FI;
FI;
(* Check if PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) AND CR4.CET == 0)

THEN #GP(0); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG)

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)

THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)

Vol. 3D 40-25

SGX INSTRUCTION REFERENCES

IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))
THEN #GP(0); FI;

IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST))
THEN

(* SS pages cannot created on first or last page of ELRANGE *)
IF (TMP_LINADDR == DS:TMP_SECS.BASEADDR OR
 TMP_LINADDR == (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))

THEN
#GP(0); FI;

FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] := 0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 1;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

40-26 Vol. 3D

SGX INSTRUCTION REFERENCES

EBLOCK—Mark a page in EPC as Blocked

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 09H
ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-12. EBLOCK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is
eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently
executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-13. Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Vol. 3D 40-27

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Check the EPC page for concurrency*)
IF (EPC page in use)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN

RFLAGS.ZF := 1;
RAX := SGX_PG_INVLD;
GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM)
and EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN
RFLAGS.CF := 1;
IF (EPCM(DS:RCX).PT = PT_SECS)

THEN RAX := SGX_PG_IS_SECS;
ELSE RAX := SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE := EPCM(DS:RCX).BLOCKED;

Table 40-14. Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.

40-28 Vol. 3D

SGX INSTRUCTION REFERENCES

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1)

THEN
RFLAGS.CF := 1;
RAX := SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED := 1

FI;
DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Vol. 3D 40-29

SGX INSTRUCTION REFERENCES

ECREATE—Create an SECS page in the Enclave Page Cache

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES,
CONFIGID and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE
must be at least 2 pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 41.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS
page in EPC.

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by
Non Enclave

Read access permitted by
Non Enclave

Read access permitted by Non
Enclave

Write access permitted by
Enclave

Table 40-15. Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

40-30 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECINFO := DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS)

THEN #GP(0); FI;

TMP_SECS := RCX;

IF (EPC entry in use)
THEN

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;

Table 40-16. Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Vol. 3D 40-31

SGX INSTRUCTION REFERENCES

VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address :=

<< translation of DS:TMP_SECS produced by paging >>;
VMCS.Guest-linear_address := DS:TMP_SECS;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPC entry in use)
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)
THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H)

THEN #GP(0); FI;

IF (XFRM is illegal)
THEN #GP(0); FI;

(* Check legality of CET_ATTRIBUTES *)
IF ((DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_ATTRIBUTES ≠ 0) ||

(DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[5:2] ≠ 0) ||
(CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[1:0] ≠ 0) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) not canonical) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) & 0xFFFFFFFF00000000) ||
(DS:TMP_SECS.CET_ATTRIBUTES.reserved fields not 0) or
 (DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) is not page aligned))
THEN

#GP(0);
FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF (!(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]))

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

(* Compute size of MISC area *)
TMP_MISC_SIZE := compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 41.7.2.2*)

40-32 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_XSIZE := compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF (DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0])))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8])))
THEN #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1)))

THEN #GP(0); FI;

(* Ensure the SECS does not have any unsupported attributes*)
IF (DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

THEN #GP(0); FI;

IF (DS:TMP_SECS reserved fields are not zero)
THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)
IF (((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0))

THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE := SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN := 0;
DS:TMP_SECS.ISVPRODID := 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] := DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] := DS:TMP_SECS.SIZE;
IF (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 1)

THEN
TMPUPDATEFIELD[223:160] := DS:TMP_SECS.CET_LEG_BITMAP_OFFSET;

ELSE
TMPUPDATEFIELD[223:160] := 0;

Vol. 3D 40-33

SGX INSTRUCTION REFERENCES

FI;
TMPUPDATEFIELD[511:160] := 0;
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID := LockedXAdd(CR_NEXT_EID, 1);

(* Initialize the virtual child count to zero *)
DS:TMP_SECS.VIRTCHILDCNT := 0;

(* Load ENCLAVECONTEXT with Address out of paging of SECS *)
<< store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT := PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS := 0;
EPCM(DS:TMP_SECS).R := 0;
EPCM(DS:TMP_SECS).W := 0;
EPCM(DS:TMP_SECS).X := 0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

40-34 Vol. 3D

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

Vol. 3D 40-35

SGX INSTRUCTION REFERENCES

EDBGRD—Read From a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are:

The instruction faults if any of the following:

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.

Op/En EAX RBX RCX

IR EDBGRD (In)
Return error
code (Out)

Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave

Table 40-17. EDBGRD Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.

40-36 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

THEN
RFLAGS.ZF := 1;

Table 40-18. Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGRD Target [DS:RCX] Shared #GP

Table 40-19. Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Vol. 3D 40-37

SGX INSTRUCTION REFERENCES

RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT))

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

THEN
TMP_SECS := GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;
IF ((TMP_MODE64 = 1))

THEN RBX[63:0] := (DS:RCX)[63:0];
ELSE EBX[31:0] := (DS:RCX)[31:0];

FI;
ELSE

TMP_64BIT_VAL[63:0] := (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1)

THEN
IF (TMP_64BIT_VAL ≠ 0H)

THEN RBX[63:0] := 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] := 0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H)
THEN EBX[31:0] := 0FFFFFFFFH;
ELSE EBX[31:0] := 0H;

FI;
FI;

(* clear EAX and ZF to indicate successful completion *)
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

40-38 Vol. 3D

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Vol. 3D 40-39

SGX INSTRUCTION REFERENCES

EDBGWR—Write to a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the target location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following:

EDBGWR Faulting Conditions

The error codes are:

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Op/En EAX RBX RCX

IR EDBGWR (In)
Return error
code (Out)

Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

Table 40-20. EDBGWR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

40-40 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)

and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ((EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0))

THEN
RFLAGS.ZF := 1;

Table 40-21. Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGWR Target [DS:RCX] Shared #GP

Table 40-22. Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Vol. 3D 40-41

SGX INSTRUCTION REFERENCES

RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H))

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)
TMP_SECS := GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;

IF ((TMP_MODE64 = 1))
THEN (DS:RCX)[63:0] := RBX[63:0];
ELSE (DS:RCX)[31:0] := EBX[31:0];

FI;

(* clear EAX and ZF to indicate successful completion *)
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

40-42 Vol. 3D

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Vol. 3D 40-43

SGX INSTRUCTION REFERENCES

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized.
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following:

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave
page.

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 40-23. Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

40-44 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does resolve to an EPC page)
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

Table 40-24. Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Vol. 3D 40-45

SGX INSTRUCTION REFERENCES

THEN #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET := EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET := TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := 0; // 48 bytes
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

40-46 Vol. 3D

SGX INSTRUCTION REFERENCES

EINIT—Initialize an Enclave for Execution

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to
execute enclave code.

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 40-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN

MRSIGNER

ATTRIBUTES
MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK
MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES
MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX
EINITTOKEN

Vol. 3D 40-47

SGX INSTRUCTION REFERENCES

EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 40-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0.
Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH.
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with
SECS.ATTRIBUTES.
If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals
IA32_SGX_LEPUBKEYHASH.
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.
If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.
Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These
events includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks,
INIT signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external
interrupts could be inhibited due to blocking by MOV SS blocking or by STI).
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error,
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and
RAX is set to 0.
The error codes are:

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

Table 40-25. EINIT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.
If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.

40-48 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0] := DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] := DS:RDX[2423:0]; // 304 bytes

Table 40-26. Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EINIT SECS [DS:RCX] Shared #GP

Table 40-27. Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized
enclaves.

TMP_KEYDEPENDENCIE
S

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3
modulo MRSIGNER.

Vol. 3D 40-49

SGX INSTRUCTION REFERENCES

(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h)) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT ≠ 00000003h) or (Reserved space is not 0’s))
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) THEN

RFLAGS.ZF := 1;
RAX := SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)

THEN #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS))
THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)
IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

THEN
 RFLAGS.ZF := 1;
 RAX := SGX_INVALID_SIG_STRUCT;
 GOTO EXIT;
FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE := SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

40-50 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_MRSIGNER := SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES := 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
IF (DS:RCX.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIBUTES_MASK ≠ TMP_SIG.CET_ATTRIBUTES &
 TMP_SIG.CET_ATTRIB-UTES_MASK)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT

FI;
FI;

(* If EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

Vol. 3D 40-51

SGX INSTRUCTION REFERENCES

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must not have been created by a configuration beyond the current CPU configuration *)
IF (TMP_TOKEN.CPUSVN must not be a configuration beyond CR_CPUSVN)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN := TMP_TOKEN.ISVSVNLE;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID := TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := TMP_TOKEN.CPUSVNLE;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1))

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_TOKEN.CET_MASKED_ATTRIBUTES_ LE;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;

(* Calculate the derived key*)
TMP_EINITTOKENKEY := derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITTOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

40-52 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Verify EINITTOKEN (RDX) is for this enclave *)
IF ((TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE := TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)
DS:RCX.MRSIGNER := TMP_MRSIGNER;
DS:RCX.ISVEXTPRODID := TMP_SIG.ISVEXTPRODID;
DS:RCX.ISVPRODID := TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN := TMP_SIG.ISVSVN;
DS:RCX.ISVFAMILYID := TMP_SIG.ISVFAMILYID;
DS:RCX.PADDING := TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAGS.ZF := 0;
RAX := 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

Vol. 3D 40-53

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

40-54 Vol. 3D

SGX INSTRUCTION REFERENCES

ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark its State

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The ELDBC/ELDUC leafs are very similar to ELDB and ELDU. They provide an error code on the concurrency conflict
for any of the pages which need to acquire a lock. These include the destination, SECS, and VA slot.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU/ELDBC/ELBUC Memory Parameter Semantics

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as blocked.

EAX = 08H
ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as unblocked.

EAX = 12H
ENCLS[ELDBC]

IR V/V EAX[6] This leaf function behaves lie ELDB but with improved conflict
handling for oversubscription.

EAX = 13H
ENCLS[ELDUC]

IR V/V EAX[6] This leaf function behaves like ELDU but with improved conflict
handling for oversubscription.

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)
Return error
code (Out)

Address of the PAGEINFO
(In)

Address of the EPC page
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave
read access

Non-enclave read
access

Non-enclave read
access

Enclave read/write
access

Read/Write access
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 40-28. ELDB/ELDU/ELDBC/ELBUC Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Vol. 3D 40-55

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in ELDB/ELDU/ELDBC/ELBUC Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

Table 40-29. Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

ELDBC/ELBUC Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RBX]PAGEINFO.SECS Shared SGX_EPC_PAGE_
CONFLICT

Table 40-30. Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

ELDBC/ELBUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes

40-56 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_PCMD := DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)
IF (other instructions accessing EPC)

THEN
 IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)
 THEN
 IF (<<VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address :=

 << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

 IF (<<VMX non-root operation>> AND
 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_ERROR;
VMCS.Exit_qualification.error := SGX_EPC_PAGE_CONFLICT;
VMCS.Guest-physical_address :=

 << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
 RFLAGS.ZF := 1;

 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;

FI;

Vol. 3D 40-57

SGX INSTRUCTION REFERENCES

FI;
FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF (Other instructions modifying VA slot)

THEN
IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

 #GP(0);
FI;

 ELSE (* ELDBC/ELDUC *)
 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;
FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA))
THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] := DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] := 0;

TMP_HEADER.SECINFO := SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD := SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR := DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1))
THEN

IF (DS:TMP_SECS is not 4KByte aligned)
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS) FI;

IF (Other instructions modifying SECS)
THEN

IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)
 #GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;

FI;

40-58 Vol. 3D

SGX INSTRUCTION REFERENCES

FI;

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1))
THEN

TMP_HEADER.EID := DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID := 0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] := DS:TMP_SRCPGE[32767: 0];
TMP_VER := DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} := AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC ≠ DS:TMP_PCMD.MAC))
THEN

RFLAGS.ZF := 1;
RAX := SGX_MAC_COMPARE_FAIL;
GOTO ERROR_EXIT;

FI;

(* Check version before committing *)
IF (DS:RDX ≠ 0)

THEN #GP(0);
ELSE

DS:RDX := TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT := TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX := TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING := TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED := TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR := TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_HEADER.LINADDR;

IF (((EAX = 07H) or (EAX = 12H)) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN

EPCM(DS:RCX).BLOCKED := 1;
ELSE

EPCM(DS:RCX).BLOCKED := 0;
FI;

IF (TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS)
 << store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>
FI;

Vol. 3D 40-59

SGX INSTRUCTION REFERENCES

EPCM(DS:RCX). VALID := 1;

RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

40-60 Vol. 3D

SGX INSTRUCTION REFERENCES

EMODPR—Restrict the Permissions of an EPC Page

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following:

EMODPR Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0EH
ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a
EPC page in an initialized enclave.

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-31. EMODPR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-32. Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPR Target [DS:RCX] Shared #GP

Vol. 3D 40-61

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

(SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0))
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;

Table 40-33. Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

40-62 Vol. 3D

SGX INSTRUCTION REFERENCES

GOTO DONE;
FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR := 1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Vol. 3D 40-63

SGX INSTRUCTION REFERENCES

EMODT—Change the Type of an EPC Page

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following:

EMODT Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0FH
ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-34. EMODT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Table 40-35. Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

40-64 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

Table 40-36. Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-65

SGX INSTRUCTION REFERENCES

FI;

IF (!(EPCM(DS:RCX).PT is PT_REG or
((EPCM(DS:RCX).PT is PT_TCS or PT_SS_FIRST or PT_SS_REST) and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
THEN #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).MODIFIED := 1;
EPCM(DS:RCX).R := 0;
EPCM(DS:RCX).W := 0;
EPCM(DS:RCX).X := 0;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

40-66 Vol. 3D

SGX INSTRUCTION REFERENCES

EPA—Add Version Array

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.
The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0AH
ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 40-37. Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-38. Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent

Vol. 3D 40-67

SGX INSTRUCTION REFERENCES

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] := 0;

EPCM(DS:RCX).PT := PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS := 0;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).RWX := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

40-68 Vol. 3D

SGX INSTRUCTION REFERENCES

ERDINFO—Read Type and Status Information About an EPC Page

Instruction Operand Encoding

Description

This instruction reads type and status information about an EPC page and returns it in a RDINFO structure. The
STATUS field of the structure describes the status of the page and determines the validity of the remaining fields.
The FLAGS field returns the EPCM permissions of the page; the page type; and the BLOCKED, PENDING, MODI-
FIED, and PR status of the page. For enclave pages, the ENCLAVECONTEXT field of the structure returns the value
of SECS.ENCLAVECONTEXT. For non-enclave pages (e.g., VA) ENCLAVECONTEXT returns 0.
For invalid or non-EPC pages, the instruction returns an information code indicating the page's status, in addition
to populating the STATUS field.
ERDINFO returns an error code if the destination EPC page is being modified by a concurrent SGX instruction.
RBX contains the effective address of a RDINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of ERDINFO leaf function.

ERDINFO Memory Parameter Semantics

The instruction faults if any of the following:

ERDINFO Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 10H
ENCLS[ERDINFO]

IR V/V EAX[6] This leaf function returns type and status information about an
EPC page.

Op/En EAX RBX RCX

IR ERDINFO (In)
Return error code

(Out)
Address of a RDINFO structure (In)

Address of the destination EPC page
(In)

RDINFO EPCPAGE

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS
segment limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-39. ERDINFO Return Value in RAX
 Error Code Value Description

No Error 0 ERDINFO successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD Target page is not a valid EPC page.

SGX_PG_NONEPC Page is not an EPC page.

Vol. 3D 40-69

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in ERDINFO Operational Flow

(* check alignment of RDINFO structure (RBX) *)
IF (DS:RBX is not 32Byte Aligned) THEN
 #GP(0); FI;

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
 #GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within EPC) THEN
 RFLAGS.CF := 1;
 RFLAGS.ZF := 0;
 RAX := SGX_PG_NONEPC;
 goto DONE;
FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF = 1;
 RFLAGS.CF = 0;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 RFLAGS.CF = 1;

Table 40-40. Base Concurrency Restrictions of ERDINFO

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Table 40-41. Additional Concurrency Restrictions of ERDINFO

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_RDINFO Linear Address 64 Address of the RDINFO structure.

40-70 Vol. 3D

SGX INSTRUCTION REFERENCES

 RFLAGS.ZF = 0;
 RAX = SGX_PG_INVLD;
 goto DONE;
FI;

(* clear the fields of the RDINFO structure *)
TMP_RDINFO := DS:RBX;
TMP_RDINFO.STATUS := 0;
TMP_RDINFO.FLAGS := 0;
TMP_RDINFO.ENCLAVECONTEXT := 0;

(* store page info in RDINFO structure *)
TMP_RDINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_RDINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_RDINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_RDINFO.FLAGS.PR := EPCM(DS:RCX).PR;
TMP_RDINFO.FLAGS.PAGE_TYPE := EPCM(DS:RCX).PAGE_TYPE;
TMP_RDINFO.FLAGS.BLOCKED := EPCM(DS:RCX).BLOCKED;

(* read SECS.ENCLAVECONTEXT for enclave child pages *)
IF ((EPCM(DS:RCX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RCX).PAGE_TYPE = PT_TCS) or
 (EPCM(DS:RCX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RCX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RCX).PAGE_TYPE = PT_SS_REST)

) THEN
 TMP_SECS := Address of SECS for (DS:RCX);
 TMP_RDINFO.ENCLAVECONTEXT := SECS(TMP_SECS).ENCLAVECONTEXT;
FI;

(* populate enclave information for SECS pages *)
IF (EPCM(DS:RCX).PAGE_TYPE = PT_SECS) THEN
 IF ((VMX non-root mode) and
 (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)
) THEN
 TMP_RDINFO.STATUS.CHILDPRESENT :=
 ((SECS(DS:RCX).CHLDCNT ≠ 0) or
 SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
 ELSE
 TMP_RDINFO.STATUS.CHILDPRESENT := (SECS(DS:RCX).CHLDCNT ≠ 0);
 TMP_RDINFO.STATUS.VIRTCHILDPRESENT :=
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
 TMP_RDINFO.ENCLAVECONTEXT := SECS(DS_RCX).ENCLAVECONTEXT;
 FI;
FI;

RAX := 0;
RFLAGS.ZF := 0;
RFLAGS.CF := 0;

DONE:
(* clear flags *)
RFLAGS.PF := 0;
RFLAGS.AF := 0;

Vol. 3D 40-71

SGX INSTRUCTION REFERENCES

RFLAGS.OF := 0;
RFLAGS.SF := ? 0;

Flags Affected

ZF is set if ERDINFO fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF is set if page is not a valid EPC page or not an EPC page; otherwise cleared.
PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

40-72 Vol. 3D

SGX INSTRUCTION REFERENCES

EREMOVE—Remove a page from the EPC

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Op/En EAX RCX

IR EREMOVE (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 40-42. EREMOVE Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.

Vol. 3D 40-73

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE;
FI;

Table 40-43. Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-44. Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

40-74 Vol. 3D

SGX INSTRUCTION REFERENCES

IF ((EPCM(DS:RCX).PT = PT_VA) OR
((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)))
THEN

EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)
THEN

IF (DS:RCX has an EPC page associated with it)
THEN

RFLAGS.ZF := 1;
RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

 RAX := SGX_CHILD_PRESENT
GOTO ERROR_EXIT

FI;
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

IF (Other threads active using SECS)
THEN

RFLAGS.ZF := 1;
RAX := SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

FI;

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

DONE:
RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Vol. 3D 40-75

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

40-76 Vol. 3D

SGX INSTRUCTION REFERENCES

ETRACK—Activates EBLOCK Checks

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0CH
ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-45. ETRACK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

Table 40-46. Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACK SECS [DS:RCX] Shared #GP

Table 40-47. Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Vol. 3D 40-77

SGX INSTRUCTION REFERENCES

Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS)
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING ≠ 0))

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

 Deliver VMEXIT;
FI;

RFLAGS.ZF := 1;
RAX := SGX_PREV_TRK_INCMPL;
GOTO DONE;

ELSE
RAX := 0;
RFLAGS.ZF := 0;

FI;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.

40-78 Vol. 3D

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Vol. 3D 40-79

SGX INSTRUCTION REFERENCES

ETRACKC—Activates EBLOCK Checks

Instruction Operand Encoding

Description

The ETRACKC instruction is thread safe variant of ETRACK leaf and can be executed concurrently with other CPU
threads operating on the same SECS.
This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACKC Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 11H
ENCLS[ETRACKC]

IR V/V EAX[6] This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR
ETRACK

(In)
Return error code (Out)

Address of the destination EPC page
(In, EA)

Address of the SECS page (In, EA)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-48. ETRACKC Return Value in RAX
 Error Code Value Description

No Error 0 ETRACKC successful.

SGX_EPC_PAGE_CONFLICT 7 Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD 6 Target page is not a VALID EPC page.

SGX_PREV_TRK_INCMPL 17 All processors did not complete the previous tracking sequence.

SGX_TRACK_NOT_REQUIRED 27 Target page type does not require tracking.

Table 40-49. Base Concurrency Restrictions of ETRACKC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

SECS implicit Concurrent

40-80 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ETRACKC Operational Flow

(* check alignment of EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
#GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
#PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 goto DONE_POST_LOCK_RELEASE;
FI;

(* check to make sure the page is valid *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_PG_INVLD;
 GOTO DONE;
FI;

(* find out the target SECS page *)
IF (EPCM(DS:RCX).PT is PT_REG or PT_TCS or PT_TRIM or PT_SS_FIRST or PT_SS_REST) THEN
 TMP_SECS := Obtain SECS through EPCM(DS:RCX).ENCLAVESECS;
ELSE IF (EPCM(DS:RCX).PT is PT_SECS) THEN
 TMP_SECS := Obtain SECS through (DS:RCX);
ELSE
 RFLAGS.ZF := 0;
 RFLAGS.CF := 1;
 RAX := SGX_TRACK_NOT_REQUIRED;
 GOTO DONE;
FI;

Table 40-50. Additional Concurrency Restrictions of ETRACKC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS implicit Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

Vol. 3D 40-81

SGX INSTRUCTION REFERENCES

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason := SGX_CONFLICT;
 VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
 VMCS.Exit_qualification.error := 0;
 VMCS.Guest-physical_address :=

SECS(TMP_SECS).ENCLAVECONTEXT;
 VMCS.Guest-linear_address := 0;
 Deliver VMEXIT;
 FI;

 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 GOTO DONE;
FI;
(* All processors must have completed the previous tracking cycle*)
IF ((TMP_SECS).TRACKING ≠ 0))
THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason := SGX_CONFLICT;
 VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
 VMCS.Exit_qualification.error := 0;
 VMCS.Guest-physical_address :=

SECS(TMP_SECS).ENCLAVECONTEXT;
 VMCS.Guest-linear_address := 0;
 Deliver VMEXIT;
 FI;

 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_PREV_TRK_INCMPL;
 GOTO DONE;
FI;

RFLAGS.ZF := 0;
RFLAGS.CF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ETRACKC fails due to concurrent operations with another SGX instructions or target page is an invalid
EPC page or tracking is not completed on SECS page; otherwise cleared.
CF is set if target page is not of a type that requires tracking; otherwise cleared.
PF, AF, OF and SF are cleared.

40-82 Vol. 3D

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If the memory operand violates access-control policies of DS segment.
If DS segment is unusable.
If the memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

Vol. 3D 40-83

SGX INSTRUCTION REFERENCES

EWB—Invalidate an EPC Page and Write out to Main Memory

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.
The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0BH
ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to
main memory.

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

Table 40-51. EWB Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

Table 40-52. Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-53. Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive

40-84 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EWB Operational Flow

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD := DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DS:TMP_SRCPGE is not 4KByte Aligned))
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16

Vol. 3D 40-85

SGX INSTRUCTION REFERENCES

VMCS.Guest-linear_address := DS:RCX;
 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER) - 1 : 0] := 0;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM)or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)

THEN
RAX := SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX := SGX_NOT_TRACKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)

40-86 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_HEADER.EID := TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX := SGX_CHILD_PRESENT;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI:
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

 RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
TMP_HEADER.EID := 0;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID := 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID := 0;

FI;

TMP_HEADER.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} := AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO
DS:TMP_PCMD.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED := 0;
DS:TMP_PCMD.ENCLAVEID := TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)

Vol. 3D 40-87

SGX INSTRUCTION REFERENCES

IF ([DS.RDX])
THEN

RAX := SGX_VA_SLOT_OCCUPIED
RFLAGS.CF := 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] := TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID := 0;
ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

40-88 Vol. 3D

SGX INSTRUCTION REFERENCES

40.4 INTEL® SGX USER LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-89

SGX INSTRUCTION REFERENCES

EACCEPT—Accept Changes to an EPC Page

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to
an EPC page in the running enclave.

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make
the page inaccessible.

Table 40-54. EACCEPT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.

40-90 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)))
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

Table 40-55. Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 40-56. Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-91

SGX INSTRUCTION REFERENCES

IF (DS:RCX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 0)

THEN
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and
 ((SCRATCH_SECINFO.FLAGS.PR is 1) or
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and
 (SCRATCH_SECINFO.FLAGS.PR is 0) and
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

THEN #GP(0); FI
ELSE

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) AND
 ((SCRATCH_SECINFO.FLAGS.PR is 1) OR
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS OR PT_TRIM) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST or PT_SS_REST) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 1) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0))))

THEN #GP(0); FI;
FI;

(* Check security attributes of the destination EPC page *)
If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or
 ((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)
 and (EPCM(DS:RCX).PT is not PT_SS_FIRST) and (EPCM(DS:RCX).PT is not PT_SS_REST)) or
 (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ((EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT))

40-92 Vol. 3D

SGX INSTRUCTION REFERENCES

THEN
RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF := 1;
RAX := SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
(* check that TCS.PREVSSP is 0 *)
IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) or
((CPUID.(EAX=12H, ECX=1):EAX[6] = 1) AND ((DS:RCX).PREVSSP != 0)))

THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)))

THEN #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

Vol. 3D 40-93

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

40-94 Vol. 3D

SGX INSTRUCTION REFERENCES

EACCEPTCOPY—Initialize a Pending Page

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This
instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page
from another page in the EPC.

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running
enclave.

Table 40-57. EACCEPTCOPY Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

Vol. 3D 40-95

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or
(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX))
THEN #PF(DS:RBX); FI;

Table 40-58. Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-59. Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

40-96 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or (SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] := DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING := 0;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Vol. 3D 40-97

SGX INSTRUCTION REFERENCES

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

40-98 Vol. 3D

SGX INSTRUCTION REFERENCES

EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.2).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see
Section 42.2.3):

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Vol. 3D 40-99

SGX INSTRUCTION REFERENCES

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)))

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

Table 40-60. Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EENTER TCS [DS:RBX] Shared #GP

Table 40-61. Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

40-100 Vol. 3D

SGX INSTRUCTION REFERENCES

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)

Vol. 3D 40-101

SGX INSTRUCTION REFERENCES

IF (TMP_GSLIMIT < TMP_GSBASE)
THEN

IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
FI;

ELSE
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

40-102 Vol. 3D

SGX INSTRUCTION REFERENCES

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE)

THEN #GP(0); FI;

IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1
THEN

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;

Vol. 3D 40-103

SGX INSTRUCTION REFERENCES

(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;
TMP_IA32_U_CET := 0;
TMP_SSP := 0;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* Read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

IF TMP_IA32_U_CET.SH_STK_EN = 1
THEN

TMP_SSP = TCS.PREVSSP;
FI;

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)

40-104 Vol. 3D

SGX INSTRUCTION REFERENCES

CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX := RIP;
RIP := TMP_TARGET;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP;
DS:TMP_SSA.U_RBP := RBP;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;

Vol. 3D 40-105

SGX INSTRUCTION REFERENCES

GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP
SSP := TMP_SSP;

FI;
IA32_U_CET := TMP_IA32_U_CET;

FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

40-106 Vol. 3D

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

Vol. 3D 40-107

SGX INSTRUCTION REFERENCES

EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This fetch returns a
fixed data pattern.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (Out)

Target Address

 Non-Enclave read and execute access

Table 40-62. Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXIT Concurrent

Table 40-63. Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent

40-108 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP := CRIP;
RIP := RBX;

(* Return current AEP in RCX *)
RCX := CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

XCR0 := CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF := CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.

Vol. 3D 40-109

SGX INSTRUCTION REFERENCES

IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Record PREVSSP *)
IF (IA32_U_CET.SH_STK_EN == 1)

THEN CR_TCS_PA.PREVSSP = SSP; FI;

(* Restore enclosing apps CET state from the save registers *)
IA32_U_CET := CR_SAVE_IA32_U_CET;
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN SSP := CR_SAVE_SSP; FI;

(* Update enclosing apps TRACKER if enclosing app has indirect branch tracking enabled *)
IF (CR4.CET = 1 AND IA32_U_CET.ENDBR_EN = 1)

THEN
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS := 0

FI;
FI;

CR_ENCLAVE_MODE := 0;
CR_TCS_PA.STATE := INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.

40-110 Vol. 3D

SGX INSTRUCTION REFERENCES

EGETKEY—Retrieves a Cryptographic Key

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible inputs.
This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:
• The instruction assembles the derivation data for the key based on the Table 40-64.
• Computes derived key using the derivation data and package specific value.
• Outputs the calculated key to the address in RCX.
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware.
These checks may be performed in any order. Thus, an indication by error number of one cause (for example,
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the
address specified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 37.18.1) identifies the key to be provided. The Keyrequest.KeyName field
identifies which type of key is requested.
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 40-64) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 40-64 indicates the value for the field is included from its default location,
identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Op/En EAX RBX RCX

IR EGETKEY (In) Return error code (Out) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access

Vol. 3D 40-111

SGX INSTRUCTION REFERENCES

Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional require-
ments. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's SVN,
respectively.
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the enclave's
ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set and
SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

The error codes are:

Concurrency Restrictions

Table 40-64. Key Derivation

Key Name Attributes
Owner
Epoch

CPU
SVN ISV SVN

ISV
PRODID

ISVEXT
PRODID

ISVFAM
ILYID MRENCLAVE MRSIGNER

CONFIG
ID

CONFIGS
VN RAND

Source

Key
Dependent
Constant

Y :=
SECS.ATTRIBUTES
and
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

CR_SGX
OWNER
EPOCH

Y :=
CPUSVN
Register;

R :=
Req.ISV
SVN;

SECS.
ISVID

SECS.IS
VEXTPR
ODID

SECS.IS
VFAMIL
YID

SECS.
MRENCLAVE

SECS.
MRSIGNER

SECS.CO
NFIGID

SECS.CO
NFIGSVN

Req.
KEYID

R := AttribMask &
SECS.ATTRIBUTES
and
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

R :=
Req.CPU
SVN;

EINITTOKEN Yes Request Yes Request Request Yes No No No Yes No No Request

Report Yes Yes Yes Yes No No No No Yes No Yes Yes Request

Seal Yes Request Yes Request Request Request Request Request Request Request Request Request Request

Provisioning Yes Request No Request Request Yes No No No Yes No No Yes

Provisioning
Seal

Yes Request No Request Request Request Request Request No Yes Request Request Yes

Table 40-65. EGETKEY Return Value in RAX
 Error Code (see Table 40-4) Value Description

No Error 0 EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST software SVN (ISVSVN or CONFIGSVN) is greater than the
enclave's corresponding SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Table 40-66. Base Concurrency Restrictions of EGETKEY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

40-112 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ((DS:RBX is not 512Byte aligned) or (DS:RBX is within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is not within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))

Table 40-67. Additional Concurrency Restrictions of EGETKEY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EGETKEY KEYREQUEST
[DS:RBX]

Concurrent Concurrent Concurrent

OUTPUTDATA
[DS:RCX]

Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_ISVEXTPRODID 16 bytes Temp Space for ISVEXTPRODID.

TMP_ISVPRODID 2 bytes Temp Space for ISVPRODID.

TMP_ISVFAMILYID 16 bytes Temp Space for ISVFAMILYID.

TMP_CONFIGID 64 bytes Temp Space for CONFIGID.

TMP_CONFIGSVN 2 bytes Temp Space for CONFIGSVN.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.

Vol. 3D 40-113

SGX INSTRUCTION REFERENCES

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0))

THEN #GP(0); FI;

TMP_CURRENTSECS := CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)
IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

THEN #GP(0); FI;
(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] := 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES := (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT := DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

(* Compute CET_ATTRIBUTES fields to be included *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES_ MASK & TMP_CURRENTSECS.CET_ATTRIBUTES; FI;
TMP_KEYDEPENDENCIES := 0;

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

(*Include enclave identity?*)

40-114 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_MRENCLAVE := 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
FI;
(*Include enclave author?*)
TMP_MRSIGNER := 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
FI;

(* Include enclave product family ID? *)
 TMP_ISVFAMILYID := 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID := 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID := 0;
 TMP_CONFIGSVN := 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
 TMP_CONFIGSVN := DS:RBX.CONFIGSVN;

FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID := 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;

Vol. 3D 40-115

SGX INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := DS:RBX.CET_ATTRIBUTES _MASK;

FI;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has EINITTOKEN Key capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.EINITTOKEN_KEY = 0)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

40-116 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_KEY:
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;

Vol. 3D 40-117

SGX INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := 0;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Include enclave product family ID? *)
 TMP_ISVFAMILYID := 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID := 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID := 0;
 TMP_CONFIGSVN := 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;

40-118 Vol. 3D

SGX INSTRUCTION REFERENCES

 TMP_CONFIGSVN := DS:RBX.CONFIGSVN;
FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID := 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY := derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] := TMP_OUTPUTKEY;
RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Vol. 3D 40-119

SGX INSTRUCTION REFERENCES

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.

40-120 Vol. 3D

SGX INSTRUCTION REFERENCES

EMODPE—Extend an EPC Page Permissions

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page
permissions will have no effect. This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following:

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC
page.

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 40-68. Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-69. Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Vol. 3D 40-121

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)))
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for misconfigured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0))

THEN #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

40-122 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

Vol. 3D 40-123

SGX INSTRUCTION REFERENCES

EREPORT—Create a Cryptographic Report of the Enclave

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX
(REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following:

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)
Address of REPORTDATA

(In)
Address where the REPORT is

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.

40-124 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ((DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).VALID = 0)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))

Table 40-70. Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Table 40-71. Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA
[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA
[DS:RDX]

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712

Vol. 3D 40-125

SGX INSTRUCTION REFERENCES

THEN #PF(DS:RBX);
FI;

(* Verify RESERVED spaces in TARGETINFO are valid *)
IF (DS:RBX.RESERVED != 0)

THEN #GP(0); FI;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1)
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN := CR_CPUSVN;
TMP_REPORT.ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;
TMP_REPORT.ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
TMP_REPORT.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN := TMP_CURRENTSECS.ISVSVN;
TMP_REPORT.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA := DS:RCX[511:0];
TMP_REPORT.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;

40-126 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_REPORT.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED := 0;
TMP_REPORT.KEYID[255:0] := CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_REPORT.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_REPORT.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_REPORT.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := DS:RBX.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := DS:RBX.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;

(* Calculate the derived key*)
TMP_REPORTKEY := derivekey(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC := cmac(TMP_REPORTKEY, TMP_REPORT[3071:0]);
DS:RDX[3455: 0] := TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

Vol. 3D 40-127

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

40-128 Vol. 3D

SGX INSTRUCTION REFERENCES

ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following:

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.3).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.

Vol. 3D 40-129

SGX INSTRUCTION REFERENCES

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 42.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

THEN #GP(0); FI;

Table 40-72. Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERESUME TCS [DS:RBX] Shared #GP

Table 40-73. Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

40-130 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

Vol. 3D 40-131

SGX INSTRUCTION REFERENCES

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

40-132 Vol. 3D

SGX INSTRUCTION REFERENCES

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

TMP_TARGET := (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE := DS:TMP_GPR.FSBASE;
TMP_GSBASE := DS:TMP_GPR.GSBASE;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

Vol. 3D 40-133

SGX INSTRUCTION REFERENCES

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

TMP_IA32_U_CET := 0;
TMP_SSP := 0;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

TMP_SSP = CR_CET_SAVE_AREA_PA.SSP
TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER;
TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;

IF ((TMP_MODE64 = 1 AND TMP_SSP is not canonical) OR
 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR

40-134 Vol. 3D

SGX INSTRUCTION REFERENCES

 (TMP_SSP is not 4 byte aligned) OR
 (TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR
 (CR_CET_SAVE_AREA_PA.Reserved ≠ 0)) #GP(0); FI;
FI;

FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE := INACTIVE;
#GP(0);

FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

RIP := TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF := DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF := DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF := DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF := DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF := DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF := DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF := DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT := DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC := DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID := DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF := DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM := 0;
IF (RFLAGS.IOPL = 3)

THEN RFLAGS.IF := DS:TMP_GPR.RFLAGS.IF; FI;

Vol. 3D 40-135

SGX INSTRUCTION REFERENCES

IF (TCS.FLAGS.OPTIN = 0)
THEN RFLAGS.TF := 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA := (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE

40-136 Vol. 3D

SGX INSTRUCTION REFERENCES

Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP
SSP := TMP_SSP;

FI;
IA32_U_CET := TMP_IA32_U_CET;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.

Vol. 3D 40-137

SGX INSTRUCTION REFERENCES

If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

40-138 Vol. 3D

SGX INSTRUCTION REFERENCES

40.5 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLV instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-139

SGX INSTRUCTION REFERENCES

EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS

Instruction Operand Encoding

Description

This instruction decrements the SECS VIRTCHILDCNT field. This instruction can only be executed when current
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.

EDECVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following:

EDECVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLV[EDECVIRTCHILD]

IR V/V EAX[5] This leaf function decrements the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EDECVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS
referenced in RCX.

Table 40-74. Base Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent

40-140 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EDECVIRTCHILD Operational Flow

EDECVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
 RFLAGS.ZF = 1;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

Table 40-75. Additional Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

Error Value Description

No Error 0 EDECVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to decrement counter that is already zero.

Vol. 3D 40-141

SGX INSTRUCTION REFERENCES

 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))
THEN

 (* get the SECS of DS:RBX *)
 TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
 (* get the physical address of DS:RBX *)
 TMP_SECS := Physical_Address(DS:RBX);
ELSE
 (* EDECVIRTCHILD called on page of incorrect type *)
 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
 #GP(0); FI;

(* Atomically decrement virtchild counter and check for underflow *)
Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);
IF (There was an underflow) THEN
 Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);
 RFLAGS.ZF := 1;
 RAX := SGX_INVALID_COUNTER;
 goto DONE;
FI;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EDECVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a VIRT-
CHILDCNT underflow. Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

40-142 Vol. 3D

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

Vol. 3D 40-143

SGX INSTRUCTION REFERENCES

EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS

Instruction Operand Encoding

Description

This instruction increments the SECS VIRTCHILDCNT field. This instruction can only be executed when the current
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create a linear address.
Segment override is not supported.

EINCVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following:

EINCVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLV[EINCVIRTCHILD]

IR V/V EAX[5] This leaf function increments the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EINCVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS
referenced in RCX.

Table 40-76. Base Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent

40-144 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EINCVIRTCHILD Operational Flow

EINCVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
 RFLAGS.ZF = 1;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or
 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))

Table 40-77. Additional Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

Error Value Description

No Error 0 EINCVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

Vol. 3D 40-145

SGX INSTRUCTION REFERENCES

THEN
 (* get the SECS of DS:RBX *)
 TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
 (* get the physical address of DS:RBX *)
 TMP_SECS := Physical_Address(DS:RBX);
ELSE
 (* EINCVIRTCHILD called on page of incorrect type *)
 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
 #GP(0); FI;

(* Atomically increment virtchild counter *)
Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EINCVIRTCHILD fails due to concurrent operation with another SGX instruction; otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

40-146 Vol. 3D

SGX INSTRUCTION REFERENCES

ESETCONTEXT—Set the ENCLAVECONTEXT Field in SECS

Instruction Operand Encoding

Description

The ESETCONTEXT leaf overwrites the ENCLAVECONTEXT field in the SECS. ECREATE and ELD of an SECS set the
ENCLAVECONTEXT field in the SECS to the address of the SECS (for access later in ERDINFO). The ESETCONTEXT
instruction allows a VMM to overwrite the default context value if necessary, for example, if the VMM is emulating
ECREATE or ELD on behalf of the guest.
The content of RCX is an effective address of the SECS page to be updated, RDX contains the address pointing to
the value to be stored in the SECS. The DS segment is used to create linear address. Segment override is not
supported.
The instruction fails if:
• The operand is not properly aligned.
• RCX does not refer to an SECS page.

ESETCONTEXT Memory Parameter Semantics

The instruction faults if any of the following:

ESETCONTEXT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLV[ESETCONTEXT]

IR V/V EAX[5] This leaf function sets the ENCLAVECONTEXT field in SECS.

Op/En EAX RCX RDX

IR ESETCONTEXT (In) Return error code (Out)
Address of the destination EPC page

(In, EA)
Context Value (In, EA)

EPCPAGE CONTEXT

Read access permitted by Enclave Read/Write access permitted by Non Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-78. Base Concurrency Restrictions of ESETCONTEXT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit
Qualification

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Vol. 3D 40-147

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ESETCONTEXT Operational Flow

ESETCONTEXT Return Value in RAX

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
 #GP(0); FI;

 (* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC)THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* check alignment of the CONTEXT field (RDX) *)
IF (DS:RDX is not 8Byte Aligned) THEN
 #GP(0); FI;

 (* Load CONTEXT into local variable *)
TMP_CONTEXT := DS:RDX

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF := 1;
 RFLAGS.CF := 0;
 RAX := SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 #PF(DS:RCX, PFEC.SGX);
FI;

(* check EPC page is an SECS page *)

Table 40-79. Additional Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_CONTEXT CONTEXT 64 Data Value of CONTEXT.

Error Value Description

No Error 0 ESETCONTEXT Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

40-148 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (EPCM(DS:RCX).PT is not PT_SECS) THEN
 #PF(DS:RCX, PFEC.SGX);
FI;

(* load the context value into SECS(DS:RCX).ENCLAVECONTEXT *)
SECS(DS:RCX).ENCLAVECONTEXT := TMP_CONTEXT;

RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ESETCONTEXT fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF, PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

28.Updates to Chapter 42, Volume 3D
Change bars show changes to Chapter 42 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to chapter: Update to Section 42.6.6, “Exception-Handling on PEBS/BTS Loads/Stores after AEX”.

Vol. 3D 42-1

ENCLAVE CODE DEBUG AND PROFILING

CHAPTER 42
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave
instructions.

42.1 CONFIGURATION AND CONTROLS

42.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require an alternate SIGSTRUCT to be generated to debug the enclave.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation.
Enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave will
not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be
required for a debug enclave to run in a meaningful way.
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section
40.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

42.1.2 Tool-Chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, Intel Processor Trace, and performance
monitoring. This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR
to the TCS of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, an
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

42.2 SINGLE STEP DEBUG

42.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending as a trap-class
exception on the instruction boundary immediately after the ENCLS instruction. Additionally, if the instruction is
executed in VMX non-root operation and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is
pending on the instruction boundary immediately after the instruction if the instruction does not fault.

42.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may mask the RFLAGS.TF bit,
and mask the setting of the “monitor trap flag” VM-execution control. In such situations, an exit from the enclave,
either via the EEXIT leaf function or via an AEX unmasks the RFLAGS.TF bit and the “monitor trap flag” VM-execu-

42-2 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING

tion control. The details of this masking/unmasking and the pending of single stepping events across
EENTER/ERESUME/EEXIT/AEX are covered in detail in Section 42.2.3.
If the EFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, and if the EFLAGS.TF is not masked by
the preceding enclave entry, then a single-step debug exception is pending on the instruction boundary immedi-
ately after the ENCLU instruction. Additionally, if the instruction is executed in VMX non-root operation and the
“monitor trap flag” VM-execution control is 1, and if the monitor trap flag is not masked by the preceding enclave
entry, then an MTF VM exit is pending on the instruction boundary immediately after the instruction.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no
single-step debug exception is asserted. In such a situation, if the instruction is executed in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending after the delivery of the fault
(or any nested exception). No MTF VM exit occurs if another VM exit occurs before reaching that boundary on which
an MTF VM exit would be pending.

42.2.3 Single-Stepping Enclave Entry with Opt-out Entry

42.2.3.1 Single Stepping without AEX
Figure 42-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in VMX non-root operation
and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending on the instruction boundary after
EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is the same as the value of RFLAGS.TF at the time of the enclave
entry.

42.2.3.2 Single Step Preempted by AEX Due to Non-SMI Event
Figure 42-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

Figure 42-1. Single Stepping with Opt-out Entry - No AEX

SMI

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF
Handler

Higher Priority
Handler

INIT
#MCSingle-Step #DB Pending

MTF VM Exit Pending

Vol. 3D 42-3

ENCLAVE CODE DEBUG AND PROFILING

In this scenario, if the enclave is executing in VMX non-root operation and the “monitor trap flag” VM-execution
control is 1, an MTF VM exit is pending on the instruction boundary after the AEX. No MTF VM exit occurs if another
VM exit happens before reaching that instruction boundary.
The value of the RFLAGS.TF bit at the end of AEX is the same as the value of RFLAGS.TF at the time of the enclave
entry.

42.2.4 RFLAGS.TF Treatment on AEX
The value of EFLAGS.TF at the end of AEX from an opt-out enclave is same as the value of EFLAGS.TF at the time
of the enclave entry. The value of EFLAGS.TF at the end of AEX from an opt-in enclave is unmodified. The
EFLAGS.TF saved in GPR portion of the SSA on an AEX is 0. For more detail see EENTER and ERESUME in Chapter 5.

42.2.5 Restriction on Setting of TF after an Opt-Out Entry
Enclave entered through an opt-out entry is not allowed to set EFLAGS.TF. The POPF instruction forces RFLAGS.TF
to 0 if the enclave was entered through opt-out entry.

42.2.6 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

42.3 CODE AND DATA BREAKPOINTS

42.3.1 Breakpoint Suppression
Following an opt-out entry:
• Instruction breakpoints are suppressed during execution in an enclave.
• Data breakpoints are not triggered on accesses to the address range defined by ELRANGE.
• Data breakpoints are triggered on accesses to addresses outside the ELRANGE

Figure 42-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary

Event Inside Enclave

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF
Handler

AEX
Handler

Single-Step #DB Pending

MTF VM Exit Pending

AEX

Higher Priority
Handler

42-4 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING

Following an opt-in entry instruction and data breakpoints are not suppressed.
The processor does not report any matches on debug breakpoints that are suppressed on enclave entry. However,
the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

42.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
A debug exception caused by the single-step execution mode or when a data breakpoint condition was met causes
the processor to perform an AEX. Following such an AEX, the processor reports in the debug status register (DR6)
matches of the new instruction pointer (the AEP address) in a breakpoint address register setup to detect instruc-
tion execution.

42.3.3 RF Treatment on AEX
RF flag value saved in SSA is the same as what would have been pushed on stack if the exception or event causing
the AEX occurred when executing outside an enclave (see Section 17.3.1.1). Following an AEX, the RF flag is 0 in
the synthetic state.

42.3.4 Breakpoint Matching in Intel® SGX Instruction Flows
Implicit accesses made by Intel SGX instructions to EPC regions do not trigger data breakpoints. Explicit accesses
made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE],
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR],
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC operands do not trigger data breakpoints.
Explicit accesses made by the Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]) executed by an
enclave following an opt-in entry, trigger data breakpoints on accesses to their EPC operands. All Intel SGX instruc-
tions trigger data breakpoints on accesses to their non-EPC operands.

42.4 CONSIDERATION OF THE INT1 AND INT3 INSTRUCTIONS
This section considers the operation of the INT1 and INT3 instructions when executed inside an enclave. These are
the instructions with opcodes F1 and CC, respectively, and not INT n (with opcode CD) with value 1 or 3 for n.

42.4.1 Behavior of INT1 and INT3 Inside an Enclave
An execution of either INT1 or INT3 inside an enclave results in a fault-class exception. Following an opt-out entry,
execution of either instruction results in an invalid-opcode exception (#UD). Following opt-in entry, INT1 results in
a debug exception (#DB) and INT3 delivers a breakpoint exception (#BP). The normal requirement for INT3 (that
the CPL not be greater than the DPL of descriptor 3 in the IDT) is not enforced.
Because execution of INT1 or INT3 inside an enclave results in a fault, the RIP saved in the SSA on AEX references
the INT1 or INT3 instruction (and not the following instruction). The RIP value saved on the stack (or in the TSS or
VMCS) is that of the AEP.
If execution of INT1 or INT3 inside an enclave causes a VM exit, the event type in the VM-exit interruption informa-
tion field indicates a hardware exception (type 3),1 and the VM-exit instruction length field is saved as zero.

42.4.2 Debugger Considerations
A debugger using INT3 inside an enclave should account for the modified behavior described in Section 42.4.1.
Because INT3 is fault-like inside an enclave, the RIP saved in the SSA on AEX is that of the INT3 instruction. Conse-

1. INT1 would normally indicate a privileged software exception (type 5), and INT3 would normally indicate a software exception (type 6).

Vol. 3D 42-5

ENCLAVE CODE DEBUG AND PROFILING

quently, the debugger must not decrement SSA.RIP for #BP coming from an enclave to re-execute the instruction
at the RIP of the INT3 instruction on a subsequent enclave entry.

42.4.3 VMM Considerations
As described in Section 42.4.1, execution of INT3 inside an enclave delivers #BP with “interruption type” of 3. A
VMM that re-injects #BP into the guest should establish the VM-entry interruption information field using data
saved into the appropriate VMCS fields by the VM exit incident to the #BP (as recommended in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C).
VMMs that create the VM-entry interruption information based solely on the exception vector should take care to
use event type 3 (instead of 6) when they detect a VM exit incident to enclave mode that is due to an exception
with vector 3.

42.5 BRANCH TRACING

42.5.1 BTF Treatment
When software enables single-stepping on branches then:
• Following an opt-in entry using EENTER the processor generates a single step debug exception.
• Following an EEXIT the processor generates a single-step debug exception
Enclave entry using ERESUME (opt-in or opt-out) and an AEX from the enclave do not cause generation of the
single-step debug exception.

42.5.2 LBR Treatment

42.5.2.1 LBR Stack on Opt-in Entry
Following an opt-in entry into an enclave, last branch recording facilities if enabled continued to store branch
records in the LBR stack MSRs as follows:
• On enclave entry using EENTER/ERESUME, the processor push the address of EENTER/ERESUME instruction

into MSR_LASTBRANCH_n_FROM_IP, and the destination address of the EENTER/ERESUME into
MSR_LASTBRANCH_n_TO_IP.

• On EEXIT, the processor pushes the address of EEXIT instruction into MSR_LASTBRANCH_n_FROM_IP, and the
address of EEXIT destination into MSR_LASTBRANCH_n_TO_IP.

• On AEX, the processor pushes RIP saved in the SSA into MSR_LASTBRANCH_n_FROM_IP, and the address of
AEP into MSR_LASTBRANCH_n_TO_IP.

• For every branch inside the enclave, a branch record is pushed on the LBR stack.

Figure 42-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the
instruction at the end of the arrow.

42-6 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING

42.5.2.2 LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses last branch recording facilities, and enclave exit after an opt-out entry
un-suppresses last branch recording facilities.
Opt-out entry into an enclave does not push any record on LBR stack.
If last branch recording facilities were enabled at the time of enclave entry, then EEXIT following such an enclave
entry pushes one record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address
of the instruction (EENTER or ERESUME) that was used to enter the enclave, while the
MSR_LASTBRANCH_n_TO_IP of such record holds linear address of the destination of EEXIT.
Additionally, if last branch recording facilities were enabled at the time of enclave entry, then an AEX after such an
entry pushes one record on LBR stack, before pushing record for the event causing the AEX if the event pushes a
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction
(EENTER or ERESUME) that was used to enter the enclave, while MSR_LASTBRANCH_n_TO_IP of the new record
holds linear address of the AEP. If the event causing AEX pushes a record on LBR stack, then the
MSR_LASTBRANCH_n_FROM_IP for that record holds linear address of the AEP.
Figure 42-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address
of the instruction at the end of the arrow.

Figure 42-3. LBR Stack Interaction with Opt-in Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

Inst4

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault

Vol. 3D 42-7

ENCLAVE CODE DEBUG AND PROFILING

42.5.2.3 Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX
operations are always non-HLE/non-RTM records.
EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in MSR_LBR_SELECT
controls filtering of the new records introduced by Intel SGX.

42.6 INTERACTION WITH PERFORMANCE MONITORING

42.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti
Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in various
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions. If the ASCI bit is set, the contents in various performance monitoring counters can be affected by
the direct or indirect consequence of Intel SGX protection of enclave code executing in the processor.

42.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring logic to observe the contribution of enclave code executing
in the processor. Thus the contents of performance monitoring counters does not distinguish between contribution
originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work as defined
in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is not
set.

Figure 42-4. LBR Stack Interaction with Opt-out Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault

42-8 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING

42.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter,
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx will
stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record
generation will also be suppressed. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is set.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count
only MyThread while an opt-out enclave is executing on the other thread.

42.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity
(including PEBS) on that logical processor that was suppressed is unsuppressed.
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to
AnyThread.

42.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction
execution.
If the EENTER and ERESUME leaf functions are performing an opt-in entry report “Eventing RIP” of the ENCLU
instruction if a PEBS record is generated at the end of the instruction execution. On the other hand, if these leaf
functions are performing an opt-out entry, then these leaf functions result in PEBS being suppressed, and no PEBS
record is generated at the end of these instructions.
A PEBS record is generated if there is a PEBS event pending at the end of EEXIT (due to a counter overflowing
during enclave execution or during EEXIT execution). This PEBS record contains the architectural state of the
logical processor at the end of EEXIT. If the enclave was entered via an opt-in entry, then this record reports the
“Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction. If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A PEBS record is generated after the AEX if there is a PEBS event pending at the end of AEX (due to a counter over-
flowing during enclave execution or during AEX execution). This PEBS record contains the synthetic state of the
logical processor that is established at the end of AEX. For opt-in entry, this record has the EVENTING_RIP set to
the RIP saved in the SSA. For opt-out entry, the record has the EVENTING_RIP set to the linear address of
EENTER/ERESUME used for the last enclave entry.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS event is taken at the end
of delivery of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the AEP.

42.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
As noted in Section 17.4.9.2, recording in the BTS buffer or in the PEBS buffer may not operate properly if accesses
to any of the DS save area sections cause page faults or VM exits. Such page faults or VM exits, if they occur, are
delivered immediately to the OS or VMM, and generation of a BTS or PEBS record is skipped and may leave the
buffers in a state where they have a partial BTS or PEBS records.
However, any events that are detected during PEBS/BTS record generation at the end of AEX and before delivering
the Enclave Exiting Event (EEE) cannot be reported immediately to the OS/VMM, as an event window is not open at

Vol. 3D 42-9

ENCLAVE CODE DEBUG AND PROFILING

the end of AEX. Consequently, fault-like events such as page faults, EPT faults, EPT mis-configuration, and
accesses to APIC-access page detected on stores to the PEBS/BTS buffer are not reported, and generation of the
PEBS and/or BTS record at the end of AEX is aborted (this may leave the buffers in a state where they have partial
PEBS or BTS records). Trap-like events detected on stores to the PEBS/BTS buffer (such as debug traps) are
pended until the next instruction boundary, where they are handled according to the architecturally defined
priority. The processor continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery,
VM exit, etc.) after aborting the PEBS/BTS record generation.

42.6.6.1 Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted far branches, and any counters
that are counting such branches are incremented by 1 as a part of retirement of these instructions. Retirement of
these instructions is also counted in any counters configured to count instructions retired.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores.

42-10 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

29.Updates to Appendix C, Volume 3D
Change bars and green text show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--
Changes to chapter: Addition of WBNOINVD details.

Vol. 3D C-1

APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this
(see Section 26.8). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise
noted.

Table C-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was
1. This case includes executions of BOUND that cause #BR, executions of INT1 (they cause #DB), executions of
INT3 (they cause #BP), executions of INTO that cause #OF, and executions of UD0, UD1, and UD2 (they cause
#UD).

2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1.

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

C-2 Vol. 3D

VMX BASIC EXIT REASONS

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use
TPR shadow” VM-execution control is 1. Such VM exits instead use basic exit reason 43.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM exit occurred due to the 1-setting of the “monitor trap flag” VM-execution control (see
Section 25.5.2) or VM entry injected a pending MTF VM exit as part of VM entry (see Section 26.6.2).

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section
26.9).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.7.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

Vol. 3D C-3

VMX BASIC EXIT REASONS

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD or WBNOINVD. Guest software attempted to execute WBINVD or WBNOINVD and the “WBINVD exiting”
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting”
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not
enabled or generated a function-specific condition causing a VM exit.

60 ENCLS. Guest software attempted to execute ENCLS and “enable ENCLS exiting” VM-execution control was 1 and
either (1) EAX < 63 and the corresponding bit in the ENCLS-exiting bitmap is 1; or (2) EAX ≥ 63 and bit 63 in the
ENCLS-exiting bitmap is 1.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

66 SPP-related event. The processor attempted to determine an access’s sub-page write permission and encountered
an SPP miss or an SPP misconfiguration. See Section 28.2.4.2.

67 UMWAIT. Guest software attempted to execute UMWAIT and the “enable user wait and pause” and “RDTSC exiting”
VM-execution controls were both 1.

68 TPAUSE. Guest software attempted to execute TPAUSE and the “enable user wait and pause” and “RDTSC exiting”
VM-execution controls were both 1.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

C-4 Vol. 3D

VMX BASIC EXIT REASONS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

30.Updates to Chapter 1, Volume 4
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers.

--
Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Vol. 4 1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers (order
number 335592) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-
32 architecture processors. Other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System

Programming Guide (order numbers 253668, 253669, 326019 and 332831).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series

1-2 Vol. 4

ABOUT THIS MANUAL

• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,

C1000 series are built from 45 nm and 32 nm processes.
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
• Intel® Xeon® Processor Scalable Family
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family

Vol. 4 1-3

ABOUT THIS MANUAL

• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

1-4 Vol. 4

ABOUT THIS MANUAL

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all eight volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Model-Specific Registers (MSRs). Lists the MSRs available in Intel processors, and describes their
functions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,

Vol. 4 1-5

ABOUT THIS MANUAL

though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any,

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset

1-6 Vol. 4

ABOUT THIS MANUAL

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.

Vol. 4 1-7

ABOUT THIS MANUAL

1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

1-8 Vol. 4

ABOUT THIS MANUAL

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm

See also:
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

https://software.intel.com/sites/default/files/22/30/25602
http://developer.intel.com/products/processor/manuals/index.htm
https://www.intel.com/content/www/us/en/security-center/default.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
https://software.intel.com/en-us/intel-sdp-home
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/security-software-guidance/
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
http://software.intel.com/en-us/articles/intel-compilers/

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

31.Updates to Chapter 2, Volume 4
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers.

--
Changes to this chapter: Updated Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel”, added
MSRs for 11th generation Intel® Core™ processors based on the Tiger Lake microarchitecture, and typo correc-
tions as necessary.

Vol. 4 2-1

CHAPTER 2
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with
the WRMSR instructions. The scope of an MSR defines the set of processors that access the same MSR with RDMSR
and WRMSR. Thread-scope MSRs are unique to every logical processor. Core-scope MSRs are shared by the threads
in the same core; similarly for module-scope, die-scope, and package-scope.

When a processor package contains a single die, die-scope and package-scope are synonymous. When a package
contains multiple die, they are distinct.

NOTE
For information on hierarchical level types supported, refer to the CPUID Leaf 1FH definition for the
actual level type numbers: “V2 Extended Topology Enumeration Leaf” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. Also see Section 8.9.1, “Hierarchical
Mapping of Shared Resources” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distin-
guish between different processor family and/or models, software must use CPUID.01H leaf function to query the
combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 2-1 lists the signature values of DisplayFamily and DisplayModel for various
processor families or processor number series.

Table 2-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_85H Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on Knights Mill microarchitecture

06_57H Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

06_8CH, 06_8DH 11th generation Intel® Core™ processors based on Tiger Lake microarchitecture

06_7DH, 06_7EH 10th generation Intel® Core™ processors based on Ice Lake microarchitecture

06_A5H, 06_A6H 10th generation Intel® Core™ processors based on Comet Lake microarchitecture

06_66H Intel® Core™ processors based on Cannon Lake microarchitecture

06_8EH, 06_9EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture, 8th and 9th generation
Intel® Core™ processors based on Coffee Lake microarchitecture, Intel® Xeon® E processors based on
Coffee Lake microarchitecture

06_6AH, 06_6CH Future Intel® Xeon® processors based on Ice Lake microarchitecture

06_55H Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture, 2nd generation Intel®
Xeon® Processor Scalable Family based on Cascade Lake product, and future Cooper Lake product

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor E7 v4
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

2-2 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_86H Intel® Atom™ processors based on Tremont Microarchitecture

06_7AH Intel Atom processors based on Goldmont Plus Microarchitecture

06_5FH Intel Atom processors based on Goldmont Microarchitecture (code name Denverton)

06_5CH Intel Atom processors based on Goldmont Microarchitecture

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

Table 2-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Vol. 4 2-3

MODEL-SPECIFIC REGISTERS (MSRS)

2.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs”
were given the prefix “IA32_”. Table 2-2 lists the architectural MSRs, their addresses, their current names, their
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table
2-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific.
Code that accesses a model-specific MSR and that is executed on a processor that does not support that MSR will
generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 2-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 2-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 2-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and
SteppingID = 0

Table 2-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 2.23, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 2.23, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_COUNTER

(TSC)

See Section 17.17, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

Table 2-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

2-4 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

49:0 Reserved

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved

1BH 27 IA32_APIC_BASE

(APIC_BASE)

This register holds the APIC base address,
permitting the relocation of the APIC
memory map. See Section 10.4.4, “Local
APIC Status and Location” and Section
10.4.5, “Relocating the Local APIC
Registers”.

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode. 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor (R/W) If any one enumeration
condition for defined bit
field holds.

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written; writes to
this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-5

MODEL-SPECIFIC REGISTERS (MSRS)

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[5] = 1
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for a system
executive that does not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns the VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[5] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This field is supported
only if CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

16 Reserved

17 SGX Launch Control Enable (R/WL): This bit
must be set to enable runtime re-
configuration of SGX Launch Control via the
IA32_SGXLEPUBKEYHASHn MSR.

If CPUID.(EAX=07H,
ECX=0H): ECX[30] = 1

18 SGX Global Enable (R/WL): This bit must be
set to enable SGX leaf functions.

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

19 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-6 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48H 72 IA32_SPEC_CTRL Speculation Control (R/W)

The MSR bits are defined as logical
processor scope. On some core
implementations, the bits may impact
sibling logical processors on the same core.

This MSR has a value of 0 after reset and is
unaffected by INIT# or SIPI#.

If any one of the
enumeration conditions for
defined bit field positions
holds.

0 Indirect Branch Restricted Speculation
(IBRS). Restricts speculation of indirect
branch.

If CPUID.(EAX=07H,
ECX=0):EDX[26]=1

1 Single Thread Indirect Branch Predictors
(STIBP). Prevents indirect branch
predictions on all logical processors on the
core from being controlled by any sibling
logical processor in the same core.

If CPUID.(EAX=07H,
ECX=0):EDX[27]=1

2 Speculative Store Bypass Disable (SSBD)
delays speculative execution of a load until
the addresses for all older stores are
known.

If CPUID.(EAX=07H,
ECX=0):EDX[31]=1

63:3 Reserved

49H 73 IA32_PRED_CMD Prediction Command (WO)

Gives software a way to issue commands
that affect the state of predictors.

If any one of the
enumeration conditions for
defined bit field positions
holds.

0 Indirect Branch Prediction Barrier (IBPB). If CPUID.(EAX=07H,
ECX=0):EDX[26]=1

63:1 Reserved

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-7

MODEL-SPECIFIC REGISTERS (MSRS)

63:32 It is recommended that this field be pre-
loaded with zero prior to executing CPUID.

If the field remains zero following the
execution of CPUID, this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

8CH 140 IA32_SGXLEPUBKEYHASH0 IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
CPUID.(EAX=07H,
ECX=0H):ECX[30]=1.

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
17] = 1 &&
IA32_FEATURE_CONTROL[
0] = 1.

8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

8EH 142 IA32_SGXLEPUBKEYHASH2 IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 ||
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4).

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only).

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0

(PERFCTR0)

General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1

(PERFCTR1)

General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-8 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

CFH 207 IA32_CORE_CAPABILITIES IA32 Core Capabilities Register If CPUID.(EAX=07H,
ECX=0):EDX[30] = 1

63:0 Reserved. No architecturally defined
bits.

E1H 225 IA32_UMWAIT_CONTROL UMWAIT Control (R/W)

0 C0.2 is not allowed by the OS. Value of “1”
means all C0.2 requests revert to C0.1.

1 Reserved

31:2 Determines the maximum time in TSC-
quanta that the processor can reside in
either C0.1 or C0.2. A zero value indicates
no maximum time. The maximum time
value is a 32-bit value where the upper 30
bits come from this field and the lower two
bits are zero.

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP

(MTRRcap)

MTRR Capability (RO)

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory type
ranges in the processor.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-9

MODEL-SPECIFIC REGISTERS (MSRS)

8 Fixed range MTRRs are supported when
set.

9 Reserved

10 WC Supported when set.

11 SMRR Supported when set.

12 PRMRR supported when set.

63:13 Reserved

10AH 266 IA32_ARCH_CAPABILITIES Enumeration of Architectural Features (RO) If CPUID.(EAX=07H,
ECX=0):EDX[29]=1

0 RDCL_NO: The processor is not susceptible
to Rogue Data Cache Load (RDCL).

1 IBRS_ALL: The processor supports
enhanced IBRS.

2 RSBA: The processor supports RSB
Alternate. Alternative branch predictors
may be used by RET instructions when the
RSB is empty. SW using retpoline may be
affected by this behavior.

3 SKIP_L1DFL_VMENTRY: A value of 1
indicates the hypervisor need not flush the
L1D on VM entry.

4 SSB_NO: Processor is not susceptible to
Speculative Store Bypass.

5 MDS_NO: Processor is not susceptible to
Microarchitectural Data Sampling (MDS).

6 IF_PSCHANGE_MC_NO: The processor is not
susceptible to a machine check error due to
modifying the size of a code page without
TLB invalidation.

7 TSX_CTRL: If 1, indicates presence of
IA32_TSX_CTRL MSR.

8 TAA_NO: If 1, processor is not affected by
TAA.

63:9 Reserved

10BH 267 IA32_FLUSH_CMD Flush Command (WO)

Gives software a way to invalidate
structures with finer granularity than other
architectural methods.

If any one of the
enumeration conditions for
defined bit field positions
holds.

0 L1D_FLUSH: Writeback and invalidate the
L1 data cache.

If CPUID.(EAX=07H,
ECX=0):EDX[28]=1

63:1 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-10 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

122H 290 IA32_TSX_CTRL IA32_TSX_CTRL Thread scope. Not
architecturally serializing.

Available when
CPUID.ARCH_CAP(EAX=7H,
ECX = 0):EDX[29] = 1 and
IA32_ARCH_CAPABILITIES.
bit 7 = 1.

0 RTM_DISABLE: When set to 1, XBEGIN will
always abort with EAX code 0.

1 TSX_CPUID_CLEAR: When set to 1,
CPUID.07H.EBX.RTM [bit 11] and
CPUID.07H.EBX.HLE [bit 4] report 0.

When set to 0 and the SKU supports TSX,
these bits will return 1.

63:2 Reserved

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector.

31:16 Not used. Can be read and written.

63:32 Not used. Writes ignored; reads

return zero.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set.

9 MCG_EXT_P: Extended machine check state
registers are present if this bit is set.

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-11

MODEL-SPECIFIC REGISTERS (MSRS)

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
supports extended state in
IA32_MCG_STATUS and associated MSR
necessary to configure Local Machine Check
Exception (LMCE).

06_3EH

63:28 Reserved

17AH 378 IA32_MCG_STATUS

(MCG_STATUS)

Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid. 06_01H

1 EIPV. Error IP valid. 06_01H

2 MCIP. Machine check in progress. 06_01H

3 LMCE_S If
IA32_MCG_CAP.LMCE_P[27
] =1

63:4 Reserved

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8]
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0

(PERFEVTSEL0)

Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: Enables pin control.

20 INT: Enables interrupt on counter overflow.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-12 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: Enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: Invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved

187H 391 IA32_PERFEVTSEL1

(PERFEVTSEL1)

Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS Current Performance Status (RO)

See Section 14.1.1, “Software Interface For
Initiating Performance State Transitions”.

0F_03H

15:0 Current performance State Value.

63:16 Reserved

199H 409 IA32_PERF_CTL Performance Control MSR (R/W)

Software makes a request for a new
Performance state (P-State) by writing this
MSR. See Section 14.1.1, “Software
Interface For Initiating Performance State
Transitions”.

0F_03H

15:0 Target performance State Value.

31:16 Reserved

32 IDA Engage (R/W)

When set to 1: disengages IDA.

06_0FH (Mobile only)

63:33 Reserved

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.8.3, “Software Controlled
Clock Modulation.”

If CPUID.01H:EDX[22] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-13

MODEL-SPECIFIC REGISTERS (MSRS)

0 Extended On-Demand Clock Modulation
Duty Cycle.

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

If CPUID.01H:EDX[22] = 1

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.8.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1

22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.8.2, “Thermal Monitor”.

If CPUID.01H:EDX[22] = 1

0 Thermal Status (RO) If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W) If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (RO) If CPUID.01H:EDX[22] = 1

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (RO) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-14 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default).
When clear, fast-strings are disabled.

0F_0H

2:1 Reserved

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled.
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

The default value of this field varies with
product . See respective tables where
default value is listed.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.

0F_0H

10:8 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-15

MODEL-SPECIFIC REGISTERS (MSRS)

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS).

0 = BTS is supported.

0F_0H

12 Processor Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported.
0 = PEBS is supported.

06_0FH

15:13 Reserved

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep Technology
disabled.

1 = Enhanced Intel SpeedStep Technology
enabled.

If CPUID.01H: ECX[7] =1

17 Reserved

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not supported.

Software attempts to execute
MONITOR/MWAIT will cause #UD when this
bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-16 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 2.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 2, this bit is
supported.

Otherwise, this bit is not supported. Setting
this bit when the maximum value is not
greater than 2 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 2.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

If CPUID.01H:ECX[14] = 1

33:24 Reserved

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

If
CPUID.80000001H:EDX[20
] = 1

63:35 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) If CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-17

MODEL-SPECIFIC REGISTERS (MSRS)

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.9, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO)

1 Pkg Thermal Status Log (R/W)

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status Log
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 Log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 Log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation Log (R/WC0)

15:12 Reserved

22:16 Pkg Digital Readout (RO)

25:23 Reserved

26 Hardware Feedback Interface Structure
Change Status

If CPUID.06H:EAX.[19] = 1

63:27 Reserved

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.9, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved

4 Pkg Overheat Interrupt Enable

7:5 Reserved

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-18 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

25 Hardware Feedback Interrupt Enable If CPUID.06H:EAX.[19] = 1

63:26 Reserved

1D9H 473 IA32_DEBUGCTL

(MSR_DEBUGCTLA, MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

If
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN.

If (CPUID.(EAX=07H,
ECX=0):EBX[11] = 1)

63:16 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-19

MODEL-SPECIFIC REGISTERS (MSRS)

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If
IA32_MTRRCAP.SMRR[11]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved

31:12 PhysBase

SMRR physical Base Address.

63:32 Reserved

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask (Writeable only in SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR] =
1

10:0 Reserved

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved

26 HW_BLOCK: Set when DCA is blocked by HW
(e.g. CR0.CD = 1).

31:27 Reserved

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

If IA32_MTRRCAP[7:0] > 0

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If IA32_MTRRCAP[7:0] > 0

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If IA32_MTRRCAP[7:0] > 1

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If IA32_MTRRCAP[7:0] > 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-20 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 If IA32_MTRRCAP[7:0] > 2

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 If IA32_MTRRCAP[7:0] > 2

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If IA32_MTRRCAP[7:0] > 3

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If IA32_MTRRCAP[7:0] > 3

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If IA32_MTRRCAP[7:0] > 4

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If IA32_MTRRCAP[7:0] > 4

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If IA32_MTRRCAP[7:0] > 5

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If IA32_MTRRCAP[7:0] > 5

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If IA32_MTRRCAP[7:0] > 6

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If IA32_MTRRCAP[7:0] > 6

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If IA32_MTRRCAP[7:0] > 7

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If IA32_MTRRCAP[7:0] > 7

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 If IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 If IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 If IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 If IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H:
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H:
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H:
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H:
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H:
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H:
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H:
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H:
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H:
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H:
EDX.MTRR[12] =1

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H:
EDX.MTRR[16] =1

2:0 PA0

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-21

MODEL-SPECIFIC REGISTERS (MSRS)

7:3 Reserved

10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 MSR to enable/disable CMCI capability for
bank 0. (R/W)

See Section 15.3.2.5, “IA32_MCi_CTL2
MSRs”.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
0

14:0 Corrected error count threshold.

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
1

282H 642 IA32_MC2_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
2

283H 643 IA32_MC3_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
3

284H 644 IA32_MC4_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
4

285H 645 IA32_MC5_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
5

286H 646 IA32_MC6_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-22 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

287H 647 IA32_MC7_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
7

288H 648 IA32_MC8_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
8

289H 649 IA32_MC9_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH 650 IA32_MC10_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
10

28BH 651 IA32_MC11_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
11

28CH 652 IA32_MC12_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH 653 IA32_MC13_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
13

28EH 654 IA32_MC14_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
14

28FH 655 IA32_MC15_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H 656 IA32_MC16_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
16

291H 657 IA32_MC17_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
17

292H 658 IA32_MC18_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
18

293H 659 IA32_MC19_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
19

294H 660 IA32_MC20_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
20

295H 661 IA32_MC21_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-23

MODEL-SPECIFIC REGISTERS (MSRS)

296H 662 IA32_MC22_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
22

297H 663 IA32_MC23_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
23

298H 664 IA32_MC24_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H 665 IA32_MC25_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
25

29AH 666 IA32_MC26_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
26

29BH 667 IA32_MC27_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH 668 IA32_MC28_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
28

29DH 669 IA32_MC29_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
29

29EH 670 IA32_MC30_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH 671 IA32_MC31_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H:
EDX.MTRR[12] =1

2:0 Default Memory Type

9:3 Reserved

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved

309H 777 IA32_FIXED_CTR0 Fixed-Function Performance Counter 0
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 Fixed-Function Performance Counter 1
(R/W): Counts CPU_CLK_Unhalted.Core.

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 Fixed-Function Performance Counter 2
(R/W): Counts CPU_CLK_Unhalted.Ref.

If CPUID.0AH: EDX[4:0] > 2

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-24 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

345H 837 IA32_PERF_CAPABILITIES Read Only MSR that enumerates the
existence of performance monitoring
features. (RO)

If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

14 Reserved

15 1: Performance metrics available.

16 1: PEBS output will be written into the Intel
PT trace stream.

If CPUID.0x7.0.EBX[25]=1

63:17 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-25

MODEL-SPECIFIC REGISTERS (MSRS)

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

47:35 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-26 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48 OVF_PERF_METRICS: If this bit is set, it
indicates that PERF_METRIC counter has
overflowed and a PMI is triggered; however,
an overflow of fixed counter 3 should
normally happen first. If this bit is clear no
overflow occurred.

54:49 Reserved

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer that was
completely filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved

58 LBR_Frz. LBRs are frozen due to:

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1.
• The LBR stack overflowed.

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz. Performance counters in the core
PMU are frozen due to:

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1.

• One or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation Intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: Status bits of this register have
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing the respective enable bit in this
MSR with the corresponding OS or USR bits
in the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-27

MODEL-SPECIFIC REGISTERS (MSRS)

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

47:35 Reserved

48 EN_PERF_METRICS: If this bit is set and
fixed counter 3 is effectively enabled, built-
in performance metrics are enabled.

63:49 Reserved

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf bit. If CPUID.0AH: EAX[7:0] > 0

63 Set 1 to clear CondChgd bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-28 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

47:35 Reserved

48 RESET_OVF_PERF_METRICS: If this bit is
set, it will clear the status bit in the
IA32_PERF_GLOBAL_STATUS register for
the PERF_METRICS counters.

54:49 Reserved

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf bit. If CPUID.0AH: EAX[7:0] > 0

63 Set 1 to clear CondChgd bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

47:35 Reserved

48 SET_OVF_PERF_METRICS: If this bit is set,
it will set the status bit in the
IA32_PERF_GLOBAL_STATUS register for
the PERF_METRICS counters.

54:49 Reserved

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-29

MODEL-SPECIFIC REGISTERS (MSRS)

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator that core perfmon interface is in
use. (RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use.

1 IA32_PERFEVTSEL1 in use. If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use. If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use. If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved

32 IA32_FIXED_CTR0 in use.

33 IA32_FIXED_CTR1 in use.

34 IA32_FIXED_CTR2 in use.

62:35 Reserved or model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or model specific.

31:4 Reserved

35:32 Reserved or model specific.

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-30 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-31

MODEL-SPECIFIC REGISTERS (MSRS)

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-32 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H 1112 IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H 1113 IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH 1114 IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH 1115 IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH 1116 IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH 1117 IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH 1118 IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH 1119 IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H 1120 IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H 1121 IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H 1122 IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H 1123 IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H 1124 IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H 1125 IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H 1126 IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H 1127 IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H 1128 IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H 1129 IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH 1130 IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH 1131 IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH 1132 IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH 1133 IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH 1134 IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH 1135 IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H 1136 IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H 1137 IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H 1138 IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

473H 1139 IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-Based
VM-Execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-33

MODEL-SPECIFIC REGISTERS (MSRS)

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-Based VM-Execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-Exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-Entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of Secondary
Processor-Based VM-Execution Controls
(R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63] && (
IA32_VMX_PROCBASED_C
TLS2[33] ||
IA32_VMX_PROCBASED_C
TLS2[37]))

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-Based
VM-Execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-34 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-Based VM-Execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-Exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-Entry
Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
Function Controls (R/O)

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-35

MODEL-SPECIFIC REGISTERS (MSRS)

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL Allows software to signal some MCEs to
only a single logical processor in the
system. (R/W)

See Section 15.3.1.4, “IA32_MCG_EXT_CTL
MSR”.

If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN

63:1 Reserved

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support
for ACM (RO).

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

0 Lock See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

15:1 Reserved

23:16 SGX_SVN_SINIT See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):E
CX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):E
CX[2] = 1)))

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address.

63:MAXPHYADDR Reserved

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):E
CX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):E
CX[2] = 1)))

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 TraceEn

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-36 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 CYCEn If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

2 OS

3 User

4 PwrEvtEn If (CPUID.(EAX=07H,
ECX=1):EBX[5] = 1)

5 FUPonPTW If (CPUID.(EAX=07H,
ECX=1):EBX[4] = 1)

6 FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 PTWEn If (CPUID.(EAX=07H,
ECX=1):EBX[4] = 1)

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

18 Reserved, must be zero.

22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

23 Reserved, must be zero.

27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

31:28 Reserved, must be zero.

35:32 ADDR0_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

55:48 Reserved, must be zero.

56 InjectPsbPmiOnEnable If (CPUID.(EAX=07H,
ECX=1):EBX[6] = 1)

63:57 Reserved, must be zero.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-37

MODEL-SPECIFIC REGISTERS (MSRS)

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 FilterEn (writes ignored) If (CPUID.(EAX=07H,
ECX=0):EBX[2] = 1)

1 ContexEn (writes ignored)

2 TriggerEn (writes ignored)

3 Reserved

4 Error

5 Stopped

6 PendPSB If (CPUID.(EAX=07H,
ECX=0):EBX[6] = 1)

7 PendToPAPMI If (CPUID.(EAX=07H,
ECX=0):EBX[6] = 1)

31:8 Reserved, must be zero.

48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):EBX[1] > 3)

63:49 Reserved

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match.

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-38 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first byte
of the DS buffer management area, which
is used to manage the BTS and PEBS
buffers.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

If(CPUID.01H:EDX.DS[21] =
1

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6A0H 1696 IA32_U_CET Configure User Mode CET (R/W) Bits 1:0 are defined if
CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1.

Bits 5:2 and bits 63:10 are
defined if
CPUID.(EAX=07H,
ECX=0H):EDX.CET_IBT[20]
= 1.

0 SH_STK_EN: When set to 1, enable shadow
stacks at CPL3.

1 WR_SHSTK_EN: When set to 1, enables the
WRSSD/WRSSQ instructions.

2 ENDBR_EN: When set to 1, enables indirect
branch tracking.

3 LEG_IW_EN: Enable legacy compatibility
treatment for indirect branch tracking.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-39

MODEL-SPECIFIC REGISTERS (MSRS)

4 NO_TRACK_EN: When set to 1, enables use
of no-track prefix for indirect branch
tracking.

5 SUPPRESS_DIS: When set to 1, disables
suppression of CET indirect branch tracking
on legacy compatibility.

9:6 Reserved; must be zero.

10 SUPPRESS: When set to 1, indirect branch
tracking is suppressed. This bit can be
written to 1 only if TRACKER is written as
IDLE.

11 TRACKER: Value of the indirect branch
tracking state machine. Values: IDLE (0),
WAIT_FOR_ENDBRANCH(1).

63:12 EB_LEG_BITMAP_BASE: Linear address bits
63:12 of a legacy code page bitmap used
for legacy compatibility when indirect
branch tracking is enabled.

If the processor does not support Intel 64
architecture, these fields have only 32 bits;
bits 63:32 of the MSRs are reserved. On
processors that support Intel 64
architecture this value cannot represent a
non-canonical address. In protected mode,
only 31:0 are loaded. The linear address
written must be aligned to 8 bytes and bits
2:0 must be 0 (hardware requires bits 1:0
to be 0).

6A2H 1698 IA32_S_CET Configure Supervisor Mode CET (R/W) See IA32_U_CET (6A0H)
for reference; similar
format.

6A4H 1700 IA32_PL0_SSP Linear address to be loaded into SSP on
transition to privilege level 0. (R/W)

If the processor does not support Intel 64
architecture, these fields have only 32 bits;
bits 63:32 of the MSRs are reserved. On
processors that support Intel 64
architecture this value cannot represent a
non-canonical address. In protected mode,
only 31:0 are loaded. The linear address
written must be aligned to 8 bytes and bits
2:0 must be 0 (hardware requires bits 1:0
to be 0).

If CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-40 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6A5H 1701 IA32_PL1_SSP Linear address to be loaded into SSP on
transition to privilege level 1. (R/W)

If the processor does not support Intel 64
architecture, these fields have only 32 bits;
bits 63:32 of the MSRs are reserved. On
processors that support Intel 64
architecture this value cannot represent a
non-canonical address. In protected mode,
only 31:0 are loaded. The linear address
written must be aligned to 8 bytes and bits
2:0 must be 0 (hardware requires bits 1:0
to be 0).

If CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1

6A6H 1702 IA32_PL2_SSP Linear address to be loaded into SSP on
transition to privilege level 2. (R/W)

If the processor does not support Intel 64
architecture, these fields have only 32 bits;
bits 63:32 of the MSRs are reserved. On
processors that support Intel 64
architecture this value cannot represent a
non-canonical address. In protected mode,
only 31:0 are loaded. The linear address
written must be aligned to 8 bytes and bits
2:0 must be 0 (hardware requires bits 1:0
to be 0).

If CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1

6A7H 1703 IA32_PL3_SSP Linear address to be loaded into SSP on
transition to privilege level 3. (R/W)

If the processor does not support Intel 64
architecture, these fields have only 32 bits;
bits 63:32 of the MSRs are reserved. On
processors that support Intel 64
architecture this value cannot represent a
non-canonical address. In protected mode,
only 31:0 are loaded. The linear address
written must be aligned to 8 bytes and bits
2:0 must be 0 (hardware requires bits 1:0
to be 0).

If CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1

6A8H 1704 IA32_INTERRUPT_SSP_TABLE_ADDR Linear address of a table of seven shadow
stack pointers that are selected in IA-32e
mode using the IST index (when not 0) from
the interrupt gate descriptor. (R/W)

This MSR is not present on processors that
do not support Intel 64 architecture. This
field cannot represent a non-canonical
address.

If CPUID.(EAX=07H,
ECX=0H):ECX.CET_SS[07]
= 1

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If CPUID.01H:ECX.[24] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-41

MODEL-SPECIFIC REGISTERS (MSRS)

6E1H 1761 IA32_PKRS Specifies the PK permissions associated
with each protection domain for supervisor
pages (R/W)

If CPUID.(EAX=07H,
ECX=0H):ECX.PKS [31] = 1

31:0 For domain i (i between 0 and 15), bits 2i
and 2i+1 contain the AD and WD
permissions, respectively.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1

0 HWP_ENABLE (R/W1-Once)

See Section 14.4.2, “Enabling HWP”.

If CPUID.06H:EAX.[7] = 1

63:1 Reserved

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration (RO) If CPUID.06H:EAX.[7] = 1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1

63:32 Reserved

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[9] = 1

63:42 Reserved

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-42 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 EN_Guaranteed_Performance_Change

See Section 14.4.6, “HWP Notifications”.

If CPUID.06H:EAX.[8] = 1

1 EN_Excursion_Minimum

See Section 14.4.6, “HWP Notifications”.

If CPUID.06H:EAX.[8] = 1

63:2 Reserved

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[10] =
1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[11] =
1

63:43 Reserved

775H 1909 IA32_PECI_HWP_REQUEST_INFO IA32_PECI_HWP_REQUEST_INFO

7:0 Minimum Performance
(MINIMUM_PERFORMANCE): Used by OS to
read the latest value of PECI minimum
performance input. Default value is 0.

15:8 Maximum Performance
(MAXIMUM_PERFORMANCE): Used by OS to
read the latest value of PECI maximum
performance input. Default value is 0.

23:16 Reserved.

31:24 Energy Performance Preference
(ENERGY_PERFORMANCE_PREFERENCE):
Used by OS to read the latest value of PECI
Energy Performance Preference input.
Default value is 0.

59:32 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-43

MODEL-SPECIFIC REGISTERS (MSRS)

60 EPP PECI Override (EPP_PECI_OVERRIDE):

Indicates whether PECI is currently
overriding the Energy Performance
Preference input. If set to ‘1’, PECI is
overriding the Energy Performance
Preference input. If clear (0), OS has control
over Energy Performance Preference input.
Default value is 0.

61 Reserved.

62 Max PECI Override (MAX_PECI_OVERRIDE):

Indicates whether PECI is currently
overriding the Maximum Performance
input. If set to ‘1’, PECI is overriding the
Maximum Performance input. If clear (0), OS
has control over Maximum Performance
input. Default value is 0.

63 Min PECI Override (MIN_PECI_OVERRIDE):

Indicates whether PECI is currently
overriding the Minimum Performance input.
If set to ‘1’, PECI is overriding the Minimum
Performance input. If clear (0), OS has
control over Minimum Performance input.
Default value is 0.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to Guaranteed &
excursions to Minimum (R/W)

If CPUID.06H:EAX.[7] = 1

0 Guaranteed_Performance_Change (R/WC0)

See Section 14.4.5, “HWP Feedback”.

If CPUID.06H:EAX.[7] = 1

1 Reserved

2 Excursion_To_Minimum (R/WC0)

See Section 14.4.5, “HWP Feedback”.

If CPUID.06H:EAX.[7] = 1

63:3 Reserved

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification.

If CPUID.01H:ECX[21] = 1
&& IA32_APIC_BASE.[10] =
1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-44 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-45

MODEL-SPECIFIC REGISTERS (MSRS)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-46 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10] =
1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0.

If CPUID.01H:ECX.[11] = 1

29:1 Reserved

30 Lock (R/W): If 1, locks any further change to
the MSR. The lock bit is set automatically on
the first SMI assertion even if not explicitly
set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1

31 Debug Occurred (R/O): This “sticky bit” is set
by hardware to indicate the status of bit 0.
Default is 0.

If CPUID.01H:ECX.[11] = 1

63:32 Reserved

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=1):ECX.[2] = 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-47

MODEL-SPECIFIC REGISTERS (MSRS)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode.

63:1 Reserved. Attempts to write to reserved
bits result in a #GP(0).

C82H 3202 IA32_L2_QOS_CFG L2 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=2):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L2 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode.

63:1 Reserved. Attempts to write to reserved
bits result in a #GP(0).

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates an unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[12] =1) or
(CPUID.(EAX=07H,
ECX=0):EBX[15] =1))

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g., memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W): The class of service (COS) to
enforce (on writes); returns the current COS
when read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[15] = 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-48 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C90H -
D8FH

3216 -
3471

Reserved MSR Address Space for CAT
Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

C90H 3216 IA32_L3_MASK_0 L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

C90H+
n

3216+n IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D10H -
D4FH

3344 -
3407

Reserved MSR Address Space for L2
CAT Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

D10H 3344 IA32_L2_MASK_0 L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D10H+
n

3344+n IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration
(R/W)

If (CPUID.(EAX=07H,
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode.

1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix.

11:2 Reserved, must be zero.

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[3] =
1

7:0 Reserved.

8 Trace Packet Configuration State (R/W)

10:9 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-49

MODEL-SPECIFIC REGISTERS (MSRS)

11 CET_U State (R/W)

12 CET_S State (R/W)

13 HDC State (R/W)

63:14 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”.

If CPUID.06H:EAX.[13] = 1

63:1 Reserved

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3.

If CPUID.06H:EAX.[13] = 1

63:1 Reserved

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle Residency
(R/0)

If CPUID.06H:EAX.[13] = 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1.

If CPUID.06H:EAX.[13] = 1

17D0H 6096 IA32_HW_FEEDBACK_PTR Hardware Feedback Interface Pointer If CPUID.06H:EAX.[19] = 1

0 Valid (R/W)

When set to 1, indicates a valid pointer is
programmed into the ADDR field of the
MSR.

11:1 Reserved

(MAXPHYADDR-1):12 ADDR (R/W)

Physical address of the page frame of the
first page of the hardware feedback
interface structure.

63:MAXPHYADDR Reserved

17D1H 6097 IA32_HW_FEEDBACK_CONFIG Hardware Feedback Interface Configuration If CPUID.06H:EAX.[19] = 1

0 Enable (R/W)

When set to 1, enables the hardware
feedback interface.

63:1 Reserved

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will not
implement MSRs in this range.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-50 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001H:EDX.[2
0] ||
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE
(R/W)

63:12 Reserved

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

Target RIP for the called procedure when
SYSCALL is executed in 64-bit mode.

If
CPUID.80000001:EDX.[29]
= 1

C000_
0083H

IA32_CSTAR IA-32e Mode System Call Target Address
(R/W)

Not used, as the SYSCALL instruction is not
recognized in compatibility mode.

If
CPUID.80000001:EDX.[29]
= 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1 or
CPUID.(EAX=7,ECX=0):ECX[
bit 22] = 1

31:0 AUX: Auxiliary signature of TSC.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

Vol. 4 2-51

MODEL-SPECIFIC REGISTERS (MSRS)

2.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 2-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 2-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 2-1.

MSRs listed in Table 2-2 and Table 2-3 are also supported by processors based on the Enhanced Intel Core micro-
architecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

63:32 Reserved

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as

model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section

15.3.2.4 for more information.
3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Unique See Section 8.10.5, “Monitor/Mwait Address Range
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Unique See Section 17.17, “Time-Stamp Counter,” and see
Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved

52:50 See Table 2-2.

63:53 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name / Bit Fields
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

2-52 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location” and
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates
current processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W.

5 Reserved

6 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-53

MODEL-SPECIFIC REGISTERS (MSRS)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64 Processor (R/W)

See Table 2-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set, this makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers
read visible and writeable while in SMM.

40H 64 MSR_LASTBRANCH_0_FROM_IP Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the
last branch record stack. The From_IP part of the stack
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5.

41H 65 MSR_LASTBRANCH_1_FROM_IP Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_LASTBRANCH_3_FROM_IP Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the
last branch record stack. This To_IP part of the stack
contains pointers to the destination instruction.

61H 97 MSR_LASTBRANCH_1_TO_IP Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_LASTBRANCH_2_TO_IP Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_LASTBRANCH_3_TO_IP Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-54 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in
SMM)

Model-specific implementation of SMRR-like interface,
read visible and write only in SMM.

11:0 Reserved

31:12 PhysBase: SMRR physical Base Address.

63:32 Reserved

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask
register (WO in SMM)

Model-specific implementation of SMRR-like interface,
read visible and write only in SMM.

10:0 Reserved

11 Valid: Physical address base and range mask are valid.

31:12 PhysMask: SMRR physical address range mask.

63:32 Reserved

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed
for processors based on Intel Core microarchitecture.

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 100B.

63:3 Reserved

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed
for processors based on Enhanced Intel Core
microarchitecture.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-55

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 111B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R)

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) can be used to restart the
program. If cleared, the program cannot be reliably
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) is directly associated with
the error.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-56 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

When set, bit indicates that a machine check has been
generated. If a second machine check is detected while
this bit is still set, the processor enters a shutdown state.
Software should write this bit to 0 after processing a
machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Current performance status. See Section 14.1.1,
“Software Interface For Initiating Performance State
Transitions”.

15:0 Current Performance State Value

30:16 Reserved

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies
processors based on Enhanced Intel Core
microarchitecture.

63:47 Reserved

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-57

MODEL-SPECIFIC REGISTERS (MSRS)

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency
transitions).

If bit 3 of the IA32_MISC_ENABLE register is cleared,
TM_SELECT has no effect. Neither TM1 nor TM2 are
enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and
disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on
streams of data. When clear (default), enables the
prefetch queue.

Disabling of the hardware prefetcher may impact
processor performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a
pending break event within the processor.

0 = Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt
model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-58 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates
that the die temperature is at the pre-determined
threshold, the Thermal Monitor 2 mechanism is engaged.
TM2 will reduce the bus to core ratio and voltage
according to the value last written to MSR_THERM2_CTL
bits 15:0.

When this bit is clear (0, default), the processor does not
change the VID signals or the bus to core ratio when the
processor enters a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set,
this feature is not supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification if both this
bit and the TM1 bit are set to 0.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that
contains data currently required by the processor. When
set to 0, the processor fetches cache lines that comprise a
cache line pair (128 bytes).

Single processor platforms should not set this bit. Server
platforms should set or clear this bit based on platform
performance observed in validation and testing.

BIOS may contain a setup option that controls the setting
of this bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become
read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this
bit).

• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on
reset.

21 Reserved

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-59

MODEL-SPECIFIC REGISTERS (MSRS)

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

34 Unique XD Bit Disable (R/W)

See Table 2-2.

36:35 Reserved

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, the DCU L1 data cache prefetcher is
disabled. The default value after reset is 0. BIOS may
write ‘1’ to disable this feature.

The DCU prefetcher is an L1 data cache prefetcher. When
the DCU prefetcher detects multiple loads from the same
line done within a time limit, the DCU prefetcher assumes
the next line will be required. The next line is prefetched
in to the L1 data cache from memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel
Dynamic Acceleration feature (IDA) is disabled and the
IDA_Enable feature flag will be cleared (CPUID.06H:
EAX[1]=0).

When set to a 0 on processors that support IDA,
CPUID.06H: EAX[1] reports the processor’s support of IDA
is enabled.

Note: The power-on default value is used by BIOS to
detect hardware support of IDA. If the power-on default
value is 1, IDA is available in the processor. If the power-
on default value is 0, IDA is not available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, the IP prefetcher is disabled. The default
value after reset is 0. BIOS may write ‘1’ to disable this
feature.

The IP prefetcher is an L1 data cache prefetcher. The IP
prefetcher looks for sequential load history to determine
whether to prefetch the next expected data into the L1
cache from memory or L2.

63:40 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-60 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R/W)

Contains a pointer to the last branch instruction that the
processor executed prior to the last exception that was
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R/W)

This area contains a pointer to the target of the last
branch instruction that the processor executed prior to
the last exception that was generated or the last
interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Unique See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Unique See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Unique See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-61

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Unique See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL
MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support
architectural perfmon version 2.

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format

7 PEBSSaveArchRegs. See Table 2-2.

63:8 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATUS Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-62 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

40CH 1036 IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
MSR_MC3_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-63

MODEL-SPECIFIC REGISTERS (MSRS)

413H 1043 IA32_MC3_MISC Unique Machine Check Error Reporting Register: Contains
additional information describing the machine-check error
if the MISCV flag in the IA32_MCi_STATUS register is set.

414H 1044 IA32_MC5_CTL Unique Machine Check Error Reporting Register: Controls
signaling of #MC for errors produced by a particular
hardware unit (or group of hardware units).

415H 1045 IA32_MC5_STATUS Unique Machine Check Error Reporting Register: Contains
information related to a machine-check error if its VAL
(valid) flag is set. Software is responsible for clearing
IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

416H 1046 IA32_MC5_ADDR Unique Machine Check Error Reporting Register: Contains the
address of the code or data memory location that
produced the machine-check error if the ADDRV flag in
the IA32_MCi_STATUS register is set.

417H 1047 IA32_MC5_MISC Unique Machine Check Error Reporting Register: Contains
additional information describing the machine-check error
if the MISCV flag in the IA32_MCi_STATUS register is set.

419H 1045 IA32_MC6_STATUS Unique Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS” and Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-64 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration
(R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

107CC
H

67532 MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107CD
H

67533 MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107CE
H

67534 MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107CF
H

67535 MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107D0
H

67536 MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107D1
H

67537 MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-65

MODEL-SPECIFIC REGISTERS (MSRS)

2.3 MSRS IN THE 45 NM AND 32 NM INTEL ATOM® PROCESSOR FAMILY
Table 2-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR
addresses are also included in Table 2-4. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 2-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

107D2
H

67538 MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107D3
H

67539 MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

107D8
H

67544 MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Applies to Intel Xeon processor 7400 series (processor
signature 06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 2.23, “MSRs in Pentium Processors.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-66 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see
Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location” and
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates
current processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved

6 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-67

MODEL-SPECIFIC REGISTERS (MSRS)

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

40H 64 MSR_LASTBRANCH_0_FROM_IP Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the
last branch record stack. The From_IP part of the stack
contains pointers to the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5.

41H 65 MSR_LASTBRANCH_1_FROM_IP Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_LASTBRANCH_3_FROM_IP Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_LASTBRANCH_4_FROM_IP Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_LASTBRANCH_5_FROM_IP Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_LASTBRANCH_6_FROM_IP Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_LASTBRANCH_7_FROM_IP Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the
last branch record stack. The To_IP part of the stack
contains pointers to the destination instruction.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-68 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

61H 97 MSR_LASTBRANCH_1_TO_IP Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_LASTBRANCH_2_TO_IP Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_LASTBRANCH_3_TO_IP Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_LASTBRANCH_4_TO_IP Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_LASTBRANCH_5_TO_IP Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_LASTBRANCH_6_TO_IP Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_LASTBRANCH_7_TO_IP Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed
for processors based on Intel Atom microarchitecture.

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation
with System Bus Speed when encoding is 011B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-69

MODEL-SPECIFIC REGISTERS (MSRS)

11EH 281 MSR_BBL_CR_CTL3 Shared Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = Indicates the L2 is hardware-enabled.
0 = Indicates the L2 is hardware-disabled.

7:1 Reserved

8 L2 Enabled (R/W)

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set, the processor will not respond to the
WBINVD instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) can be used to restart the
program. If cleared, the program cannot be reliably
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) is directly associated with
the error.

2 MCIP

When set, bit indicates that a machine check has been
generated. If a second machine check is detected while
this bit is still set, the processor enters a shutdown state.
Software should write this bit to 0 after processing a
machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-70 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

198H 408 MSR_PERF_STATUS Shared Performance Status

15:0 Current Performance State Value

39:16 Reserved

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Shared Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency
transitions).

If bit 3 of the IA32_MISC_ENABLE register is cleared,
TM_SELECT has no effect. Neither TM1 nor TM2 are
enabled.

63:17 Reserved

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and
disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

6:4 Reserved

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved

9 Reserved

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-71

MODEL-SPECIFIC REGISTERS (MSRS)

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a
pending break event within the processor.

0 = Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model
usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates
that the die temperature is at the pre-determined
threshold, the Thermal Monitor 2 mechanism is engaged.
TM2 will reduce the bus to core ratio and voltage according
to the value last written to MSR_THERM2_CTL bits 15:0.

When this bit is cleared (0, default), the processor does not
change the VID signals or the bus to core ratio when the
processor enters a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set,
this feature is not supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification if both this
bit and the TM1 bit are set to 0.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become
read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this
bit).

• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on
reset.

21 Reserved

22 Unique Limit CPUID Maxval (R/W)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-72 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the
processor executed prior to the last exception that was
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last
branch instruction that the processor executed prior to
the last exception that was generated or the last interrupt
that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Shared See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Shared See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Shared See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-73

MODEL-SPECIFIC REGISTERS (MSRS)

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-74 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

40CH 1036 IA32_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
MSR_MC3_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

410H 1040 IA32_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-75

MODEL-SPECIFIC REGISTERS (MSRS)

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration
(R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

2-76 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-5 lists model-specific registers (MSRs) that are specific to Intel Atom® processor with the CPUID signature
with DisplayFamily_DisplayModel of 06_27H.

2.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 2-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchitec-
ture. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH; see Table 2-1. The MSRs listed in Table 2-6 are also common to processors based on the
Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 2-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not
newer microarchitectures.

Table 2-8, Table 2-9, and Table 2-10 lists MSRs that are model-specific across processors based on the Silvermont
microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

Table 2-5. MSRs Supported by Intel Atom® Processors with CPUID Signature 06_27H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state parameters
or ACPI C-States.

63:0 Package Package C2 Residency Counter (R/O)

Time that this package is in processor-specific C2 states
since last reset. Counts at 1 Mhz frequency.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state parameters
or ACPI C-States.

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states
since last reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state parameters
or ACPI C-States.

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states
since last reset. Counts at 1 Mhz frequency.

Vol. 4 2-77

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Core See Section 8.10.5, “Monitor/Mwait Address Range
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Core See Section 17.17, “Time-Stamp Counter,” and
Table 2-2.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,”
and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Module Processor Hard Power-On Configuration (R/W)

Writes ignored.

63:0 Reserved

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 2-2.

E4H 228 MSR_PMG_IO_CAPTURE_BASE Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO
redirection. If IO MWAIT Redirection is enabled, reads to
this address will be consumed by the power
management logic and decoded to MWAIT instructions.
When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

2-78 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State
code name to be included when IO read to MWAIT
redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of
AES instruction sets availability is as follows:

11b: AES instructions are not available until next
RESET.

Otherwise, AES instructions are available.

Note: AES instruction set is not available if read is
unsuccessful. If the configuration is not 01b, AES
instructions can be mis-configured if a privileged agent
unintentionally writes 11b.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Core See Table 2-2.

175H 373 IA32_SYSENTER_ESP Core See Table 2-2.

176H 374 IA32_SYSENTER_EIP Core See Table 2-2.

179H 377 IA32_MCG_CAP Core See Table 2-2.

17AH 378 IA32_MCG_STATUS Core Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) can be used to
restart the program. If cleared, the program cannot be
reliably restarted.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-79

MODEL-SPECIFIC REGISTERS (MSRS)

1 EIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) is directly
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been
generated. If a second machine check is detected while
this bit is still set, the processor enters a shutdown
state. Software should write this bit to 0 after
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Core See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Core See Table 2-2.

198H 408 IA32_PERF_STATUS Module See Table 2-2.

199H 409 IA32_PERF_CTL Core See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-80 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degrees C. The effective temperature
for thermal throttling or PROCHOT# activation is
“Temperature Target” + “Target Offset”.

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling
and PROCHOT# activation temperature from the
default target specified in TEMPERATURE_TARGET
(bits 23:16).

63:30 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Module Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Module Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 2-2.

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R/W)

Contains a pointer to the last branch instruction that
the processor executed prior to the last exception that
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R/W)

This area contains a pointer to the target of the last
branch instruction that the processor executed prior to
the last exception that was generated or the last
interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-81

MODEL-SPECIFIC REGISTERS (MSRS)

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL
MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-82 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

402H 1026 IA32_MC0_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

404H 1028 IA32_MC1_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the MSR_MC3_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-83

MODEL-SPECIFIC REGISTERS (MSRS)

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Core Capability Reporting Register of Pin-Based
VM-Execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-Exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Controls
(R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-84 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Core Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENUM Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Core Capability Reporting Register of Pin-Based
VM-Execution Flex Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
based VM-Execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Core Capability Reporting Register of VM-Exit Flex Controls
(R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Flex Controls
(R/O)

See Table 2-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-Function Controls
(R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Core See Table 2-2.

4C2H 1218 IA32_A_PMC1 Core See Table 2-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-
specific C1 states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-85

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-7 lists model-specific registers (MSRs) that are common to Intel® Atom™ processors based on the Silver-
mont and Airmont microarchitectures but not newer microarchitectures.

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Core Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature (R/W)

See Table 2-2

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

7:0 Reserved

13:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved

52:50 See Table 2-2.

63:33 Reserved

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

Table 2-6. MSRs Common to the Silvermont Microarchitecture and
Newer Microarchitectures for Intel Atom® Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-86 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40H 64 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the
last branch record stack. The From_IP part of the stack
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5 and record format in Section 17.4.8.1.

41H 65 MSR_LASTBRANCH_1_FROM_IP Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_LASTBRANCH_3_FROM_IP Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_LASTBRANCH_4_FROM_IP Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_LASTBRANCH_5_FROM_IP Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_LASTBRANCH_6_FROM_IP Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_LASTBRANCH_7_FROM_IP Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the
last branch record stack. The To_IP part of the stack
contains pointers to the destination instruction.

61H 97 MSR_LASTBRANCH_1_TO_IP Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_LASTBRANCH_2_TO_IP Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_LASTBRANCH_3_TO_IP Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_LASTBRANCH_4_TO_IP Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_LASTBRANCH_5_TO_IP Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_LASTBRANCH_6_TO_IP Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_LASTBRANCH_7_TO_IP Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

CEH 206 MSR_PLATFORM_INFO Package Platform Information: Contains power management and
other model specific features enumeration. See
http://biosbits.org.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-87

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the maximum frequency that does not
require turbo. Frequency = ratio * Scalable Bus
Frequency.

63:16 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state limit.

The following C-state code name encodings are
supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved

11EH 281 MSR_BBL_CR_CTL3 Module Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

7:1 Reserved

8 L2 Enabled (R/W)

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set the processor will not respond to the
WBINVD instruction or the assertion of the FLUSH#
input.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-88 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

22:9 Reserved

23 L2 Not Present (RO)

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled
and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Module Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

6:4 Reserved

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved

16 Module Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Module xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

34 Core XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-89

MODEL-SPECIFIC REGISTERS (MSRS)

38 Module Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo
Boost Technology, the turbo mode feature is disabled
and the IDA_Enable feature flag will be cleared
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA,
CPUID.06H: EAX[1] reports the processor’s support of
turbo mode is enabled.

Note: The power-on default value is used by BIOS to
detect hardware support of turbo mode. If the power-on
default value is 1, turbo mode is available in the
processor. If the power-on default value is 0, turbo mode
is not available.

63:39 Reserved

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

38EH 910 IA32_PERF_GLOBAL_STATUS Core See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event
Based Sampling (PEBS).”

0 Enable PEBS for precise event on IA32_PMC0 (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C6 states. Counts at the TSC Frequency.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-90 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.1 MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 2-8 lists model-specific registers (MSRs) that are specific to Intel Atom® processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

664H 1636 MSR_MC6_RESIDENCY_COUNTER Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Time that this module is in module-specific C6 states
since last

reset. Counts at 1 Mhz frequency.

Table 2-8. Specific MSRs Supported by Intel Atom® Processors with CPUID Signatures
06_37H, 06_4AH, 06_5AH, 06_5DH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock
speed for processors based on Silvermont
microarchitecture.

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.10.1, “RAPL Interfaces.”

3:0 Power Units

Power related information (in milliWatts) is based on the
multiplier, 2^PU; where PU is an unsigned integer
represented by bits 3:0. Default value is 0101b,
indicating power unit is in 32 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units

Energy related information (in microJoules) is based on
the multiplier, 2^ESU; where ESU is an unsigned integer
represented by bits 12:8. Default value is 00101b,
indicating energy unit is in 32 microJoules increment.

15:13 Reserved

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-91

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-9 lists model-specific registers (MSRs) that are specific to Intel Atom® processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H).

19:16 Time Unit

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

14:0 Package Power Limit #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1 (R/W)

In unit of second. If 0 is specified in bits [23:17], defaults
to 1 second window.

63:24 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.10.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

Table 2-9. Specific MSRs Supported by Intel Atom® Processor E3000 Series with CPUID Signature 06_37H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLICY_CONFIG Package Core C6 Demotion Policy Config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of
0 disables core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLICY_CONFIG Package Module C6 Demotion Policy Config MSR

63:0 Controls module (i.e., two cores sharing the second-level
cache) C6 demotion policy. Writing a value of 0 disables
module level HW demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COUNTER Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

Table 2-8. Specific MSRs Supported by Intel Atom® Processors with CPUID Signatures
06_37H, 06_4AH, 06_5AH, 06_5DH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-92 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-10 lists model-specific registers (MSRs) that are specific to Intel Atom® processor C2000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_4DH).

63:0 Time that this module is in module-specific C6 states
since last reset. Counts at 1 Mhz frequency.

Table 2-10. Specific MSRs Supported by Intel Atom® Processor C2000 Series with CPUID Signature 06_4DH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which
fetches additional lines of code or data into the L2
cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which
fetches the next cache line into L1 data cache.

63:3 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.10.1, “RAPL Interfaces.”

Table 2-9. Specific MSRs Supported by Intel Atom® Processor E3000 Series (Contd.)with CPUID Signature 06_37H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-93

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.2 MSRs In Intel Atom® Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-11. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel including 06_4CH; see Table 2-1.

3:0 Power Units

Power related information (in milliWatts) is based on
the multiplier, 2^PU; where PU is an unsigned integer
represented by bits 3:0. Default value is 0101b,
indicating power unit is in 32 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on
the multiplier, 2^ESU; where ESU is an unsigned
integer represented by bits 12:8. Default value is
00101b, indicating energy unit is in 32 microJoules
increment.

15:13 Reserved

19:16 Time Unit

The value is 0000b, indicating time unit is in one
second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.10.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0)

14:0 Thermal Spec Power (R/0)

The unsigned integer value is the equivalent of the
thermal specification power of the package domain.
The unit of this field is specified by the “Power Units”
field of MSR_RAPL_POWER_UNIT.

63:15 Reserved

Table 2-11. MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock
speed for processors based on Airmont
microarchitecture.

Table 2-10. Specific MSRs Supported by Intel Atom® Processor C2000 Series (Contd.)with CPUID Signature

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-94 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 • 0000B: 083.3 MHz
• 0001B: 100.0 MHz
• 0010B: 133.3 MHz
• 0011B: 116.7 MHz
• 0100B: 080.0 MHz
• 0101B: 093.3 MHz
• 0110B: 090.0 MHz
• 0111B: 088.9 MHz
• 1000B: 087.5 MHz

63:5 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

63:16 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO
redirection. If IO MWAIT Redirection is enabled, reads to
this address will be consumed by the power
management logic and decoded to MWAIT instructions.
When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

Table 2-11. MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-95

MODEL-SPECIFIC REGISTERS (MSRS)

2.5 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT
MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support MSRs listed in Table 2-6 and Table 2-12.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_5CH; see Table 2-1.

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State
code name to be included when IO read to MWAIT
redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - Deep Power Down Technology is the max C-
State.

010b - C7 is the max C-State to include.

63:19 Reserved

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1 (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1 (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

16 Reserved

23:17 Time Window for Power Limit #1 (R/W)

Specifies the time duration over which the average
power must remain below PP0_POWER_LIMIT
#1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 2-11. MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-96 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

49:0 Reserved

52:50 See Table 2-2.

63:33 Reserved

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

63:19 Reserved

3BH 59 IA32_TSC_ADJUST Core Per-Core TSC ADJUST (R/W)

See Table 2-2.

C3H 195 IA32_PMC2 Core Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Core Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the maximum frequency that does
not require turbo. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio
Limit for Turbo mode is enabled. When set to 0,
indicates Programmable Ratio Limit for Turbo mode is
disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo
mode is programmable. When set to 0, indicates TDP
Limit for Turbo mode is not programmable.

Vol. 4 2-97

MODEL-SPECIFIC REGISTERS (MSRS)

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that
MSR_TEMPERATURE_TARGET.[27:24] is valid and
writable to specify a temperature offset.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

0000b: No limit

0001b: C1

0010b: C3

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

63:16 Reserved

17DH 381 MSR_SMM_MCA_CAP Core Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability enhancement. Accessible only
while in SMM.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-98 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access
restriction is supported and the
MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is
supported and the MSR_SMM_DELAYED is supported.

63:60 Reserved

188H 392 IA32_PERFEVTSEL2 Core See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Core See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled
and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Package Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

6:4 Reserved

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Package xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

34 Core XD Bit Disable (R/W)

See Table 2-2.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-99

MODEL-SPECIFIC REGISTERS (MSRS)

37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo
Boost Technology, the turbo mode feature is disabled
and the IDA_Enable feature flag will be clear
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA,
CPUID.06H: EAX[1] reports the processor’s support of
turbo mode is enabled.

Note: The power-on default value is used by BIOS to
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the
processor. If the power-on default value is 0, turbo
mode is not available.

63:39 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which
fetches additional lines of code or data into the L2
cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which
fetches the next cache line into L1 data cache.

63:3 Reserved

1AAH 426 MSR_MISC_PWR_MGMT Package Miscellaneous Power Management Control

Various model specific features enumeration. See
http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced
Intel Speedstep Technology request from processor
cores. When 1, disables hardware coordination of
Enhanced Intel Speedstep Technology requests.

21:1 Reserved

22 Thermal Interrupt Coordination Enable (R/W)

If set, then thermal interrupt on one core is routed to
all cores.

63:23 Reserved

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-100 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode by Core Groups
(RW)

Specifies Maximum Ratio Limit for each Core Group.
Max ratio for groups with more cores must decrease
monotonically.

For groups with less than 4 cores, the max ratio must
be 32 or less. For groups with 4-5 cores, the max ratio
must be 22 or less. For groups with more than 5 cores,
the max ratio must be 16 or less.

7:0 Package Maximum Ratio Limit for Active Cores in Group 0

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 0 threshold.

15:8 Package Maximum Ratio Limit for Active Cores in Group 1

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 1 threshold,
and greater than the Group 0 threshold.

23:16 Package Maximum Ratio Limit for Active Cores in Group 2

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 2 threshold,
and greater than the Group 1 threshold.

31:24 Package Maximum Ratio Limit for Active Cores in Group 3

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 3 threshold,
and greater than the Group 2 threshold.

39:32 Package Maximum Ratio Limit for Active Cores in Group 4

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 4 threshold,
and greater than the Group 3 threshold.

47:40 Package Maximum Ratio Limit for Active Cores in Group 5

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 5 threshold,
and greater than the Group 4 threshold.

55:48 Package Maximum Ratio Limit for Active Cores in Group 6

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 6 threshold,
and greater than the Group 5 threshold.

63:56 Package Maximum Ratio Limit for Active Cores in Group 7

Maximum turbo ratio limit when the number of active
cores is less than or equal to the Group 7 threshold,
and greater than the Group 6 threshold.

1AEH 430 MSR_TURBO_GROUP_CORECNT Package Group Size of Active Cores for Turbo Mode Operation
(RW)

Writes of 0 threshold is ignored.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-101

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Package Group 0 Core Count Threshold

Maximum number of active cores to operate under the
Group 0 Max Turbo Ratio limit.

15:8 Package Group 1 Core Count Threshold

Maximum number of active cores to operate under the
Group 1 Max Turbo Ratio limit. Must be greater than
the Group 0 Core Count.

23:16 Package Group 2 Core Count Threshold

Maximum number of active cores to operate under the
Group 2 Max Turbo Ratio limit. Must be greater than
the Group 1 Core Count.

31:24 Package Group 3 Core Count Threshold

Maximum number of active cores to operate under the
Group 3 Max Turbo Ratio limit. Must be greater than
the Group 2 Core Count.

39:32 Package Group 4 Core Count Threshold

Maximum number of active cores to operate under the
Group 4 Max Turbo Ratio limit. Must be greater than
the Group 3 Core Count.

47:40 Package Group 5 Core Count Threshold

Maximum number of active cores to operate under the
Group 5 Max Turbo Ratio limit. Must be greater than
the Group 4 Core Count.

55:48 Package Group 6 Core Count Threshold

Maximum number of active cores to operate under the
Group 6 Max Turbo Ratio limit. Must be greater than
the Group 5 Core Count.

63:56 Package Group 7 Core Count Threshold

Maximum number of active cores to operate under the
Group 7 Max Turbo Ratio limit. Must be greater than
the Group 6 Core Count, and not less than the total
number of processor cores in the package. E.g., specify
255.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-102 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the
Minimum Enhanced Intel SpeedStep Technology
operating point when all execution cores enter MWAIT
(C1).

63:2 Reserved

210H 528 IA32_MTRR_PHYSBASE8 Core See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Core See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Core See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Core See Table 2-2.

280H 640 IA32_MC0_CTL2 Module See Table 2-2.

281H 641 IA32_MC1_CTL2 Module See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Module See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any
thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for
key derivation of an enclave.

301H 769 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any
thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for
key derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_STATUS Core See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

0 Ovf_PMC0

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-103

MODEL-SPECIFIC REGISTERS (MSRS)

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved

55 Trace_ToPA_PMI

57:56 Reserved

58 LBR_Frz.

59 CTR_Frz.

60 ASCI

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Core See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

0 Set 1 to clear Ovf_PMC0.

1 Set 1 to clear Ovf_PMC1.

2 Set 1 to clear Ovf_PMC2.

3 Set 1 to clear Ovf_PMC3.

31:4 Reserved

32 Set 1 to clear Ovf_FixedCtr0.

33 Set 1 to clear Ovf_FixedCtr1.

34 Set 1 to clear Ovf_FixedCtr2.

54:35 Reserved

55 Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved

58 Set 1 to clear LBR_Frz.

59 Set 1 to clear CTR_Frz.

60 Set 1 to clear ASCI.

61 Set 1 to clear Ovf_Uncore.

62 Set 1 to clear Ovf_BufDSSAVE.

63 Set 1 to clear CondChgd.

391H 913 IA32_PERF_GLOBAL_STATUS_SET Core See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-104 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 Set 1 to cause Ovf_PMC0 = 1.

1 Set 1 to cause Ovf_PMC1 = 1.

2 Set 1 to cause Ovf_PMC2 = 1.

3 Set 1 to cause Ovf_PMC3 = 1.

31:4 Reserved

32 Set 1 to cause Ovf_FixedCtr0 = 1.

33 Set 1 to cause Ovf_FixedCtr1 = 1.

34 Set 1 to cause Ovf_FixedCtr2 = 1.

54:35 Reserved

55 Set 1 to cause Trace_ToPA_PMI = 1.

57:56 Reserved

58 Set 1 to cause LBR_Frz = 1.

59 Set 1 to cause CTR_Frz = 1.

60 Set 1 to cause ASCI = 1.

61 Set 1 to cause Ovf_Uncore.

62 Set 1 to cause Ovf_BufDSSAVE.

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Core See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event
Based Sampling (PEBS).”

0 Enable PEBS trigger and recording for the
programmed event (precise or otherwise) on
IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the same
frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the same
frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-105

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the
TSC.

406H 1030 IA32_MC1_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C3H 1219 IA32_A_PMC2 Core See Table 2-2.

4C4H 1220 IA32_A_PMC3 Core See Table 2-2.

4E0H 1248 MSR_SMM_FEATURE_CONTROL Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only
while in SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further
changes.

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if
MSR_SMM_MCA_CAP[58] == 1. When set to ‘0’
(default) none of the logical processors are prevented
from executing SMM code outside the ranges defined
by the SMRR.

When set to ‘1’ any logical processor in the package
that attempts to execute SMM code not within the
ranges defined by the SMRR will assert an
unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors
in the package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-106 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a
long flow of internal operation which delays servicing
an interrupt. The corresponding bit will be set at the
start of long events such as: Microcode Update Load,
C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long
event. The reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in
the package. Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked
state to service an SMI. The corresponding bit will be
set if the logical processor is in one of the following
states: Wait For SIPI or SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

500H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of SGX Support for ACM
(RO)

0 Lock

See Section 41.11.3, “Interactions with Authenticated
Code Modules (ACMs)”.

15:1 Reserved

23:16 SGX_SVN_SINIT

See Section 41.11.3, “Interactions with Authenticated
Code Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Core Trace Output Base Register (R/W)

See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Core Trace Output Mask Pointers Register (R/W)

See Table 2-2.

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-107

MODEL-SPECIFIC REGISTERS (MSRS)

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Core Tracing Status Register (R/W)

0 FilterEn

Writes ignored.

1 ContexEn

Writes ignored.

2 TriggerEn

Writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH Core Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match.

580H 1408 IA32_RTIT_ADDR0_A Core Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Core Region 0 End Address (R/W)

63:0 See Table 2-2.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-108 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

582H 1410 IA32_RTIT_ADDR1_A Core Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Core Region 1 End Address (R/W)

63:0 See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.10.1, “RAPL Interfaces.”

3:0 Power Units

Power related information (in Watts) is in unit of
1W/2^PU; where PU is an unsigned integer
represented by bits 3:0. Default value is 1000b,
indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units

Energy related information (in Joules) is in unit of
1Joule/ (2^ESU); where ESU is an unsigned integer
represented by bits 12:8. Default value is 01110b,
indicating energy unit is in 61 microJoules.

15:13 Reserved

19:16 Time Unit

Time related information (in seconds) is in unit of
1S/2^TU; where TU is an unsigned integer
represented by bits 19:16. Default value is 1010b,
indicating power unit is in 0.977 millisecond.

63:20 Reserved

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if the
package should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. See Table 2-20 for
supported time unit encodings.

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and
can be used by the processor for package C-sate
management.

63:16 Reserved

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-109

MODEL-SPECIFIC REGISTERS (MSRS)

60BH 1547 MSR_PKGC_IRTL1 Package Package C6/C7S Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit
used by the processor to manage a transition to a
package C6 or C7S state.

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if the
package should be put into a package C6 or C7S state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. See Table 2-20 for
supported time unit encodings.

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and
can be used by the processor for package C-sate
management.

63:16 Reserved

60CH 1548 MSR_PKGC_IRTL2 Package Package C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit
used by the processor to manage a transition to a
package C7 state.

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if the
package should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. See Table 2-20 for
supported time unit encodings.

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and
can be used by the processor for package C-sate
management.

63:16 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-110 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in
processor-specific C2 states. Count at the same
frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W)

14:0 Thermal Spec Power (R/W)

See Section 14.10.3, “Package RAPL Domain.”

15 Reserved

30:16 Minimum Power (R/W)

See Section 14.10.3, “Package RAPL Domain.”

31 Reserved

46:32 Maximum Power (R/W)

See Section 14.10.3, “Package RAPL Domain.”

47 Reserved

54:48 Maximum Time Window (R/W)

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where
“Y” is the unsigned integer value represented by bits
52:48, “Z” is an unsigned integer represented by bits
54:53. “Time_Unit” is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

63:55 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

63:0 Package C10 Residency Counter (R/O)

Value since last reset that the entire SOC is in an S0i3
state. Count at the same frequency as the TSC.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-111

MODEL-SPECIFIC REGISTERS (MSRS)

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is
locked until a reset.

63:32 Reserved

64FH 1615 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below
the operating system request due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL2.

8:4 Reserved

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the
Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating
system request due to multi-core turbo limits.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-112 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating
system request due to Turbo transition attenuation.
This prevents performance degradation due to
frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum
efficiency frequency.

15 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

18 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power
Limiting Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software
writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power
Limiting Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software
writing 0.

24:20 Reserved

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-113

MODEL-SPECIFIC REGISTERS (MSRS)

26 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Electrical Design Point Log

When set, indicates that the EDP Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition
Attenuation Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

30 Maximum Efficiency Frequency Log

When set, indicates that the Maximum Efficiency
Frequency Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:31 Reserved

680H 1664 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the
last branch record stack. The From_IP part of the stack
contains pointers to the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.6 and record format in Section 17.4.8.1.

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

681H 1665 MSR_LASTBRANCH_1_FROM_IP Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_LASTBRANCH_3_FROM_IP Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-114 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

684H 1668 MSR_LASTBRANCH_4_FROM_IP Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Core Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Core Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP Core Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Core Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Core Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Core Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP Core Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Core Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

690H 1680 MSR_LASTBRANCH_16_FROM_IP Core Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

691H 1681 MSR_LASTBRANCH_17_FROM_IP Core Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_LASTBRANCH_18_FROM_IP Core Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_LASTBRANCH_19_FROM_IP Core Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_LASTBRANCH_20_FROM_IP Core Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_LASTBRANCH_21_FROM_IP Core Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_LASTBRANCH_22_FROM_IP Core Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-115

MODEL-SPECIFIC REGISTERS (MSRS)

697H 1687 MSR_LASTBRANCH_23_FROM_IP Core Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_LASTBRANCH_24_FROM_IP Core Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_LASTBRANCH_25_FROM_IP Core Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_LASTBRANCH_26_FROM_IP Core Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_LASTBRANCH_27_FROM_IP Core Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_LASTBRANCH_28_FROM_IP Core Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_LASTBRANCH_29_FROM_IP Core Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_LASTBRANCH_30_FROM_IP Core Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_LASTBRANCH_31_FROM_IP Core Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the
last branch record stack. The To_IP part of the stack
contains pointers to the Destination instruction and
elapsed cycles from last LBR update. See Section 17.6.

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-116 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6C8H 1736 MSR_LASTBRANCH_8_TO_IP Core Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Core Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Core Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Core Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Core Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Core Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Core Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Core Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D0H 1744 MSR_LASTBRANCH_16_TO_IP Core Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D1H 1745 MSR_LASTBRANCH_17_TO_IP Core Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_LASTBRANCH_18_TO_IP Core Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_LASTBRANCH_19_TO_IP Core Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_LASTBRANCH_20_TO_IP Core Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_LASTBRANCH_21_TO_IP Core Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_LASTBRANCH_22_TO_IP Core Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_LASTBRANCH_23_TO_IP Core Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_LASTBRANCH_24_TO_IP Core Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_LASTBRANCH_25_TO_IP Core Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_LASTBRANCH_26_TO_IP Core Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-117

MODEL-SPECIFIC REGISTERS (MSRS)

6DBH 1755 MSR_LASTBRANCH_27_TO_IP Core Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_LASTBRANCH_28_TO_IP Core Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_LASTBRANCH_29_TO_IP Core Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_LASTBRANCH_30_TO_IP Core Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_LASTBRANCH_31_TO_IP Core Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Core x2APIC ID register (R/O)

803H 2051 IA32_X2APIC_VERSION Core x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Core x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Core x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Core x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Core x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Core x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Core x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Core x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Core x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Core x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Core x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Core x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Core x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Core x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Core x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Core x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Core x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Core x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Core x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Core x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Core x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Core x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Core x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Core x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Core x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Core x2APIC Interrupt Request register bits [127:96] (R/O)

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-118 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

824H 2084 IA32_X2APIC_IRR4 Core x2APIC Interrupt Request register bits [159:128]
(R/O)

825H 2085 IA32_X2APIC_IRR5 Core x2APIC Interrupt Request register bits [191:160]
(R/O)

826H 2086 IA32_X2APIC_IRR6 Core x2APIC Interrupt Request register bits [223:192]
(R/O)

827H 2087 IA32_X2APIC_IRR7 Core x2APIC Interrupt Request register bits [255:224]
(R/O)

828H 2088 IA32_X2APIC_ESR Core x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Core x2APIC LVT Corrected Machine Check Interrupt
register (R/W)

830H 2096 IA32_X2APIC_ICR Core x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Core x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMAL Core x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Core x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Core x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Core x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Core x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Core x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Core x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Core x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Core x2APIC Self IPI register (W/O)

C8FH 3215 IA32_PQR_ASSOC Core Resource Association Register (R/W)

31:0 Reserved

33:32 COS (R/W)

63: 34 Reserved

D10H 3344 IA32_L2_QOS_MASK_0 Module L2 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:7 CBM: Bit vector of available L2 ways for COS 0
enforcement.

63:8 Reserved

D11H 3345 IA32_L2_QOS_MASK_1 Module L2 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:7 CBM: Bit vector of available L2 ways for COS 0
enforcement.

63:8 Reserved

D12H 3346 IA32_L2_QOS_MASK_2 Module L2 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:7 CBM: Bit vector of available L2 ways for COS 0
enforcement.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-119

MODEL-SPECIFIC REGISTERS (MSRS)

2.6 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT PLUS
MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support MSRs listed in Table 2-6, Table 2-12
and Table 2-13. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_7AH; see Table
2-1. For an MSR listed in Table 2-13 that also appears in the model-specific tables of prior generations, Table 2-13
supersede prior generation tables.

In the Goldmont Plus microarchitecture, the scope column indicates the following: “Core” means each processor
core has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit
field is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the
physical package share the same MSR or bit interface.

63:8 Reserved

D13H 3347 IA32_L2_QOS_MASK_3 Package L2 Class Of Service Mask - COS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L2 ways for COS 3
enforcement.

63:20 Reserved

D90H 3472 IA32_BNDCFGS Core See Table 2-2.

DA0H 3488 IA32_XSS Core See Table 2-2.

See Table 2-6, and Table 2-12 for MSR definitions applicable to processors with CPUID signature 06_5CH.

Table 2-13. MSRs in Intel Atom® Processors Based on the Goldmont Plus Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration
of SGX Launch Control via IA32_SGXLEPUBKEYHASHn
MSR.

Valid if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL)

63:19 Reserved

8CH 140 IA32_SGXLEPUBKEYHASH0 Core See Table 2-2.

Table 2-12. MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-120 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8DH 141 IA32_SGXLEPUBKEYHASH1 Core See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Core See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Core See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core (R/W) See Table 2-2. See Section 18.6.2.4, “Processor
Event Based Sampling (PEBS).”

0 Enable PEBS trigger and recording for the
programmed event (precise or otherwise) on
IA32_PMC0.

1 Enable PEBS trigger and recording for the
programmed event (precise or otherwise) on
IA32_PMC1.

2 Enable PEBS trigger and recording for the
programmed event (precise or otherwise) on
IA32_PMC2.

3 Enable PEBS trigger and recording for the
programmed event (precise or otherwise) on
IA32_PMC3.

31:4 Reserved

32 Enable PEBS trigger and recording for
IA32_FIXED_CTR0.

33 Enable PEBS trigger and recording for
IA32_FIXED_CTR1.

34 Enable PEBS trigger and recording for
IA32_FIXED_CTR2.

63:35 Reserved

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn

Table 2-13. MSRs in Intel Atom® Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-121

MODEL-SPECIFIC REGISTERS (MSRS)

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

680H 1664 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of the three MSRs that make up the first entry of
the 32-entry LBR stack. The From_IP part of the stack
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.7, “Last Branch, Call Stack, Interrupt, and

Exception Recording for Processors based on
Goldmont Plus Microarchitecture.”

681H
-

69FH

1665
-

1695

MSR_LASTBRANCH_i_FROM_IP Core Last Branch Record i From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP; i
= 1-31.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of the three MSRs that make up the first entry of
the 32-entry LBR stack. The To_IP part of the stack
contains pointers to the Destination instruction. See
also:

• Section 17.7, “Last Branch, Call Stack, Interrupt, and
Exception Recording for Processors based on
Goldmont Plus Microarchitecture.”

6C1H
-

6DFH

1729
-

1759

MSR_LASTBRANCH_i_TO_IP Core Last Branch Record i To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP; i = 1-
31.

DC0H 3520 MSR_LASTBRANCH_INFO_0 Core Last Branch Record 0 Additional Information (R/W)

One of the three MSRs that make up the first entry of
the 32-entry LBR stack. This part of the stack
contains flag and elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LASTBRANCH_INFO_1 Core Last Branch Record 1 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC2H 3522 MSR_LASTBRANCH_INFO_2 Core Last Branch Record 2 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC3H 3523 MSR_LASTBRANCH_INFO_3 Core Last Branch Record 3 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom® Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-122 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DC4H 3524 MSR_LASTBRANCH_INFO_4 Core Last Branch Record 4 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC5H 3525 MSR_LASTBRANCH_INFO_5 Core Last Branch Record 5 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC6H 3526 MSR_LASTBRANCH_INFO_6 Core Last Branch Record 6 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC7H 3527 MSR_LASTBRANCH_INFO_7 Core Last Branch Record 7 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC8H 3528 MSR_LASTBRANCH_INFO_8 Core Last Branch Record 8 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC9H 3529 MSR_LASTBRANCH_INFO_9 Core Last Branch Record 9 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCAH 3530 MSR_LASTBRANCH_INFO_10 Core Last Branch Record 10 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCBH 3531 MSR_LASTBRANCH_INFO_11 Core Last Branch Record 11 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCCH 3532 MSR_LASTBRANCH_INFO_12 Core Last Branch Record 12 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCDH 3533 MSR_LASTBRANCH_INFO_13 Core Last Branch Record 13 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCEH 3534 MSR_LASTBRANCH_INFO_14 Core Last Branch Record 14 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCFH 3535 MSR_LASTBRANCH_INFO_15 Core Last Branch Record 15 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD0H 3536 MSR_LASTBRANCH_INFO_16 Core Last Branch Record 16 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD1H 3537 MSR_LASTBRANCH_INFO_17 Core Last Branch Record 17 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD2H 3538 MSR_LASTBRANCH_INFO_18 Core Last Branch Record 18 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD3H 3539 MSR_LASTBRANCH_INFO_19 Core Last Branch Record 19 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD4H 3520 MSR_LASTBRANCH_INFO_20 Core Last Branch Record 20 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD5H 3521 MSR_LASTBRANCH_INFO_21 Core Last Branch Record 21 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD6H 3522 MSR_LASTBRANCH_INFO_22 Core Last Branch Record 22 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom® Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-123

MODEL-SPECIFIC REGISTERS (MSRS)

2.7 MSRS IN INTEL ATOM® PROCESSORS BASED ON TREMONT
MICROARCHITECTURE

Intel Atom processors based on the Tremont microarchitecture support MSRs listed in Table 2-6, Table 2-12, Table
2-13 and Table 2-14. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_86H; see
Table 2-1. For an MSR listed in Table 2-14 that also appears in the model-specific tables of prior generations, Table
2-14 supersede prior generation tables.

In the Tremont microarchitecture, the scope column indicates the following: “Core” means each processor core has
a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field is
shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

DD7H 3523 MSR_LASTBRANCH_INFO_23 Core Last Branch Record 23 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD8H 3524 MSR_LASTBRANCH_INFO_24 Core Last Branch Record 24 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD9H 3525 MSR_LASTBRANCH_INFO_25 Core Last Branch Record 25 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDAH 3526 MSR_LASTBRANCH_INFO_26 Core Last Branch Record 26 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDBH 3527 MSR_LASTBRANCH_INFO_27 Core Last Branch Record 27 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDCH 3528 MSR_LASTBRANCH_INFO_28 Core Last Branch Record 28 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDDH 3529 MSR_LASTBRANCH_INFO_29 Core Last Branch Record 29 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDEH 3530 MSR_LASTBRANCH_INFO_30 Core Last Branch Record 30 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDFH 3531 MSR_LASTBRANCH_INFO_31 Core Last Branch Record 31 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

See Table 2-6, Table 2-12 and Table 2-13 for MSR definitions applicable to processors with CPUID signature 06_7AH.

Table 2-13. MSRs in Intel Atom® Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-124 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-14. MSRs in Intel Atom® Processors Based on the Tremont Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

33H 51 MSR_TEST_CTRL Core Test Control Register

28:0 Reserved.

29 Enable #AC(0) exception for split locked accesses:

Cause #AC(0) exception for split locked access at all
CPL irrespective of CR0.AM or EFLAGS.AC. If bits 29
and 31 are both set, bit 29 takes precedence.

30 Reserved.

31 Reserved.

CFH 207 IA32_CORE_CAPABILITIES Core IA32 Core Capabilities Register

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

4:0 Reserved.

5 Bit 29 of MSR_TEST_CTRL (address 33H) supported.

63:6 Reserved.

3F1H 1009 MSR_PEBS_ENABLE Core (R/W) See Table 2-2. See Section 18.6.2.4, “Processor
Event Based Sampling (PEBS)”.

n:0 Enable PEBS trigger and recording for the programmed
event (precise or otherwise) on IA32_PMCx. The
maximum value n can be determined from
CPUID.0AH:EAX[15:8].

31:n+1 Reserved.

32+m:32 Enable PEBS trigger and recording for
IA32_FIXED_CTRx. The maximum value m can be
determined from CPUID.0AH:EDX[4:0].

59:33+m Reserved.

60 Pend a PerfMon Interrupt (PMI) after each PEBS event.

62:61 Specifies PEBS output destination. Encodings:

00B: DS Save Area

01B: Intel PT trace output. Supported if
IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[
16] and CPUID.07H.0.EBX[25] are set.

10B: Reserved

11B: Reserved

63 Reserved.

1309H
-

130BH

4873
-

4875

MSR_RELOAD_FIXED_CTRx Reload value for IA32_FIXED_CTRx (R/W)

47:0 Value loaded into IA32_FIXED_CTRx when a PEBS
record is generated while PEBS_EN_FIXEDx = 1 and
PEBS_OUTPUT = 01B in IA32_PEBS_ENABLE, and
FIXED_CTRx is overflowed.

63:48 Reserved.

Vol. 4 2-125

MODEL-SPECIFIC REGISTERS (MSRS)

2.8 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 2-15 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 2-1. Additional MSRs specific to
06_1AH, 06_1EH, 06_1FH are listed in Table 2-16. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed once
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

14C1H
-

14C8H

5313
-

5320

MSR_RELOAD_PMCx Reload value for IA32_PMCx (R/W)

47:0 Value loaded into IA32_PMCx when a PEBS record is
generated while PEBS_EN_PMCx = 1 and
PEBS_OUTPUT = 01B in IA32_PEBS_ENABLE, and
PMCx is overflowed.

63:48 Reserved.

See Table 2-6, Table 2-12, Table 2-13 and Table 2-14 for MSR definitions applicable to processors with CPUID signature 06_86H.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Thread See Section 8.10.5, “Monitor/Mwait Address Range
Determination” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter,” and see
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved

52:50 See Table 2-2.

63:53 Reserved

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,”
and Table 2-2.

Table 2-14. MSRs in Intel Atom® Processors Based on the Tremont Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-126 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC
runs at. The invariant TSC frequency can be computed
by multiplying this ratio by 133.33 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limit
for Turbo mode is enabled. When set to 0, indicates
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC and TDP Limits for
Turbo mode are programmable. When set to 0, indicates
TDC and TDP Limits for Turbo mode are not
programmable.

39:30 Reserved

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-127

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that the
processor can operate, in units of 133.33MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States. See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state
limit.

The following C-state code name encodings are
supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state
to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

23:16 Reserved

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake
only when the event message is destined for that core.
When 0, all processor cores in a deep C-State will wake
for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote
C6/C7 requests to C3 based on uncore auto-demote
information.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-128 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote
C3/C6/C7 requests to C1 based on uncore auto-demote
information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO
redirection. If IO MWAIT Redirection is enabled, reads to
this address will be consumed by the power
management logic and decoded to MWAIT instructions.
When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State
code name to be included when IO read to MWAIT
redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-129

MODEL-SPECIFIC REGISTERS (MSRS)

0 RIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) can be used to
restart the program. If cleared, the program cannot be
reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) is directly
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been
generated. If a second machine check is detected while
this bit is still set, the processor enters a shutdown
state. Software should write this bit to 0 after
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Core See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved

199H 409 IA32_PERF_CTL Thread See Table 2-2.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-130 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled
and disabled.

0 Thread Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

6:4 Reserved

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-131

MODEL-SPECIFIC REGISTERS (MSRS)

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo
Boost Technology, the turbo mode feature is disabled
and the IDA_Enable feature flag will be clear
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA,
CPUID.06H: EAX[1] reports the processor’s support of
turbo mode is enabled.

Note: The power-on default value is used by BIOS to
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the
processor. If the power-on default value is 0, turbo
mode is not available.

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Thread Temperature Target

15:0 Reserved

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be
asserted. The value is degrees C.

63:24 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches
additional lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which
fetches the cache line that comprises a cache line pair
(128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which
fetches the next cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which
uses sequential load history (based on instruction
pointer of previous loads) to determine whether to
prefetch additional lines.

63:4 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-132 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control

Various model specific features enumeration. See
http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced
Intel Speedstep Technology request from processor
cores. When 1, disables hardware coordination of
Enhanced Intel Speedstep Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register
(MSR 1B0h) visible to software with Ring 0 privileges.
This bit’s status (1 or 0) is also reflected by
CPUID.(EAX=06h):ECX[3].

63:2 Reserved

1ACH 428 MSR_TURBO_POWER_CURRENT_LIMIT See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active; a value = 1
indicates override is active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active; a value = 1
indicates override is active.

63:32 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-133

MODEL-SPECIFIC REGISTERS (MSRS)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that
the processor executed prior to the last exception that
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last
branch instruction that the processor executed prior to
the last exception that was generated or the last
interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register

See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the
Minimum Enhanced Intel SpeedStep Technology
operating point when all execution cores enter MWAIT
(C1).

63:2 Reserved

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-134 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Package See Table 2-2.

281H 641 IA32_MC1_CTL2 Package See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Core See Table 2-2.

285H 645 IA32_MC5_CTL2 Core See Table 2-2.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-135

MODEL-SPECIFIC REGISTERS (MSRS)

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL
MSR.”

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format

7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATUS Thread Provides single-bit status used by software to query
the overflow condition of each performance counter.
(RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.” Allows software to clear counter
overflow conditions on any combination of fixed-
function PMCs (IA32_FIXED_CTRx) or general-purpose
PMCs via a single WRMSR.

390H 912 MSR_PERF_GLOBAL_OVF_CTRL Thread (R/W)

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-136 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

1 Enable PEBS on IA32_PMC1 (R/W)

2 Enable PEBS on IA32_PMC2 (R/W)

3 Enable PEBS on IA32_PMC3 (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0 (R/W)

33 Enable Load Latency on IA32_PMC1 (R/W)

34 Enable Load Latency on IA32_PMC2 (R/W)

35 Enable Load Latency on IA32_PMC3 (R/W)

63:36 Reserved

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance
Monitoring Facility.”

15:0 Minimum threshold latency value of tagged load
operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C3 states. Count at the same frequency as the
TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C6 states. Count at the same frequency as the
TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C7 states. Count at the same frequency as the
TSC.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-137

MODEL-SPECIFIC REGISTERS (MSRS)

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the
TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Count at the same frequency as the
TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

403H 1027 IA32_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

407H 1031 IA32_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-138 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV flag
in the MSR_MC3_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

413H 1043 IA32_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 IA32_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-139

MODEL-SPECIFIC REGISTERS (MSRS)

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Thread Capability Reporting Register of Pin-based
VM-execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Controls
(R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-140 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Thread Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on
the last branch record stack. The From_IP part of the
stack contains pointers to the source instruction. See
also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1 and record format in Section 17.4.8.1.

681H 1665 MSR_LASTBRANCH_1_FROM_IP Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_LASTBRANCH_3_FROM_IP Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_LASTBRANCH_4_FROM_IP Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-141

MODEL-SPECIFIC REGISTERS (MSRS)

68EH 1678 MSR_LASTBRANCH_14_FROM_IP Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on
the last branch record stack. This part of the stack
contains pointers to the destination instruction.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID Register (R/O)

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-142 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version Register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority Register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority Register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI Register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination Register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector Register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service Register Bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service Register Bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service Register Bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service Register Bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service Register Bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service Register Bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service Register Bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service Register Bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode Register Bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode Register Bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode Register Bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode Register Bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode Register Bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode Register Bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode Register Bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode Register Bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request Register Bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request Register Bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request Register Bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request Register Bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request Register Bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request Register Bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request Register Bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request Register Bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status Register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt Register
(R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command Register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt Register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMAL Thread x2APIC LVT Thermal Sensor Interrupt Register (R/W)

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-143

MODEL-SPECIFIC REGISTERS (MSRS)

2.8.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
Intel Xeon Processor 5500 and 3400 series support additional model-specific registers listed in Table 2-16. These
MSRs also apply to Intel Core i7 and i5 processor family CPUID signature with DisplayFamily_DisplayModel of
06_1AH, 06_1EH and 06_1FH, see Table 2-1.

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor Register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 Register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 Register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error Register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count Register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count Register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration Register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI Register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX
Register and RDTSCP Support.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Actual maximum turbo frequency is multiplied by
133.33MHz.

(Not available in model 06_2EH.)

Table 2-15. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-144 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Maximum Turbo Ratio Limit 1C (R/O)

Maximum Turbo mode ratio limit with 1 core active.

15:8 Maximum Turbo Ratio Limit 2C (R/O)

Maximum Turbo mode ratio limit with 2 cores active.

23:16 Maximum Turbo Ratio Limit 3C (R/O)

Maximum Turbo mode ratio limit with 3 cores active.

31:24 Maximum Turbo Ratio Limit 4C (R/O)

Maximum Turbo mode ratio limit with 4 cores active.

63:32 Reserved

301H 769 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved

391H 913 MSR_UNCORE_PERF_GLOBAL_CTRL Package See Section 18.3.1.2.1, “Uncore Performance
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PERF_GLOBAL_STATUS Package See Section 18.3.1.2.1, “Uncore Performance
Monitoring Management Facility.”

393H 915 MSR_UNCORE_PERF_GLOBAL_OVF_CTRL Package See Section 18.3.1.2.1, “Uncore Performance
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIXED_CTR0 Package See Section 18.3.1.2.1, “Uncore Performance
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIXED_CTR_CTRL Package See Section 18.3.1.2.1, “Uncore Performance
Monitoring Management Facility.”

396H 918 MSR_UNCORE_ADDR_OPCODE_MATCH Package See Section 18.3.1.2.3, “Uncore Address/Opcode
Match MSR.”

3B0H 960 MSR_UNCORE_PMC0 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B1H 961 MSR_UNCORE_PMC1 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B2H 962 MSR_UNCORE_PMC2 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B3H 963 MSR_UNCORE_PMC3 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B4H 964 MSR_UNCORE_PMC4 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-145

MODEL-SPECIFIC REGISTERS (MSRS)

2.8.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 2-15 (except MSR address 1ADH) and additional
model-specific registers listed in Table 2-17. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2EH.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B6H 966 MSR_UNCORE_PMC6 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3B7H 967 MSR_UNCORE_PMC7 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C0H 944 MSR_UNCORE_PERFEVTSEL0 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C1H 945 MSR_UNCORE_PERFEVTSEL1 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C2H 946 MSR_UNCORE_PERFEVTSEL2 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C3H 947 MSR_UNCORE_PERFEVTSEL3 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C4H 948 MSR_UNCORE_PERFEVTSEL4 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C5H 949 MSR_UNCORE_PERFEVTSEL5 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C6H 950 MSR_UNCORE_PERFEVTSEL6 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

3C7H 951 MSR_UNCORE_PERFEVTSEL7 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-146 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter.

395H 817 MSR_W_PMON_FIXED_CTR_CTL Package Uncore U-box perfmon fixed counter control MSR.

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-147

MODEL-SPECIFIC REGISTERS (MSRS)

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

452H 1106 IA32_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 IA32_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 IA32_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

456H 1110 IA32_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 IA32_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_CTRL Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_STATUS Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_OVF_CTRL Package Uncore U-box perfmon global overflow control MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-148 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.

C21H 3105 MSR_B0_PMON_BOX_STATUS Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_CTRL Package Uncore B-box 0 perfmon local box overflow control
MSR.

C30H 3120 MSR_B0_PMON_EVNT_SEL0 Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_SEL1 Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.

C34H 3124 MSR_B0_PMON_EVNT_SEL2 Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_SEL3 Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_STATUS Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_CTRL Package Uncore S-box 0 perfmon local box overflow control
MSR.

C50H 3152 MSR_S0_PMON_EVNT_SEL0 Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_SEL1 Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_SEL2 Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_SEL3 Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-149

MODEL-SPECIFIC REGISTERS (MSRS)

C61H 3169 MSR_B1_PMON_BOX_STATUS Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_CTRL Package Uncore B-box 1 perfmon local box overflow control
MSR.

C70H 3184 MSR_B1_PMON_EVNT_SEL0 Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_SEL1 Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.

C74H 3188 MSR_B1_PMON_EVNT_SEL2 Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_SEL3 Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_STATUS Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_CTRL Package Uncore W-box perfmon local box overflow control
MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_STATUS Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_OVF_CTRL Package Uncore M-box 0 perfmon local box overflow control
MSR.

CA4H 3236 MSR_M0_PMON_TIMESTAMP Package Uncore M-box 0 perfmon time stamp unit select
MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-150 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.

CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.

CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_SEL0 Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_SEL1 Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_SEL2 Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_SEL3 Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_SEL4 Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_SEL5 Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_STATUS Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_CTRL Package Uncore S-box 1 perfmon local box overflow control
MSR.

CD0H 3280 MSR_S1_PMON_EVNT_SEL0 Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_SEL1 Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_SEL2 Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-151

MODEL-SPECIFIC REGISTERS (MSRS)

CD6H 3286 MSR_S1_PMON_EVNT_SEL3 Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_STATUS Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_OVF_CTRL Package Uncore M-box 1 perfmon local box overflow control
MSR.

CE4H 3300 MSR_M1_PMON_TIMESTAMP Package Uncore M-box 1 perfmon time stamp unit select
MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_SEL0 Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_SEL1 Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_SEL2 Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_SEL3 Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_SEL4 Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_SEL5 Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.

D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.

D01H 3329 MSR_C0_PMON_BOX_STATUS Package Uncore C-box 0 perfmon local box status MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-152 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D02H 3330 MSR_C0_PMON_BOX_OVF_CTRL Package Uncore C-box 0 perfmon local box overflow control
MSR.

D10H 3344 MSR_C0_PMON_EVNT_SEL0 Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_SEL1 Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_SEL2 Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_SEL3 Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_SEL4 Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_SEL5 Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_STATUS Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_CTRL Package Uncore C-box 4 perfmon local box overflow control
MSR.

D30H 3376 MSR_C4_PMON_EVNT_SEL0 Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_SEL1 Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.

D34H 3380 MSR_C4_PMON_EVNT_SEL2 Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_SEL3 Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.

D38H 3384 MSR_C4_PMON_EVNT_SEL4 Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-153

MODEL-SPECIFIC REGISTERS (MSRS)

D3AH 3386 MSR_C4_PMON_EVNT_SEL5 Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_STATUS Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_CTRL Package Uncore C-box 2 perfmon local box overflow control
MSR.

D50H 3408 MSR_C2_PMON_EVNT_SEL0 Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_SEL1 Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_SEL2 Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_SEL3 Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_SEL4 Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_SEL5 Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.

D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_STATUS Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_CTRL Package Uncore C-box 6 perfmon local box overflow control
MSR.

D70H 3440 MSR_C6_PMON_EVNT_SEL0 Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.

D72H 3442 MSR_C6_PMON_EVNT_SEL1 Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_SEL2 Package Uncore C-box 6 perfmon event select MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-154 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_SEL3 Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_SEL4 Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_SEL5 Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_STATUS Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_CTRL Package Uncore C-box 1 perfmon local box overflow control
MSR.

D90H 3472 MSR_C1_PMON_EVNT_SEL0 Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_SEL1 Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.

D94H 3476 MSR_C1_PMON_EVNT_SEL2 Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_SEL3 Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_SEL4 Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_SEL5 Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.

DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_STATUS Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_CTRL Package Uncore C-box 5 perfmon local box overflow control
MSR.

DB0H 3504 MSR_C5_PMON_EVNT_SEL0 Package Uncore C-box 5 perfmon event select MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-155

MODEL-SPECIFIC REGISTERS (MSRS)

DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_SEL1 Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_SEL2 Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_SEL3 Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_SEL4 Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_SEL5 Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.

DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_STATUS Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_CTRL Package Uncore C-box 3 perfmon local box overflow control
MSR.

DD0H 3536 MSR_C3_PMON_EVNT_SEL0 Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_SEL1 Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_SEL2 Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

DD6H 3542 MSR_C3_PMON_EVNT_SEL3 Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_SEL4 Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_SEL5 Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-156 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_STATUS Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_CTRL Package Uncore C-box 7 perfmon local box overflow control
MSR.

DF0H 3568 MSR_C7_PMON_EVNT_SEL0 Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_SEL1 Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.

DF4H 3572 MSR_C7_PMON_EVNT_SEL2 Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_SEL3 Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_SEL4 Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_SEL5 Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_STATUS Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_CTRL Package Uncore R-box 0 perfmon local box overflow control
MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select
MSR.

E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select
MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select
MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select
MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select
MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select
MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-157

MODEL-SPECIFIC REGISTERS (MSRS)

E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select
MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select
MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_SEL0 Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_SEL1 Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.

E14H 3604 MSR_R0_PMON_EVNT_SEL2 Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_SEL3 Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_SEL4 Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_SEL5 Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_SEL6 Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_SEL7 Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_STATUS Package Uncore R-box 1 perfmon local box status MSR.

E22H 3618 MSR_R1_PMON_BOX_OVF_CTRL Package Uncore R-box 1 perfmon local box overflow control
MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select
MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-158 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select
MSR.

E26H 3622 MSR_R1_PMON_IPERF1_P10 Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select
MSR.

E27H 3623 MSR_R1_PMON_IPERF1_P11 Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select
MSR.

E28H 3624 MSR_R1_PMON_IPERF1_P12 Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select
MSR.

E29H 3625 MSR_R1_PMON_IPERF1_P13 Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select
MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_P14 Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select
MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_P15 Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select
MSR.

E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_SEL8 Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_SEL9 Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_SEL10 Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_SEL11 Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_SEL12 Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_SEL13 Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_SEL14 Package Uncore R-box 1 perfmon event select MSR.

E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-159

MODEL-SPECIFIC REGISTERS (MSRS)

2.9 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-15, Table 2-16, plus additional MSR listed in Table 2-18. These MSRs apply to Intel Core
i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table
2-1.

E3EH 3646 MSR_R1_PMON_EVNT_SEL15 Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.

E54H 3668 MSR_M0_PMON_MM_CONFIG Package Uncore M-box 0 perfmon local box address
match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_MATCH Package Uncore M-box 0 perfmon local box address match
MSR.

E56H 3670 MSR_M0_PMON_ADDR_MASK Package Uncore M-box 0 perfmon local box address mask
MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_CONFIG Package Uncore M-box 1 perfmon local box address
match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_MATCH Package Uncore M-box 1 perfmon local box address match
MSR.

E5EH 3678 MSR_M1_PMON_ADDR_MASK Package Uncore M-box 1 perfmon local box address mask
MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event
Configuration Facility.”

Table 2-17. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-160 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.10 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-15 (except MSR address 1ADH), Table 2-16, plus additional MSR listed in Table 2-19.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

Table 2-18. Additional MSRs Supported by Intel Processors
(Based on Intel® Microarchitecture Code Name Westmere)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration
of AES instruction set availability is as follows:

11b: AES instructions are not available until next
RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is
unsuccessful. If the configuration is not 01b, AES
instructions can be mis-configured if a privileged agent
unintentionally writes 11b.

63:2 Reserved

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

Vol. 4 2-161

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-19. Additional MSRs Supported by Intel® Xeon® Processor E7 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of
AES instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is
unsuccessful. If the configuration is not 01b, AES
instructions can be mis-configured if a privileged agent
unintentionally writes 11b.

63:2 Reserved

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

F40H 3904 MSR_C8_PMON_BOX_CTRL Package Uncore C-box 8 perfmon local box control MSR.

F41H 3905 MSR_C8_PMON_BOX_STATUS Package Uncore C-box 8 perfmon local box status MSR.

F42H 3906 MSR_C8_PMON_BOX_OVF_CTRL Package Uncore C-box 8 perfmon local box overflow control MSR.

F50H 3920 MSR_C8_PMON_EVNT_SEL0 Package Uncore C-box 8 perfmon event select MSR.

F51H 3921 MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter MSR.

F52H 3922 MSR_C8_PMON_EVNT_SEL1 Package Uncore C-box 8 perfmon event select MSR.

F53H 3923 MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter MSR.

F54H 3924 MSR_C8_PMON_EVNT_SEL2 Package Uncore C-box 8 perfmon event select MSR.

F55H 3925 MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter MSR.

F56H 3926 MSR_C8_PMON_EVNT_SEL3 Package Uncore C-box 8 perfmon event select MSR.

F57H 3927 MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter MSR.

F58H 3928 MSR_C8_PMON_EVNT_SEL4 Package Uncore C-box 8 perfmon event select MSR.

F59H 3929 MSR_C8_PMON_CTR4 Package Uncore C-box 8 perfmon counter MSR.

F5AH 3930 MSR_C8_PMON_EVNT_SEL5 Package Uncore C-box 8 perfmon event select MSR.

F5BH 3931 MSR_C8_PMON_CTR5 Package Uncore C-box 8 perfmon counter MSR.

2-162 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 2-20 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel micro-
architecture code name Sandy Bridge. These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, 06_2DH, see Table 2-1. Additional MSRs specific to 06_2AH are listed in Table 2-21.

FC0H 4032 MSR_C9_PMON_BOX_CTRL Package Uncore C-box 9 perfmon local box control MSR.

FC1H 4033 MSR_C9_PMON_BOX_STATUS Package Uncore C-box 9 perfmon local box status MSR.

FC2H 4034 MSR_C9_PMON_BOX_OVF_CTRL Package Uncore C-box 9 perfmon local box overflow control MSR.

FD0H 4048 MSR_C9_PMON_EVNT_SEL0 Package Uncore C-box 9 perfmon event select MSR.

FD1H 4049 MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter MSR.

FD2H 4050 MSR_C9_PMON_EVNT_SEL1 Package Uncore C-box 9 perfmon event select MSR.

FD3H 4051 MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter MSR.

FD4H 4052 MSR_C9_PMON_EVNT_SEL2 Package Uncore C-box 9 perfmon event select MSR.

FD5H 4053 MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter MSR.

FD6H 4054 MSR_C9_PMON_EVNT_SEL3 Package Uncore C-box 9 perfmon event select MSR.

FD7H 4055 MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter MSR.

FD8H 4056 MSR_C9_PMON_EVNT_SEL4 Package Uncore C-box 9 perfmon event select MSR.

FD9H 4057 MSR_C9_PMON_CTR4 Package Uncore C-box 9 perfmon counter MSR.

FDAH 4058 MSR_C9_PMON_EVNT_SEL5 Package Uncore C-box 9 perfmon event select MSR.

FDBH 4059 MSR_C9_PMON_CTR5 Package Uncore C-box 9 perfmon counter MSR.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range
Determination” and Table 2-2.

Table 2-19. Additional MSRs Supported by Intel® Xeon® Processor E7 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-163

MODEL-SPECIFIC REGISTERS (MSRS)

10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter” and see
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location”
and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX Inside SMX Operation (R/WL)

2 Enable VMX Outside SMX Operation (R/WL)

14:8 SENTER Local Functions Enables (R/WL)

15 SENTER Global Functions Enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by
threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by
threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by
threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by
threads)

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-164 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limit
for Turbo mode is enabled. When set to 0, indicates
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo mode
is programmable. When set to 0, indicates TDP Limit for
Turbo mode is not programmable.

39:30 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state
limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit

Note: This field cannot be used to limit package C-state
to C3.

9:3 Reserved

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-165

MODEL-SPECIFIC REGISTERS (MSRS)

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

When set, the processor will conditionally demote
C6/C7 requests to C3 based on uncore auto-demote
information.

26 C1 State Auto Demotion Enable (R/W)

When set, the processor will conditionally demote
C3/C6/C7 requests to C1 based on uncore auto-demote
information.

27 Enable C3 Undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 Undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO
redirection. If IO MWAIT Redirection is enabled, reads to
this address will be consumed by the power
management logic and decoded to MWAIT instructions.
When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-State Range (R/W)

Specifies the encoding value of the maximum C-State
code name to be included when IO read to MWAIT
redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-166 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration
of AES instruction set availability is as follows:

11b: AES instructions are not available until next
RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is
unsuccessful. If the configuration is not 01b, AES
instructions can be mis-configured if a privileged agent
unintentionally writes 11b.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) can be used to
restart the program. If cleared, the program cannot be
reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed
by the instruction pointer pushed on the stack (when
the machine check was generated) is directly
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been
generated. If a second machine check is detected while
this bit is still set, the processor enters a shutdown
state. Software should write this bit to 0 after
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-167

MODEL-SPECIFIC REGISTERS (MSRS)

188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

18AH 394 IA32_PERFEVTSEL4 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18BH 395 IA32_PERFEVTSEL5 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18CH 396 IA32_PERFEVTSEL6 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18DH 397 IA32_PERFEVTSEL7 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

198H 408 IA32_PERF_STATUS Package See Table 2-2.

15:0 Current Performance State Value

63:16 Reserved

198H 408 MSR_PERF_STATUS Package Performance Status

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment.

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal Status (RO)

See Table 2-2.

1 Thermal Status Log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0)

See Table 2-2.

4 Critical Temperature Status (RO)

See Table 2-2.

5 Critical Temperature Status Log (R/WC0)

See Table 2-2.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-168 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 Thermal Threshold #1 Status (RO)

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0)

See Table 2-2.

8 Thermal Threshold #2 Status (RO)

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0)

See Table 2-2.

10 Power Limitation Status (RO)

See Table 2-2.

11 Power Limitation Log (R/WC0)

See Table 2-2.

15:12 Reserved

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled
and disabled.

0 Thread Fast-Strings Enable

See Table 2-2

6:1 Reserved

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-169

MODEL-SPECIFIC REGISTERS (MSRS)

18 Thread ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo
Boost Technology, the turbo mode feature is disabled
and the IDA_Enable feature flag will be clear
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA,
CPUID.06H: EAX[1] reports the processor’s support of
turbo mode is enabled.

Note: The power-on default value is used by BIOS to
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the
processor. If the power-on default value is 0, turbo
mode is not available.

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Unique Temperature Target

15:0 Reserved

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be
asserted. The value is degrees C.

63:24 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which
fetches additional lines of code or data into the L2
cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which
fetches the cache line that comprises a cache line pair
(128 bytes).

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-170 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which
fetches the next cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which
uses sequential load history (based on instruction
pointer of previous loads) to determine whether to
prefetch additional lines.

63:4 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control

Various model specific features enumeration. See
http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved

6 TR: Branch Trace

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-171

MODEL-SPECIFIC REGISTERS (MSRS)

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R/W)

Contains a pointer to the last branch instruction that
the processor executed prior to the last exception that
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R/W)

This area contains a pointer to the target of the last
branch instruction that the processor executed prior to
the last exception that was generated or the last
interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-172 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL
MSR.”

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-173

MODEL-SPECIFIC REGISTERS (MSRS)

7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

0 Thread Set 1 to enable PMC0 to count.

1 Thread Set 1 to enable PMC1 to count.

2 Thread Set 1 to enable PMC2 to count.

3 Thread Set 1 to enable PMC3 to count.

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8]
> 4).

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8]
> 5).

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-174 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8]
> 6).

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8]
> 7).

31:8 Reserved

32 Thread Set 1 to enable FixedCtr0 to count.

33 Thread Set 1 to enable FixedCtr1 to count.

34 Thread Set 1 to enable FixedCtr2 to count.

63:35 Reserved

390H 912 IA32_PERF_GLOBAL_OVF_CTRL See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

0 Thread Set 1 to clear Ovf_PMC0.

1 Thread Set 1 to clear Ovf_PMC1.

2 Thread Set 1 to clear Ovf_PMC2.

3 Thread Set 1 to clear Ovf_PMC3.

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4).

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5).

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6).

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7).

31:8 Reserved

32 Thread Set 1 to clear Ovf_FixedCtr0.

33 Thread Set 1 to clear Ovf_FixedCtr1.

34 Thread Set 1 to clear Ovf_FixedCtr2.

60:35 Reserved

61 Thread Set 1 to clear Ovf_Uncore.

62 Thread Set 1 to clear Ovf_BufDSSAVE.

63 Thread Set 1 to clear CondChgd.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-175

MODEL-SPECIFIC REGISTERS (MSRS)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved

63 Enable Precise Store (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance
Monitoring Facility.”

15:0 Minimum threshold latency value of tagged load
operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C3 states. Count at the same frequency as the
TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-
specific C6 states. Count at the same frequency as the
TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C7 states. Count at the same frequency as the
TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the
TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Count at the same frequency as the
TSC.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-176 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 CORE C7 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C7 states. Count at the same frequency as the
TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected
errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected
errors.

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected
errors.

63:2 Reserved

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-177

MODEL-SPECIFIC REGISTERS (MSRS)

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Thread Capability Reporting Register of Pin-Based
VM-Execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Controls
(R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1
(R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-178 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Thread Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENUM Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Thread Capability Reporting Register of Pin-Based
VM-Execution Flex Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Flex Controls
(R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Flex Controls
(R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 2-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 2-2.

4C5H 1221 IA32_A_PMC4 Core See Table 2-2.

4C6H 1222 IA32_A_PMC5 Core See Table 2-2.

4C7H 1223 IA32_A_PMC6 Core See Table 2-2.

4C8H 1224 IA32_A_PMC7 Core See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.10.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if the
package should be put into a package C3 state.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-179

MODEL-SPECIFIC REGISTERS (MSRS)

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. The following time unit
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and
can be used by the processor for package C-sate
management.

63:16 Reserved

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package
to exit from a C6 to a C0 state, where an interrupt
request can be delivered to the core and serviced.
Additional core-exit latency may be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if the
package should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. The following time unit
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and
can be used by the processor for package C-sate
management.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-180 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:16 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C2 states. Count at the same frequency as the
TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.10.3,
“Package RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on
the last branch record stack. This part of the stack
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1 and record format in Section 17.4.8.1.

681H 1665 MSR_LASTBRANCH_1_FROM_IP Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_LASTBRANCH_3_FROM_IP Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_LASTBRANCH_4_FROM_IP Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-181

MODEL-SPECIFIC REGISTERS (MSRS)

68AH 1674 MSR_LASTBRANCH_10_FROM_IP Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on
the last branch record stack. This part of the stack
contains pointers to the destination instruction.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-182 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 2-21 and Table 2-22 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™
processor family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_2AH; see Table 2-1.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 2-2.

802H-
83FH

2050-
2111

X2APIC MSRs Thread See Table 2-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX
Register and RDTSCP Support.”

Table 2-20. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-183

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-21. MSRs Supported by 2nd Generation Intel® Core™ Processors
(Intel® microarchitecture code name Sandy Bridge)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from a C7 to a C0 state, where
interrupt request can be delivered to the core and
serviced. Additional core-exit latency may be
applicable depending on the actual C-state the core
is in.

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if
the package should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. The following time unit
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid
and can be used by the processor for package C-sate
management.

63:16 Reserved

2-184 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-22 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_2AH.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-21, and Table 2-22 for MSR definitions applicable to processors with CPUID signature 06_2AH.

Table 2-22. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4 select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

392H 914 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

Table 2-21. MSRs Supported by 2nd Generation Intel® Core™ Processors
(Intel® microarchitecture code name Sandy Bridge) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-185

MODEL-SPECIFIC REGISTERS (MSRS)

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Report the number of C-Box units with performance
counters, including processor cores and processor
graphics.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

702H 1794 MSR_UNC_CBO_0_PERFEVTSEL2 Package Uncore C-Box 0, Counter 2 Event Select MSR

703H 1795 MSR_UNC_CBO_0_PERFEVTSEL3 Package Uncore C-Box 0, Counter 3 Event Select MSR

705H 1797 MSR_UNC_CBO_0_UNIT_STATUS Package Uncore C-Box 0, Unit Status for Counter 0-3

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

708H 1800 MSR_UNC_CBO_0_PERFCTR2 Package Uncore C-Box 0, Performance Counter 2

709H 1801 MSR_UNC_CBO_0_PERFCTR3 Package Uncore C-Box 0, Performance Counter 3

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

712H 1810 MSR_UNC_CBO_1_PERFEVTSEL2 Package Uncore C-Box 1, Counter 2 Event Select MSR

713H 1811 MSR_UNC_CBO_1_PERFEVTSEL3 Package Uncore C-Box 1, Counter 3 Event Select MSR

715H 1813 MSR_UNC_CBO_1_UNIT_STATUS Package Uncore C-Box 1, Unit Status for Counter 0-3

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

718H 1816 MSR_UNC_CBO_1_PERFCTR2 Package Uncore C-Box 1, Performance Counter 2

719H 1817 MSR_UNC_CBO_1_PERFCTR3 Package Uncore C-Box 1, Performance Counter 3

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

722H 1826 MSR_UNC_CBO_2_PERFEVTSEL2 Package Uncore C-Box 2, Counter 2 Event Select MSR

Table 2-22. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-186 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 2-23 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 Family
(based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 2-20 and Table 2-24.

723H 1827 MSR_UNC_CBO_2_PERFEVTSEL3 Package Uncore C-Box 2, Counter 3 Event Select MSR

725H 1829 MSR_UNC_CBO_2_UNIT_STATUS Package Uncore C-Box 2, Unit Status for Counter 0-3

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

728H 1832 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, Performance Counter 2

729H 1833 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, Performance Counter 3

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

732H 1842 MSR_UNC_CBO_3_PERFEVTSEL2 Package Uncore C-Box 3, Counter 2 Event Select MSR

733H 1843 MSR_UNC_CBO_3_PERFEVTSEL3 Package Uncore C-Box 3, counter 3 Event Select MSR

735H 1845 MSR_UNC_CBO_3_UNIT_STATUS Package Uncore C-Box 3, Unit Status for Counter 0-3

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

738H 1848 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, Performance Counter 2

739H 1849 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, Performance Counter 3

740H 1856 MSR_UNC_CBO_4_PERFEVTSEL0 Package Uncore C-Box 4, Counter 0 Event Select MSR

741H 1857 MSR_UNC_CBO_4_PERFEVTSEL1 Package Uncore C-Box 4, Counter 1 Event Select MSR

742H 1858 MSR_UNC_CBO_4_PERFEVTSEL2 Package Uncore C-Box 4, Counter 2 Event Select MSR

743H 1859 MSR_UNC_CBO_4_PERFEVTSEL3 Package Uncore C-Box 4, Counter 3 Event Select MSR

745H 1861 MSR_UNC_CBO_4_UNIT_STATUS Package Uncore C-Box 4, Unit status for Counter 0-3

746H 1862 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, Performance Counter 0

747H 1863 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, Performance Counter 1

748H 1864 MSR_UNC_CBO_4_PERFCTR2 Package Uncore C-Box 4, Performance Counter 2

749H 1865 MSR_UNC_CBO_4_PERFCTR3 Package Uncore C-Box 4, Performance Counter 3

Table 2-23. Selected MSRs Supported by Intel® Xeon® Processors E5 Family
(based on Sandy Bridge microarchitecture)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

Table 2-22. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-187

MODEL-SPECIFIC REGISTERS (MSRS)

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional
info in bits 36:32.

63:2 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 cores active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 cores active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 cores active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 cores active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 cores active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 cores active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 cores active.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-23. Selected MSRs Supported by Intel® Xeon® Processors E5 Family
(based on Sandy Bridge microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-188 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

39CH 924 MSR_PEBS_NUM_ALT Package ENABLE_PEBS_NUM_ALT (RW)

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for
specific events requiring additional configuration, see
Table 19-19.

63:1 Reserved, must be zero.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

Table 2-23. Selected MSRs Supported by Intel® Xeon® Processors E5 Family
(based on Sandy Bridge microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-189

MODEL-SPECIFIC REGISTERS (MSRS)

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-23. Selected MSRs Supported by Intel® Xeon® Processors E5 Family
(based on Sandy Bridge microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-190 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 2-24. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 Product
Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and
Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-23, and Table 2-24 for MSR definitions applicable to processors with CPUID signature 06_2DH.

Table 2-24. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

C08H 3080 MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK Fixed Counter Control

C09H 3081 MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK Fixed Counter

C10H 3088 MSR_U_PMON_EVNTSEL0 Package Uncore U-box Perfmon Event Select for U-box
Counter 0

C11H 3089 MSR_U_PMON_EVNTSEL1 Package Uncore U-box Perfmon Event Select for U-box
Counter 1

C16H 3094 MSR_U_PMON_CTR0 Package Uncore U-box Perfmon Counter 0

C17H 3095 MSR_U_PMON_CTR1 Package Uncore U-box Perfmon Counter 1

C24H 3108 MSR_PCU_PMON_BOX_CTL Package Uncore PCU Perfmon for PCU-box-wide Control

C30H 3120 MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU Perfmon Event Select for PCU Counter 0

C31H 3121 MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU Perfmon Event Select for PCU Counter 1

C32H 3122 MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU Perfmon Event Select for PCU Counter 2

Table 2-23. Selected MSRs Supported by Intel® Xeon® Processors E5 Family
(based on Sandy Bridge microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-191

MODEL-SPECIFIC REGISTERS (MSRS)

C33H 3123 MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU Perfmon Event Select for PCU Counter 3

C34H 3124 MSR_PCU_PMON_BOX_FILTER Package Uncore PCU Perfmon box-wide Filter

C36H 3126 MSR_PCU_PMON_CTR0 Package Uncore PCU Perfmon Counter 0

C37H 3127 MSR_PCU_PMON_CTR1 Package Uncore PCU Perfmon Counter 1

C38H 3128 MSR_PCU_PMON_CTR2 Package Uncore PCU Perfmon Counter 2

C39H 3129 MSR_PCU_PMON_CTR3 Package Uncore PCU Perfmon Counter 3

D04H 3332 MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 Perfmon Local Box Wide Control

D10H 3344 MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 Perfmon Event Select for C-box 0
Counter 0

D11H 3345 MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 Perfmon Event Select for C-box 0
Counter 1

D12H 3346 MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 Perfmon Event Select for C-box 0
Counter 2

D13H 3347 MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 Perfmon Event Select for C-box 0
Counter 3

D14H 3348 MSR_C0_PMON_BOX_FILTER Package Uncore C-box 0 Perfmon Box Wide Filter

D16H 3350 MSR_C0_PMON_CTR0 Package Uncore C-box 0 Perfmon Counter 0

D17H 3351 MSR_C0_PMON_CTR1 Package Uncore C-box 0 Perfmon Counter 1

D18H 3352 MSR_C0_PMON_CTR2 Package Uncore C-box 0 Perfmon Counter 2

D19H 3353 MSR_C0_PMON_CTR3 Package Uncore C-box 0 Perfmon Counter 3

D24H 3364 MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 Perfmon Local Box Wide Control

D30H 3376 MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 Perfmon Event Select for C-box 1
Counter 0

D31H 3377 MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 Perfmon Event Select for C-box 1
Counter 1

D32H 3378 MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 Perfmon Event Select for C-box 1
Counter 2

D33H 3379 MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 Perfmon Event Select for C-box 1
Counter 3

D34H 3380 MSR_C1_PMON_BOX_FILTER Package Uncore C-box 1 Perfmon Box Wide Filter

D36H 3382 MSR_C1_PMON_CTR0 Package Uncore C-box 1 Perfmon Counter 0

D37H 3383 MSR_C1_PMON_CTR1 Package Uncore C-box 1 Perfmon Counter 1

D38H 3384 MSR_C1_PMON_CTR2 Package Uncore C-box 1 Perfmon Counter 2

D39H 3385 MSR_C1_PMON_CTR3 Package Uncore C-box 1 Perfmon Counter 3

D44H 3396 MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 Perfmon Local Box Wide Control

D50H 3408 MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 Perfmon Event Select for C-box 2
Counter 0

D51H 3409 MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 Perfmon Event Select for C-box 2
Counter 1

Table 2-24. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-192 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D52H 3410 MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 Perfmon Event Select for C-box 2
Counter 2

D53H 3411 MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 Perfmon Event Select for C-box 2
Counter 3

D54H 3412 MSR_C2_PMON_BOX_FILTER Package Uncore C-box 2 Perfmon Box Wide Filter

D56H 3414 MSR_C2_PMON_CTR0 Package Uncore C-box 2 Perfmon Counter 0

D57H 3415 MSR_C2_PMON_CTR1 Package Uncore C-box 2 Perfmon Counter 1

D58H 3416 MSR_C2_PMON_CTR2 Package Uncore C-box 2 Perfmon Counter 2

D59H 3417 MSR_C2_PMON_CTR3 Package Uncore C-box 2 Perfmon Counter 3

D64H 3428 MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 Perfmon Local Box Wide Control

D70H 3440 MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 Perfmon Event Select for C-box 3
Counter 0

D71H 3441 MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 Perfmon Event Select for C-box 3
Counter 1

D72H 3442 MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 Perfmon Event Select for C-box 3
Counter 2

D73H 3443 MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 Perfmon Event Select for C-box 3
Counter 3

D74H 3444 MSR_C3_PMON_BOX_FILTER Package Uncore C-box 3 Perfmon Box Wide Filter

D76H 3446 MSR_C3_PMON_CTR0 Package Uncore C-box 3 Perfmon Counter 0

D77H 3447 MSR_C3_PMON_CTR1 Package Uncore C-box 3 Perfmon Counter 1

D78H 3448 MSR_C3_PMON_CTR2 Package Uncore C-box 3 Perfmon Counter 2

D79H 3449 MSR_C3_PMON_CTR3 Package Uncore C-box 3 Perfmon Counter 3

D84H 3460 MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 Perfmon Local Box Wide Control

D90H 3472 MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 Perfmon Event Select for C-box 4
Counter 0

D91H 3473 MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 Perfmon Event Select for C-box 4
Counter 1

D92H 3474 MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 Perfmon Event Select for C-box 4
Counter 2

D93H 3475 MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 Perfmon Event Select for C-box 4
Counter 3

D94H 3476 MSR_C4_PMON_BOX_FILTER Package Uncore C-box 4 Perfmon Box Wide Filter

D96H 3478 MSR_C4_PMON_CTR0 Package Uncore C-box 4 Perfmon Counter 0

D97H 3479 MSR_C4_PMON_CTR1 Package Uncore C-box 4 Perfmon Counter 1

D98H 3480 MSR_C4_PMON_CTR2 Package Uncore C-box 4 Perfmon Counter 2

D99H 3481 MSR_C4_PMON_CTR3 Package Uncore C-box 4 Perfmon Counter 3

DA4H 3492 MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 Perfmon Local Box Wide Control

DB0H 3504 MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 Perfmon Event Select for C-box 5
Counter 0

Table 2-24. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-193

MODEL-SPECIFIC REGISTERS (MSRS)

DB1H 3505 MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 Perfmon Event Select for C-box 5
Counter 1

DB2H 3506 MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 Perfmon Event Select for C-box 5
Counter 2

DB3H 3507 MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 Perfmon Event Select for C-box 5
Counter 3

DB4H 3508 MSR_C5_PMON_BOX_FILTER Package Uncore C-box 5 Perfmon Box Wide Filter

DB6H 3510 MSR_C5_PMON_CTR0 Package Uncore C-box 5 Perfmon Counter 0

DB7H 3511 MSR_C5_PMON_CTR1 Package Uncore C-box 5 Perfmon Counter 1

DB8H 3512 MSR_C5_PMON_CTR2 Package Uncore C-box 5 Perfmon Counter 2

DB9H 3513 MSR_C5_PMON_CTR3 Package Uncore C-box 5 Perfmon Counter 3

DC4H 3524 MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 Perfmon Local Box Wide Control

DD0H 3536 MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 Perfmon Event Select for C-box 6
Counter 0

DD1H 3537 MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 Perfmon Event Select for C-box 6
Counter 1

DD2H 3538 MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 Perfmon Event Select for C-box 6
Counter 2

DD3H 3539 MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 Perfmon Event Select for C-box 6
Counter 3

DD4H 3540 MSR_C6_PMON_BOX_FILTER Package Uncore C-box 6 Perfmon Box Wide Filter

DD6H 3542 MSR_C6_PMON_CTR0 Package Uncore C-box 6 Perfmon Counter 0

DD7H 3543 MSR_C6_PMON_CTR1 Package Uncore C-box 6 Perfmon Counter 1

DD8H 3544 MSR_C6_PMON_CTR2 Package Uncore C-box 6 Perfmon Counter 2

DD9H 3545 MSR_C6_PMON_CTR3 Package Uncore C-box 6 Perfmon Counter 3

DE4H 3556 MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 Perfmon Local Box Wide Control

DF0H 3568 MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 Perfmon Event Select for C-box 7
Counter 0

DF1H 3569 MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 Perfmon Event Select for C-box 7
Counter 1

DF2H 3570 MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 Perfmon Event Select for C-box 7
Counter 2

DF3H 3571 MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 Perfmon Event Select for C-box 7
Counter 3

DF4H 3572 MSR_C7_PMON_BOX_FILTER Package Uncore C-box 7 Perfmon Box Wide Filter

DF6H 3574 MSR_C7_PMON_CTR0 Package Uncore C-box 7 Perfmon Counter 0

DF7H 3575 MSR_C7_PMON_CTR1 Package Uncore C-box 7 Perfmon Counter 1

DF8H 3576 MSR_C7_PMON_CTR2 Package Uncore C-box 7 Perfmon Counter 2

DF9H 3577 MSR_C7_PMON_CTR3 Package Uncore C-box 7 Perfmon Counter 3

Table 2-24. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-194 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.12 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family
(based on Intel microarchitecture code name Ivy Bridge) support the MSR interfaces listed in Table 2-20, Table
2-21, Table 2-22, and Table 2-25. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_3AH.

Table 2-25. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors
(based on Intel® microarchitecture code name Ivy Bridge)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model
specific features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio
Limit for Turbo mode is enabled. When set to 0,
indicates Programmable Ratio Limit for Turbo mode is
disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo
mode is programmable. When set to 0, indicates that
TDP Limit for Turbo mode is not programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported. When
set to 0, indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved

39:35 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that
the processor can operate, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported operating ratio in
units of 100 MHz.

63:56 Reserved

Vol. 4 2-195

MODEL-SPECIFIC REGISTERS (MSRS)

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-
state to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE
to MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

When set, the processor will conditionally demote
C6/C7 requests to C3 based on uncore auto-demote
information.

26 C1 State Auto Demotion Enable (R/W)

When set, the processor will conditionally demote
C3/C6/C7 requests to C1 based on uncore auto-
demote information.

27 Enable C3 Undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 Undemotion (R/W)

When set, enables undemotion from demoted C1.

Table 2-25. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors
(based on Intel® microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-196 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:29 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific
processor (in units of 100 MHz).

63:8 Reserved

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific
processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific
processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved

64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

Table 2-25. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors
(based on Intel® microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-197

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E
Microarchitecture)

Table 2-26 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3EH, see Table 2-1. These processors supports the MSR interfaces listed in
Table 2-20, and Table 2-26.

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is
locked until a reset.

63:32 Reserved

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is
locked until a reset.

63:32 Reserved

See Table 2-20, Table 2-21 and Table 2-22 for other MSR definitions applicable to processors with CPUID signature 06_3AH.

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control
(R/W)

Table 2-25. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors
(based on Intel® microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-198 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 LockOut (R/WO)

If 0, indicates that further writes to MSR_PPIN_CTL is
allowed.

If 1, indicates that further writes to MSR_PPIN_CTL is
disallowed. Writing 1 to this bit is only permitted if the
Enable_PPIN bit is clear.

The Privileged System Software Inventory Agent
should read MSR_PPIN_CTL[bit 1] to determine if
MSR_PPIN is accessible.

The Privileged System Software Inventory Agent is not
expected to write to this MSR.

1 Enable_PPIN (R/W)

If 1, indicates that MSR_PPIN is accessible using
RDMSR.

If 0, indicates that MSR_PPIN is inaccessible using
RDMSR. Any attempt to read MSR_PPIN will cause #GP.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID
family/model/stepping signature that a privileged
inventory initialization agent can access to identify
each physical processor, when access to MSR_PPIN is
enabled. Access to MSR_PPIN is permitted only if
MSR_PPIN_CTL[bits 1:0] = ‘10b’.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC
runs at. Frequency = ratio * 100 MHz.

22:16 Reserved

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor
Inventory Number (PPIN) capability can be enabled for
a privileged system inventory agent to read PPIN from
MSR_PPIN.

When set to 0, PPIN capability is not supported. An
attempt to access MSR_PPIN_CTL or MSR_PPIN will
cause #GP.

27:24 Reserved

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-199

MODEL-SPECIFIC REGISTERS (MSRS)

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limit
for Turbo mode is enabled. When set to 0, indicates
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo mode
is programmable. When set to 0, indicates TDP Limit for
Turbo mode is not programmable.

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that
MSR_TEMPERATURE_TARGET.[27:24] is valid and
writable to specify a temperature offset.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state
to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
register specified by MSR_PMG_IO_CAPTURE_BASE to
MWAIT instructions.

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-200 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

14:11 Reserved

15 CFG Lock (R/WO)

When set, locks bits 15:0 of this register until next
reset.

63:16 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved

26 MCG_ELOG_P

63:27 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info
in bits 36:32.

63:2 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (RO)

The minimum temperature at which PROCHOT# will be
asserted. The value is degrees C.

27:24 TCC Activation Offset (R/W)

Specifies a temperature offset in degrees C from the
temperature target (bits 23:16). PROCHOT# will assert
at the offset target temperature. Write is permitted
only if MSR_PLATFORM_INFO.[30] is set.

63:28 Reserved

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-201

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

296H 662 IA32_MC22_CTL2 Package See Table 2-2.

297H 663 IA32_MC23_CTL2 Package See Table 2-2.

298H 664 IA32_MC24_CTL2 Package See Table 2-2.

299H 665 IA32_MC25_CTL2 Package See Table 2-2.

29AH 666 IA32_MC26_CTL2 Package See Table 2-2.

29BH 667 IA32_MC27_CTL2 Package See Table 2-2.

29CH 668 IA32_MC28_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-202 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC errors from the two
home agents.

41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC errors from the two
home agents.

421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package Bank MC11 reports MC errors from a specific channel
of the integrated memory controller.42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-203

MODEL-SPECIFIC REGISTERS (MSRS)

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package Bank MC20 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-204 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

458H 1112 IA32_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

459H 1113 IA32_MC22_STATUS Package

45AH 1114 IA32_MC22_ADDR Package

45BH 1115 IA32_MC22_MISC Package

45CH 1116 IA32_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

45DH 1117 IA32_MC23_STATUS Package

45EH 1118 IA32_MC23_ADDR Package

45FH 1119 IA32_MC23_MISC Package

460H 1120 IA32_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

461H 1121 IA32_MC24_STATUS Package

462H 1122 IA32_MC24_ADDR Package

463H 1123 IA32_MC24_MISC Package

464H 1124 IA32_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

465H 1125 IA32_MC25_STATUS Package

466H 1126 IA32_MC25_ADDR Package

467H 1127 IA32_MC2MISC Package

468H 1128 IA32_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

469H 1129 IA32_MC26_STATUS Package

46AH 1130 IA32_MC26_ADDR Package

46BH 1131 IA32_MC26_MISC Package

46CH 1132 IA32_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

46DH 1133 IA32_MC27_STATUS Package

46EH 1134 IA32_MC27_ADDR Package

46FH 1135 IA32_MC27_MISC Package

470H 1136 IA32_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

471H 1137 IA32_MC28_STATUS Package

472H 1138 IA32_MC28_ADDR Package

473H 1139 IA32_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-205

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 2-20, Table 2-26, and
Table 2-27.

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH.

Table 2-27. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
with DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX Inside SMX Operation (R/WL)

2 Enable VMX Outside SMX Operation (R/WL)

14:8 SENTER Local Functions Enables (R/WL)

15 SENTER Global Functions Enable (R/WL)

63:16 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status (R/WO)

0 RIPV

1 EIPV

Table 2-26. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-206 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

3 LMCE Signaled

63:4 Reserved

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified
in MSR_TURBO_RATIO_LIMIT and
MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration
(Default).

29DH 669 IA32_MC29_CTL2 Package See Table 2-2.

29EH 670 IA32_MC30_CTL2 Package See Table 2-2.

29FH 671 IA32_MC31_CTL2 Package See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

1 Enable PEBS on IA32_PMC1 (R/W)

2 Enable PEBS on IA32_PMC2 (R/W)

3 Enable PEBS on IA32_PMC3 (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0 (R/W)

33 Enable Load Latency on IA32_PMC1 (R/W)

Table 2-27. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
with DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-207

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families
Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based
uncore PMU interfaces are listed in Table 2-24 and Table 2-28. For complete detail of the uncore PMU, refer to Intel
Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel of 06_3EH.

34 Enable Load Latency on IA32_PMC2 (R/W)

35 Enable Load Latency on IA32_PMC3 (R/W)

63:36 Reserved

41BH 1051 IA32_MC6_MISC Package Misc MAC Information of Integrated I/O (R/O)

See Section 15.3.2.4.

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 IA32_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

475H 1141 IA32_MC29_STATUS Package

476H 1142 IA32_MC29_ADDR Package

477H 1143 IA32_MC29_MISC Package

478H 1144 IA32_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

479H 1145 IA32_MC30_STATUS Package

47AH 1146 IA32_MC30_ADDR Package

47BH 1147 IA32_MC30_MISC Package

47CH 1148 IA32_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC errors from a specific CBo (core
broadcast) and its corresponding slice of L3.

47DH 1149 IA32_MC31_STATUS Package

47EH 1150 IA32_MC31_ADDR Package

47FH 1147 IA32_MC31_MISC Package

See Table 2-20, Table 2-26 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature 06_3AH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-27. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
with DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-208 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-28. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

C00H 3072 MSR_PMON_GLOBAL_CTL Package Uncore Perfmon Per-Socket Global Control

C01H 3073 MSR_PMON_GLOBAL_STATUS Package Uncore Perfmon Per-Socket Global Status

C06H 3078 MSR_PMON_GLOBAL_CONFIG Package Uncore Perfmon Per-Socket Global Configuration

C15H 3093 MSR_U_PMON_BOX_STATUS Package Uncore U-box Perfmon U-Box Wide Status

C35H 3125 MSR_PCU_PMON_BOX_STATUS Package Uncore PCU Perfmon Box Wide Status

D1AH 3354 MSR_C0_PMON_BOX_FILTER1 Package Uncore C-Box 0 Perfmon Box Wide Filter1

D3AH 3386 MSR_C1_PMON_BOX_FILTER1 Package Uncore C-Box 1 Perfmon Box Wide Filter1

D5AH 3418 MSR_C2_PMON_BOX_FILTER1 Package Uncore C-Box 2 Perfmon Box Wide Filter1

D7AH 3450 MSR_C3_PMON_BOX_FILTER1 Package Uncore C-Box 3 Perfmon Box Wide Filter1

D9AH 3482 MSR_C4_PMON_BOX_FILTER1 Package Uncore C-Box 4 Perfmon Box Wide Filter1

DBAH 3514 MSR_C5_PMON_BOX_FILTER1 Package Uncore C-Box 5 Perfmon Box Wide Filter1

DDAH 3546 MSR_C6_PMON_BOX_FILTER1 Package Uncore C-Box 6 Perfmon Box Wide Filter1

DFAH 3578 MSR_C7_PMON_BOX_FILTER1 Package Uncore C-Box 7 Perfmon Box Wide Filter1

E04H 3588 MSR_C8_PMON_BOX_CTL Package Uncore C-Box 8 Perfmon Local Box Wide Control

E10H 3600 MSR_C8_PMON_EVNTSEL0 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 0

E11H 3601 MSR_C8_PMON_EVNTSEL1 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 1

E12H 3602 MSR_C8_PMON_EVNTSEL2 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 2

E13H 3603 MSR_C8_PMON_EVNTSEL3 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 3

E14H 3604 MSR_C8_PMON_BOX_FILTER Package Uncore C-Box 8 Perfmon Box Wide Filter

E16H 3606 MSR_C8_PMON_CTR0 Package Uncore C-Box 8 Perfmon Counter 0

E17H 3607 MSR_C8_PMON_CTR1 Package Uncore C-Box 8 Perfmon Counter 1

E18H 3608 MSR_C8_PMON_CTR2 Package Uncore C-Box 8 Perfmon Counter 2

E19H 3609 MSR_C8_PMON_CTR3 Package Uncore C-Box 8 Perfmon Counter 3

E1AH 3610 MSR_C8_PMON_BOX_FILTER1 Package Uncore C-Box 8 Perfmon Box Wide Filter1

E24H 3620 MSR_C9_PMON_BOX_CTL Package Uncore C-Box 9 Perfmon Local Box Wide Control

E30H 3632 MSR_C9_PMON_EVNTSEL0 Package Uncore C-Box 9 Perfmon Event Select for C-box 9
Counter 0

E31H 3633 MSR_C9_PMON_EVNTSEL1 Package Uncore C-Box 9 Perfmon Event Select for C-box 9
Counter 1

E32H 3634 MSR_C9_PMON_EVNTSEL2 Package Uncore C-Box 9 Perfmon Event Select for C-box 9
Counter 2

E33H 3635 MSR_C9_PMON_EVNTSEL3 Package Uncore C-Box 9 Perfmon Event Select for C-box 9
Counter 3

E34H 3636 MSR_C9_PMON_BOX_FILTER Package Uncore C-Box 9 Perfmon Box Wide Filter

E36H 3638 MSR_C9_PMON_CTR0 Package Uncore C-Box 9 Perfmon Counter 0

Vol. 4 2-209

MODEL-SPECIFIC REGISTERS (MSRS)

E37H 3639 MSR_C9_PMON_CTR1 Package Uncore C-Box 9 Perfmon Counter 1

E38H 3640 MSR_C9_PMON_CTR2 Package Uncore C-Box 9 Perfmon Counter 2

E39H 3641 MSR_C9_PMON_CTR3 Package Uncore C-Box 9 Perfmon Counter 3

E3AH 3642 MSR_C9_PMON_BOX_FILTER1 Package Uncore C-Box 9 Perfmon Box Wide Filter1

E44H 3652 MSR_C10_PMON_BOX_CTL Package Uncore C-Box 10 Perfmon Local Box Wide Control

E50H 3664 MSR_C10_PMON_EVNTSEL0 Package Uncore C-Box 10 Perfmon Event Select for C-Box
10 Counter 0

E51H 3665 MSR_C10_PMON_EVNTSEL1 Package Uncore C-Box 10 Perfmon Event Select for C-Box
10 Counter 1

E52H 3666 MSR_C10_PMON_EVNTSEL2 Package Uncore C-Box 10 Perfmon Event Select for C-Box
10 Counter 2

E53H 3667 MSR_C10_PMON_EVNTSEL3 Package Uncore C-Box 10 Perfmon Event Select for C-Box
10 Counter 3

E54H 3668 MSR_C10_PMON_BOX_FILTER Package Uncore C-Box 10 Perfmon Box Wide Filter

E56H 3670 MSR_C10_PMON_CTR0 Package Uncore C-Box 10 Perfmon Counter 0

E57H 3671 MSR_C10_PMON_CTR1 Package Uncore C-Box 10 Perfmon Counter 1

E58H 3672 MSR_C10_PMON_CTR2 Package Uncore C-Box 10 Perfmon Counter 2

E59H 3673 MSR_C10_PMON_CTR3 Package Uncore C-Box 10 Perfmon Counter 3

E5AH 3674 MSR_C10_PMON_BOX_FILTER1 Package Uncore C-Box 10 Perfmon Box Wide Filter1

E64H 3684 MSR_C11_PMON_BOX_CTL Package Uncore C-Box 11 Perfmon Local Box Wide Control

E70H 3696 MSR_C11_PMON_EVNTSEL0 Package Uncore C-Box 11 Perfmon Event Select for C-Box
11 Counter 0

E71H 3697 MSR_C11_PMON_EVNTSEL1 Package Uncore C-Box 11 Perfmon Event Select for C-Box
11 Counter 1

E72H 3698 MSR_C11_PMON_EVNTSEL2 Package Uncore C-Box 11 Perfmon Event Select for C-Box
11 Counter 2

E73H 3699 MSR_C11_PMON_EVNTSEL3 Package Uncore C-Box 11 Perfmon Event Select for C-Box
11 Counter 3

E74H 3700 MSR_C11_PMON_BOX_FILTER Package Uncore C-Box 11 Perfmon Box Wide Filter

E76H 3702 MSR_C11_PMON_CTR0 Package Uncore C-Box 11 Perfmon Counter 0

E77H 3703 MSR_C11_PMON_CTR1 Package Uncore C-Box 11 Perfmon Counter 1

E78H 3704 MSR_C11_PMON_CTR2 Package Uncore C-Box 11 Perfmon Counter 2

E79H 3705 MSR_C11_PMON_CTR3 Package Uncore C-Box 11 Perfmon Counter 3

E7AH 3706 MSR_C11_PMON_BOX_FILTER1 Package Uncore C-Box 11 Perfmon Box Wide Filter1

E84H 3716 MSR_C12_PMON_BOX_CTL Package Uncore C-Box 12 Perfmon Local Box Wide Control

E90H 3728 MSR_C12_PMON_EVNTSEL0 Package Uncore C-Box 12 Perfmon Event Select for C-Box
12 Counter 0

E91H 3729 MSR_C12_PMON_EVNTSEL1 Package Uncore C-Box 12 Perfmon Event Select for C-Box
12 Counter 1

Table 2-28. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-210 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E92H 3730 MSR_C12_PMON_EVNTSEL2 Package Uncore C-Box 12 Perfmon Event Select for C-Box
12 Counter 2

E93H 3731 MSR_C12_PMON_EVNTSEL3 Package Uncore C-Box 12 Perfmon Event Select for C-Box
12 Counter 3

E94H 3732 MSR_C12_PMON_BOX_FILTER Package Uncore C-Box 12 Perfmon Box Wide Filter

E96H 3734 MSR_C12_PMON_CTR0 Package Uncore C-Box 12 Perfmon Counter 0

E97H 3735 MSR_C12_PMON_CTR1 Package Uncore C-Box 12 Perfmon Counter 1

E98H 3736 MSR_C12_PMON_CTR2 Package Uncore C-Box 12 Perfmon Counter 2

E99H 3737 MSR_C12_PMON_CTR3 Package Uncore C-Box 12 Perfmon Counter 3

E9AH 3738 MSR_C12_PMON_BOX_FILTER1 Package Uncore C-Box 12 Perfmon Box Wide Filter1

EA4H 3748 MSR_C13_PMON_BOX_CTL Package Uncore C-Box 13 Perfmon Local Box Wide Control

EB0H 3760 MSR_C13_PMON_EVNTSEL0 Package Uncore C-Box 13 Perfmon Event Select for C-Box
13 Counter 0

EB1H 3761 MSR_C13_PMON_EVNTSEL1 Package Uncore C-Box 13 Perfmon Event Select for C-Box
13 Counter 1

EB2H 3762 MSR_C13_PMON_EVNTSEL2 Package Uncore C-Box 13 Perfmon Event Select for C-Box
13 Counter 2

EB3H 3763 MSR_C13_PMON_EVNTSEL3 Package Uncore C-Box 13 Perfmon Event Select for C-Box
13 Counter 3

EB4H 3764 MSR_C13_PMON_BOX_FILTER Package Uncore C-Box 13 Perfmon Box Wide Filter

EB6H 3766 MSR_C13_PMON_CTR0 Package Uncore C-Box 13 Perfmon Counter 0

EB7H 3767 MSR_C13_PMON_CTR1 Package Uncore C-Box 13 Perfmon Counter 1

EB8H 3768 MSR_C13_PMON_CTR2 Package Uncore C-Box 13 Perfmon Counter 2

EB9H 3769 MSR_C13_PMON_CTR3 Package Uncore C-Box 13 Perfmon Counter 3

EBAH 3770 MSR_C13_PMON_BOX_FILTER1 Package Uncore C-Box 13 Perfmon Box Wide Filter1

EC4H 3780 MSR_C14_PMON_BOX_CTL Package Uncore C-Box 14 Perfmon Local Box Wide Control

ED0H 3792 MSR_C14_PMON_EVNTSEL0 Package Uncore C-Box 14 Perfmon Event Select for C-Box
14 Counter 0

ED1H 3793 MSR_C14_PMON_EVNTSEL1 Package Uncore C-Box 14 Perfmon Event Select for C-Box
14 Counter 1

ED2H 3794 MSR_C14_PMON_EVNTSEL2 Package Uncore C-Box 14 Perfmon Event Select for C-Box
14 Counter 2

ED3H 3795 MSR_C14_PMON_EVNTSEL3 Package Uncore C-Box 14 Perfmon Event Select for C-Box
14 Counter 3

ED4H 3796 MSR_C14_PMON_BOX_FILTER Package Uncore C-Box 14 Perfmon Box Wide Filter

ED6H 3798 MSR_C14_PMON_CTR0 Package Uncore C-Box 14 Perfmon Counter 0

ED7H 3799 MSR_C14_PMON_CTR1 Package Uncore C-Box 14 Perfmon Counter 1

ED8H 3800 MSR_C14_PMON_CTR2 Package Uncore C-Box 14 Perfmon Counter 2

ED9H 3801 MSR_C14_PMON_CTR3 Package Uncore C-Box 14 Perfmon Counter 3

EDAH 3802 MSR_C14_PMON_BOX_FILTER1 Package Uncore C-Box 14 Perfmon Box Wide Filter1

Table 2-28. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-211

MODEL-SPECIFIC REGISTERS (MSRS)

2.13 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-22, and Table 2-29. For an MSR listed in Table
2-20 that also appears in Table 2-29, Table 2-29 supersede Table 2-20.

The MSRs listed in Table 2-29 also apply to processors based on Haswell-E microarchitecture (see Section 2.14).

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST Thread Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model
specific features enumeration. See
http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio
Limit for Turbo mode is enabled. When set to 0,
indicates Programmable Ratio Limit for Turbo mode
is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo
mode is programmable. When set to 0, indicates TDP
Limit for Turbo mode is not programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported.
When set to 0, indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved

39:35 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that
the processor can operate, in units of 100MHz.

2-212 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported operating ratio in
units of 100 MHz.

63:56 Reserved

186H 390 IA32_PERFEVTSEL0 Thread Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 2-2 and the
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21)
should be cleared to prevent incorrect results.

187H 391 IA32_PERFEVTSEL1 Thread Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 2-2 and the
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21)
should be cleared to prevent incorrect results.

188H 392 IA32_PERFEVTSEL2 Thread Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 2-2 and the
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21)
should be cleared to prevent incorrect results.

33 IN_TXCP: See Section 18.3.6.5.1.

When IN_TXCP=1 & IN_TX=1 and in sampling, a
spurious PMI may occur and transactions may
continuously abort near overflow conditions.
Software should favor using IN_TXCP for counting
over sampling. If sampling, software should use large
“sample-after” value after clearing the counter
configured to use IN_TXCP and also always reset the
counter even when no overflow condition was
reported.

189H 393 IA32_PERFEVTSEL3 Thread Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 2-2 and the
fields below.

32 IN_TX: See Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21)
should be cleared to prevent incorrect results.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-213

MODEL-SPECIFIC REGISTERS (MSRS)

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS Buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved

491H 1169 IA32_VMX_VMFUNC Thread Capability Reporting Register of VM-Function
Controls (R/O)

See Table 2-2.

60BH 1548 MSR_PKGC_IRTL1 Package Package C6/C7 Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit
used by the processor to manage a transition to a
package C6 or C7 state. The latency programmed in
this register is for the shorter-latency sub C-states
used by an MWAIT hint to a C6 or C7 state.

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W)

Specifies the limit that should be used to decide if
the package should be put into a package C6 or C7
state.

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-214 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. See Table 2-20 for
supported time unit encodings.

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid
and can be used by the processor for package C-sate
management.

63:16 Reserved

60CH 1548 MSR_PKGC_IRTL2 Package Package C6/C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit
used by the processor to manage a transition to a
package C6 or C7 state. The latency programmed in
this register is for the longer-latency sub C-states
used by an MWAIT hint to a C6 or C7 state.

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if
the package should be put into a package C6 or C7
state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the
interrupt response time limit. See Table 2-20 for
supported time unit encodings.

14:13 Reserved

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid
and can be used by the processor for package C-sate
management.

63:16 Reserved

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific
processor (in units of 100 MHz).

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-215

MODEL-SPECIFIC REGISTERS (MSRS)

63:8 Reserved

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 Ratio and Power Level (R/O)

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific
processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

62:47 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 Ratio and Power Level (R/O)

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific
processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

62:47 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved

64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is
locked until a reset.

63:32 Reserved

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-216 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.13.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 2-30 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor family
and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors
have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 2-1.

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is
locked until a reset.

63:32 Reserved

C80H 3200 IA32_DEBUG_INTERFACE Package Silicon Debug Feature Control (R/W)

See Table 2-2.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

Package C states C7 are not available to processors
with a signature of 06_3CH.

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

Table 2-29. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-217

MODEL-SPECIFIC REGISTERS (MSRS)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible
only while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access
restriction is supported and the
MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator
is supported and the MSR_SMM_DELAYED is
supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-218 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

392H 914 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-219

MODEL-SPECIFIC REGISTERS (MSRS)

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

4E0H 1248 MSR_SMM_FEATURE_CONTROL Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible
only while in SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further
changes.

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if
MSR_SMM_MCA_CAP[58] == 1. When set to ‘0’
(default) none of the logical processors are
prevented from executing SMM code outside the
ranges defined by the SMRR.

When set to ‘1’ any logical processor in the package
that attempts to execute SMM code not within the
ranges defined by the SMRR will assert an
unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical
processors in the package. Available only while in
SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] ==
1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in
a long flow of internal operation which delays
servicing an interrupt. The corresponding bit will be
set at the start of long events such as: Microcode
Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each
long event. The reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in
the package. Available only while in SMM.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-220 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked
state to service an SMI. The corresponding bit will be
set if the logical processor is in one of the following
states: Wait For SIPI or SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the
multiplier, 1/2^ESU; where ESU is an unsigned
integer represented by bits 12:8. Default value is
0EH (or 61 micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below
the operating system request due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

3:2 Reserved

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-221

MODEL-SPECIFIC REGISTERS (MSRS)

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating
system request due to Processor Graphics driver
override.

5 Autonomous Utilization-Based Frequency Control
Status (R0)

When set, frequency is reduced below the operating
system request because the processor has detected
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the
Voltage Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating
system request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating
system request due to Turbo transition attenuation.
This prevents performance degradation due to
frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-222 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19:18 Reserved

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 Reserved

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-223

MODEL-SPECIFIC REGISTERS (MSRS)

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition
Attenuation Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:30 Reserved

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Processor
Graphics (R/W)

(Frequency refers to processor graphics frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating
system request due to assertion of external
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

3:2 Reserved

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating
system request due to Processor Graphics driver
override.

5 Autonomous Utilization-Based Frequency Control
Status (R0)

When set, frequency is reduced below the operating
system request because the processor has detected
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the
Voltage Regulator.

7 Reserved

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-224 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19:18 Reserved

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-225

MODEL-SPECIFIC REGISTERS (MSRS)

23 Reserved

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition
Attenuation Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:30 Reserved

6B1H 1713 MSR_RING_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Ring
Interconnect (R/W)

(Frequency refers to ring interconnect in the uncore.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating
system request due to assertion of external
PROCHOT.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-226 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

5:2 Reserved

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the
Voltage Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

9 Reserved

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating
system request due to package-level power limiting
PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-227

MODEL-SPECIFIC REGISTERS (MSRS)

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 Reserved

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2
Power Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-228 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.13.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 2-20, Table 2-21, Table
2-29, Table 2-30, and Table 2-31.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition
Attenuation Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:30 Reserved

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1824 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H.

Table 2-30. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-229

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-31. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors
with DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state
limit.

The following C-state code name encodings are
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

59:0 Package C8 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C8 states. Count at the same frequency as the
TSC.

63:60 Reserved

http://biosbits.org

2-230 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.14 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microarchi-
tecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 2-20, Table 2-29, and Table 2-32.

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

59:0 Package C9 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C9 states. Count at the same frequency as the
TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-States.

59:0 Package C10 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C10 states. Count at the same frequency as the
TSC.

63:60 Reserved

See Table 2-20, Table 2-21, Table 2-22, Table 2-29, Table 2-30 for other MSR definitions applicable to processors with CPUID
signature 06_45H.

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

35H 53 MSR_CORE_THREAD_COUNT Package Configured State of Enabled Processor Core Count and
Logical Processor Count (RO)

• After a Power-On RESET, enumerates factory
configuration of the number of processor cores and
logical processors in the physical package.

• Following the sequence of (i) BIOS modified a
Configuration Mask which selects a subset of
processor cores to be active post RESET and (ii) a
RESET event after the modification, enumerates the
current configuration of enabled processor core
count and logical processor count in the physical
package.

15:0 THREAD_COUNT (RO)

The number of logical processors that are currently
enabled (by either factory configuration or BIOS
configuration) in the physical package.

Table 2-31. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors
with DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-231

MODEL-SPECIFIC REGISTERS (MSRS)

31:16 Core_COUNT (RO)

The number of processor cores that are currently
enabled (by either factory configuration or BIOS
configuration) in the physical package.

63:32 Reserved

53H 83 MSR_THREAD_ID_INFO Thread A Hardware Assigned ID for the Logical Processor (RO)

7:0 Logical_Processor_ID (RO)

An implementation-specific numerical value physically
assigned to each logical processor. This ID is not related
to Initial APIC ID or x2APIC ID, it is unique within a
physical package.

63:8 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state
limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

http://biosbits.org

2-232 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access
restriction is supported and a host-space interface
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is
supported and a host-space interface available to SMM
handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info
in bits 36:32.

63:2 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-233

MODEL-SPECIFIC REGISTERS (MSRS)

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

62:16 Package Reserved

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-234 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1
specified in MSR_TURBO_RATIO_LIMIT,
MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration
(Default).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI 0
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-235

MODEL-SPECIFIC REGISTERS (MSRS)

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6,
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7,
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8,
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC errors from the Intel QPI 1
module.

451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-236 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from the Intel QPI 2
module.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the
multiplier, 1/2^ESU; where ESU is an unsigned integer
represented by bits 12:8. Default value is 0EH (or 61
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

Energy Consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration
to enable DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

61EH 1566 MSR_PCIE_PLL_RATIO Package Configuration of PCIE PLL Relative to BCLK(R/W)

1:0 Package PCIE Ratio (R/W)

00b: Use 5:5 mapping for100MHz operation (default).

01b: Use 5:4 mapping for125MHz operation.

10b: Use 5:3 mapping for166MHz operation.

11b: Use 5:2 mapping for250MHz operation.

2 Package LPLL Select (R/W)

If 1, use configured setting of PCIE Ratio.

3 Package LONG RESET (R/W)

If 1, wait an additional time-out before re-locking
Gen2/Gen3 PLLs.

63:4 Reserved

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-237

MODEL-SPECIFIC REGISTERS (MSRS)

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields
represent the widest possible range of uncore
frequencies. Writing to these fields allows software to
control the minimum and the maximum frequency that
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below
the operating system request due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating
system request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating
system request due to PCS limit

4 Reserved

5 Autonomous Utilization-Based Frequency Control
Status (R0)

When set, frequency is reduced below the operating
system request because the processor has detected
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the Voltage
Regulator.

7 Reserved

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-238 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

9 Reserved

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating
system request due to Multi-Core Turbo limits.

12:11 Reserved

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo
P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo
frequency.

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating
system request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

18 Power Budget Management Log

When set, indicates that the PBM Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

20 Reserved

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-239

MODEL-SPECIFIC REGISTERS (MSRS)

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 Reserved

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Reserved

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28:27 Reserved

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo
Frequency Limiting Status bit has asserted since the log
bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

63:32 Reserved

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-240 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.14.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore
PMU interfaces are listed in Table 2-33. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3
Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3FH.

7:0 EventID (RW)

Event encoding:

0x0: No monitoring.

0x1: L3 occupancy monitoring.

All other encoding reserved.

31:8 Reserved

41:32 RMID (RW)

63:42 Reserved

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not
available or not monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event
type was written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

63: 10 Reserved

See Table 2-20, Table 2-29 for other MSR definitions applicable to processors with CPUID signature 06_3FH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

700H 1792 MSR_PMON_GLOBAL_CTL Package Uncore Perfmon Per-Socket Global Control

701H 1793 MSR_PMON_GLOBAL_STATUS Package Uncore Perfmon Per-Socket Global Status

702H 1794 MSR_PMON_GLOBAL_CONFIG Package Uncore Perfmon Per-Socket Global Configuration

703H 1795 MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-Box UCLK Fixed Counter Control

704H 1796 MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-Box UCLK Fixed Counter

705H 1797 MSR_U_PMON_EVNTSEL0 Package Uncore U-Box Perfmon Event Select for U-Box
Counter 0

Table 2-32. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-241

MODEL-SPECIFIC REGISTERS (MSRS)

706H 1798 MSR_U_PMON_EVNTSEL1 Package Uncore U-Box Perfmon Event Select for U-Box
Counter 1

708H 1800 MSR_U_PMON_BOX_STATUS Package Uncore U-Box Perfmon U-Box Wide Status

709H 1801 MSR_U_PMON_CTR0 Package Uncore U-Box Perfmon Counter 0

70AH 1802 MSR_U_PMON_CTR1 Package Uncore U-Box Perfmon Counter 1

710H 1808 MSR_PCU_PMON_BOX_CTL Package Uncore PCU Perfmon for PCU-Box-Wide Control

711H 1809 MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU Perfmon Event Select for PCU Counter 0

712H 1810 MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU Perfmon Event Select for PCU Counter 1

713H 1811 MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU Perfmon Event Select for PCU Counter 2

714H 1812 MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU Perfmon Event Select for PCU Counter 3

715H 1813 MSR_PCU_PMON_BOX_FILTER Package Uncore PCU Perfmon Box-Wide Filter

716H 1814 MSR_PCU_PMON_BOX_STATUS Package Uncore PCU Perfmon Box Wide Status

717H 1815 MSR_PCU_PMON_CTR0 Package Uncore PCU Perfmon Counter 0

718H 1816 MSR_PCU_PMON_CTR1 Package Uncore PCU Perfmon Counter 1

719H 1817 MSR_PCU_PMON_CTR2 Package Uncore PCU Perfmon Counter 2

71AH 1818 MSR_PCU_PMON_CTR3 Package Uncore PCU Perfmon Counter 3

720H 1824 MSR_S0_PMON_BOX_CTL Package Uncore SBo 0 Perfmon for SBo 0 Box-Wide Control

721H 1825 MSR_S0_PMON_EVNTSEL0 Package Uncore SBo 0 Perfmon Event Select for SBo 0
Counter 0

722H 1826 MSR_S0_PMON_EVNTSEL1 Package Uncore SBo 0 Perfmon Event Select for SBo 0
Counter 1

723H 1827 MSR_S0_PMON_EVNTSEL2 Package Uncore SBo 0 Perfmon Event Select for SBo 0
Counter 2

724H 1828 MSR_S0_PMON_EVNTSEL3 Package Uncore SBo 0 Perfmon Event Select for SBo 0
Counter 3

725H 1829 MSR_S0_PMON_BOX_FILTER Package Uncore SBo 0 Perfmon Box-Wide Filter

726H 1830 MSR_S0_PMON_CTR0 Package Uncore SBo 0 Perfmon Counter 0

727H 1831 MSR_S0_PMON_CTR1 Package Uncore SBo 0 Perfmon Counter 1

728H 1832 MSR_S0_PMON_CTR2 Package Uncore SBo 0 Perfmon Counter 2

729H 1833 MSR_S0_PMON_CTR3 Package Uncore SBo 0 Perfmon Counter 3

72AH 1834 MSR_S1_PMON_BOX_CTL Package Uncore SBo 1 Perfmon for SBo 1 Box-Wide Control

72BH 1835 MSR_S1_PMON_EVNTSEL0 Package Uncore SBo 1 Perfmon Event Select for SBo 1
Counter 0

72CH 1836 MSR_S1_PMON_EVNTSEL1 Package Uncore SBo 1 Perfmon Event Select for SBo 1
Counter 1

72DH 1837 MSR_S1_PMON_EVNTSEL2 Package Uncore SBo 1 Perfmon Event Select for SBo 1
Counter 2

72EH 1838 MSR_S1_PMON_EVNTSEL3 Package Uncore SBo 1 Perfmon Event Select for SBo 1
Counter 3

72FH 1839 MSR_S1_PMON_BOX_FILTER Package Uncore SBo 1 Perfmon Box-Wide Filter

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-242 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

730H 1840 MSR_S1_PMON_CTR0 Package Uncore SBo 1 Perfmon Counter 0

731H 1841 MSR_S1_PMON_CTR1 Package Uncore SBo 1 Perfmon Counter 1

732H 1842 MSR_S1_PMON_CTR2 Package Uncore SBo 1 Perfmon Counter 2

733H 1843 MSR_S1_PMON_CTR3 Package Uncore SBo 1 Perfmon Counter 3

734H 1844 MSR_S2_PMON_BOX_CTL Package Uncore SBo 2 Perfmon for SBo 2 Box-Wide Control

735H 1845 MSR_S2_PMON_EVNTSEL0 Package Uncore SBo 2 Perfmon Event Select for SBo 2
Counter 0

736H 1846 MSR_S2_PMON_EVNTSEL1 Package Uncore SBo 2 Perfmon Event Select for SBo 2
Counter 1

737H 1847 MSR_S2_PMON_EVNTSEL2 Package Uncore SBo 2 Perfmon Event Select for SBo 2
Counter 2

738H 1848 MSR_S2_PMON_EVNTSEL3 Package Uncore SBo 2 Perfmon Event Select for SBo 2
Counter 3

739H 1849 MSR_S2_PMON_BOX_FILTER Package Uncore SBo 2 Perfmon Box-Wide Filter

73AH 1850 MSR_S2_PMON_CTR0 Package Uncore SBo 2 Perfmon Counter 0

73BH 1851 MSR_S2_PMON_CTR1 Package Uncore SBo 2 Perfmon Counter 1

73CH 1852 MSR_S2_PMON_CTR2 Package Uncore SBo 2 Perfmon Counter 2

73DH 1853 MSR_S2_PMON_CTR3 Package Uncore SBo 2 Perfmon Counter 3

73EH 1854 MSR_S3_PMON_BOX_CTL Package Uncore SBo 3 Perfmon for SBo 3 Box-Wide Control

73FH 1855 MSR_S3_PMON_EVNTSEL0 Package Uncore SBo 3 Perfmon Event Select for SBo 3
Counter 0

740H 1856 MSR_S3_PMON_EVNTSEL1 Package Uncore SBo 3 Perfmon Event Select for SBo 3
Counter 1

741H 1857 MSR_S3_PMON_EVNTSEL2 Package Uncore SBo 3 Perfmon Event Select for SBo 3
Counter 2

742H 1858 MSR_S3_PMON_EVNTSEL3 Package Uncore SBo 3 Perfmon Event Select for SBo 3
Counter 3

743H 1859 MSR_S3_PMON_BOX_FILTER Package Uncore SBo 3 Perfmon Box-Wide Filter

744H 1860 MSR_S3_PMON_CTR0 Package Uncore SBo 3 Perfmon Counter 0

745H 1861 MSR_S3_PMON_CTR1 Package Uncore SBo 3 Perfmon Counter 1

746H 1862 MSR_S3_PMON_CTR2 Package Uncore SBo 3 Perfmon Counter 2

747H 1863 MSR_S3_PMON_CTR3 Package Uncore SBo 3 Perfmon Counter 3

E00H 3584 MSR_C0_PMON_BOX_CTL Package Uncore C-Box 0 Perfmon for Box-Wide Control

E01H 3585 MSR_C0_PMON_EVNTSEL0 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0
Counter 0

E02H 3586 MSR_C0_PMON_EVNTSEL1 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0
Counter 1

E03H 3587 MSR_C0_PMON_EVNTSEL2 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0
Counter 2

E04H 3588 MSR_C0_PMON_EVNTSEL3 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0
Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-243

MODEL-SPECIFIC REGISTERS (MSRS)

E05H 3589 MSR_C0_PMON_BOX_FILTER0 Package Uncore C-Box 0 Perfmon Box Wide Filter 0

E06H 3590 MSR_C0_PMON_BOX_FILTER1 Package Uncore C-Box 0 Perfmon Box Wide Filter 1

E07H 3591 MSR_C0_PMON_BOX_STATUS Package Uncore C-Box 0 Perfmon Box Wide Status

E08H 3592 MSR_C0_PMON_CTR0 Package Uncore C-Box 0 Perfmon Counter 0

E09H 3593 MSR_C0_PMON_CTR1 Package Uncore C-Box 0 Perfmon Counter 1

E0AH 3594 MSR_C0_PMON_CTR2 Package Uncore C-Box 0 Perfmon Counter 2

E0BH 3595 MSR_C0_PMON_CTR3 Package Uncore C-Box 0 Perfmon Counter 3

E10H 3600 MSR_C1_PMON_BOX_CTL Package Uncore C-Box 1 Perfmon for Box-Wide Control

E11H 3601 MSR_C1_PMON_EVNTSEL0 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1
Counter 0

E12H 3602 MSR_C1_PMON_EVNTSEL1 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1
Counter 1

E13H 3603 MSR_C1_PMON_EVNTSEL2 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1
Counter 2

E14H 3604 MSR_C1_PMON_EVNTSEL3 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1
Counter 3

E15H 3605 MSR_C1_PMON_BOX_FILTER0 Package Uncore C-Box 1 Perfmon Box Wide Filter 0

E16H 3606 MSR_C1_PMON_BOX_FILTER1 Package Uncore C-Box 1 Perfmon Box Wide Filter1

E17H 3607 MSR_C1_PMON_BOX_STATUS Package Uncore C-Box 1 Perfmon Box Wide Status

E18H 3608 MSR_C1_PMON_CTR0 Package Uncore C-Box 1 Perfmon Counter 0

E19H 3609 MSR_C1_PMON_CTR1 Package Uncore C-Box 1 Perfmon Counter 1

E1AH 3610 MSR_C1_PMON_CTR2 Package Uncore C-Box 1 Perfmon Counter 2

E1BH 3611 MSR_C1_PMON_CTR3 Package Uncore C-Box 1 Perfmon Counter 3

E20H 3616 MSR_C2_PMON_BOX_CTL Package Uncore C-Box 2 Perfmon for Box-Wide Control

E21H 3617 MSR_C2_PMON_EVNTSEL0 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2
Counter 0

E22H 3618 MSR_C2_PMON_EVNTSEL1 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2
Counter 1

E23H 3619 MSR_C2_PMON_EVNTSEL2 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2
Counter 2

E24H 3620 MSR_C2_PMON_EVNTSEL3 Package Uncore C-Box 2 Perfmon Event select for C-Box 2
Counter 3

E25H 3621 MSR_C2_PMON_BOX_FILTER0 Package Uncore C-Box 2 Perfmon Box Wide Filter 0

E26H 3622 MSR_C2_PMON_BOX_FILTER1 Package Uncore C-Box 2 Perfmon Box Wide Filter1

E27H 3623 MSR_C2_PMON_BOX_STATUS Package Uncore C-Box 2 Perfmon Box Wide Status

E28H 3624 MSR_C2_PMON_CTR0 Package Uncore C-Box 2 Perfmon Counter 0

E29H 3625 MSR_C2_PMON_CTR1 Package Uncore C-Box 2 Perfmon Counter 1

E2AH 3626 MSR_C2_PMON_CTR2 Package Uncore C-Box 2 Perfmon Counter 2

E2BH 3627 MSR_C2_PMON_CTR3 Package Uncore C-Box 2 Perfmon Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-244 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E30H 3632 MSR_C3_PMON_BOX_CTL Package Uncore C-Box 3 Perfmon for Box-Wide Control

E31H 3633 MSR_C3_PMON_EVNTSEL0 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3
Counter 0

E32H 3634 MSR_C3_PMON_EVNTSEL1 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3
Counter 1

E33H 3635 MSR_C3_PMON_EVNTSEL2 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3
Counter 2

E34H 3636 MSR_C3_PMON_EVNTSEL3 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3
Counter 3

E35H 3637 MSR_C3_PMON_BOX_FILTER0 Package Uncore C-Box 3 Perfmon Box Wide Filter 0

E36H 3638 MSR_C3_PMON_BOX_FILTER1 Package Uncore C-Box 3 Perfmon Box Wide Filter1

E37H 3639 MSR_C3_PMON_BOX_STATUS Package Uncore C-Box 3 Perfmon Box Wide Status

E38H 3640 MSR_C3_PMON_CTR0 Package Uncore C-Box 3 Perfmon Counter 0

E39H 3641 MSR_C3_PMON_CTR1 Package Uncore C-Box 3 Perfmon Counter 1

E3AH 3642 MSR_C3_PMON_CTR2 Package Uncore C-Box 3 Perfmon Counter 2

E3BH 3643 MSR_C3_PMON_CTR3 Package Uncore C-Box 3 Perfmon Counter 3

E40H 3648 MSR_C4_PMON_BOX_CTL Package Uncore C-Box 4 Perfmon for Box-Wide Control

E41H 3649 MSR_C4_PMON_EVNTSEL0 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4
Counter 0

E42H 3650 MSR_C4_PMON_EVNTSEL1 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4
Counter 1

E43H 3651 MSR_C4_PMON_EVNTSEL2 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4
Counter 2

E44H 3652 MSR_C4_PMON_EVNTSEL3 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4
Counter 3

E45H 3653 MSR_C4_PMON_BOX_FILTER0 Package Uncore C-Box 4 Perfmon Box Wide Filter 0

E46H 3654 MSR_C4_PMON_BOX_FILTER1 Package Uncore C-Box 4 Perfmon Box Wide Filter1

E47H 3655 MSR_C4_PMON_BOX_STATUS Package Uncore C-Box 4 Perfmon Box Wide Status

E48H 3656 MSR_C4_PMON_CTR0 Package Uncore C-Box 4 Perfmon Counter 0

E49H 3657 MSR_C4_PMON_CTR1 Package Uncore C-Box 4 Perfmon Counter 1

E4AH 3658 MSR_C4_PMON_CTR2 Package Uncore C-Box 4 Perfmon Counter 2

E4BH 3659 MSR_C4_PMON_CTR3 Package Uncore C-Box 4 Perfmon Counter 3

E50H 3664 MSR_C5_PMON_BOX_CTL Package Uncore C-Box 5 Perfmon for Box-Wide Control

E51H 3665 MSR_C5_PMON_EVNTSEL0 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5
Counter 0

E52H 3666 MSR_C5_PMON_EVNTSEL1 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5
Counter 1

E53H 3667 MSR_C5_PMON_EVNTSEL2 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5
Counter 2

E54H 3668 MSR_C5_PMON_EVNTSEL3 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5
Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-245

MODEL-SPECIFIC REGISTERS (MSRS)

E55H 3669 MSR_C5_PMON_BOX_FILTER0 Package Uncore C-Box 5 Perfmon Box Wide Filter 0

E56H 3670 MSR_C5_PMON_BOX_FILTER1 Package Uncore C-Box 5 Perfmon Box Wide Filter 1

E57H 3671 MSR_C5_PMON_BOX_STATUS Package Uncore C-Box 5 Perfmon Box Wide Status

E58H 3672 MSR_C5_PMON_CTR0 Package Uncore C-Box 5 Perfmon Counter 0

E59H 3673 MSR_C5_PMON_CTR1 Package Uncore C-Box 5 Perfmon Counter 1

E5AH 3674 MSR_C5_PMON_CTR2 Package Uncore C-Box 5 Perfmon Counter 2

E5BH 3675 MSR_C5_PMON_CTR3 Package Uncore C-Box 5 Perfmon Counter 3

E60H 3680 MSR_C6_PMON_BOX_CTL Package Uncore C-Box 6 Perfmon for Box-Wide Control

E61H 3681 MSR_C6_PMON_EVNTSEL0 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6
Counter 0

E62H 3682 MSR_C6_PMON_EVNTSEL1 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6
Counter 1

E63H 3683 MSR_C6_PMON_EVNTSEL2 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6
Counter 2

E64H 3684 MSR_C6_PMON_EVNTSEL3 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6
Counter 3

E65H 3685 MSR_C6_PMON_BOX_FILTER0 Package Uncore C-Box 6 Perfmon Box Wide Filter 0

E66H 3686 MSR_C6_PMON_BOX_FILTER1 Package Uncore C-Box 6 Perfmon Box Wide Filter 1

E67H 3687 MSR_C6_PMON_BOX_STATUS Package Uncore C-Box 6 Perfmon Box Wide Status

E68H 3688 MSR_C6_PMON_CTR0 Package Uncore C-Box 6 Perfmon Counter 0

E69H 3689 MSR_C6_PMON_CTR1 Package Uncore C-Box 6 Perfmon Counter 1

E6AH 3690 MSR_C6_PMON_CTR2 Package Uncore C-Box 6 Perfmon Counter 2

E6BH 3691 MSR_C6_PMON_CTR3 Package Uncore C-Box 6 Perfmon Counter 3

E70H 3696 MSR_C7_PMON_BOX_CTL Package Uncore C-Box 7 Perfmon for Box-Wide Control

E71H 3697 MSR_C7_PMON_EVNTSEL0 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7
Counter 0

E72H 3698 MSR_C7_PMON_EVNTSEL1 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7
Counter 1

E73H 3699 MSR_C7_PMON_EVNTSEL2 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7
Counter 2

E74H 3700 MSR_C7_PMON_EVNTSEL3 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7
Counter 3

E75H 3701 MSR_C7_PMON_BOX_FILTER0 Package Uncore C-Box 7 Perfmon Box Wide Filter 0

E76H 3702 MSR_C7_PMON_BOX_FILTER1 Package Uncore C-Box 7 Perfmon Box Wide Filter 1

E77H 3703 MSR_C7_PMON_BOX_STATUS Package Uncore C-Box 7 Perfmon Box Wide Status

E78H 3704 MSR_C7_PMON_CTR0 Package Uncore C-Box 7 Perfmon Counter 0

E79H 3705 MSR_C7_PMON_CTR1 Package Uncore C-Box 7 Perfmon Counter 1

E7AH 3706 MSR_C7_PMON_CTR2 Package Uncore C-Box 7 Perfmon Counter 2

E7BH 3707 MSR_C7_PMON_CTR3 Package Uncore C-Box 7 Perfmon Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-246 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E80H 3712 MSR_C8_PMON_BOX_CTL Package Uncore C-Box 8 Perfmon Local Box Wide Control

E81H 3713 MSR_C8_PMON_EVNTSEL0 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 0

E82H 3714 MSR_C8_PMON_EVNTSEL1 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 1

E83H 3715 MSR_C8_PMON_EVNTSEL2 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 2

E84H 3716 MSR_C8_PMON_EVNTSEL3 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8
Counter 3

E85H 3717 MSR_C8_PMON_BOX_FILTER0 Package Uncore C-Box 8 Perfmon Box Wide Filter 0

E86H 3718 MSR_C8_PMON_BOX_FILTER1 Package Uncore C-Box 8 Perfmon Box Wide Filter 1

E87H 3719 MSR_C8_PMON_BOX_STATUS Package Uncore C-Box 8 Perfmon Box Wide Status

E88H 3720 MSR_C8_PMON_CTR0 Package Uncore C-Box 8 Perfmon Counter 0

E89H 3721 MSR_C8_PMON_CTR1 Package Uncore C-Box 8 Perfmon Counter 1

E8AH 3722 MSR_C8_PMON_CTR2 Package Uncore C-Box 8 Perfmon Counter 2

E8BH 3723 MSR_C8_PMON_CTR3 Package Uncore C-Box 8 Perfmon Counter 3

E90H 3728 MSR_C9_PMON_BOX_CTL Package Uncore C-Box 9 Perfmon Local Box Wide Control

E91H 3729 MSR_C9_PMON_EVNTSEL0 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9
Counter 0

E92H 3730 MSR_C9_PMON_EVNTSEL1 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9
Counter 1

E93H 3731 MSR_C9_PMON_EVNTSEL2 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9
Counter 2

E94H 3732 MSR_C9_PMON_EVNTSEL3 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9
Counter 3

E95H 3733 MSR_C9_PMON_BOX_FILTER0 Package Uncore C-Box 9 Perfmon Box Wide Filter 0

E96H 3734 MSR_C9_PMON_BOX_FILTER1 Package Uncore C-Box 9 Perfmon Box Wide Filter 1

E97H 3735 MSR_C9_PMON_BOX_STATUS Package Uncore C-Box 9 Perfmon Box Wide Status

E98H 3736 MSR_C9_PMON_CTR0 Package Uncore C-Box 9 Perfmon Counter 0

E99H 3737 MSR_C9_PMON_CTR1 Package Uncore C-Box 9 Perfmon Counter 1

E9AH 3738 MSR_C9_PMON_CTR2 Package Uncore C-Box 9 Perfmon Counter 2

E9BH 3739 MSR_C9_PMON_CTR3 Package Uncore C-Box 9 Perfmon Counter 3

EA0H 3744 MSR_C10_PMON_BOX_CTL Package Uncore C-Box 10 Perfmon Local Box Wide Control

EA1H 3745 MSR_C10_PMON_EVNTSEL0 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10
Counter 0

EA2H 3746 MSR_C10_PMON_EVNTSEL1 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10
Counter 1

EA3H 3747 MSR_C10_PMON_EVNTSEL2 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10
Counter 2

EA4H 3748 MSR_C10_PMON_EVNTSEL3 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10
Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-247

MODEL-SPECIFIC REGISTERS (MSRS)

EA5H 3749 MSR_C10_PMON_BOX_FILTER0 Package Uncore C-Box 10 Perfmon Box Wide Filter 0

EA6H 3750 MSR_C10_PMON_BOX_FILTER1 Package Uncore C-Box 10 Perfmon Box Wide Filter 1

EA7H 3751 MSR_C10_PMON_BOX_STATUS Package Uncore C-Box 10 Perfmon Box Wide Status

EA8H 3752 MSR_C10_PMON_CTR0 Package Uncore C-Box 10 Perfmon Counter 0

EA9H 3753 MSR_C10_PMON_CTR1 Package Uncore C-Box 10 perfmon Counter 1

EAAH 3754 MSR_C10_PMON_CTR2 Package Uncore C-Box 10 Perfmon Counter 2

EABH 3755 MSR_C10_PMON_CTR3 Package Uncore C-Box 10 Perfmon Counter 3

EB0H 3760 MSR_C11_PMON_BOX_CTL Package Uncore C-Box 11 Perfmon Local Box Wide Control

EB1H 3761 MSR_C11_PMON_EVNTSEL0 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11
Counter 0

EB2H 3762 MSR_C11_PMON_EVNTSEL1 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11
Counter 1

EB3H 3763 MSR_C11_PMON_EVNTSEL2 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11
Counter 2

EB4H 3764 MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 Perfmon Event Select for C-Box 11
Counter 3

EB5H 3765 MSR_C11_PMON_BOX_FILTER0 Package Uncore C-Box 11 Perfmon Box Wide Filter 0

EB6H 3766 MSR_C11_PMON_BOX_FILTER1 Package Uncore C-Box 11 Perfmon Box Wide Filter 1

EB7H 3767 MSR_C11_PMON_BOX_STATUS Package Uncore C-Box 11 Perfmon Box Wide Status

EB8H 3768 MSR_C11_PMON_CTR0 Package Uncore C-Box 11 Perfmon Counter 0

EB9H 3769 MSR_C11_PMON_CTR1 Package Uncore C-Box 11 Perfmon Counter 1

EBAH 3770 MSR_C11_PMON_CTR2 Package Uncore C-Box 11 Perfmon Counter 2

EBBH 3771 MSR_C11_PMON_CTR3 Package Uncore C-Box 11 Perfmon Counter 3

EC0H 3776 MSR_C12_PMON_BOX_CTL Package Uncore C-Box 12 Perfmon Local Box Wide Control

EC1H 3777 MSR_C12_PMON_EVNTSEL0 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12
Counter 0

EC2H 3778 MSR_C12_PMON_EVNTSEL1 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12
Counter 1

EC3H 3779 MSR_C12_PMON_EVNTSEL2 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12
Counter 2

EC4H 3780 MSR_C12_PMON_EVNTSEL3 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12
Counter 3

EC5H 3781 MSR_C12_PMON_BOX_FILTER0 Package Uncore C-Box 12 Perfmon Box Wide Filter 0

EC6H 3782 MSR_C12_PMON_BOX_FILTER1 Package Uncore C-Box 12 Perfmon Box Wide Filter 1

EC7H 3783 MSR_C12_PMON_BOX_STATUS Package Uncore C-Box 12 Perfmon Box Wide Status

EC8H 3784 MSR_C12_PMON_CTR0 Package Uncore C-Box 12 Perfmon Counter 0

EC9H 3785 MSR_C12_PMON_CTR1 Package Uncore C-Box 12 Perfmon Counter 1

ECAH 3786 MSR_C12_PMON_CTR2 Package Uncore C-Box 12 Perfmon Counter 2

ECBH 3787 MSR_C12_PMON_CTR3 Package Uncore C-Box 12 Perfmon Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-248 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

ED0H 3792 MSR_C13_PMON_BOX_CTL Package Uncore C-Box 13 Perfmon local box wide control.

ED1H 3793 MSR_C13_PMON_EVNTSEL0 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13
Counter 0

ED2H 3794 MSR_C13_PMON_EVNTSEL1 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13
Counter 1

ED3H 3795 MSR_C13_PMON_EVNTSEL2 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13
Counter 2

ED4H 3796 MSR_C13_PMON_EVNTSEL3 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13
Counter 3

ED5H 3797 MSR_C13_PMON_BOX_FILTER0 Package Uncore C-Box 13 Perfmon Box Wide Filter 0

ED6H 3798 MSR_C13_PMON_BOX_FILTER1 Package Uncore C-Box 13 Perfmon Box Wide Filter 1

ED7H 3799 MSR_C13_PMON_BOX_STATUS Package Uncore C-Box 13 Perfmon Box Wide Status

ED8H 3800 MSR_C13_PMON_CTR0 Package Uncore C-Box 13 Perfmon Counter 0

ED9H 3801 MSR_C13_PMON_CTR1 Package Uncore C-Box 13 Perfmon Counter 1

EDAH 3802 MSR_C13_PMON_CTR2 Package Uncore C-Box 13 Perfmon Counter 2

EDBH 3803 MSR_C13_PMON_CTR3 Package Uncore C-Box 13 Perfmon Counter 3

EE0H 3808 MSR_C14_PMON_BOX_CTL Package Uncore C-Box 14 Perfmon Local Box Wide Control

EE1H 3809 MSR_C14_PMON_EVNTSEL0 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14
Counter 0

EE2H 3810 MSR_C14_PMON_EVNTSEL1 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14
Counter 1

EE3H 3811 MSR_C14_PMON_EVNTSEL2 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14
Counter 2

EE4H 3812 MSR_C14_PMON_EVNTSEL3 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14
Counter 3

EE5H 3813 MSR_C14_PMON_BOX_FILTER Package Uncore C-Box 14 Perfmon Box Wide Filter 0

EE6H 3814 MSR_C14_PMON_BOX_FILTER1 Package Uncore C-Box 14 Perfmon Box Wide Filter 1

EE7H 3815 MSR_C14_PMON_BOX_STATUS Package Uncore C-Box 14 Perfmon Box Wide Status

EE8H 3816 MSR_C14_PMON_CTR0 Package Uncore C-Box 14 Perfmon Counter 0

EE9H 3817 MSR_C14_PMON_CTR1 Package Uncore C-Box 14 Perfmon Counter 1

EEAH 3818 MSR_C14_PMON_CTR2 Package Uncore C-Box 14 Perfmon Counter 2

EEBH 3819 MSR_C14_PMON_CTR3 Package Uncore C-Box 14 Perfmon Counter 3

EF0H 3824 MSR_C15_PMON_BOX_CTL Package Uncore C-Box 15 Perfmon Local Box Wide Control

EF1H 3825 MSR_C15_PMON_EVNTSEL0 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15
Counter 0

EF2H 3826 MSR_C15_PMON_EVNTSEL1 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15
Counter 1

EF3H 3827 MSR_C15_PMON_EVNTSEL2 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15
Counter 2

EF4H 3828 MSR_C15_PMON_EVNTSEL3 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15
Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-249

MODEL-SPECIFIC REGISTERS (MSRS)

EF5H 3829 MSR_C15_PMON_BOX_FILTER0 Package Uncore C-Box 15 Perfmon Box Wide Filter 0

EF6H 3830 MSR_C15_PMON_BOX_FILTER1 Package Uncore C-Box 15 Perfmon Box Wide Filter 1

EF7H 3831 MSR_C15_PMON_BOX_STATUS Package Uncore C-Box 15 Perfmon Box Wide Status

EF8H 3832 MSR_C15_PMON_CTR0 Package Uncore C-Box 15 Perfmon Counter 0

EF9H 3833 MSR_C15_PMON_CTR1 Package Uncore C-Box 15 Perfmon Counter 1

EFAH 3834 MSR_C15_PMON_CTR2 Package Uncore C-Box 15 Perfmon Counter 2

EFBH 3835 MSR_C15_PMON_CTR3 Package Uncore C-Box 15 Perfmon Counter 3

F00H 3840 MSR_C16_PMON_BOX_CTL Package Uncore C-Box 16 Perfmon for Box-Wide Control

F01H 3841 MSR_C16_PMON_EVNTSEL0 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16
Counter 0

F02H 3842 MSR_C16_PMON_EVNTSEL1 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16
Counter 1

F03H 3843 MSR_C16_PMON_EVNTSEL2 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16
Counter 2

F04H 3844 MSR_C16_PMON_EVNTSEL3 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16
Counter 3

F05H 3845 MSR_C16_PMON_BOX_FILTER0 Package Uncore C-Box 16 Perfmon Box Wide Filter 0

F06H 3846 MSR_C16_PMON_BOX_FILTER1 Package Uncore C-Box 16 Perfmon Box Wide Filter 1

F07H 3847 MSR_C16_PMON_BOX_STATUS Package Uncore C-Box 16 Perfmon Box Wide Status

F08H 3848 MSR_C16_PMON_CTR0 Package Uncore C-Box 16 Perfmon Counter 0

F09H 3849 MSR_C16_PMON_CTR1 Package Uncore C-Box 16 Perfmon Counter 1

F0AH 3850 MSR_C16_PMON_CTR2 Package Uncore C-Box 16 Perfmon Counter 2

F0BH 3851 MSR_C16_PMON_CTR3 Package Uncore C-Box 16 Perfmon Counter 3

F10H 3856 MSR_C17_PMON_BOX_CTL Package Uncore C-Box 17 Perfmon for Box-Wide Control

F11H 3857 MSR_C17_PMON_EVNTSEL0 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17
Counter 0

F12H 3858 MSR_C17_PMON_EVNTSEL1 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17
Counter 1

F13H 3859 MSR_C17_PMON_EVNTSEL2 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17
Counter 2

F14H 3860 MSR_C17_PMON_EVNTSEL3 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17
Counter 3

F15H 3861 MSR_C17_PMON_BOX_FILTER0 Package Uncore C-Box 17 Perfmon Box Wide Filter 0

F16H 3862 MSR_C17_PMON_BOX_FILTER1 Package Uncore C-Box 17 Perfmon Box Wide Filter1

F17H 3863 MSR_C17_PMON_BOX_STATUS Package Uncore C-Box 17 Perfmon Box Wide Status

F18H 3864 MSR_C17_PMON_CTR0 Package Uncore C-Box 17 Perfmon Counter 0

F19H 3865 MSR_C17_PMON_CTR1 Package Uncore C-Box 17 Perfmon Counter 1

F1AH 3866 MSR_C17_PMON_CTR2 Package Uncore C-Box 17 Perfmon Counter 2

F1BH 3867 MSR_C17_PMON_CTR3 Package Uncore C-Box 17 Perfmon Counter 3

Table 2-33. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-250 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.15 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon®
Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR
interfaces listed in Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29, Table 2-30, Table 2-34, and Table
2-35. For an MSR listed in Table 2-35 that also appears in the model-specific tables of prior generations, Table 2-35
supersede prior generation tables.

Table 2-34 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID
signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 2-34. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved

55 Trace_ToPA_PMI

See Section 35.2.6.2, “Table of Physical Addresses
(ToPA).”

60:56 Reserved

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter
Control Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

Vol. 4 2-251

MODEL-SPECIFIC REGISTERS (MSRS)

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI.

See Section 35.2.6.2, “Table of Physical Addresses
(ToPA).”

60:56 Reserved

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, must be zero.

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 Reserved, must be zero.

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 Reserved; writing 0 will #GP if also setting TraceEn.

63:14 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

Table 2-34. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-252 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-35 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

4 Error (R/W)

5 Stopped

63:6 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match.

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields
represent the widest possible range of uncore
frequencies. Writing to these fields allows software to
control the minimum and the maximum frequency that
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible
ratio of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

NOTES:
1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-35. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

Table 2-34. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-253

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-Demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Table 2-35. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-254 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16 MSRS IN INTEL® XEON® PROCESSORS E5 V4 FAMILY
The MSRs listed in Table 2-36 are available and common to Intel® Xeon® Processor D product Family (CPUID
DisplayFamily_DisplayModel = 06_56H) and to Intel Xeon processors E5 v4, E7 v4 families (CPUID
DisplayFamily_DisplayModel = 06_4FH). They are based on the Broadwell microarchitecture.

See Section 2.16.1 for lists of tables of MSRs that are supported by Intel® Xeon® Processor D Family.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29, Table 2-30, Table 2-34 for other MSR definitions applicable to
processors with CPUID signature 06_3DH.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-26.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-26.

22:16 Reserved.

Table 2-35. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-255

MODEL-SPECIFIC REGISTERS (MSRS)

23 Package PPIN_CAP (R/O)

See Table 2-26.

27:24 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-26.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-26.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-26.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-26.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package. The
default is set as factory-configured package C-state
limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to
MWAIT(C6).

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

http://biosbits.org

2-256 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access
restriction is supported and a host-space interface
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is
supported and a host-space interface available to SMM
handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal Status (RO)

See Table 2-2.

1 Thermal Status Log (R/WC0)

See Table 2-2.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-257

MODEL-SPECIFIC REGISTERS (MSRS)

2 PROTCHOT # or FORCEPR# Status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0)

See Table 2-2.

4 Critical Temperature Status (RO)

See Table 2-2.

5 Critical Temperature Status Log (R/WC0)

See Table 2-2.

6 Thermal Threshold #1 Status (RO)

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0)

See Table 2-2.

8 Thermal Threshold #2 Status (RO)

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0)

See Table 2-2.

10 Power Limitation Status (RO)

See Table 2-2.

11 Power Limitation Log (R/WC0)

See Table 2-2.

12 Current Limit Status (RO)

See Table 2-2.

13 Current Limit Log (R/WC0)

See Table 2-2.

14 Cross Domain Limit Status (RO)

See Table 2-2.

15 Cross Domain Limit Log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-258 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 Temperature Target (RO)

See Table 2-26.

27:24 TCC Activation Offset (R/W)

See Table 2-26.

63:28 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

15:8 Package Maximum Ratio Limit for 2C

23:16 Package Maximum Ratio Limit for 3C

31:24 Package Maximum Ratio Limit for 4C

39:32 Package Maximum Ratio Limit for 5C

47:40 Package Maximum Ratio Limit for 6C

55:48 Package Maximum Ratio Limit for 7C

63:56 Package Maximum Ratio Limit for 8C

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

15:8 Package Maximum Ratio Limit for 10C

23:16 Package Maximum Ratio Limit for 11C

31:24 Package Maximum Ratio Limit for 12C

39:32 Package Maximum Ratio Limit for 13C

47:40 Package Maximum Ratio Limit for 14C

55:48 Package Maximum Ratio Limit for 15C

63:56 Package Maximum Ratio Limit for 16C

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the
multiplier, 1/2^ESU; where ESU is an unsigned integer
represented by bits 12:8. Default value is 0EH (or 61
micro-joules).

15:13 Package Reserved

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-259

MODEL-SPECIFIC REGISTERS (MSRS)

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS
configuration to enable DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields
represent the widest possible range of uncore
frequencies. Writing to these fields allows software to
control the minimum and the maximum frequency that
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below
the operating system request due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-260 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating
system request due to PBM limit.

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating
system request due to PCS limit.

4 Reserved

5 Autonomous Utilization-Based Frequency Control
Status (R0)

When set, frequency is reduced below the operating
system request because the processor has detected
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from the Voltage
Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating
system request due to electrical design point
constraints (e.g., maximum electrical current
consumption).

9 Reserved

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating
system request due to Multi-Core Turbo limits.

12:11 Reserved

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo
P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core
turbo frequency.

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating
system request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-261

MODEL-SPECIFIC REGISTERS (MSRS)

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

18 Power Budget Management Log

When set, indicates that the PBM Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

20 Reserved

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 Reserved

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Reserved

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28:27 Reserved

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-262 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo
Frequency Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

63:32 Reserved

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”.

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and
Dynamic Capabilities”.

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”.

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”.

1:0 Reserved

2 Excursion to Minimum (RO)

63:3 Reserved

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

7:0 EventID (RW)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-263

MODEL-SPECIFIC REGISTERS (MSRS)

41:32 RMID (RW)

63:42 Reserved

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W)

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:19 CBM: Bit vector of available L3 ways for COS 0
enforcement.

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:19 CBM: Bit vector of available L3 ways for COS 1
enforcement.

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:19 CBM: Bit vector of available L3 ways for COS 2
enforcement.

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L3 ways for COS 3
enforcement.

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

0:19 CBM: Bit vector of available L3 ways for COS 4
enforcement.

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

0:19 CBM: Bit vector of available L3 ways for COS 5
enforcement.

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-264 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0:19 CBM: Bit vector of available L3 ways for COS 6
enforcement.

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

0:19 CBM: Bit vector of available L3 ways for COS 7
enforcement.

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

0:19 CBM: Bit vector of available L3 ways for COS 8
enforcement.

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

0:19 CBM: Bit vector of available L3 ways for COS 9
enforcement.

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=10.

0:19 CBM: Bit vector of available L3 ways for COS 10
enforcement.

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=11.

0:19 CBM: Bit vector of available L3 ways for COS 11
enforcement.

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=12.

0:19 CBM: Bit vector of available L3 ways for COS 12
enforcement.

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=13.

0:19 CBM: Bit vector of available L3 ways for COS 13
enforcement.

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=14.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-265

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.1 Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 2-37 are available to Intel® Xeon® Processor D Product Family (CPUID
DisplayFamily_DisplayModel = 06_56H). The Intel® Xeon® processor D product family is based on the Broadwell
microarchitecture and supports the MSR interfaces listed in Table 2-20, Table 2-29, Table 2-34, Table 2-36, and
Table 2-37.

0:19 CBM: Bit vector of available L3 ways for COS 14
enforcement.

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=15.

0:19 CBM: Bit vector of available L3 ways for COS 15
enforcement.

63:20 Reserved

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1
specified in MSR_TURBO_RATIO_LIMIT,
MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration
(Default).

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-36. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family
Based on the Broadwell Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-266 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.2 Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families
The MSRs listed in Table 2-37 are available to Intel® Xeon® Processor E5 v4 and E7 v4 Families (CPUID
DisplayFamily_DisplayModel = 06_4FH). The Intel® Xeon® processor E5 v4 family is based on the Broadwell micro-

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC errors from each
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC errors from each
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6,
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7,
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8,
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

See Table 2-20, Table 2-29, Table 2-34, and Table 2-36 for other MSR definitions applicable to processors with CPUID signature
06_56H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-267

MODEL-SPECIFIC REGISTERS (MSRS)

architecture and supports the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-29, Table 2-34, Table 2-36,
and Table 2-38.

Table 2-38. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1
specified in MSR_TURBO_RATIO_LIMIT,
MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration
(Default).

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI 0
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

2-268 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA
0.

41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the home agent HA
1.

421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-38. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-269

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6,
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7,
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8,
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC errors from the Intel QPI 1
module.

451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from the Intel QPI 2
module.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

C81H 3201 IA32_L3_QOS_CFG Package Cache Allocation Technology Configuration (R/W)

0 CAT Enable. Set 1 to enable Cache Allocation
Technology.

63:1 Reserved

See Table 2-20, Table 2-21, Table 2-29, and Table 2-30 for other MSR definitions applicable to processors with CPUID signature
06_45H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-38. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-270 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17 MSRS IN THE 6TH GENERATION, 7TH GENERATION, 8TH GENERATION,
9TH GENERATION, 10TH GENERATION, AND 11TH GENERATION INTEL®
CORE™ PROCESSORS, INTEL® XEON® PROCESSOR SCALABLE FAMILY, 8TH
GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E
PROCESSORS

6th generation Intel® Core™ processors and the Intel® Xeon® Processor Scalable Family are based on the Skylake
microarchitecture and have CPUID DisplayFamily_DisplayModel signatures of 06_4EH, 06_5EH, and 06_55H.

7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture, 8th generation and 9th
generation Intel® Core™ processors and Intel® Xeon® E processors are based on the Coffee Lake microarchitec-
ture; these processors have CPUID DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH.

8th generation Intel® Core™ i3 processors are based on Cannon Lake microarchitecture and have a CPUID
DisplayFamily_DisplayModel signature of 06_66H.

10th generation Intel® Core™ processors are based on Comet Lake microarchitecture (with CPUID
DisplayFamily_DisplayModel signatures of 06_A5H, 06_A6H) and Ice Lake microarchitecture (with CPUID
DisplayFamily_DisplayModel signatures of 06_7DH and 06_7EH).

11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and have CPUID
DisplayFamily_DisplayModel signatures of 06_8CH and 06_8DH.

These processors support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-25, Table 2-29, Table 2-35,
Table 2-39, and Table 2-40. For an MSR listed in Table 2-39 that also appears in the model-specific tables of prior
generations, Table 2-39 supersede prior generation tables.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery
integration may vary by platform vendor’s implementation.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread MTRR Capability (RO, Architectural)

See Table 2-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal Status (RO)

See Table 2-2.

1 Thermal Status Log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO)

See Table 2-2.

Vol. 4 2-271

MODEL-SPECIFIC REGISTERS (MSRS)

3 PROTCHOT # or FORCEPR# Log (R/WC0)

See Table 2-2.

4 Critical Temperature Status (RO)

See Table 2-2.

5 Critical Temperature Status Log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 Status (RO)

See Table 2-2.

7 Thermal threshold #1 Log (R/WC0)

See Table 2-2.

8 Thermal Threshold #2 Status (RO)

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0)

See Table 2-2.

10 Power Limitation Status (RO)

See Table 2-2.

11 Power Limitation Log (R/WC0)

See Table 2-2.

12 Current Limit Status (RO)

See Table 2-2.

13 Current Limit Log (R/WC0)

See Table 2-2.

14 Cross Domain Limit Status (RO)

See Table 2-2.

15 Cross Domain Limit Log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-272 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR
containing the most recent branch record.

1FCH 508 MSR_POWER_CTL Core Power Control Register

See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the
Minimum Enhanced Intel SpeedStep Technology
operating point when all execution cores enter MWAIT
(C1).

18:2 Reserved

19 Disable Energy Efficiency Optimization (R/W)

Setting this bit disables the P-States energy efficiency
optimization. Default value is 0. Disable/enable the
energy efficiency optimization in P-State legacy mode
(when IA32_PM_ENABLE[HWP_ENABLE] = 0), has an
effect only in the turbo range or into PERF_MIN_CTL
value if it is not zero set. In HWP mode
(IA32_PM_ENABLE[HWP_ENABLE] == 1), has an effect
between the OS desired or OS maximize to the OS
minimize performance setting.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-273

MODEL-SPECIFIC REGISTERS (MSRS)

20 Disable Race to Halt Optimization (R/W)

Setting this bit disables the Race to Halt optimization
and avoids this optimization limitation to execute
below the most efficient frequency ratio. Default value
is 0 for processors that support Race to Halt
optimization.

63:21 Reserved

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread
in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for
key derivation of an enclave.

301H 768 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread
in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for
key derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_STATUS See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved

55 Thread Trace_ToPA_PMI

57:56 Reserved

58 Thread LBR_Frz

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-274 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

59 Thread CTR_Frz

60 Thread ASCI

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STATUS_RESET See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0.

1 Thread Set 1 to clear Ovf_PMC1.

2 Thread Set 1 to clear Ovf_PMC2.

3 Thread Set 1 to clear Ovf_PMC3.

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4).

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5).

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6).

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7).

31:8 Reserved

32 Thread Set 1 to clear Ovf_FixedCtr0.

33 Thread Set 1 to clear Ovf_FixedCtr1.

34 Thread Set 1 to clear Ovf_FixedCtr2.

54:35 Reserved

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved

58 Thread Set 1 to clear LBR_Frz.

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore.

62 Thread Set 1 to clear Ovf_BufDSSAVE.

63 Thread Set 1 to clear CondChgd.

391H 913 IA32_PERF_GLOBAL_STATUS_SET See Table 2-2. See Section 18.2.4, “Architectural
Performance Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1.

1 Thread Set 1 to cause Ovf_PMC1 = 1.

2 Thread Set 1 to cause Ovf_PMC2 = 1.

3 Thread Set 1 to cause Ovf_PMC3 = 1.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-275

MODEL-SPECIFIC REGISTERS (MSRS)

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] >
4).

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] >
5).

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] >
6).

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] >
7).

31:8 Reserved

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1.

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1.

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1.

54:35 Reserved

55 Thread Set 1 to cause Trace_ToPA_PMI = 1.

57:56 Reserved

58 Thread Set 1 to cause LBR_Frz = 1.

59 Thread Set 1 to cause CTR_Frz = 1.

60 Thread Set 1 to cause ASCI = 1.

61 Thread Set 1 to cause Ovf_Uncore.

62 Thread Set 1 to cause Ovf_BufDSSAVE.

63 Reserved

392H 913 IA32_PERF_GLOBAL_INUSE Thread See Table 2-2.

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W)

2:0 Event Code Select

3 Reserved

4 Event Code Select High

7:5 Reserved

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO)

0 Lock

See Section 41.11.3, “Interactions with Authenticated
Code Modules (ACMs)”.

15:1 Reserved

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-276 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 SGX_SVN_SINIT

See Section 41.11.3, “Interactions with Authenticated
Code Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W)

See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Thread Trace Output Mask Pointers Register (R/W)

See Table 2-2.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-277

MODEL-SPECIFIC REGISTERS (MSRS)

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH Thread Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Thread Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Thread Region 0 End Address (R/W)

63:0 See Table 2-2.

582H 1410 IA32_RTIT_ADDR1_A Thread Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Thread Region 1 End Address (R/W)

63:0 See Table 2-2.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

64DH 1613 MSR_PLATFORM_ENERGY_COUNTER Platform* Platform Energy Counter (R/O)

This MSR is valid only if both platform vendor hardware
implementation and BIOS enablement support it. This
MSR will read 0 if not valid.

31:0 Total energy consumed by all devices in the platform
that receive power from integrated power delivery
mechanism, included platform devices are processor
cores, SOC, memory, add-on or peripheral devices that
get powered directly from the platform power delivery
means. The energy units are specified in the
MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved

64EH 1614 MSR_PPERF Thread Productive Performance Count (R/O)

63:0 Hardware’s view of workload scalability. See Section
14.4.5.1.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-278 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

64FH 1615 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal event.

3:2 Reserved

4 Residency State Regulation Status (R0)

When set, frequency is reduced below the operating
system request due to residency state regulation limit.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced below the operating
system request due to Running Average Thermal Limit
(RATL).

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating
system request due to a thermal alert from a processor
Voltage Regulator (VR).

7 VR Therm Design Current Status (R0)

When set, frequency is reduced below the operating
system request due to VR thermal design current limit.

8 Other Status (R0)

When set, frequency is reduced below the operating
system request due to electrical or other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status
(R0)

When set, frequency is reduced below the operating
system request due to package/platform-level power
limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status
(R0)

When set, frequency is reduced below the operating
system request due to package/platform-level power
limiting PL2/PL3.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-279

MODEL-SPECIFIC REGISTERS (MSRS)

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating
system request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating
system request due to Turbo transition attenuation.
This prevents performance degradation due to
frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

19:18 Reserved.

20 Residency State Regulation Log

When set, indicates that the Residency State
Regulation Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software
writing 0.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-280 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23 VR Thermal Design Current Log

When set, indicates that the VR TDC Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

24 Other Log

When set, indicates that the Other Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package or Platform Level
PL1 Power Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package or Platform Level
PL2/PL3 Power Limiting Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition
Attenuation Status bit has asserted since the log bit
was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:30 Reserved

652H 1618 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W)

2:0 PKG_Cx_Monitor

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-281

MODEL-SPECIFIC REGISTERS (MSRS)

63: 3 Reserved

653H 1619 MSR_CORE_HDC_RESIDENCY Core Core HDC Idle Residency (R/O)

63:0 Core_Cx_Duty_Cycle_Cnt

655H 1621 MSR_PKG_HDC_SHALLOW_RESIDENCY Package Accumulate the cycles the package was in C2 state and
at least one logical processor was in forced idle (R/O)

63:0 Pkg_C2_Duty_Cycle_Cnt

656H 1622 MSR_PKG_HDC_DEEP_RESIDENCY Package Package Cx HDC Idle Residency (R/O)

63:0 Pkg_Cx_Duty_Cycle_Cnt

658H 1624 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment
each cycle is weighted by the number of processor
cores in the package that reside in C0. If N cores are
simultaneously in C0, then each cycle the counter
increments by N.

659H 1625 MSR_ANY_CORE_C0 Package Any Core C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment
each cycle is one if any processor core in the package is
in C0.

65AH 1626 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment
each cycle is one if any processor graphic device’s
compute engines are in C0.

65BH 1627 MSR_CORE_GFXE_OVERLAP_C0 Package Core and Graphics Engine Overlapped C0 Residency
(R/O)

63:0 Increment at the same rate as the TSC. The increment
each cycle is one if at least one compute engine of the
processor graphics is in C0 and at least one processor
core in the package is also in C0.

65CH 1628 MSR_PLATFORM_POWER_LIMIT Platform* Platform Power Limit Control (R/W-L)

Allows platform BIOS to limit power consumption of the
platform devices to the specified values. The Long
Duration power consumption is specified via
Platform_Power_Limit_1 and
Platform_Power_Limit_1_Time. The Short Duration
power consumption limit is specified via the
Platform_Power_Limit_2 with duration chosen by the
processor.

The processor implements an exponential-weighted
algorithm in the placement of the time windows.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-282 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

14:0 Platform Power Limit #1

Average Power limit value which the platform must not
exceed over a time window as specified by
Power_Limit_1_TIME field.

The default value is the Thermal Design Power (TDP)
and varies with product skus. The unit is specified in
MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1

When set, enables the processor to apply control policy
such that the platform power does not exceed
Platform Power limit #1 over the time window
specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1

When set, allows the processor to go below the OS
requested P states in order to maintain the power
below specified Platform Power Limit #1 value.

This bit is writeable only when CPUID (EAX=6):EAX[4]
is set.

23:17 Time Window for Platform Power Limit #1

Specifies the duration of the time window over which
Platform Power Limit 1 value should be maintained for
sustained long duration. This field is made up of two
numbers from the following equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17]

The maximum allowed value in this field is defined in
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in
MSR_RAPLPOWER_UNIT[Time Unit].

31:24 Reserved

46:32 Platform Power Limit #2

Average Power limit value which the platform must not
exceed over the Short Duration time window chosen
by the processor.

The recommended default value is 1.25 times the Long
Duration Power Limit (i.e., Platform Power Limit # 1).

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-283

MODEL-SPECIFIC REGISTERS (MSRS)

47 Enable Platform Power Limit #2

When set, enables the processor to apply control policy
such that the platform power does not exceed
Platform Power limit #2 over the Short Duration time
window.

48 Platform Clamping Limitation #2

When set, allows the processor to go below the OS
requested P states in order to maintain the power
below specified Platform Power Limit #2 value.

62:49 Reserved

63 Lock. Setting this bit will lock all other bits of this MSR
until system RESET.

690H 1680 MSR_LASTBRANCH_16_FROM_IP Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the
last branch record stack. This part of the stack contains
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.12.

691H 1681 MSR_LASTBRANCH_17_FROM_IP Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_LASTBRANCH_18_FROM_IP Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_LASTBRANCH_19_FROM_IP Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_LASTBRANCH_20_FROM_IP Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_LASTBRANCH_21_FROM_IP Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_LASTBRANCH_22_FROM_IP Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_LASTBRANCH_23_FROM_IP Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_LASTBRANCH_24_FROM_IP Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_LASTBRANCH_25_FROM_IP Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_LASTBRANCH_26_FROM_IP Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-284 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

69BH 1691 MSR_LASTBRANCH_27_FROM_IP Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_LASTBRANCH_28_FROM_IP Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_LASTBRANCH_29_FROM_IP Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_LASTBRANCH_30_FROM_IP Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_LASTBRANCH_31_FROM_IP Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Processor
Graphics (R/W)

(Frequency refers to processor graphics frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average
thermal limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert
from a processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or
other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status
(R0)

When set, frequency is reduced due to
package/platform-level power limiting PL1.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-285

MODEL-SPECIFIC REGISTERS (MSRS)

11 Package/Platform-Level PL2 Power Limiting Status
(R0)

When set, frequency is reduced due to
package/platform-level power limiting PL2/PL3.

12 Inefficient Operation Status (R0)

When set, processor graphics frequency is operating
below target frequency.

15:13 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

24 Other Log

When set, indicates that the OTHER Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-286 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level
PL1 Power Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level
PL2 Power Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

28 Inefficient Operation Log

When set, indicates that the Inefficient Operation
Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software
writing 0.

63:29 Reserved

6B1H 1713 MSR_RING_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Ring Interconnect
(R/W)

(Frequency refers to ring interconnect in the uncore.)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average
thermal limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert
from a processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-287

MODEL-SPECIFIC REGISTERS (MSRS)

8 Other Status (R0)

When set, frequency is reduced due to electrical or
other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status
(R0)

When set, frequency is reduced due to
package/Platform-level power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status
(R0)

When set, frequency is reduced due to
package/Platform-level power limiting PL2/PL3.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

20:18 Reserved

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-288 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24 Other Log

When set, indicates that the OTHER Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level
PL1 Power Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level
PL2 Power Limiting Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software
writing 0.

63:28 Reserved

6D0H 1744 MSR_LASTBRANCH_16_TO_IP Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the
last branch record stack. This part of the stack contains
pointers to the destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.12.

6D1H 1745 MSR_LASTBRANCH_17_TO_IP Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_LASTBRANCH_18_TO_IP Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_LASTBRANCH_19_TO_IP Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_LASTBRANCH_20_TO_IP Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_LASTBRANCH_21_TO_IP Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_LASTBRANCH_22_TO_IP Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-289

MODEL-SPECIFIC REGISTERS (MSRS)

6D7H 1751 MSR_LASTBRANCH_23_TO_IP Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_LASTBRANCH_24_TO_IP Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_LASTBRANCH_25_TO_IP Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_LASTBRANCH_26_TO_IP Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_LASTBRANCH_27_TO_IP Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_LASTBRANCH_28_TO_IP Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_LASTBRANCH_29_TO_IP Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_LASTBRANCH_30_TO_IP Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_LASTBRANCH_31_TO_IP Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”.

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and
Dynamic Capabilities”.

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”.

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”.

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”.

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

31:24 Energy/Performance Preference (R/W)

41:32 Activity Window (R/W)

42 Package Control (R/W)

63:43 Reserved

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”.

D90H 3472 IA32_BNDCFGS Thread See Table 2-2.

DA0H 3488 IA32_XSS Thread See Table 2-2.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-290 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”.

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC
Control”.

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”.

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the
last branch record stack. This part of the stack contains
flag, TSX-related and elapsed cycle information. See
also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-291

MODEL-SPECIFIC REGISTERS (MSRS)

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-292 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-40 lists the MSRs of uncore PMU for Intel processors with CPUID DisplayFamily_DisplayModel signatures of
06_4EH, 06_5EH, 06_8EH, 06_9EH, and 06_66H.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-40. Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

43:0 Current count.

63:44 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Specifies the number of C-Box units with
programmable counters (including processor cores
and processor graphics).

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

Table 2-39. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-293

MODEL-SPECIFIC REGISTERS (MSRS)

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

E01H 3585 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

E02H 3586 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

Table 2-40. Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-294 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17.1 MSRs Specific to 7th Generation and 8th Generation Intel® Core™ Processors based on
Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Table 2-42 lists additional MSRs for 7th generation and 8th generation Intel Core processors with a CPUID
DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH. For an MSR listed in Table 2-42 that also appears
in the model-specific tables of prior generations, Table 2-42 supersedes prior generation tables.

Table 2-41. Additional MSRs Supported by 7th Generation and 8th Generation Intel® Core™ Processors
Based on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

80H 128 MSR_TRACE_HUB_STH_ACPIBAR_BASE Package NPK Address Used by AET Messages (R/W)

0 Lock Bit

If set, this MSR cannot be re-written anymore. Lock bit
has to be set in order for the AET packets to be
directed to NPK MMIO.

17:1 Reserved

63:18 ACPIBAR_BASE_ADDRESS

AET target address in NPK MMIO space.

1F4H 500 MSR_PRMRR_PHYS_BASE Core Processor Reserved Memory Range Register -
Physical Base Control Register (R/W)

2:0 MemType

PRMRR BASE MemType.

11:3 Reserved

45:12 Base

PRMRR Base Address.

63:46 Reserved

1F5H 501 MSR_PRMRR_PHYS_MASK Core Processor Reserved Memory Range Register -
Physical Mask Control Register (R/W)

9:0 Reserved

10 Lock

Lock bit for the PRMRR.

11 VLD

Enable bit for the PRMRR.

45:12 Mask

PRMRR MASK bits.

63:46 Reserved

1FBH 507 MSR_PRMRR_VALID_CONFIG Core Valid PRMRR Configurations (R/W)

0 1M supported MEE size.

4:1 Reserved

5 32M supported MEE size.

6 64M supported MEE size.

7 128M supported MEE size.

31:8 Reserved

Vol. 4 2-295

MODEL-SPECIFIC REGISTERS (MSRS)

2F4H 756 MSR_UNCORE_PRMRR_PHYS_BASE Package (R/W)

The PRMRR range is used to protect the processor
reserved memory from unauthorized reads and
writes. Any IO access to this range is aborted. This
register controls the location of the PRMRR range by
indicating its starting address. It functions in tandem
with the PRMRR mask register.

11:0 Reserved

PAWIDTH-1:12 Range Base

This field corresponds to bits PAWIDTH-1:12 of the
base address memory range which is allocated to
PRMRR memory.

63:PAWIDTH Reserved

2F5H 757 MSR_UNCORE_PRMRR_PHYS_MASK Package (R/W)

This register controls the size of the PRMRR range by
indicating which address bits must match the PRMRR
base register value.

9:0 Reserved

10 Lock

Setting this bit locks all writeable settings in this
register, including itself.

11 Range_En

Indicates whether the PRMRR range is enabled and
valid.

38:12 Range_Mask

This field indicates which address bits must match
PRMRR base in order to qualify as an PRMRR access.

63:39 Reserved

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the
LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the
LLC/Ring.

7 Reserved

14:8 MIN_Ratio

Writing to this field controls the minimum possible
ratio of the LLC/Ring.

63:15 Reserved

Table 2-41. Additional MSRs Supported by 7th Generation and 8th Generation Intel® Core™ Processors
Based on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-296 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17.2 MSRs Specific to 8th Generation Intel® Core™ i3 Processors
Table 2-42 lists additional MSRs for 8th generation Intel Core i3 processors with a CPUID
DisplayFamily_DisplayModel signature of 06_66H. For an MSR listed in Table 2-42 that also appears in the model-
specific tables of prior generations, Table 2-42 supersede prior generation tables.

Table 2-42. Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX Inside SMX Operation (R/WL)

2 Enable VMX Outside SMX Operation (R/WL)

14:8 SENTER Local Functions Enables (R/WL)

15 SENTER Global Functions Enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration
of SGX Launch Control via IA32_SGXLEPUBKEYHASHn
MSR.

Available only if CPUID.(EAX=07H, ECX=0H): ECX[30]
= 1.

18 SGX Global Functions Enable (R/WL)

63:21 Reserved

350H 848 MSR_BR_DETECT_CTRL Branch Monitoring Global Control (R/W)

0 EnMonitoring

Global enable for branch monitoring.

1 EnExcept

Enable branch monitoring event signaling on threshold
trip.

The branch monitoring event handler is signaled via
the existing PMI signaling mechanism as programmed
from the corresponding local APIC LVT entry.

2 EnLBRFrz

Enable LBR freeze on threshold trip. This will cause
the LBR frozen bit 58 to be set in
IA32_PERF_GLOBAL_STATUS when a triggering
condition occurs and this bit is enabled.

3 DisableInGuest

When set to ‘1’, branch monitoring, event triggering
and LBR freeze actions are disabled when operating
at VMX non-root operation.

7:4 Reserved

Vol. 4 2-297

MODEL-SPECIFIC REGISTERS (MSRS)

17:8 WindowSize

Window size defined by WindowCntSel. Values 0 –
1023 are supported.

Once the Window counter reaches the WindowSize
count both the Window Counter and all Branch
Monitoring Counters are cleared.

23:18 Reserved

25:24 WindowCntSel

Window event count select:

‘00 = Instructions retired.

‘01 = Branch instructions retired

‘10 = Return instructions retired.

‘11 = Indirect branch instructions retired.

26 CntAndMode

When set to ‘1’, the overall branch monitoring event
triggering condition is true only if all enabled counters’
threshold conditions are true.

When ‘0’, the threshold tripping condition is true if any
enabled counters’ threshold is true.

63:27 Reserved

351H 849 MSR_BR_DETECT_STATUS Branch Monitoring Global Status (R/W)

0 Branch Monitoring Event Signaled

When set to '1', Branch Monitoring event signaling is
blocked until this bit is cleared by software.

1 LBRsValid

This status bit is set to ‘1’ if the LBR state is
considered valid for sampling by branch monitoring
software.

7:2 Reserved

8 CntrHit0

Branch monitoring counter #0 threshold hit. This
status bit is sticky and once set requires clearing by
software. Counter operation continues independent
of the state of the bit.

9 CntrHit1

Branch monitoring counter #1 threshold hit. This
status bit is sticky and once set requires clearing by
software. Counter operation continues independent
of the state of the bit.

15:10 Reserved

Reserved for additional branch monitoring counters
threshold hit status.

Table 2-42. Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-298 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

25:16 CountWindow

The current value of the window counter. The count
value is frozen on a valid branch monitoring triggering
condition. This is a 10-bit unsigned value.

31:26 Reserved

Reserved for future extension of CountWindow.

39:32 Count0

The current value of counter 0 updated after each
occurrence of the event being counted. The count
value is frozen on a valid branch monitoring triggering
condition (in which case CntrHit0 will also be set). This
is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate
and freeze at maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value
0x7F (+127) and minimum value 0x80 (-128).

47:40 Count1

The current value of counter 1 updated after each
occurrence of the event being counted. The count
value is frozen on a valid branch monitoring triggering
condition (in which case CntrHit1 will also be set). This
is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate
and freeze at maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value
0x7F (+127) and minimum value 0x80 (-128).

63:48 Reserved

354H
-

355H

852
-

853

MSR_BR_DETECT_COUNTER_CONFIG_i Branch Monitoring Detect Counter Configuration (R/W)

0 CntrEn

Enable counter.

7:1 CntrEvSel

Event select (other values #GP)

‘0000000 = RETs.

‘0000001 = RET-CALL bias.

‘0000010 = RET mispredicts.

‘0000011 = Branch (all) mispredicts.

‘0000100 = Indirect branch mispredicts.

‘0000101 = Far branch instructions.

Table 2-42. Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-299

MODEL-SPECIFIC REGISTERS (MSRS)

14:8 CntrThreshold

Threshold (an unsigned value of 0 to 127 supported).
The value 0 of counter threshold will result in event
signaled after every instruction. #GP if threshold is <
2.

15 MispredEventCnt

Mispredict events counting behavior:

‘0 = Mispredict events are counted in a window.

‘1 = Mispredict events are counted based on a
consecutive occurrence. CntrThreshold is treated as #
of consecutive mispredicts. This control bit only
applies to events specified by CntrEvSel that involve a
prediction (0000010, 0000011, 0000100). Setting
this bit for other events is ignored.

63:16 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Package C3 Residency Counter (R/O)

63:0 Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the
LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the
LLC/Ring.

7 Reserved

14:8 MIN_Ratio

Writing to this field controls the minimum possible
ratio of the LLC/Ring.

63:15 Reserved

660H 1632 MSR_CORE_C1_RESIDENCY Core Core C1 Residency Counter (R/O)

63:0 Value since last reset for the Core C1 residency.
Counter rate is the Max Non-Turbo frequency (same
as TSC). This counter counts in case both of the core's
threads are in an idle state and at least one of the
core's thread residency is in a C1 state or in one of its
sub states. The counter is updated only after a core C
state exit. Note: Always reads 0 if core C1 is
unsupported. A value of zero indicates that this
processor does not support core C1 or never entered
core C1 level state.

662H 1634 MSR_CORE_C3_RESIDENCY Core Core C3 Residency Counter (R/O)

63:0 Will always return 0.

Table 2-42. Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-300 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-43 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_66H.

Table 2-43. Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Report the number of C-Box units with performance
counters, including processor cores and processor
graphics.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

702H 1794 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0

703H 1795 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

708H 1800 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

709H 1801 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

70AH 1802 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0

70BH 1803 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

710H 1808 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

712H 1810 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0

713H 1811 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

718H 1816 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

719H 1817 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

71AH 1818 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

71BH 1819 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

Vol. 4 2-301

MODEL-SPECIFIC REGISTERS (MSRS)

720H 1824 MSR_UNC_CBO_4_PERFEVTSEL0 Package Uncore C-Box 4, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_4_PERFEVTSEL1 Package Uncore C-Box 4, Counter 1 Event Select MSR

722H 1826 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, Performance Counter 0

723H 1827 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, Performance Counter 1

728H 1832 MSR_UNC_CBO_5_PERFEVTSEL0 Package Uncore C-Box 5, Counter 0 Event Select MSR

729H 1833 MSR_UNC_CBO_5_PERFEVTSEL1 Package Uncore C-Box 5, Counter 1 Event Select MSR

72AH 1834 MSR_UNC_CBO_5_PERFCTR0 Package Uncore C-Box 5, Performance Counter 0

72BH 1835 MSR_UNC_CBO_5_PERFCTR1 Package Uncore C-Box 5, Performance Counter 1

730H 1840 MSR_UNC_CBO_6_PERFEVTSEL0 Package Uncore C-Box 6, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_6_PERFEVTSEL1 Package Uncore C-Box 6, Counter 1 Event Select MSR

732H 1842 MSR_UNC_CBO_6_PERFCTR0 Package Uncore C-Box 6, Performance Counter 0

733H 1843 MSR_UNC_CBO_6_PERFCTR1 Package Uncore C-Box 6, Performance Counter 1

738H 1848 MSR_UNC_CBO_7_PERFEVTSEL0 Package Uncore C-Box 7, Counter 0 Event Select MSR

739H 1849 MSR_UNC_CBO_7_PERFEVTSEL1 Package Uncore C-Box 7, Counter 1 Event Select MSR

73AH 1850 MSR_UNC_CBO_7_PERFCTR0 Package Uncore C-Box 7, Performance Counter 0

73BH 1851 MSR_UNC_CBO_7_PERFCTR1 Package Uncore C-Box 7, Performance Counter 1

E01H 3585 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

E02H 3586 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

Table 2-43. Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-302 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17.3 MSRs Specific to 10th Generation Intel® Core™ Processors
Table 2-44 lists additional MSRs for 10th generation Intel Core processors with a CPUID
DisplayFamily_DisplayModel signature values of 06_7DH and 06_7EH. For an MSR listed in Table 2-44 that also
appears in the model-specific tables of prior generations, Table 2-44 supersede prior generation tables.

Table 2-44. MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

33H 51 MSR_TEST_CTRL Core Test Control Register

28:0 Reserved.

29 Enable #AC(0) exception for split locked accesses:

Cause #AC(0) exception for split locked access at all
CPL irrespective of CR0.AM or EFLAGS.AC. If bits 29
and 31 are both set, bit 29 takes precedence.

30 Reserved.

31 Reserved.

48H 72 IA32_SPEC_CTRL Core See Table 2-2.

49H 73 IA32_PREDICT_CMD Thread See Table 2-2.

8CH 140 IA32_SGXLEPUBKEYHASH0 Thread See Table 2-2.

8DH 141 IA32_SGXLEPUBKEYHASH1 Thread See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Thread See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Thread See Table 2-2.

A0H 160 MSR_BIOS_MCU_ERRORCODE Package BIOS MCU ERRORCODE (R/O)

This MSR indicates if WRMSR 0x79 failed to configure
PRM memory and gives a hint to debug BIOS.

15:0 Package Error Codes (R/O)

30:16 Reserved.

31 Thread MCU Partial Success (R/O)

When set to 1, WRMSR 0x79 skipped part of the
functionality during BIOS.

A5H 165 MSR_FIT_BIOS_ERROR Thread FIT BIOS ERROR (R/W)

Report error codes for debug in case the processor
failed to parse the Firmware Table in BIOS.

Can also be used to log BIOS information.

7:0 Error Codes (R/W)

Error codes for debug.

15:8 Entry Type (R/W)

Failed FIT entry type.

16 FIT MCU Entry (R/W)

FIT contains MCU entry.

62:17 Reserved.

63 LOCK (R/W)

When set to 1, writes to this MSR will be skipped.

Vol. 4 2-303

MODEL-SPECIFIC REGISTERS (MSRS)

10BH 267 IA32_FLUSH_CMD Thread See Table 2-2.

151H 337 MSR_BIOS_DONE Thread BIOS Done (R/WO)

0 Thread BIOS Done Indication (R/WO)

Set by BIOS when it finishes programming the
processor and wants to lock the memory
configuration from changes by software that is
running on this thread.

Writes to the bit will be ignored if EAX[0] is 0.

1 Package Package BIOS Done Indication (R/O)

When set to 1, all threads in the package have bit 0 of
this MSR set.

31:2 Reserved.

1F1H 497 MSR_CRASHLOG_CONTROL Thread Write Data to a Crash Log Configuration

0 CDDIS: CrashDump_Disable

If set, indicates that Crash Dump is disabled.

63:1 Reserved.

2A0H 672 MSR_PRMRR_BASE_0 Core Processor Reserved Memory Range Register -
Physical Base Control Register (R/W)

2:0 MEMTYPE: PRMRR BASE Memory Type.

3 CONFIGURED: PRMRR BASE Configured.

11:4 Reserved.

51:12 BASE: PRMRR Base Address.

63:52 Reserved.

30CH 780 IA32_FIXED_CTR3 Thread Fixed-Function Performance Counter Register 3 (R/W)

Bit definitions are the same as found in
IA32_FIXED_CTR0, offset 309H. See Table 2-2.

329H 809 MSR_PERF_METRICS Thread Performance Metrics (R/W)

Reports metrics directly. Software can check (and/or
expose to its guests) the availability of
PERF_METRICS feature using
IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABL
E (bit 15).

7:0 Retiring. Percent of utilized slots by uops that
eventually retire (commit).

15:8 Bad Speculation. Percent of wasted slots due to
incorrect speculation, covering utilized by uops that do
not retire, or recovery bubbles (unutilized slots).

23:16 Frontend Bound. Percent of unutilized slots where
front-end did not deliver a uop while back-end is
ready.

31:24 Backend Bound. Percent of unutilized slots where a
uop was not delivered to back-end due to lack of back-
end resources.

Table 2-44. MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-304 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:25 Reserved.

3F2H 1010 MSR_PEBS_DATA_CFG Thread PEBS Data Configuration (R/W)

Provides software the capability to select data groups
of interest and thus reduce the record size in memory
and record generation latency. Hence, a PEBS record's
size and layout vary based on the selected groups.
The MSR also allows software to select LBR depth for
branch data records.

0 Memory Info.

Setting this bit will capture memory information such
as the linear address, data source and latency of the
memory access in the PEBS record.

1 GPRs.

Setting this bit will capture the contents of the
General Purpose registers in the PEBS record.

2 XMMs.

Setting this bit will capture the contents of the XMM
registers in the PEBS record.

3 LBRs.

Setting this bit will capture LBR TO, FROM and INFO in
the PEBS record.

23:4 Reserved.

31:24 LBR Entries.

Set the field to the desired number of entries - 1. For
example, if the LBR_entries field is 0, a single entry
will be included in the record. To include 32 LBR
entries, set the LBR_entries field to 31 (0x1F). To
ensure all PEBS records are 16-byte aligned, software
can use LBR_entries that is multiple of 3.

541H 1345 MSR_CORE_UARCH_CTL Core Core Microarchitecture Control MSR (R/W)

0 L1 Scrubbing Enable

When set to 1, enable L1 scrubbing.

31:1 Reserved.

657H 1623 MSR_FAST_UNCORE_MSRS_CTL Thread Fast WRMSR/RDMSR Control MSR (R/W)

3:0 FAST_ACCESS_ENABLE:

Bit 0: When set to '1', provides a hint for the hardware
to enable fast access mode for the
IA32_HWP_REQUEST MSR.

This bit is sticky and is cleaned by the hardware only
during reset time.

This bit is valid only if
FAST_UNCORE_MSRS_CAPABILITY[0] is set. Setting
this bit will cause CPUID[6].EAX[18] to be set.

31:4 Reserved.

Table 2-44. MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-305

MODEL-SPECIFIC REGISTERS (MSRS)

2.17.4 MSRs Specific to 11th Generation Intel® Core™ Processors based on Tiger Lake
Microarchitecture

Table 2-45 lists additional MSRs for 11th generation Intel Core processors with CPUID DisplayFamily_DisplayModel
signatures of 06_8CH and 06_8DH. For an MSR listed in Table 2-45 that also appears in the model-specific tables
of prior generations, Table 2-45 supersedes prior generation tables.

65EH 1630 MSR_FAST_UNCORE_MSRS_STATUS Thread Indication of Uncore MSRs, Post Write Activates

0 Indicates whether the CPU is still in the middle of
writing IA32_HWP_REQUEST MSR, even after the
WRMSR instruction has retired.

A value of 1 indicates the last write of
IA32_HWP_REQUEST is still ongoing.

A value of 0 indicates the last write of
IA32_HWP_REQUEST is visible outside the logical
processor.

Software can use the status of this bit to avoid
overwriting IA32_HWP_REQUEST.

31:1 Reserved.

65FH 1631 MSR_FAST_UNCORE_MSRS_CAPABILITY Thread Fast WRMSR/RDMSR Enumeration MSR (RO)

3:0 MSRS_CAPABILITY:

Bit 0: If set to ‘1’, hardware supports the fast access
mode for the IA32_HWP_REQUEST MSR.

31:4 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Package See Table 2-2.

775H 1909 IA32_PECI_HWP_REQUEST_INFO Thread See Table 2-2.

777H 1911 IA32_HWP_STATUS Thread See Table 2-2.

Table 2-45. Additional MSRs Supported by 11th Generation Intel® Core™ Processors
Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

A0H 160 MSR_BIOS_MCU_ERRORCODE Package BIOS MCU ERRORCODE (R/O)

15:0 Error Codes

31:16 Reserved

A7H 167 MSR_BIOS_DEBUG Thread BIOS DEBUG (R/O)

This MSR indicates if WRMSR 79H failed to configure
PRM memory and gives a hint to debug BIOS.

30:0 Reserved

31 MCU Partial Success

When set to 1, WRMSR 79H skipped part of the
functionality during BIOS.

Table 2-44. MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-306 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:32 Reserved

CFH 207 IA32_CORE_CAPABILITIES Package IA32_CR_CORE_CAPABILITIES (R/O)

This MSR provides an architectural enumeration
function for model-specific behavior.

0 STLB_QOS_SUPPORTED

When set to 1, the STLB QoS feature is supported and
the STLB QoS MSRs (1A8FH -1A97H) are accessible.
When set to 0, access to these MSRs will #GP.

1 Reserved

2 FUSA_SUPPORTED

3 RSM_IN_CPL0_ONLY

When set to 1, the RSM instruction is only allowed in
CPL0 (#GP triggered in any CPL != 0).

When set to 0, then any CPL may execute the RSM
instruction.

4 Reserved

5 SPLIT_LOCK_DISABLE_SUPPORTED

When set to 1, the ability to set MEMORY_CONTROL
(MSR 33H) bit 29 enables an #AC to be created when
a split lock is detected.

6 SNOOP_FILTER_QOS_SUPPORTED

When set to 1, the Snoop Filter Qos Mask MSRs are
supported.

When set to 0, access to these MSRs will #GP.

31:7 Reserved

492H 1170 IA32_VMX_PROCBASED_CTLS3 Core IA32_VMX_PROCBASED_CTLS3

This MSR enumerates the allowed 1-settings of the
third set of processor-based controls. Specifically, VM
entry allows bit X of the tertiary processor-based VM-
execution controls to be 1 if and only if bit X of the
MSR is set to 1.

If bit X of the MSR is cleared to 0, VM entry fails if
control X and the “activate tertiary controls” primary
processor-based VM-execution control are both 1.

0 LOADIWKEY

This control determines whether executions of
LOADIWKEY cause VM exits.

63:1 Reserved

601H 1537 MSR_VR_CURRENT_CONFIG Package Power Limit 4 (PL4)

Package-level maximum power limit (in Watts).

It is a proactive, instantaneous limit.

Table 2-45. Additional MSRs Supported by 11th Generation Intel® Core™ Processors
Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-307

MODEL-SPECIFIC REGISTERS (MSRS)

2.17.5 MSRs Specific to Intel® Xeon® Processor Scalable Family
Intel® Xeon® Processor Scalable Family (CPUID DisplayFamily_DisplayModel = 06_55H) support the MSRs listed in
Table 2-46.

12:0 PL4 Value

PL4 value in 0.125 A increments. This field is locked
by VR_CURRENT_CONFIG[LOCK]. When the LOCK bit is
set to 1b, this field becomes Read Only.

30:13 Reserved

31 Lock Indication (LOCK)

This bit will lock the CURRENT_LIMIT settings in this
register and will also lock this setting. This means that
once set to 1b, the CURRENT_LIMIT setting and this
bit become Read Only until the next Warm Reset.

62:32 Not in use.

63 Reserved

C82H 3202 IA32_L2_QOS_CFG Core IA32_CR_L2_QOS_CFG

This MSR provides software an enumeration of the
parameters that L2 QoS (Intel RDT) support in any
particular implementation.

0 CDP_ENABLE

When set to 1, it will enable the code and data
prioritization for the L2 CAT/Intel RDT feature.

When set to 0, code and data prioritization is disabled
for L2 CAT/Intel RDT. See Chapter 17, “Debug, Branch
Profile, TSC, and Intel® Resource Director Technology
(Intel® RDT) Features” for further details on CDP.

31:1 Reserved

D10H
-

D17H

3220
-

3351

IA32_L2_QOS_MASK_[0-7] Package IA32_CR_L2_QOS_MASK_[0-7]

Controls MLC (L2) Intel RDT allocation. For more
details on CAT/RDT, see Chapter 17, “Debug, Branch
Profile, TSC, and Intel® Resource Director Technology
(Intel® RDT) Features”.

19:0 WAYS_MASK

Setting a 1 in this bit X allows threads with CLOS <n>
(where N is [0-7]) to allocate to way X in the MLC.
Ones are only allowed to be written to ways that
physically exist in the MLC (CPUID.4.2:EBX[31:22] will
indicate this).

Writing a 1 to a value beyond the highest way or a
non-contiguous set of 1s will cause a #GP on the
WRMSR to this MSR.

31:20 Reserved

Table 2-45. Additional MSRs Supported by 11th Generation Intel® Core™ Processors
Based on Tiger Lake Microarchitecture

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-308 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX Inside SMX Operation (R/WL)

2 Enable VMX Outside SMX Operation (R/WL)

14:8 SENTER Local Functions Enables (R/WL)

15 SENTER Global Functions Enable (R/WL)

18 SGX Global Functions Enable (R/WL)

20 LMCE_ENABLED (R/WL)

63:21 Reserved

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-26.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-26.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

See Table 2-26.

27:24 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-26.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-26.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-26.

39:31 Reserved

Vol. 4 2-309

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-26.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state
code names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code
name (consuming the least power) for the package.
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to
MWAIT(C6).

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

http://biosbits.org

2-310 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access
restriction is supported and a host-space interface is
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is
supported and a host-space interface is available to
SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal Status (RO)

See Table 2-2.

1 Thermal Status Log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0)

See Table 2-2.

4 Critical Temperature Status (RO)

See Table 2-2.

5 Critical Temperature Status Log (R/WC0)

See Table 2-2.

6 Thermal Threshold #1 Status (RO)

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0)

See Table 2-2.

8 Thermal Threshold #2 Status (RO)

See Table 2-2.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-311

MODEL-SPECIFIC REGISTERS (MSRS)

9 Thermal Threshold #2 Log (R/WC0)

See Table 2-2.

10 Power Limitation Status (RO)

See Table 2-2.

11 Power Limitation Log (R/WC0)

See Table 2-2.

12 Current Limit Status (RO)

See Table 2-2.

13 Current Limit Log (R/WC0)

See Table 2-2.

14 Cross Domain Limit Status (RO)

See Table 2-2.

15 Cross Domain Limit Log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (RO)

See Table 2-26.

27:24 TCC Activation Offset (R/W)

See Table 2-26.

63:28 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package This register defines the ratio limits. RATIO[0:7] must
be populated in ascending order. RATIO[i+1] must be
less than or equal to RATIO[i]. Entries with RATIO[i] will
be ignored. If any of the rules above are broken, the
configuration is silently rejected. If the programmed
ratio is:

• Above the fused ratio for that core count, it will be
clipped to the fuse limits (assuming !OC).

• Below the min supported ratio, it will be clipped.

7:0 RATIO_0

Defines ratio limits.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-312 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 RATIO_1

Defines ratio limits.

23:16 RATIO_2

Defines ratio limits.

31:24 RATIO_3

Defines ratio limits.

39:32 RATIO_4

Defines ratio limits.

47:40 RATIO_5

Defines ratio limits.

55:48 RATIO_6

Defines ratio limits.

63:56 RATIO_7

Defines ratio limits.

1AEH 430 MSR_TURBO_RATIO_LIMIT_CORES Package This register defines the active core ranges for each
frequency point. NUMCORE[0:7] must be populated in
ascending order. NUMCORE[i+1] must be greater than
NUMCORE[i]. Entries with NUMCORE[i] == 0 will be
ignored. The last valid entry must have NUMCORE >=
the number of cores in the SKU. If any of the rules
above are broken, the configuration is silently rejected.

7:0 NUMCORE_0

Defines the active core ranges for each frequency
point.

15:8 NUMCORE_1

Defines the active core ranges for each frequency
point.

23:16 NUMCORE_2

Defines the active core ranges for each frequency
point.

31:24 NUMCORE_3

Defines the active core ranges for each frequency
point.

39:32 NUMCORE_4

Defines the active core ranges for each frequency
point.

47:40 NUMCORE_5

Defines the active core ranges for each frequency
point.

55:48 NUMCORE_6

Defines the active core ranges for each frequency
point.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-313

MODEL-SPECIFIC REGISTERS (MSRS)

63:56 NUMCORE_7

Defines the active core ranges for each frequency
point.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC0 reports MC errors from the IFU module.
401H 1025 IA32_MC0_STATUS Core

402H 1026 IA32_MC0_ADDR Core

403H 1027 IA32_MC0_MISC Core

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC1 reports MC errors from the DCU module.
405H 1029 IA32_MC1_STATUS Core

406H 1030 IA32_MC1_ADDR Core

407H 1031 IA32_MC1_MISC Core

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC2 reports MC errors from the DTLB module.
409H 1033 IA32_MC2_STATUS Core

40AH 1034 IA32_MC2_ADDR Core

40BH 1035 IA32_MC2_MISC Core

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-314 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC3 reports MC errors from the MLC module.
40DH 1037 IA32_MC3_STATUS Core

40EH 1038 IA32_MC3_ADDR Core

40FH 1039 IA32_MC3_MISC Core

410H 1040 IA32_MC4_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC4 reports MC errors from the PCU module.
411H 1041 IA32_MC4_STATUS Package

412H 1042 IA32_MC4_ADDR Package

413H 1043 IA32_MC4_MISC Package

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from a link interconnect
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the M2M 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the M2M 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA
425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA.
429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA.
42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-315

MODEL-SPECIFIC REGISTERS (MSRS)

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC12 report MC errors from each channel of a
link interconnect module.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the
integrated memory controllers.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from a link interconnect
module.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-316 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the
multiplier, 1/2^ESU; where ESU is an unsigned integer
represented by bits 12:8. Default value is 0EH (or 61
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS
configuration to enable DRAM RAPL mode 0 (Direct
VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields
represent the widest possible range of uncore
frequencies. Writing to these fields allows software to
control the minimum and the maximum frequency that
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-317

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 EventID (RW)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved

41:32 RMID (RW)

63:42 Reserved

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W)

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:19 CBM: Bit vector of available L3 ways for COS 0
enforcement.

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:19 CBM: Bit vector of available L3 ways for COS 1
enforcement.

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:19 CBM: Bit vector of available L3 ways for COS 2
enforcement.

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L3 ways for COS 3
enforcement.

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

0:19 CBM: Bit vector of available L3 ways for COS 4
enforcement.

63:20 Reserved

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-318 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

0:19 CBM: Bit vector of available L3 ways for COS 5
enforcement.

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.

0:19 CBM: Bit vector of available L3 ways for COS 6
enforcement.

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

0:19 CBM: Bit vector of available L3 ways for COS 7
enforcement.

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

0:19 CBM: Bit vector of available L3 ways for COS 8
enforcement.

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

0:19 CBM: Bit vector of available L3 ways for COS 9
enforcement.

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10.

0:19 CBM: Bit vector of available L3 ways for COS 10
enforcement.

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11.

0:19 CBM: Bit vector of available L3 ways for COS 11
enforcement.

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-319

MODEL-SPECIFIC REGISTERS (MSRS)

2.18 MSRS IN INTEL® XEON PHI™ PROCESSOR 3200/5200/7200 SERIES AND
INTEL® XEON PHI™ PROCESSOR 7215/7285/7295 SERIES

Intel® Xeon Phi™ processor 3200, 5200, 7200 series, with CPUID DisplayFamily_DisplayModel signature 06_57H,
supports the MSR interfaces listed in Table 2-47. These processors are based on the Knights Landing microarchi-
tecture. Intel® Xeon Phi™ processor 7215, 7285, 7295 series, with CPUID DisplayFamily_DisplayModel signature
06_85H, supports the MSR interfaces listed in Table 2-47 and Table 2-48. These processors are based on the
Knights Mill microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as
module.

0:19 CBM: Bit vector of available L3 ways for COS 12
enforcement.

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13.

0:19 CBM: Bit vector of available L3 ways for COS 13
enforcement.

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14.

0:19 CBM: Bit vector of available L3 ways for COS 14
enforcement.

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15.

0:19 CBM: Bit vector of available L3 ways for COS 15
enforcement.

63:20 Reserved

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Thread See Section 8.10.5, “Monitor/Mwait Address Range
Determination.” See Table 2-2.

Table 2-46. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-320 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter,” and see
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,”
and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID
family/model/stepping signature that a privileged
inventory initialization agent can access to identify each
physical processor, when access to MSR_PPIN is
enabled. Access to MSR_PPIN is permitted only if
MSR_PPIN_CTL[bits 1:0] = ‘10b’.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 THREAD Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-321

MODEL-SPECIFIC REGISTERS (MSRS)

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O)

This is the ratio of the frequency that invariant TSC runs
at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limit
for Turbo mode is enabled. When set to 0, indicates
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limit for Turbo mode
is programmable. When set to 0, indicates TDP Limit for
Turbo mode is not programmable.

39:30 Reserved

47:40 Package Maximum Efficiency Ratio (R/O)

This is the minimum ratio (maximum efficiency) that the
processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Package C-State Configuration Control (R/W)

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-322 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest C-state for the package. This
feature does not limit the processor core C-state. The
power-on default value from bit[2:0] of this register
reports the deepest package C-state the processor is
capable to support when manufactured. It is
recommended that BIOS always read the power-on
default value reported from this bit field to determine
the supported deepest C-state on the processor and
leave it as default without changing it.

000b - C0/C1 (No package C-state support)

001b - C2

010b - C6 (non retention)*

011b - C6 (Retention)*

100b - Reserved

101b - Reserved

110b - Reserved

111b - No package C-state limit. All C-States supported
by the processor are available.

Note: C6 retention mode provides more power saving
than C6 non-retention mode. Limiting the package to C6
non retention mode does prevent the
MSR_PKG_C6_RESIDENCY counter (MSR 3F9h) from
being incremented.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO
registers at MSR_PMG_IO_CAPTURE_BASE[15:0] to
MWAIT instructions.

14:11 Reserved

15 CFG Lock (RO)

When set, locks bits [15:0] of this register for further
writes until the next reset occurs.

25 Reserved

26 C1 State Auto Demotion Enable (R/W)

When set, the processor will conditionally demote
C3/C6/C7 requests to C1 based on uncore auto-demote
information.

27 Reserved

28 C1 State Auto Undemotion Enable (R/W)

When set, enables Undemotion from Demoted C1.

29 PKG C-State Auto Demotion Enable (R/W)

When set, enables Package C state demotion.

63:30 Reserved

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-323

MODEL-SPECIFIC REGISTERS (MSRS)

E4H 228 MSR_PMG_IO_CAPTURE_BASE Tile Power Management IO Capture Base (R/W)

15:0 LVL_2 Base Address (R/W)

Microcode will compare IO-read zone to this base
address to determine if an MWAIT(C2/3/4) needs to be
issued instead of the IO-read. Should be programmed to
the chipset Plevel_2 IO address.

22:16 C-State Range (R/W)

The IO-port block size in which IO-redirection will be
executed (0-127). Should be programmed based on the
number of LVLx registers existing in the chipset.

63:23 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of
AES instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, the AES instruction set is not available if read is
unsuccessful. If the configuration is not 01b, AES
instructions can be mis-configured if a privileged agent
unintentionally writes 11b.

63:2 Reserved

140H 320 MISC_FEATURE_ENABLES Thread MISC_FEATURE_ENABLES

0 Reserved

1 User Mode MONITOR and MWAIT (R/W)

If set to 1, the MONITOR and MWAIT instructions do not
cause invalid-opcode exceptions when executed with
CPL > 0 or in virtual-8086 mode. If MWAIT is executed
when CPL > 0 or in virtual-8086 mode, and if EAX
indicates a C-state other than C0 or C1, the instruction
operates as if EAX indicated the C-state C1.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-324 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread See Table 2-2.

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only
while in SMM.

31:0 Bank Support (SMM-RO)

One bit per MCA bank. If the bit is set, that bank
supports Enhanced MCA (Default all 0; does not support
EMCA).

55:32 Reserved

56 Targeted SMI (SMM-RO)

Set if targeted SMI is supported.

57 SMM_CPU_SVRSTR (SMM-RO)

Set if SMM SRAM save/restore feature is supported.

58 SMM_CODE_ACCESS_CHK (SMM-RO)

Set if SMM code access check feature is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is
supported and a host-space interface available to SMM
handler.

63:60 Reserved

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Package See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-325

MODEL-SPECIFIC REGISTERS (MSRS)

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal Status (RO)

1 Thermal Status Log (R/WC0)

2 PROTCHOT # or FORCEPR# Status (RO)

3 PROTCHOT # or FORCEPR# Log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status Log (R/WC0)

6 Thermal Threshold #1 Status (RO)

7 Thermal Threshold #1 Log (R/WC0)

8 Thermal Threshold #2 Status (RO)

9 Thermal Threshold #2 Log (R/WC0)

10 Power Limitation Status (RO)

11 Power Limitation Log (RWC0)

15:12 Reserved

22:16 Digital Readout (RO)

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled
and disabled.

0 Fast-Strings Enable

2:1 Reserved

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved

7 Performance Monitoring Available (R)

10:8 Reserved

11 Branch Trace Storage Unavailable (RO)

12 Processor Event Based Sampling Unavailable (RO)

15:13 Reserved

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-326 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved

34 XD Bit Disable (R/W)

37:35 Reserved

38 Turbo Mode Disable (R/W)

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (R)

29:24 Target Offset (R/W)

63:30 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W)

0 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher.

1 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher.

63:2 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores
(RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under
the maximum ratio limit for group 0.

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active
cores are not more than the group 0 maximum core
count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of
additional cores plus the cores in group 0, operates
under the group 1 turbo max ratio limit = “group 0 Max
ratio limit” - “group ratio delta for group 1”.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-327

MODEL-SPECIFIC REGISTERS (MSRS)

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of
additional cores plus all the cores in group 1, operates
under the group 2 turbo max ratio limit = “group 1 Max
ratio limit” - “group ratio delta for group 2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of
additional cores plus all the cores in group 2, operates
under the group 3 turbo max ratio limit = “group 2 Max
ratio limit” - “group ratio delta for group 3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of
additional cores plus all the cores in group 3, operates
under the group 4 turbo max ratio limit = “group 3 Max
ratio limit” - “group ratio delta for group 4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of
additional cores plus all the cores in group 4, operates
under the group 5 turbo max ratio limit = “group 4 Max
ratio limit” - “group ratio delta for group 5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of
additional cores plus all the cores in group 5, operates
under the group 6 turbo max ratio limit = “group 5 Max
ratio limit” - “group ratio delta for group 6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement
relative to the Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-328 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1B1H 433 IA32_PACKAGE_THERM_STATUS Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

0 LBR

Setting this bit to 1 enables the processor to record a
running trace of the most recent branches taken by the
processor in the LBR stack.

1 BTF

Setting this bit to 1 enables the processor to treat
EFLAGS.TF as single-step on branches instead of single-
step on instructions.

5:2 Reserved

6 TR

Setting this bit to 1 enables branch trace messages to
be sent.

7 BTS

Setting this bit enables branch trace messages (BTMs)
to be logged in a BTS buffer.

8 BTINT

When clear, BTMs are logged in a BTS buffer in circular
fashion. When this bit is set, an interrupt is generated
by the BTS facility when the BTS buffer is full.

9 BTS_OFF_OS

When set, BTS or BTM is skipped if CPL = 0.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-329

MODEL-SPECIFIC REGISTERS (MSRS)

10 BTS_OFF_USR

When set, BTS or BTM is skipped if CPL > 0.

11 FREEZE_LBRS_ON_PMI

When set, the LBR stack is frozen on a PMI request.

12 FREEZE_PERFMON_ON_PMI

When set, each ENABLE bit of the global counter control
MSR are frozen (address 3BFH) on a PMI request.

13 Reserved

14 FREEZE_WHILE_SMM

When set, freezes perfmon and trace messages while in
SMM.

31:15 Reserved

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record from Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record to Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-330 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Package See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL
MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 2-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

63:0 Package C3 Residency Counter (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

63:0 Module C0 Residency Counter (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter (R/O)

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-331

MODEL-SPECIFIC REGISTERS (MSRS)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

63:0 CORE C6 Residency Counter (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented
or contains no address if the ADDRV flag in the
MSR_MC4_STATUS register is clear.

When not implemented in the processor, all reads and
writes to this MSR will cause a general-protection
exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-332 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the
multiplier, 1/2^ESU; where ESU is an unsigned integer
represented by bits 12:8. Default value is 0EH (or 61
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code
names, unrelated to MWAIT extension C-state
parameters or ACPI C-states.

63:0 Package C2 Residency Counter (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W)

See Section 14.10.3, “Package RAPL Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O)

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.10.5, “DRAM RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

See Table 2-25.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

See Table 2-25.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

See Table 2-25.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-333

MODEL-SPECIFIC REGISTERS (MSRS)

64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

See Table 2-25.

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

See Table 2-25.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved

6 VR Therm Alert Status (R0)

7 Reserved

8 Electrical Design Point Status (R0)

63:9 Reserved

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID Register (R/O)

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version Register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority Register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority Register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI Register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination Register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector Register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service Register Bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service Register Bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service Register Bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service Register Bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service Register Bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service Register Bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service Register Bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service Register Bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode Register Bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode Register Bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode Register Bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode Register Bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode Register Bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode Register Bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode Register Bits [223:192] (R/O)

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-334 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode Register Bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request Register Bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request Register Bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request Register Bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request Register Bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request Register Bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request Register Bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request Register Bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request Register Bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status Register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt Register
(R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command Register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt Register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMAL Thread x2APIC LVT Thermal Sensor Interrupt Register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor Register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 Register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 Register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error Register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count Register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count Register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration Register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI Register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-335

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-48 lists model-specific registers that are supported by Intel® Xeon Phi™ processor 7215, 7285, 7295 series
based on the Knights Mill microarchitecture.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2

Table 2-48. Additional MSRs Supported by Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
with DisplayFamily_DisplayModel Signature 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

9BH 155 IA32_SMM_MONITOR_CTL Core SMM Monitor Configuration (R/W)

This MSR is readable only if VMX is enabled, and
writeable only if VMX is enabled and in SMM mode, and is
used to configure the VMX MSEG base address. See
Table 2-2.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

481H 1153 IA32_VMX_PINBASED_ CTLS Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

482H 1154 IA32_VMX_PROCBASED_ CTLS Core Capability Reporting Register of Primary Processor-
based VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities
(R/O)

See Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0
(R/O)

See Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1
(R/O)

See Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0
(R/O)

See Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1
(R/O)

See Table 2-2.

Table 2-47. Selected MSRs Supported by Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

2-336 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.19 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 2-49 lists MSRs (architectural and model-specific) that are defined across processor generations based on
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily
encoding of 0FH, see Table 2-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model Avail-

ability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the specified
register address. The model encoding value of a processor can be queried using CPUID. See “CPUID—CPU
Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration
(R/O)

See Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_ CTLS2 Core Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Table 2-2.

48CH 1164 IA32_VMX_EPT_VPID_ENUM Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2.

48DH 1165 IA32_VMX_TRUE_PINBASE D_CTLS Core Capability Reporting Register of Pin-Based VM-Execution
Flex Controls (R/O)

See Table 2-2.

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
Based VM-Execution Flex Controls (R/O)

See Table 2-2.

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Core Capability Reporting Register of VM-Exit Flex Controls
(R/O)

See Table 2-2.

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Flex Controls
(R/O)

See Table 2-2.

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-Function Controls
(R/O)

See Table 2-2.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 2.23, “MSRs in Pentium Processors.”

Table 2-48. Additional MSRs Supported by Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
with DisplayFamily_DisplayModel Signature 06_85H

Register
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

Vol. 4 2-337

MODEL-SPECIFIC REGISTERS (MSRS)

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3,
4, 6

Shared See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_SIZE 3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3,
4, 6

Unique Time Stamp Counter

See Table 2-2.

On earlier processors, only the lower 32 bits are
writable. On any write to the lower 32 bits, the
upper 32 bits are cleared. For processor family
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3,
4, 6

Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3,
4, 6

Unique APIC Location and Status (R/W)

See Table 2-2. See Section 10.4.4, “Local APIC
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1)
or disabled (0) as set by the strapping of SMI#.
The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

1 Execute BIST (R)

Indicates whether the execution of the BIST is
enabled (1) or disabled (0) as set by the
strapping of INIT#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is
asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for
the system bus is 1 (1) or up to 12 (0) as set by
the strapping of A7#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is
asserted.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-338 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is
enabled (0) or disabled (1) as determined by the
strapping of A9#. The value in this bit is written
on the deassertion of RESET#; the bit is set to 1
when the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is
enabled (0) or disabled (1) as determined by the
strapping of A10#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is
asserted.

6:5 APIC Cluster ID (R)

Contains the logical APIC cluster ID value as set
by the strapping of A12# and A11#. The logical
cluster ID value is written into the field on the
deassertion of RESET#; the field is set to 1
when the address bus signal is asserted.

7 Bus Park Disable (R)

Indicates whether bus park is enabled (0) or
disabled (1) as set by the strapping of A15#.
The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

11:8 Reserved

13:12 Agent ID (R)

Contains the logical agent ID value as set by the
strapping of BR[3:0]. The logical ID value is
written into the field on the deassertion of
RESET#; the field is set to 1 when the address
bus signal is asserted.

63:14 Reserved

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Soft Power-On Configuration (R/W)

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W)

Controls the driving of RCNT/SCNT on the
request encoding. Set to enable (1); clear to
disabled (0, default).

1 Data Error Checking Disable (R/W)

Set to disable system data bus parity checking;
clear to enable parity checking.

2 Response Error Checking Disable (R/W)

Set to disable (default); clear to enable.

3 Address/Request Error Checking Disable (R/W)

Set to disable (default); clear to enable.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-339

MODEL-SPECIFIC REGISTERS (MSRS)

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus
requests (default); clear to enable.

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator
internal errors (default); clear to enable.

6 BINIT# Driver Disable (R/W)

Set to disable BINIT# driver (default); clear to
enable driver.

63:7 Reserved

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according
to the MODEL value in the CPUID version
information. The following bit field layout
applies to Pentium 4 and Xeon Processors with
MODEL encoding equal or greater than 2.

(R) The field Indicates the current processor
frequency configuration.

15:0 Reserved

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-340 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

31:24 Core Clock Frequency to System Bus Frequency
Ratio (R)

The processor core clock frequency to system
bus frequency ratio observed at the de-
assertion of the reset pin.

63:25 Reserved

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R)

The bit field layout of this MSR varies according
to the MODEL value of the CPUID version
information. This bit field layout applies to
Pentium 4 and Xeon Processors with MODEL
encoding less than 2.

Indicates current processor frequency
configuration.

20:0 Reserved

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 2-2.

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3,
4, 6

Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3,
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 2-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3,
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3,
4, 6

Unique CS Register Target for CPL 0 Code (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3,
4, 6

Unique Stack Pointer for CPL 0 Stack (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-341

MODEL-SPECIFIC REGISTERS (MSRS)

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3,
4, 6

Unique CPL 0 Code Entry Point (R/W)

See Table 2-2. See Section 5.8.7, “Performing
Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3,
4, 6

Unique Machine Check Capabilities (R)

See Table 2-2. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3,
4, 6

Unique Machine Check Status (R)

See Table 2-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 2-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3,
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3,
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3,
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3,
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3,
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-342 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

185H 389 MSR_MCG_RDI 0, 1, 2, 3,
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3,
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3,
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3,
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3,
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3,
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or
page fault occurred during DS normal operation.
The processors response is to shut down.

The bit is used as an aid for debugging DS
handling code. It is the responsibility of the user
(BIOS or operating system) to clear this bit for
normal operation.

63:1 Reserved

18BH -
18FH

395-
399

MSR_MCG_RESERVED1 -
MSR_MCG_RESERVED5

Reserved

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-343

MODEL-SPECIFIC REGISTERS (MSRS)

190H 400 MSR_MCG_R8 0, 1, 2, 3,
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3,
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3,
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3,
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3,
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3,
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-344 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3,
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3,
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when
the processor is operating in 64-bit mode at the
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced
Intel Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced
Intel Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3,
4, 6

Unique Thermal Monitor Control (R/W)

See Table 2-2.

See Section 14.8.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3,
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.8.2, “Thermal Monitor,” and see
Table 2-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3,
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.8.2, “Thermal Monitor,” and see
Table 2-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

3, Shared For Family F, Model 3 processors: When read,
specifies the value of the target TM2 transition
last written. When set, it sets the next target
value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6 processors:
When read, specifies the value of the target
TM2 transition last written. Writes may cause
#GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3,
4, 6

Shared Enable Miscellaneous Processor Features (R/W)

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-345

MODEL-SPECIFIC REGISTERS (MSRS)

0 Fast-Strings Enable. See Table 2-2.

1 Reserved

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.8.2, “Thermal Monitor,” and see
Table 2-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be
issued instead of a split-lock cycle. Operating
systems that set this bit must align system
structures to avoid split-lock scenarios.

When the bit is clear (default), normal split-locks
are issued to the bus.

This debug feature is specific to the Pentium 4
processor.

5 Reserved

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled;
when clear (default) the third-level cache is
enabled. This flag is reserved for processors
that do not have a third-level cache.

Note that the bit controls only the third-level
cache; and only if overall caching is enabled
through the CD flag of control register CR0, the
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the
L3 Cache.”

7 Performance Monitoring Available (R)

See Table 2-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is
suppressed during a Split Lock access. When
clear (default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When
clear (default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W)

When set, interrupt reporting through the
FERR# pin is enabled; when clear, this interrupt
reporting function is disabled.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-346 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

When this flag is set and the processor is in the
stop-clock state (STPCLK# is asserted),
asserting the FERR# pin signals to the
processor that an interrupt (such as, INIT#,
BINIT#, INTR, NMI, SMI#, or RESET#) is pending
and that the processor should return to normal
operation to handle the interrupt.

This flag does not affect the normal operation
of the FERR# pin (to indicate an unmasked
floating-point error) when the STPCLK# pin is
not asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE) (R)

See Table 2-2.

When set, the processor does not support
branch trace storage (BTS); when clear, BTS is
supported.

12 PEBS_UNAVILABLE: Processor Event Based
Sampling Unavailable (R)

See Table 2-2.

When set, the processor does not support
processor event-based sampling (PEBS); when
clear, PEBS is supported.

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will reduce the bus
to core ratio and voltage according to the value
last written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor
does not change the VID signals or the bus to
core ratio when the processor enters a thermal
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not
alter the contents of this bit location. The
processor is operating out of spec if both this
bit and the TM1 bit are set to disabled states.

17:14 Reserved

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 2-2.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-347

MODEL-SPECIFIC REGISTERS (MSRS)

19 Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache
line of the 128-byte sector containing currently
required data. When set to 0, the processor
fetches both cache lines in the sector.

Single processor platforms should not set this
bit. Server platforms should set or clear this bit
based on platform performance observed in
validation and testing.

BIOS may contain a setup option that controls
the setting of this bit.

21:20 Reserved

22 3, 4, 6 Limit CPUID MAXVAL (R/W)

See Table 2-2.

Setting this can cause unexpected behavior to
software that depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

24 L1 Data Cache Context Mode (R/W)

When set, the L1 data cache is placed in shared
mode; when clear (default), the cache is placed
in adaptive mode. This bit is only enabled for IA-
32 processors that support Intel Hyper-
Threading Technology. See Section 11.5.6, “L1
Data Cache Context Mode.”

When L1 is running in adaptive mode and CR3s
are identical, data in L1 is shared across logical
processors. Otherwise, L1 is not shared and
cache use is competitive.

If the Context ID feature flag (ECX[10]) is set to
0 after executing CPUID with EAX = 1, the
ability to switch modes is not supported. BIOS
must not alter the contents of
IA32_MISC_ENABLE[24].

33:25 Reserved

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-348 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18 PLATFORM Requirements

When set to 1, indicates the processor has
specific platform requirements. The details of
the platform requirements are listed in the
respective data sheets of the processor.

63:19 Reserved

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last
interrupt that was handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction.

63:32 Reserved

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If
IA-32e mode is active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch
instruction.

63:32 Reserved

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3,
4, 6

Unique Debug Control (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

See Section 17.13.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH_TOS 0, 1, 2, 3,
4, 6

Unique Last Branch Record Stack TOS (R/O)

Contains an index (0-3 or 0-15) that points to
the top of the last branch record stack (that is,
that points the index of the MSR containing the
most recent branch record).

See Section 17.13.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture”;
and addresses 1DBH-1DEH and 680H-68FH.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-349

MODEL-SPECIFIC REGISTERS (MSRS)

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/O)

One of four last branch record registers on the
last branch record stack. It contains pointers to
the source and destination instruction for one
of the last four branches, exceptions, or
interrupts that the processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-1DEH are
available only on family 0FH, models 0H-02H.
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for
Processors based on Skylake Microarchitecture.”

1DCH 477 MSR_LASTBRANCH_1 0, 1, 2 Unique Last Branch Record 1

See description of the MSR_LASTBRANCH_0
MSR at 1DBH.

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0
MSR at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0
MSR at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3,
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-350 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3,
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3,
4, 6

Shared Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-351

MODEL-SPECIFIC REGISTERS (MSRS)

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-352 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

364H 868 MSR_MS_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-353

MODEL-SPECIFIC REGISTERS (MSRS)

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It
is only available on processor family 0FH,
models 01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It
is only available on processor family 0FH,
models 01H-02H.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-354 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3,
4, 6

Shared Processor Event Based Sampling (PEBS) (R/W)

Controls the enabling of processor event
sampling and replay tagging.

12:0 See Table 19-38.

23:13 Reserved

24 UOP Tag

Enables replay tagging when set.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-355

MODEL-SPECIFIC REGISTERS (MSRS)

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE
MSR,” for an explanation of the target logical
processor.

This bit is called ENABLE_PEBS in IA-32
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE
MSR,” for an explanation of the target logical
processor.

This bit is reserved for IA-32 processors that do
not support Intel Hyper-Threading Technology.

63:27 Reserved

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3,
4, 6

Shared See Table 19-38.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-356 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear. When not implemented in the processor,
all reads and writes to this MSR will cause a
general-protection exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-357

MODEL-SPECIFIC REGISTERS (MSRS)

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC3_STATUS register is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC4_STATUS register is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-Based
VM-Execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary
Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-Exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see
Table 2-2.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-358 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-Entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see
Table 2-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see
Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see
Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary
Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3,
4, 6

Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers
on the last branch record stack (680H-68FH).
This part of the stack contains pointers to the
source instruction for one of the last 16
branches, exceptions, or interrupts taken by the
processor.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-359

MODEL-SPECIFIC REGISTERS (MSRS)

The MSRs at 680H-68FH, 6C0H-6CfH are not
available in processor releases before family
0FH, model 03H. These MSRs replace MSRs
previously located at 1DBH-1DEH.which
performed the same function for early releases.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for
Processors based on Skylake Microarchitecture.”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at
680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at
680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at
680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at
680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at
680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at
680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at
680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at
680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at
680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at
680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at
680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at
680H.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-360 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at
680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at
680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at
680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers
on the last branch record stack (6C0H-6CFH).
This part of the stack contains pointers to the
destination instruction for one of the last 16
branches, exceptions, or interrupts that the
processor took.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for
Processors based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at
6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at
6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at
6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at
6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at
6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at
6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at
6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at
6C0H.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-361

MODEL-SPECIFIC REGISTERS (MSRS)

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at
6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at
6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at
6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at
6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at
6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at
6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at
6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 2-49. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-362 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.19.1 MSRs Unique to Intel® Xeon® Processor MP with L3 Cache
The MSRs listed in Table 2-50 apply to Intel® Xeon® Processor MP with up to 8MB level three cache. These proces-
sors can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (see CPUID instruction for more details).

The MSRs listed in Table 2-51 apply to Intel® Xeon® Processor 7100 series. These processors can be detected by
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the
presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in Table 2-51 are shared between logical
processors in the same core, but are replicated for each core.

Table 2-50. MSRs Unique to 64-bit Intel® Xeon® Processor MP with
Up to an 8 MB L3 Cache

Register Address
Register Name

Fields and Flags
Model Avail-

ability
Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control and Counter Register (R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control and Counter Register (R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache.”

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control and Counter Register (R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache.”

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache.”

Table 2-51. MSRs Unique to Intel® Xeon® Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_CTL0 6 Shared GBUSQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”

Vol. 4 2-363

MODEL-SPECIFIC REGISTERS (MSRS)

2.20 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor
LV are listed in Table 2-52. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” means the
MSR or the bit field in an MSR address governs the operation of both processor cores.

107CDH MSR_EMON_L3_CTR_CTL1 6 Shared GBUSQ Event Control and Counter Register (R/W)

107CEH MSR_EMON_L3_CTR_CTL2 6 Shared GSNPQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”

107CFH MSR_EMON_L3_CTR_CTL3 6 Shared GSNPQ Event Control and Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_CTL4 6 Shared FSB Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”

107D1H MSR_EMON_L3_CTR_CTL5 6 Shared FSB Event Control and Counter Register (R/W)

107D2H MSR_EMON_L3_CTR_CTL6 6 Shared FSB Event Control and Counter Register (R/W)

107D3H MSR_EMON_L3_CTR_CTL7 6 Shared FSB Event Control and Counter Register (R/W)

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 2.23, “MSRs in Pentium Processors,” and see
Table 2-2.

1H 1 P5_MC_TYPE Unique See Section 2.23, “MSRs in Pentium Processors,” and see
Table 2-2.

6H 6 IA32_MONITOR_FILTER_SIZE Unique See Section 8.10.5, “Monitor/Mwait Address Range
Determination,” and see Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot”
information for the processor and the proper microcode
update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see
Table 2-2.

Table 2-51. MSRs Unique to Intel® Xeon® Processor 7100 Series (Contd.)

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

2-364 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-365

MODEL-SPECIFIC REGISTERS (MSRS)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W)

See Table 2-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold
the ‘to’ address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception

Recording (Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 101B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

63:3 Reserved

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-366 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the
WBINVD instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) can be used to restart the
program. If this bit is cleared, the program cannot be reliably
restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by
the instruction pointer pushed on the stack (when the
machine check was generated) is directly associated with the
error.

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-367

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

When set, this bit indicates that a machine check has been
generated. If a second machine check is detected while this bit
is still set, the processor enters a shutdown state. Software
should write this bit to 0 after processing a machine check
exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.8.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.8.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation
of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency
transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared,
TM_SELECT has no effect. Neither TM1 nor TM2 will be
enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features

(R/W)

Allows a variety of processor functions to be enabled and
disabled.

2:0 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved

7 Shared Performance Monitoring Available (R)

See Table 2-2.

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-368 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9:8 Reserved

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending
break event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model
usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Reserved

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that
the die temperature is at the pre-determined threshold, the
Thermal Monitor 2 mechanism is engaged. TM2 will reduce the
bus to core ratio and voltage according to the value last
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not
change the VID signals or the bus to core ratio when the
processor enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing
CPUID with EAX = 1, then this feature is not supported and
BIOS must not alter the contents of this bit location. The
processor is operating out of spec if both this bit and the TM1
bit are set to disabled states.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

Setting this bit may cause behavior in software that depends
on the availability of CPUID leaves greater than 2.

33:23 Reserved

34 Shared XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing
the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-369

MODEL-SPECIFIC REGISTERS (MSRS)

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

Controls how several debug features are used. Bit definitions
are discussed in Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the
processor executed prior to the last exception that was
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last
exception that was generated or the last interrupt that was
handled.

200H 512 MTRRphysBase0 Unique Memory Type Range Registers

201H 513 MTRRphysMask0 Unique Memory Type Range Registers

202H 514 MTRRphysBase1 Unique Memory Type Range Registers

203H 515 MTRRphysMask1 Unique Memory Type Range Registers

204H 516 MTRRphysBase2 Unique Memory Type Range Registers

205H 517 MTRRphysMask2 Unique Memory Type Range Registers

206H 518 MTRRphysBase3 Unique Memory Type Range Registers

207H 519 MTRRphysMask3 Unique Memory Type Range Registers

208H 520 MTRRphysBase4 Unique Memory Type Range Registers

209H 521 MTRRphysMask4 Unique Memory Type Range Registers

20AH 522 MTRRphysBase5 Unique Memory Type Range Registers

20BH 523 MTRRphysMask5 Unique Memory Type Range Registers

20CH 524 MTRRphysBase6 Unique Memory Type Range Registers

20DH 525 MTRRphysMask6 Unique Memory Type Range Registers

20EH 526 MTRRphysBase7 Unique Memory Type Range Registers

20FH 527 MTRRphysMask7 Unique Memory Type Range Registers

250H 592 MTRRfix64K_00000 Unique Memory Type Range Registers

258H 600 MTRRfix16K_80000 Unique Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Unique Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Unique Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Unique Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Unique Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Unique Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Unique Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Unique Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Unique Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Unique Memory Type Range Registers

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-370 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
IA32_MC0_STATUS register is clear. When not implemented in
the processor, all reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
IA32_MC1_STATUS register is clear. When not implemented in
the processor, all reads and writes to this MSR will cause a
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
IA32_MC2_STATUS register is clear. When not implemented in
the processor, all reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
MSR_MC4_STATUS register is clear. When not implemented in
the processor, all reads and writes to this MSR will cause a
general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the
MSR_MC3_STATUS register is clear. When not implemented in
the processor, all reads and writes to this MSR will cause a
general-protection exception.

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-371

MODEL-SPECIFIC REGISTERS (MSRS)

413H 1043 MSR_MC3_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV
flag in the IA32_MCi_STATUS register is set.

414H 1044 MSR_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of
#MC for errors produced by a particular hardware unit (or
group of hardware units).

415H 1045 MSR_MC5_STATUS Unique Machine Check Error Reporting Register - contains information
related to a machine-check error if its VAL (valid) flag is set.
Software is responsible for clearing IA32_MCi_STATUS MSRs
by explicitly writing 0s to them; writing 1s to them causes a
general-protection exception.

416H 1046 MSR_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address
of the code or data memory location that produced the
machine-check error if the ADDRV flag in the
IA32_MCi_STATUS register is set.

417H 1047 MSR_MC5_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV
flag in the IA32_MCi_STATUS register is set.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information”.

(If CPUID.01H:ECX.[bit 5])

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5])

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”.

(If CPUID.01H:ECX.[bit 5])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”.

(If CPUID.01H:ECX.[bit 5])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”.

(If CPUID.01H:ECX.[bit 5])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”.

(If CPUID.01H:ECX.[bit 5])

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-372 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.21 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 2.22 for P6
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium
M processor.

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”.

(If CPUID.01H:ECX.[bit 5])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”.

(If CPUID.01H:ECX.[bit 5])

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”.

(If CPUID.01H:ECX.[bit 5])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”.

(If CPUID.01H:ECX.[bit 5])

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-Based
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management
area.

63:32 Reserved

C000_
0080H

IA32_EFER Unique See Table 2-2.

10:0 Reserved

11 Execute Disable Bit Enable

63:12 Reserved

Table 2-53. MSRs in Pentium M Processors

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.23, “MSRs in Pentium Processors.”

Table 2-52. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-373

MODEL-SPECIFIC REGISTERS (MSRS)

1H 1 P5_MC_TYPE See Section 2.23, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot” information
for the processor and the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

2-374 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits
31-0 hold the ‘from’ address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”.

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL Control Register

Used to program L2 commands to be issued via cache configuration
accesses mechanism. Also receives L2 lookup response.

63:0 Reserved

11EH 281 MSR_BBL_CR_CTL3 Control register 3

Used to configure the L2 Cache.

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

Vol. 4 2-375

MODEL-SPECIFIC REGISTERS (MSRS)

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

4:1 Reserved

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always
generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is
always enabled.

7:6 Reserved

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

179H 377 IA32_MCG_CAP Read-only register that provides information about the machine-check
architecture of the processor.

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved

17AH 378 IA32_MCG_STATUS Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) can be used to restart the program. If this bit is cleared, the
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) is directly associated with the error.

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

2-376 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

When set, this bit indicates that a machine check has been generated. If a
second machine check is detected while this bit is still set, the processor
enters a shutdown state. Software should write this bit to 0 after
processing a machine check exception.

63:3 Reserved

198H 408 IA32_PERF_STATUS See Table 2-2.

199H 409 IA32_PERF_CTL See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W).

See Table 2-2.

See Section 14.8.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.8.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.8.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

Vol. 4 2-377

MODEL-SPECIFIC REGISTERS (MSRS)

3 Automatic Thermal Control Circuit Enable (R/W)

1 = Setting this bit enables the thermal control circuit (TCC) portion of
the Intel Thermal Monitor feature. This allows processor clocks to
be automatically modulated based on the processor's thermal
sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit determines if the
thermal control circuit (TCC) will be activated when the processor's
internal thermal sensor determines the processor is about to exceed its
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control
circuit enable bit.

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.

9:8 Reserved

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor.

0 = Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (RO)

1 = Processor does not support processor event based sampling
(PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved

16 Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional
messages that allow the processor to inform the chipset of its priority.
The default is processor specific.

63:24 Reserved

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

2-378 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the most
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H).
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”.

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W)

Controls how several debug features are used. Bit definitions are
discussed in the referenced section.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors).”

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch instruction
that the processor executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W)

Sets the memory type for the regions of physical memory that are not
mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

Vol. 4 2-379

MODEL-SPECIFIC REGISTERS (MSRS)

2.22 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this
list have been designated as “architectural” and have had their names changed. See Table 2-2 for a list of the archi-
tectural MSRs.

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 2-2.

Points to the DS buffer management area, which is used to manage the
BTS and PEBS buffers. See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved

Table 2-54. MSRs in the P6 Family Processors

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.23, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.23, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

Table 2-53. MSRs in Pentium M Processors (Contd.)

Register
Address Register Name / Bit Fields

Bit Description

 Hex Dec

2-380 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17H 23 IA32_PLATFORM_ID Platform ID (R)

The operating system can use this MSR to determine “slot” information for
the processor and the proper microcode update to load.

49:0 Reserved

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved

60 Clock Frequency Ratio Read.

63:61 Reserved

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved

8 Boot Strap Processor Indicator Bit

1 = BSP

10:9 Reserved

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Reserved1

1 Data Error Checking Enable (R/W)

1 = Enabled
0 = Disabled

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled
0 = Disabled

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

Vol. 4 2-381

MODEL-SPECIFIC REGISTERS (MSRS)

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled
0 = Disabled

5 Reserved

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled (R)

1 = Enabled
0 = Disabled

9 Execute BIST (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled (R)

1 = Enabled
0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R)

1 = Enabled
0 = Disabled

13 In Order Queue Depth (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

2-382 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

27 Clock Frequency Ratio

63:28 Reserved1

33H 51 MSR_TEST_CTRL Test Control Register

29:0 Reserved

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88H 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

 89H 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

 8AH 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2

8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0) Performance Counter Register

See Table 2-2.

C2H 194 PerfCtr1 (PERFCTR1) Performance Counter Register

See Table 2-2.

FEH 254 MTRRcap Memory Type Range Registers

 116H 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during
cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118H 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

119H 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

Vol. 4 2-383

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

11AH 282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access,
Write only with Data = 0.

11BH 283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command
is in progress. D[0] = 1 = BUSY

11EH 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

2-384 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP Machine Check Global Control Register

17AH 378 MCG_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

17BH 379 MCG_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

186H 390 PerfEvtSel0 (EVNTSEL0) Performance Event Select Register 0 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

Vol. 4 2-385

MODEL-SPECIFIC REGISTERS (MSRS)

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

187H 391 PerfEvtSel1 (EVNTSEL1) Performance Event Select for Counter 1 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

18 E

Occurrence/Duration Mode Select.

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

2-386 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20 INT

Enables the signaling of counter overflow via input to APIC.

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition.

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR Enables last branch, interrupt, and exception recording; taken branch
breakpoints; the breakpoint reporting pins; and trace messages. This
register can be written to using the WRMSR instruction, when operating
at privilege level 0 or when in real-address mode.

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DCH 476 LASTBRANCHTOIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DDH 477 LASTINTFROMIP Last INT from IP

1DEH 478 LASTINTTOIP Last INT to IP

200H 512 MTRRphysBase0 Memory Type Range Registers

201H 513 MTRRphysMask0 Memory Type Range Registers

202H 514 MTRRphysBase1 Memory Type Range Registers

203H 515 MTRRphysMask1 Memory Type Range Registers

204H 516 MTRRphysBase2 Memory Type Range Registers

205H 517 MTRRphysMask2 Memory Type Range Registers

206H 518 MTRRphysBase3 Memory Type Range Registers

207H 519 MTRRphysMask3 Memory Type Range Registers

208H 520 MTRRphysBase4 Memory Type Range Registers

209H 521 MTRRphysMask4 Memory Type Range Registers

20AH 522 MTRRphysBase5 Memory Type Range Registers

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

Vol. 4 2-387

MODEL-SPECIFIC REGISTERS (MSRS)

20BH 523 MTRRphysMask5 Memory Type Range Registers

20CH 524 MTRRphysBase6 Memory Type Range Registers

20DH 525 MTRRphysMask6 Memory Type Range Registers

20EH 526 MTRRphysBase7 Memory Type Range Registers

20FH 527 MTRRphysMask7 Memory Type Range Registers

250H 592 MTRRfix64K_00000 Memory Type Range Registers

258H 600 MTRRfix16K_80000 Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Memory Type Range Registers

2FFH 767 MTRRdefType Memory Type Range Registers

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

401H 1025 MC0_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

2-388 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.23 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor)
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without
generating exceptions (see Section 2.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to
Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

NOTES
1.Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.

2.The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h)
to “1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled

until the processor is reset.
3.The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency

selected is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB
frequency the BIOS may choose to use bit 11 to implement its own shutdown policy.

Table 2-54. MSRs in the P6 Family Processors (Contd.)

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

Vol. 4 2-389

MODEL-SPECIFIC REGISTERS (MSRS)

2.24 MSR INDEX
MSRs of recent processors are indexed here for convenience. IA32 MSRs are excluded from this index.

Table 2-55. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

11H 17 CESR See Section 18.6.9.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.6.9.3, “Events Counted.”

13H 19 CTR1 Section 18.6.9.3, “Events Counted.”

MSR Name and CPUID DisplayFamily_DisplayModel Location

MSR_ALF_ESCR0

0FH . See Table 2-49

MSR_ALF_ESCR1

0FH . See Table 2-49

MSR_ANY_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_ANY_GFXE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_B0_PMON_BOX_CTRL

06_2EH . See Table 2-17

MSR_B0_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_B0_PMON_BOX_STATUS

06_2EH . See Table 2-17

MSR_B0_PMON_CTR0

06_2EH . See Table 2-17

MSR_B0_PMON_CTR1

06_2EH . See Table 2-17

MSR_B0_PMON_CTR2

06_2EH . See Table 2-17

MSR_B0_PMON_CTR3

06_2EH . See Table 2-17

MSR_B0_PMON_EVNT_SEL0

06_2EH . See Table 2-17

MSR_B0_PMON_EVNT_SEL1

06_2EH . See Table 2-17

2-390 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_B0_PMON_EVNT_SEL2

06_2EH . See Table 2-17

MSR_B0_PMON_EVNT_SEL3

06_2EH . See Table 2-17

MSR_B0_PMON_MASK

06_2EH . See Table 2-17

MSR_B0_PMON_MATCH

06_2EH . See Table 2-17

MSR_B1_PMON_BOX_CTRL

06_2EH . See Table 2-17

MSR_B1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_B1_PMON_BOX_STATUS

06_2EH . See Table 2-17

MSR_B1_PMON_CTR0

06_2EH . See Table 2-17

MSR_B1_PMON_CTR1

06_2EH . See Table 2-17

MSR_B1_PMON_CTR2

06_2EH . See Table 2-17

MSR_B1_PMON_CTR3

06_2EH . See Table 2-17

MSR_B1_PMON_EVNT_SEL0

06_2EH . See Table 2-17

MSR_B1_PMON_EVNT_SEL1

06_2EH . See Table 2-17

MSR_B1_PMON_EVNT_SEL2

06_2EH . See Table 2-17

MSR_B1_PMON_EVNT_SEL3

06_2EH . See Table 2-17

MSR_B1_PMON_MASK

06_2EH . See Table 2-17

MSR_B1_PMON_MATCH

06_2EH . See Table 2-17

MSR_BBL_CR_CTL

06_09H . See Table 2-53

MSR_BBL_CR_CTL3

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_0EH . See Table 2-52

06_09H . See Table 2-53

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-391

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_BIOS_DEBUG

06_8CH, 06_8DH . See Table 2-45

MSR_BIOS_DONE

06_7DH, 06_7EH . See Table 2-44

MSR_BIOS_MCU_ERRORCODE

06_7DH, 06_7EH . See Table 2-44

06_8CH, 06_8DH . See Table 2-45

MSR_BPU_CCCR0

0FH . See Table 2-49

MSR_BPU_CCCR1

0FH . See Table 2-49

MSR_BPU_CCCR2

0FH . See Table 2-49

MSR_BPU_CCCR3

0FH . See Table 2-49

MSR_BPU_COUNTER0

0FH . See Table 2-49

MSR_BPU_COUNTER1

0FH . See Table 2-49

MSR_BPU_COUNTER2

0FH . See Table 2-49

MSR_BPU_COUNTER3

0FH . See Table 2-49

MSR_BPU_ESCR0

0FH . See Table 2-49

MSR_BPU_ESCR1

0FH . See Table 2-49

MSR_BR_DETECT_COUNTER_CONFIG_i

06_66H. See Table 2-42

MSR_BR_DETECT_CTRL

06_66H. See Table 2-42

MSR_BR_DETECT_STATUS

06_66H. See Table 2-42

MSR_BSU_ESCR0

0FH . See Table 2-49

MSR_BSU_ESCR1

0FH . See Table 2-49

MSR_C0_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_BOX_FILTER

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-392 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-24

MSR_C0_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C0_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C0_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C0_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C0_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR4

06_2EH . See Table 2-17

MSR_C0_PMON_CTR5

06_2EH . See Table 2-17

MSR_C0_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-393

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-33

MSR_C0_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C0_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C0_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C1_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C1_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C1_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C1_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C1_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_CTR2

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-394 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_CTR4

06_2EH . See Table 2-17

MSR_C1_PMON_CTR5

06_2EH . See Table 2-17

MSR_C1_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C1_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C1_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C10_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C10_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C10_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C11_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C11_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-395

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C11_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C12_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C12_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C12_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C13_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C13_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C13_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C14_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C14_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C14_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C15_PMON_BOX_CTL

06_3FH . See Table 2-33

MSR_C15_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C15_PMON_BOX_FILTER1

06_3FH . See Table 2-33

MSR_C15_PMON_BOX_STATUS

06_3FH . See Table 2-33

MSR_C15_PMON_CTR0

06_3FH . See Table 2-33

MSR_C15_PMON_CTR1

06_3FH . See Table 2-33

MSR_C15_PMON_CTR2

06_3FH . See Table 2-33

MSR_C15_PMON_CTR3

06_3FH . See Table 2-33

MSR_C15_PMON_EVNTSEL0

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-396 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C15_PMON_EVNTSEL1

06_3FH . See Table 2-33

MSR_C15_PMON_EVNTSEL2

06_3FH . See Table 2-33

MSR_C15_PMON_EVNTSEL3

06_3FH . See Table 2-33

MSR_C16_PMON_BOX_CTL

06_3FH . See Table 2-33

MSR_C16_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C16_PMON_BOX_FILTER1

06_3FH . See Table 2-33

MSR_C16_PMON_BOX_STATUS

06_3FH . See Table 2-33

MSR_C16_PMON_CTR0

06_3FH . See Table 2-33

MSR_C16_PMON_CTR3

06_3FH . See Table 2-33

MSR_C16_PMON_CTR2

06_3FH . See Table 2-33

MSR_C16_PMON_CTR3

06_3FH . See Table 2-33

MSR_C16_PMON_EVNTSEL0

06_3FH . See Table 2-33

MSR_C16_PMON_EVNTSEL1

06_3FH . See Table 2-33

MSR_C16_PMON_EVNTSEL2

06_3FH . See Table 2-33

MSR_C16_PMON_EVNTSEL3

06_3FH . See Table 2-33

MSR_C17_PMON_BOX_CTL

06_3FH . See Table 2-33

MSR_C17_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C17_PMON_BOX_FILTER1

06_3FH . See Table 2-33

MSR_C17_PMON_BOX_STATUS

06_3FH . See Table 2-33

MSR_C17_PMON_CTR0

06_3FH . See Table 2-33

MSR_C17_PMON_CTR1

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-397

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C17_PMON_CTR2

06_3FH . See Table 2-33

MSR_C17_PMON_CTR3

06_3FH . See Table 2-33

MSR_C17_PMON_EVNTSEL0

06_3FH . See Table 2-33

MSR_C17_PMON_EVNTSEL1

06_3FH . See Table 2-33

MSR_C17_PMON_EVNTSEL2

06_3FH . See Table 2-33

MSR_C17_PMON_EVNTSEL3

06_3FH . See Table 2-33

MSR_C2_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C2_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C2_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C2_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C2_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C2_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_CTR3

06_2EH . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-398 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_CTR4

06_2EH . See Table 2-17

MSR_C2_PMON_CTR5

06_2EH . See Table 2-17

MSR_C2_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C2_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C2_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C3_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C3_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C3_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C3_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C3_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-399

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C3_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_CTR4

06_2EH . See Table 2-17

MSR_C3_PMON_CTR5

06_2EH . See Table 2-17

MSR_C3_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C3_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C3_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C4_PMON_BOX_CTRL

06_2EH . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-400 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C4_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C4_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C4_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C4_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C4_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_CTR4

06_2EH . See Table 2-17

MSR_C4_PMON_CTR5

06_2EH . See Table 2-17

MSR_C4_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-401

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C4_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C4_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C4_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C5_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C5_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C5_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C5_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C5_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C5_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_CTR3

06_2EH . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-402 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_CTR4

06_2EH . See Table 2-17

MSR_C5_PMON_CTR5

06_2EH . See Table 2-17

MSR_C5_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C5_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C5_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C6_PMON_BOX_CTRL

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C6_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C6_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C6_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C6_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-403

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C6_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_CTR4

06_2EH . See Table 2-17

MSR_C6_PMON_CTR5

06_2EH . See Table 2-17

MSR_C6_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C6_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C6_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C7_PMON_BOX_CTRL

06_2EH . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-404 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_BOX_FILTER

06_2DH . See Table 2-24

MSR_C7_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C7_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C7_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_C7_PMON_BOX_STATUS

06_2EH . See Table 2-17

06_3FH . See Table 2-33

MSR_C7_PMON_CTR0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_CTR1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_CTR2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_CTR3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_CTR4

06_2EH . See Table 2-17

MSR_C7_PMON_CTR5

06_2EH . See Table 2-17

MSR_C7_PMON_EVNT_SEL0

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_EVNT_SEL1

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-405

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C7_PMON_EVNT_SEL2

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_EVNT_SEL3

06_2EH . See Table 2-17

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_C7_PMON_EVNT_SEL4

06_2EH . See Table 2-17

MSR_C7_PMON_EVNT_SEL5

06_2EH . See Table 2-17

MSR_C8_PMON_BOX_CTRL

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C8_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C8_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-19

MSR_C8_PMON_BOX_STATUS

06_2FH . See Table 2-19

06_3FH . See Table 2-33

MSR_C8_PMON_CTR0

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_CTR1

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_CTR2

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_CTR3

06_2FH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-406 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_CTR4

06_2FH . See Table 2-19

MSR_C8_PMON_CTR5

06_2FH . See Table 2-19

MSR_C8_PMON_EVNT_SEL0

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_EVNT_SEL1

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_EVNT_SEL2

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_EVNT_SEL3

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C8_PMON_EVNT_SEL4

06_2FH . See Table 2-19

MSR_C8_PMON_EVNT_SEL5

06_2FH . See Table 2-19

MSR_C9_PMON_BOX_CTRL

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_BOX_FILTER

06_3EH . See Table 2-28

MSR_C9_PMON_BOX_FILTER0

06_3FH . See Table 2-33

MSR_C9_PMON_BOX_FILTER1

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-19

MSR_C9_PMON_BOX_STATUS

06_2FH . See Table 2-19

06_3FH . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-407

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C9_PMON_CTR0

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_CTR1

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_CTR2

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_CTR3

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_CTR4

06_2FH . See Table 2-19

MSR_C9_PMON_CTR5

06_2FH . See Table 2-19

MSR_C9_PMON_EVNT_SEL0

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_EVNT_SEL1

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_EVNT_SEL2

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_EVNT_SEL3

06_2FH . See Table 2-19

06_3EH . See Table 2-28

06_3FH . See Table 2-33

MSR_C9_PMON_EVNT_SEL4

06_2FH . See Table 2-19

MSR_C9_PMON_EVNT_SEL5

06_2FH . See Table 2-19

MSR_CC6_DEMOTION_POLICY_CONFIG

06_37H . See Table 2-9

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-408 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_CONFIG_TDP_CONTROL

06_3AH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H, 06_85H . See Table 2-47

MSR_CONFIG_TDP_LEVEL1

06_3AH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H, 06_85H. See Table 2-47

MSR_CONFIG_TDP_LEVEL2

06_3AH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H, 06_85H . See Table 2-47

MSR_CONFIG_TDP_NOMINAL

06_3AH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H, 06_85H . See Table 2-47

MSR_CORE_C1_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_66H . See Table 2-42

MSR_CORE_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

MSR_CORE_C6_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H, 06_85H. See Table 2-47

MSR_CORE_C7_RESIDENCY

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

MSR_CORE_GFXE_OVERLAP_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_CORE_HDC_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_CORE_PERF_LIMIT_REASONS

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-30

06_3F . See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H. See Table 2-47

MSR_CORE_THREAD_COUNT

06_3FH. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-409

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_CRASHLOG_CONTROL

06_7DH, 06_7EH . See Table 2-44

MSR_CRU_ESCR0

0FH . See Table 2-49

MSR_CRU_ESCR1

0FH . See Table 2-49

MSR_CRU_ESCR2

0FH . See Table 2-49

MSR_CRU_ESCR3

0FH . See Table 2-49

MSR_CRU_ESCR4

0FH . See Table 2-49

MSR_CRU_ESCR5

0FH . See Table 2-49

MSR_DAC_ESCR0

0FH . See Table 2-49

MSR_DAC_ESCR1

0FH . See Table 2-49

MSR_DRAM_ENERGY_ STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-23

06_3EH, 06_3FH . See Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3F . See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H. See Table 2-47

MSR_DRAM_PERF_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-23

06_3EH, 06_3FH . See Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3F . See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H. See Table 2-47

MSR_DRAM_POWER_INFO

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-23

06_3EH, 06_3FH . See Table 2-26

06_3F . See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H. See Table 2-47

MSR_DRAM_POWER_LIMIT

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-410 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-23

06_3EH, 06_3FH . See Table 2-26

06_3F . See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H . See Table 2-47

MSR_EBC_FREQUENCY_ID

0FH . See Table 2-49

MSR_EBC_HARD_POWERON

0FH . See Table 2-49

MSR_EBC_SOFT_POWERON

0FH . See Table 2-49

MSR_EBL_CR_POWERON

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_0EH . See Table 2-52

06_09H . See Table 2-53

MSR_EFSB_DRDY0

0F_03H, 0F_04H . See Table 2-50

MSR_EFSB_DRDY1

0F_03H, 0F_04H . See Table 2-50

MSR_EMON_L3_CTR_CTL0

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL1

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL2

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL3

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL4

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL5

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL6

06_0FH, 06_17H . See Table 2-3

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-411

MODEL-SPECIFIC REGISTERS (MSRS)

0F_06H . See Table 2-51

MSR_EMON_L3_CTR_CTL7

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-51

MSR_EMON_L3_GL_CTL

06_0FH, 06_17H . See Table 2-3

MSR_ERROR_CONTROL

06_2DH . See Table 2-23

06_3EH . See Table 2-26

06_3F . See Table 2-32

MSR_FAST_UNCORE_MSRS_CAPABILITY

06_7DH, 06_7EH . See Table 2-44

MSR_FAST_UNCORE_MSRS_CTL

06_7DH, 06_7EH . See Table 2-44

MSR_FAST_UNCORE_MSRS_STATUS

06_7DH, 06_7EH . See Table 2-44

MSR_FEATURE_CONFIG

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH. See Table 2-18

06_2FH . See Table 2-19

06_2AH, 06_2DH. See Table 2-20

06_57H, 06_85H . See Table 2-47

MSR_FIRM_ESCR0

0FH . See Table 2-49

MSR_FIRM_ESCR1

0FH . See Table 2-49

MSR_FLAME_CCCR0

0FH . See Table 2-49

MSR_FLAME_CCCR1

0FH . See Table 2-49

MSR_FLAME_CCCR2

0FH . See Table 2-49

MSR_FLAME_CCCR3

0FH . See Table 2-49

MSR_FLAME_COUNTER0

0FH . See Table 2-49

MSR_FLAME_COUNTER1

0FH . See Table 2-49

MSR_FLAME_COUNTER2

0FH . See Table 2-49

MSR_FLAME_COUNTER3

0FH . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-412 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_FLAME_ESCR0

0FH . See Table 2-49

MSR_FLAME_ESCR1

0FH . See Table 2-49

MSR_FSB_ESCR0

0FH . See Table 2-49

MSR_FSB_ESCR1

0FH . See Table 2-49

MSR_FSB_FREQ

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH . See Table 2-11

06_0EH . See Table 2-52

MSR_GQ_SNOOP_MESF

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_GRAPHICS_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_IFSB_BUSQ0

0F_03H, 0F_04H . See Table 2-50

MSR_IFSB_BUSQ1

0F_03H, 0F_04H . See Table 2-50

MSR_IFSB_CNTR7

0F_03H, 0F_04H . See Table 2-50

MSR_IFSB_CTL6

0F_03H, 0F_04H . See Table 2-50

MSR_IFSB_SNPQ0

0F_03H, 0F_04H . See Table 2-50

MSR_IFSB_SNPQ1

0F_03H, 0F_04H . See Table 2-50

MSR_IQ_CCCR0

0FH . See Table 2-49

MSR_IQ_CCCR1

0FH . See Table 2-49

MSR_IQ_CCCR2

0FH . See Table 2-49

MSR_IQ_CCCR3

0FH . See Table 2-49

MSR_IQ_CCCR4

0FH . See Table 2-49

MSR_IQ_CCCR5

0FH . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-413

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_IQ_COUNTER0

0FH . See Table 2-49

MSR_IQ_COUNTER1

0FH . See Table 2-49

MSR_IQ_COUNTER2

0FH . See Table 2-49

MSR_IQ_COUNTER3

0FH . See Table 2-49

MSR_IQ_COUNTER4

0FH . See Table 2-49

MSR_IQ_COUNTER5

0FH . See Table 2-49

MSR_IQ_ESCR0

0FH . See Table 2-49

MSR_IQ_ESCR1

0FH . See Table 2-49

MSR_IS_ESCR0

0FH . See Table 2-49

MSR_IS_ESCR1

0FH . See Table 2-49

MSR_ITLB_ESCR0

0FH . See Table 2-49

MSR_ITLB_ESCR1

0FH . See Table 2-49

MSR_IX_ESCR0

0FH . See Table 2-49

MSR_IX_ESCR1

0FH . See Table 2-49

MSR_LASTBRANCH_0

0FH . See Table 2-49

06_0EH . See Table 2-52

06_09H . See Table 2-53

MSR_LASTBRANCH_0_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_0_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-414 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_1_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_1_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_10_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_10_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_11_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_11_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-415

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_12_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_12_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_13_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_13_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_14_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_14_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_15_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH . See Table 2-49

MSR_LASTBRANCH_15_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-416 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LASTBRANCH_16_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_16_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_17_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_17_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_18_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_18_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_19_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_19_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_2

0FH. See Table 2-49

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_2_FROM_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-15

06_2AH, 06_2DH. See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_2_TO_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-417

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH. See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_20_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_20_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_21_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_21_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_22_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_22_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_23_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_23_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_24_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_24_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_25_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_25_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_26_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_26_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-418 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_27_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_27_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_28_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_28_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_29_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_29_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_3

0FH. See Table 2-49

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_3_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_3_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_30_FROM_IP

06_5CH, 06_7AH . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-419

MODEL-SPECIFIC REGISTERS (MSRS)

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_30_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_31_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_31_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_4

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_4_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_4_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_5

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_5_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_5_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-420 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_6

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_6_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_6_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_7

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_7_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_7_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_8_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_8_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-421

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH. See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_9_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_9_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

0FH. See Table 2-49

MSR_LASTBRANCH_TOS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LASTBRANCH_INFO_0

06_7AH. See Table 2-13

MSR_LBR_INFO_1

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_10

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_11

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_13

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-422 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_14

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_15

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_16

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_17

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_18

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_2

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_21

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_22

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_23

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_24

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_25

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_26

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-423

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_27

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_28

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_29

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_3

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_30

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_31

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_4

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_5

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_6

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_7

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_8

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_INFO_9

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. See Table 2-13

MSR_LBR_SELECT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-424 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_57H, 06_85H. See Table 2-47

MSR_LER_FROM_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_57H, 06_85H. See Table 2-47

0FH. See Table 2-49

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_LER_TO_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_57H, 06_85H. See Table 2-47

0FH. See Table 2-49

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_M0_PMON_ADDR_MASK

06_2EH. See Table 2-17

MSR_M0_PMON_ADDR_MATCH

06_2EH. See Table 2-17

MSR_M0_PMON_BOX_CTRL

06_2EH. See Table 2-17

MSR_M0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_M0_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_M0_PMON_CTR0

06_2EH. See Table 2-17

MSR_M0_PMON_CTR1

06_2EH. See Table 2-17

MSR_M0_PMON_CTR2

06_2EH. See Table 2-17

MSR_M0_PMON_CTR3

06_2EH. See Table 2-17

MSR_M0_PMON_CTR4

06_2EH. See Table 2-17

MSR_M0_PMON_CTR5

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-425

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

MSR_M0_PMON_DSP

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL0

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL1

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL2

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL3

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL4

06_2EH. See Table 2-17

MSR_M0_PMON_EVNT_SEL5

06_2EH. See Table 2-17

MSR_M0_PMON_ISS

06_2EH. See Table 2-17

MSR_M0_PMON_MAP

06_2EH. See Table 2-17

MSR_M0_PMON_MM_CONFIG

06_2EH. See Table 2-17

MSR_M0_PMON_MSC_THR

06_2EH. See Table 2-17

MSR_M0_PMON_PGT

06_2EH. See Table 2-17

MSR_M0_PMON_PLD

06_2EH. See Table 2-17

MSR_M0_PMON_TIMESTAMP

06_2EH. See Table 2-17

MSR_M0_PMON_ZDP

06_2EH. See Table 2-17

MSR_M1_PMON_ADDR_MASK

06_2EH. See Table 2-17

MSR_M1_PMON_ADDR_MATCH

06_2EH. See Table 2-17

MSR_M1_PMON_BOX_CTRL

06_2EH. See Table 2-17

MSR_M1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_M1_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_M1_PMON_CTR0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-426 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

MSR_M1_PMON_CTR1

06_2EH. See Table 2-17

MSR_M1_PMON_CTR2

06_2EH. See Table 2-17

MSR_M1_PMON_CTR3

06_2EH. See Table 2-17

MSR_M1_PMON_CTR4

06_2EH. See Table 2-17

MSR_M1_PMON_CTR5

06_2EH. See Table 2-17

MSR_M1_PMON_DSP

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL0

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL1

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL2

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL3

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL4

06_2EH. See Table 2-17

MSR_M1_PMON_EVNT_SEL5

06_2EH. See Table 2-17

MSR_M1_PMON_ISS

06_2EH. See Table 2-17

MSR_M1_PMON_MAP

06_2EH. See Table 2-17

MSR_M1_PMON_MM_CONFIG

06_2EH. See Table 2-17

MSR_M1_PMON_MSC_THR

06_2EH. See Table 2-17

MSR_M1_PMON_PGT

06_2EH. See Table 2-17

MSR_M1_PMON_PLD

06_2EH. See Table 2-17

MSR_M1_PMON_TIMESTAMP

06_2EH. See Table 2-17

MSR_M1_PMON_ZDP

06_2EH. See Table 2-17

IA32_MC0_MISC / MSR_MC0_MISC

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-427

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR_MC0_RESIDENCY

06_57H, 06_85H. See Table 2-47

IA32_MC1_MISC / MSR_MC1_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

IA32_MC10_ADDR / MSR_MC10_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC10_CTL / MSR_MC10_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC10_MISC / MSR_MC10_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC10_STATUS / MSR_MC10_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC11_ADDR / MSR_MC11_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC11_CTL / MSR_MC11_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-428 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC11_MISC / MSR_MC11_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC11_STATUS / MSR_MC11_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC12_ADDR / MSR_MC12_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC12_CTL / MSR_MC12_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC12_MISC / MSR_MC12_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC12_STATUS / MSR_MC12_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC13_ADDR / MSR_MC13_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-429

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC13_CTL / MSR_MC13_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC13_MISC / MSR_MC13_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC13_STATUS / MSR_MC13_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC14_ADDR / MSR_MC14_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC14_CTL / MSR_MC14_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC14_MISC / MSR_MC14_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC14_STATUS / MSR_MC14_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-430 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC15_ADDR / MSR_MC15_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC15_CTL / MSR_MC15_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC15_MISC / MSR_MC15_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC15_STATUS / MSR_MC15_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC16_ADDR / MSR_MC16_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC16_CTL / MSR_MC16_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC16_MISC / MSR_MC16_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-431

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC16_STATUS / MSR_MC16_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC17_ADDR / MSR_MC17_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC17_CTL / MSR_MC17_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC17_MISC / MSR_MC17_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC17_STATUS / MSR_MC17_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC18_ADDR / MSR_MC18_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-432 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC18_CTL / MSR_MC18_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC18_MISC / MSR_MC18_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC18_STATUS / MSR_MC18_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC19_ADDR / MSR_MC19_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC19_CTL / MSR_MC19_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC19_MISC / MSR_MC19_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-433

MODEL-SPECIFIC REGISTERS (MSRS)

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC19_STATUS / MSR_MC19_STATUS

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC2_MISC / MSR_MC2_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

IA32_MC20_ADDR / MSR_MC20_ADDR

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC20_CTL / MSR_MC20_CTL

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC20_MISC / MSR_MC20_MISC

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC20_STATUS / MSR_MC20_STATUS

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC21_ADDR / MSR_MC21_ADDR

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4F. See Table 2-38

IA32_MC21_CTL / MSR_MC21_CTL

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4F. See Table 2-38

IA32_MC21_MISC / MSR_MC21_MISC

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-434 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4F. See Table 2-38

IA32_MC21_STATUS / MSR_MC21_STATUS

06_2EH. See Table 2-17

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4F. See Table 2-38

IA32_MC22_ADDR / MSR_MC22_ADDR

06_3EH. See Table 2-26

IA32_MC22_CTL / MSR_MC22_CTL

06_3EH. See Table 2-26

IA32_MC22_MISC / MSR_MC22_MISC

06_3EH. See Table 2-26

IA32_MC22_STATUS / MSR_MC22_STATUS

06_3EH. See Table 2-26

IA32_MC23_ADDR / MSR_MC23_ADDR

06_3EH. See Table 2-26

IA32_MC23_CTL / MSR_MC23_CTL

06_3EH. See Table 2-26

IA32_MC23_MISC / MSR_MC23_MISC

06_3EH. See Table 2-26

IA32_MC23_STATUS / MSR_MC23_STATUS

06_3EH. See Table 2-26

IA32_MC24_ADDR / MSR_MC24_ADDR

06_3EH. See Table 2-26

IA32_MC24_CTL / MSR_MC24_CTL

06_3EH. See Table 2-26

IA32_MC24_MISC / MSR_MC24_MISC

06_3EH. See Table 2-26

IA32_MC24_STATUS / MSR_MC24_STATUS

06_3EH. See Table 2-26

IA32_MC25_ADDR / MSR_MC25_ADDR

06_3EH. See Table 2-26

IA32_MC25_CTL / MSR_MC25_CTL

06_3EH. See Table 2-26

IA32_MC25_MISC / MSR_MC25_MISC

06_3EH. See Table 2-26

IA32_MC25_STATUS / MSR_MC25_STATUS

06_3EH. See Table 2-26

IA32_MC26_ADDR / MSR_MC26_ADDR

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-435

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-26

IA32_MC26_CTL / MSR_MC26_CTL

06_3EH. See Table 2-26

IA32_MC26_MISC / MSR_MC26_MISC

06_3EH. See Table 2-26

IA32_MC26_STATUS / MSR_MC26_STATUS

06_3EH. See Table 2-26

IA32_MC27_ADDR / MSR_MC27_ADDR

06_3EH. See Table 2-26

IA32_MC27_CTL / MSR_MC27_CTL

06_3EH. See Table 2-26

IA32_MC27_MISC / MSR_MC27_MISC

06_3EH. See Table 2-26

IA32_MC27_STATUS / MSR_MC27_STATUS

06_3EH. See Table 2-26

IA32_MC28_ADDR / MSR_MC28_ADDR

06_3EH. See Table 2-26

IA32_MC28_CTL / MSR_MC28_CTL

06_3EH. See Table 2-26

IA32_MC28_MISC / MSR_MC28_MISC

06_3EH. See Table 2-26

IA32_MC28_STATUS / MSR_MC28_STATUS

06_3EH. See Table 2-26

IA32_MC29_ADDR / MSR_MC29_ADDR

06_3EH. See Table 2-27

IA32_MC29_CTL / MSR_MC29_CTL

06_3EH. See Table 2-27

IA32_MC29_MISC / MSR_MC29_MISC

06_3EH. See Table 2-27

IA32_MC29_STATUS / MSR_MC29_STATUS

06_3EH. See Table 2-27

IA32_MC3_ADDR / MSR_MC3_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

IA32_MC3_CTL / MSR_MC3_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-436 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

IA32_MC3_MISC / MSR_MC3_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_0EH. See Table 2-52

IA32_MC3_STATUS / MSR_MC3_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

IA32_MC30_ADDR / MSR_MC30_ADDR

06_3EH. See Table 2-27

IA32_MC30_CTL / MSR_MC30_CTL

06_3EH. See Table 2-27

IA32_MC30_MISC / MSR_MC30_MISC

06_3EH. See Table 2-27

IA32_MC30_STATUS / MSR_MC30_STATUS

06_3EH. See Table 2-27

IA32_MC31_ADDR / MSR_MC31_ADDR

06_3EH. See Table 2-27

IA32_MC31_CTL / MSR_MC31_CTL

06_3EH. See Table 2-27

IA32_MC31_MISC / MSR_MC31_MISC

06_3EH. See Table 2-27

IA32_MC31_STATUS / MSR_MC31_STATUS

06_3EH. See Table 2-27

IA32_MC4_ADDR / MSR_MC4_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H . See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

IA32_MC4_CTL / MSR_MC4_CTL

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-437

MODEL-SPECIFIC REGISTERS (MSRS)

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

IA32_MC4_CTL2 / MSR_MC4_CTL2

06_2AH, 06_2DH . See Table 2-20

IA32_MC4_STATUS / MSR_MC4_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_MC5_ADDR / MSR_MC5_ADDR

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3FH. See Table 2-32

06_4FH. See Table 2-38

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

IA32_MC5_CTL / MSR_MC5_CTL

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3FH. See Table 2-32

06_4FH. See Table 2-38

06_57H, 06_85H. See Table 2-47

06_0EH. See Table 2-52

IA32_MC5_MISC / MSR_MC5_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-438 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH. See Table 2-32

06_4FH. See Table 2-38

06_0EH. See Table 2-52

IA32_MC5_STATUS / MSR_MC5_STATUS

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3FH. See Table 2-32

06_4FH. See Table 2-38

06_57H, 06_85H . See Table 2-47

06_0EH. See Table 2-52

IA32_MC6_ADDR / MSR_MC6_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC6_CTL / MSR_MC6_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

MSR_MC6_DEMOTION_POLICY_CONFIG

06_37H. See Table 2-9

IA32_MC6_MISC / MSR_MC6_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

MSR_MC6_RESIDENCY_COUNTER

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_37H. See Table 2-9

06_57H, 06_85H. See Table 2-47

IA32_CORE_CAPABILITIES (Note there are no architecturally defined bits; all bits are model-specific)

06_86H . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-439

MODEL-SPECIFIC REGISTERS (MSRS)

06_8CH, 06_8DH . See Table 2-45

IA32_MC6_STATUS / MSR_MC6_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3FH. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC7_ADDR / MSR_MC7_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC7_CTL / MSR_MC7_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC7_MISC / MSR_MC7_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC7_STATUS / MSR_MC7_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC8_ADDR / MSR_MC8_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-440 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-38

IA32_MC8_CTL / MSR_MC8_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC8_MISC / MSR_MC8_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC8_STATUS / MSR_MC8_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_4FH. See Table 2-38

IA32_MC9_ADDR / MSR_MC9_ADDR

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC9_CTL / MSR_MC9_CTL

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC9_MISC / MSR_MC9_MISC

06_2EH. See Table 2-17

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

IA32_MC9_STATUS / MSR_MC9_STATUS

06_2EH. See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-441

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-23

06_3EH. See Table 2-26

06_3F. See Table 2-32

06_56H, 06_4FH . See Table 2-37

06_4FH. See Table 2-38

MSR_MCG_MISC

0FH. See Table 2-49

MSR_MCG_R10

0FH. See Table 2-49

MSR_MCG_R11

0FH. See Table 2-49

MSR_MCG_R12

0FH. See Table 2-49

MSR_MCG_R13

0FH. See Table 2-49

MSR_MCG_R14

0FH. See Table 2-49

MSR_MCG_R15

0FH. See Table 2-49

MSR_MCG_R8

0FH. See Table 2-49

MSR_MCG_R9

0FH. See Table 2-49

MSR_MCG_RAX

0FH. See Table 2-49

MSR_MCG_RBP

0FH. See Table 2-49

MSR_MCG_RBX

0FH. See Table 2-49

MSR_MCG_RCX

0FH. See Table 2-49

MSR_MCG_RDI

0FH. See Table 2-49

MSR_MCG_RDX

0FH. See Table 2-49

MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5

0FH. See Table 2-49

MSR_MCG_RFLAGS

0FH. See Table 2-49

MSR_MCG_RIP

0FH. See Table 2-49

MSR_MCG_RSI

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-442 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-49

MSR_MCG_RSP

0FH. See Table 2-49

MSR_MISC_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

MSR_MISC_PWR_MGMT

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

MSR_MOB_ESCR0

0FH. See Table 2-49

MSR_MOB_ESCR1

0FH. See Table 2-49

MSR_MS_CCCR0

0FH. See Table 2-49

MSR_MS_CCCR1

0FH. See Table 2-49

MSR_MS_CCCR2

0FH. See Table 2-49

MSR_MS_CCCR3

0FH. See Table 2-49

MSR_MS_COUNTER0

0FH. See Table 2-49

MSR_MS_COUNTER1

0FH. See Table 2-49

MSR_MS_COUNTER2

0FH. See Table 2-49

MSR_MS_COUNTER3

0FH. See Table 2-49

MSR_MS_ESCR0

0FH. See Table 2-49

MSR_MS_ESCR1

0FH. See Table 2-49

MSR_MTRRCAP

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_OFFCORE_RSP_0

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_57H, 06_85H. See Table 2-47

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-443

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_OFFCORE_RSP_1

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH . See Table 2-18

06_2FH. See Table 2-19

06_2AH, 06_2DH . See Table 2-20

06_57H, 06_85H. See Table 2-47

MSR_PCIE_PLL_RATIO

06_3FH. See Table 2-32

MSR_PCU_PMON_BOX_CTL

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_BOX_FILTER

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_BOX_STATUS

06_3EH. See Table 2-28

06_3FH. See Table 2-33

MSR_PCU_PMON_CTR0

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_CTR1

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_CTR2

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_CTR3

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_EVNTSEL0

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_EVNTSEL1

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_EVNTSEL2

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PCU_PMON_EVNTSEL3

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_PEBS_DATA_CFG

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-444 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_7DH, 06_7EH . See Table 2-44

MSR_PEBS_ENABLE

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_86H . See Table 2-14

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3EH. See Table 2-27

06_57H, 06_85H . See Table 2-47

0FH. See Table 2-49

MSR_PEBS_FRONTEND

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PEBS_LD_LAT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

MSR_PEBS_MATRIX_VERT

0FH. See Table 2-49

MSR_PEBS_NUM_ALT

06_2DH. See Table 2-23

MSR_PERF_CAPABILITIES

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_CTRL

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_OVF_CTRL

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR_PERF_GLOBAL_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR_PERF_METRICS

06_7DH, 06_7EH . See Table 2-44

MSR_PERF_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_2AH, 06_2DH . See Table 2-20

MSR_PKG_C10_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_45H. See Table 2-30 and
Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-445

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-38

MSR_PKG_C2_RESIDENCY

06_27H. See Table 2-5

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H, 06_85H. See Table 2-47

MSR_PKG_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_66H. See Table 2-42

06_57H, 06_85H. See Table 2-47

MSR_PKG_C4_RESIDENCY

06_27H. See Table 2-5

MSR_PKG_C6_RESIDENCY

06_27H. See Table 2-5

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H, 06_85H . See Table 2-47

MSR_PKG_C7_RESIDENCY

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H, 06_85H . See Table 2-47

MSR_PKG_C8_RESIDENCY

06_45H. See Table 2-31

06_4FH. See Table 2-38

MSR_PKG_C9_RESIDENCY

06_45H. See Table 2-31

06_4FH. See Table 2-38

MSR_PKG_CST_CONFIG_CONTROL

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH. See Table 2-11

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3AH. See Table 2-25

06_3EH. See Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-30

06_45H. See Table 2-31

06_3F. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-446 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3DH. See Table 2-35

06_56H, 06_4FH . See Table 2-36

06_57H, 06_85H . See Table 2-47

MSR_PKG_ENERGY_STATUS

06_37H, 06_4AH, 06_4CH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH, 06_86H . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3DH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H,
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H . See Table 2-47

MSR_PKG_HDC_CONFIG

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_HDC_DEEP_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_HDC_SHALLOW_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_PERF_STATUS

06_5CH, 06_7AH, 06_86H . See Table 2-12

06_2DH. See Table 2-23

06_3AH, 06_3EH . See Table 2-26

06_3CH, 06_3DH, 06_3FH, 06_45H, 06_46H, 06_47H, 06_4EH, 06_4FH, 06_55H,

 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH .

See Table 2-29

06_57H, 06_85H. See Table 2-47

MSR_PKG_POWER_INFO

06_4DH. See Table 2-10

06_5CH, 06_7AH, 06_86H . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3DH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H,
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H . See Table 2-47

MSR_PKG_POWER_LIMIT

06_37H, 06_4AH, 06_4CH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH, 06_86H . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3DH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H,
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H. See Table 2-47

MSR_PKGC_IRTL1

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-29

MSR_PKGC_IRTL2

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-29

MSR_PKGC3_IRTL

06_5CH, 06_7AH . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-447

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH . See Table 2-20

MSR_PKGC6_IRTL

06_2AH, 06_2DH . See Table 2-20

MSR_PKGC7_IRTL

06_2AH. See Table 2-21

MSR_PLATFORM_BRV

0FH. See Table 2-49

MSR_PLATFORM_ENERGY_COUNTER

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PLATFORM_ID

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR_PLATFORM_INFO

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3AH. See Table 2-25

06_3EH. See Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-29 and
Table 2-30

06_56H, 06_4FH . See Table 2-36

06_57H. See Table 2-47

MSR_PLATFORM_POWER_LIMIT

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PMG_IO_CAPTURE_BASE

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4CH. See Table 2-11

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3AH. See Table 2-25

06_3EH. See Table 2-26

06_57H. See Table 2-47

MSR_PMH_ESCR0

0FH. See Table 2-49

MSR_PMH_ESCR1

0FH. See Table 2-49

MSR_PMON_GLOBAL_CONFIG

06_3EH. See Table 2-28

06_3FH. See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-448 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_PMON_GLOBAL_CTL

06_3EH. See Table 2-28

06_3FH. See Table 2-33

MSR_PMON_GLOBAL_STATUS

06_3EH. See Table 2-28

06_3FH. See Table 2-33

MSR_POWER_CTL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

MSR_PP0_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H. See Table 2-47

MSR_PP0_POLICY

06_2AH, 06_45H . See Table 2-21

MSR_PP0_POWER_LIMIT

06_4CH. See Table 2-11

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_57H. See Table 2-47

MSR_PP1_ENERGY_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_45H . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_PP1_POLICY

06_2AH, 06_45H . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_PP1_POWER_LIMIT

06_2AH, 06_45H . See Table 2-21

06_3CH, 06_45H, 06_46H See Table 2-30

MSR_PPERF

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PPIN

06_3EH. See Table 2-26

06_56H, 06_4FH . See Table 2-36

MSR_PPIN_CTL

06_3EH. See Table 2-26

06_56H, 06_4FH . See Table 2-36

MSR_PRMRR_BASE_0

06_7DH, 06_7EH . See Table 2-44

MSR_PRMRR_PHYS_BASE

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-449

MODEL-SPECIFIC REGISTERS (MSRS)

06_8EH, 06_9EH . See Table 2-41

MSR_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-41

MSR_PRMRR_VALID_CONFIG

06_8EH, 06_9EH . See Table 2-41

MSR_RELOAD_FIXED_CTRx

06_86H . See Table 2-14

MSR_RELOAD_PMCx

06_86H . See Table 2-14

MSR_RING_RATIO_LIMIT

06_8EH, 06_9EH . See Table 2-41

MSR_R0_PMON_BOX_CTRL

06_2EH. See Table 2-17

MSR_R0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_R0_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_R0_PMON_CTR0

06_2EH. See Table 2-17

MSR_R0_PMON_CTR1

06_2EH. See Table 2-17

MSR_R0_PMON_CTR2

06_2EH. See Table 2-17

MSR_R0_PMON_CTR3

06_2EH. See Table 2-17

MSR_R0_PMON_CTR4

06_2EH. See Table 2-17

MSR_R0_PMON_CTR5

06_2EH. See Table 2-17

MSR_R0_PMON_CTR6

06_2EH. See Table 2-17

MSR_R0_PMON_CTR7

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL0

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL1

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL2

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL3

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL4

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-450 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL5

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL6

06_2EH. See Table 2-17

MSR_R0_PMON_EVNT_SEL7

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P0

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P1

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P2

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P3

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P4

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P5

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P6

06_2EH. See Table 2-17

MSR_R0_PMON_IPERF0_P7

06_2EH. See Table 2-17

MSR_R0_PMON_QLX_P0

06_2EH. See Table 2-17

MSR_R0_PMON_QLX_P1

06_2EH. See Table 2-17

MSR_R0_PMON_QLX_P2

06_2EH. See Table 2-17

MSR_R0_PMON_QLX_P3

06_2EH. See Table 2-17

MSR_R1_PMON_BOX_CTRL

06_2EH. See Table 2-17

MSR_R1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_R1_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_R1_PMON_CTR10

06_2EH. See Table 2-17

MSR_R1_PMON_CTR11

06_2EH. See Table 2-17

MSR_R1_PMON_CTR12

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-451

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

MSR_R1_PMON_CTR13

06_2EH. See Table 2-17

MSR_R1_PMON_CTR14

06_2EH. See Table 2-17

MSR_R1_PMON_CTR15

06_2EH. See Table 2-17

MSR_R1_PMON_CTR8

06_2EH. See Table 2-17

MSR_R1_PMON_CTR9

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL10

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL11

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL12

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL13

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL14

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL15

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL8

06_2EH. See Table 2-17

MSR_R1_PMON_EVNT_SEL9

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P10

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P11

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P12

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P13

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P14

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P15

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P8

06_2EH. See Table 2-17

MSR_R1_PMON_IPERF1_P9

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-452 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

MSR_R1_PMON_QLX_P4

06_2EH. See Table 2-17

MSR_R1_PMON_QLX_P5

06_2EH. See Table 2-17

MSR_R1_PMON_QLX_P6

06_2EH. See Table 2-17

MSR_R1_PMON_QLX_P7

06_2EH. See Table 2-17

MSR_RAPL_POWER_UNIT

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-20

06_3FH. See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H. See Table 2-47

MSR_RAT_ESCR0

0FH. See Table 2-49

MSR_RAT_ESCR1

0FH. See Table 2-49

MSR_RING_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_S0_PMON_BOX_CTRL

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_BOX_FILTER

06_3FH. See Table 2-33

MSR_S0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_S0_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_S0_PMON_CTR0

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_CTR1

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_CTR2

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_CTR3

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-453

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_EVNT_SEL0

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_EVNT_SEL1

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_EVNT_SEL2

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_EVNT_SEL3

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S0_PMON_MASK

06_2EH. See Table 2-17

MSR_S0_PMON_MATCH

06_2EH. See Table 2-17

MSR_S1_PMON_BOX_CTRL

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_BOX_FILTER

06_3FH. See Table 2-33

MSR_S1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-17

MSR_S1_PMON_BOX_STATUS

06_2EH. See Table 2-17

MSR_S1_PMON_CTR0

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_CTR1

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_CTR2

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_CTR3

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_EVNT_SEL0

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-454 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S1_PMON_EVNT_SEL1

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_EVNT_SEL2

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_EVNT_SEL3

06_2EH. See Table 2-17

06_3FH. See Table 2-33

MSR_S1_PMON_MASK

06_2EH. See Table 2-17

MSR_S1_PMON_MATCH

06_2EH. See Table 2-17

MSR_S2_PMON_BOX_CTL

06_3FH. See Table 2-33

MSR_S2_PMON_BOX_FILTER

06_3FH. See Table 2-33

MSR_S2_PMON_CTR0

06_3FH. See Table 2-33

MSR_S2_PMON_CTR1

06_3FH. See Table 2-33

MSR_S2_PMON_CTR2

06_3FH. See Table 2-33

MSR_S2_PMON_CTR3

06_3FH. See Table 2-33

MSR_S2_PMON_EVNTSEL0

06_3FH. See Table 2-33

MSR_S2_PMON_EVNTSEL1

06_3FH. See Table 2-33

MSR_S2_PMON_EVNTSEL2

06_3FH. See Table 2-33

MSR_S2_PMON_EVNTSEL3

06_3FH. See Table 2-33

MSR_S3_PMON_BOX_CTL

06_3FH. See Table 2-33

MSR_S3_PMON_BOX_FILTER

06_3FH. See Table 2-33

MSR_S3_PMON_CTR0

06_3FH. See Table 2-33

MSR_S3_PMON_CTR1

06_3FH. See Table 2-33

MSR_S3_PMON_CTR2

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-455

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH. See Table 2-33

MSR_S3_PMON_CTR3

06_3FH. See Table 2-33

MSR_S3_PMON_EVNTSEL0

06_3FH. See Table 2-33

MSR_S3_PMON_EVNTSEL1

06_3FH. See Table 2-33

MSR_S3_PMON_EVNTSEL2

06_3FH. See Table 2-33

MSR_S3_PMON_EVNTSEL3

06_3FH. See Table 2-33

MSR_SAAT_ESCR0

0FH. See Table 2-49

MSR_SAAT_ESCR1

0FH. See Table 2-49

MSR_SGXOWNEREPOCH0

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_SGXOWNEREPOCH1

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_SMI_COUNT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_57H. See Table 2-47

MSR_SMM_BLOCKED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_SMM_DELAYED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_SMM_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR_SMM_MCA_CAP

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-30

06_3FH. See Table 2-32

06_56H, 06_4FH . See Table 2-36

06_57H. See Table 2-47

MSR_SMRR_PHYSBASE

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-456 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_0FH, 06_17H . See Table 2-3

MSR_SMRR_PHYSMASK

06_0FH, 06_17H . See Table 2-3

MSR_SSU_ESCR0

0FH. See Table 2-49

MSR_TBPU_ESCR0

0FH. See Table 2-49

MSR_TBPU_ESCR1

0FH. See Table 2-49

MSR_TC_ESCR0

0FH. See Table 2-49

MSR_TC_ESCR1

0FH. See Table 2-49

MSR_TC_PRECISE_EVENT

0FH . See Table 2-49

MSR_TEMPERATURE_TARGET

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

06_2AH, 06_2DH . See Table 2-20

06_3EH. See Table 2-26

06_56H, 06_4FH. See Table 2-36

06_57H. See Table 2-47

MSR_THERM2_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

0FH. See Table 2-49

06_0EH. See Table 2-52

06_09H. See Table 2-53

MSR_THREAD_ID_INFO

06_3FH. See Table 2-32

MSR_TRACE_HUB_STH_ACPIBAR_BASE

06_8EH, 06_9EH . See Table 2-41

MSR_TURBO_ACTIVATION_RATIO

06_5CH, 06_7AH . See Table 2-12

06_3AH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H. See Table 2-47

MSR_TURBO_GROUP_CORECNT

06_5CH, 06_7AH . See Table 2-12

MSR_TURBO_POWER_CURRENT_LIMIT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-15

MSR_TURBO_RATIO_LIMIT

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-457

MODEL-SPECIFIC REGISTERS (MSRS)

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH . See Table 2-15

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

06_2EH. See Table 2-17

06_25H, 06_2CH . See Table 2-18

06_2FH. See Table 2-19

06_2AH, 06_45H . See Table 2-21

06_2DH. See Table 2-23

06_3EH. See Table 2-26 and
Table 2-27

06_3CH, 06_45H, 06_46H . See Table 2-30

06_3FH. See Table 2-32

06_3DH. See Table 2-35

06_56H, 06_4FH . See Table 2-36

06_55H. See Table 2-46

06_57H. See Table 2-47

MSR_TURBO_RATIO_LIMIT1

06_3EH. See Table 2-26 and
Table 2-27

06_3FH. See Table 2-32

06_56H, 06_4FH . See Table 2-36

MSR_TURBO_RATIO_LIMIT2

06_3FH. See Table 2-32

MSR_TURBO_RATIO_LIMIT3

06_56H. See Table 2-37

06_4FH. See Table 2-38

MSR_TURBO_RATIO_LIMIT_CORES

06_55H. See Table 2-46

MSR_U_PMON_BOX_STATUS

06_3EH. See Table 2-28

06_3FH. See Table 2-33

MSR_U_PMON_CTR

06_2EH. See Table 2-17

MSR_U_PMON_CTR0

06_2DH. See Table 2-24

06_3FH. See Table 2-33

MSR_U_PMON_CTR1

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_U_PMON_EVNT_SEL

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-458 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-17

MSR_U_PMON_EVNTSEL0

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_U_PMON_EVNTSEL1

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_U_PMON_GLOBAL_CTRL

06_2EH . See Table 2-17

MSR_U_PMON_GLOBAL_OVF_CTRL

06_2EH . See Table 2-17

MSR_U_PMON_GLOBAL_STATUS

06_2EH . See Table 2-17

MSR_U_PMON_UCLK_FIXED_CTL

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_U_PMON_UCLK_FIXED_CTR

06_2DH . See Table 2-24

06_3FH . See Table 2-33

MSR_U2L_ESCR0

0FH . See Table 2-49

MSR_U2L_ESCR1

0FH . See Table 2-49

MSR_UNC_ARB_PERFCTR0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_ARB_PERFCTR1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_ARB_PERFEVTSEL0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_ARB_PERFEVTSEL1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_0_PERFCTR0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-459

MODEL-SPECIFIC REGISTERS (MSRS)

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_0_PERFCTR1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_0_PERFCTR2

06_2AH . See Table 2-22

MSR_UNC_CBO_0_PERFCTR3

06_2AH . See Table 2-22

MSR_UNC_CBO_0_PERFEVTSEL0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_0_PERFEVTSEL1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_0_PERFEVTSEL2

06_2AH . See Table 2-22

MSR_UNC_CBO_0_PERFEVTSEL3

06_2AH . See Table 2-22

MSR_UNC_CBO_0_UNIT_STATUS

06_2AH . See Table 2-22

MSR_UNC_CBO_1_PERFCTR0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_1_PERFCTR1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_1_PERFCTR2

06_2AH . See Table 2-22

MSR_UNC_CBO_1_PERFCTR3

06_2AH . See Table 2-22

MSR_UNC_CBO_1_PERFEVTSEL0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_1_PERFEVTSEL1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-460 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_1_PERFEVTSEL2

06_2AH . See Table 2-22

MSR_UNC_CBO_1_PERFEVTSEL3

06_2AH . See Table 2-22

MSR_UNC_CBO_1_UNIT_STATUS

06_2AH . See Table 2-22

MSR_UNC_CBO_2_PERFCTR0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_2_PERFCTR1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_2_PERFCTR2

06_2AH . See Table 2-22

MSR_UNC_CBO_2_PERFCTR3

06_2AH . See Table 2-22

MSR_UNC_CBO_2_PERFEVTSEL0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_2_PERFEVTSEL1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_2_PERFEVTSEL2

06_2AH . See Table 2-22

MSR_UNC_CBO_2_PERFEVTSEL3

06_2AH . See Table 2-22

MSR_UNC_CBO_2_UNIT_STATUS

06_2AH . See Table 2-22

MSR_UNC_CBO_3_PERFCTR0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_3_PERFCTR1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_3_PERFCTR2

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-461

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH . See Table 2-22

MSR_UNC_CBO_3_PERFCTR3

06_2AH . See Table 2-22

MSR_UNC_CBO_3_PERFEVTSEL0

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_3_PERFEVTSEL1

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_CBO_3_PERFEVTSEL2

06_2AH . See Table 2-22

MSR_UNC_CBO_3_PERFEVTSEL3

06_2AH . See Table 2-22

MSR_UNC_CBO_3_UNIT_STATUS

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFCTR0

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFCTR1

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFCTR2

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFCTR3

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL0

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL1

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL2

06_2AH . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL3

06_2AH . See Table 2-22

MSR_UNC_CBO_4_UNIT_STATUS

06_2AH . See Table 2-22

MSR_UNC_CBO_CONFIG

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_PERF_FIXED_CTR

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-462 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_PERF_FIXED_CTRL

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_PERF_GLOBAL_CTRL

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNC_PERF_GLOBAL_STATUS

06_2AH . See Table 2-22

06_3CH, 06_45H, 06_46H . See Table 2-30

06_4EH, 06_5EH . See Table 2-40

MSR_UNCORE_ADDR_OPCODE_MATCH

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_FIXED_CTR_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_FIXED_CTR0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_STATUS

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PERFEVTSEL7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC0

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-463

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

06_2EH . See Table 2-17

MSR_UNCORE_PMC6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PMC7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-16

MSR_UNCORE_PRMRR_BASE

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_UNCORE_PRMRR_MASK

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_UNCORE_PRMRR_PHYS_BASE

06_8EH, 06_9EH . See Table 2-41

MSR_UNCORE_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-41

MSR_VR_CURRENT_CONFIG

06_8CH, 06_8DH . See Table 2-45

MSR_W_PMON_BOX_CTRL

06_2EH . See Table 2-17

MSR_W_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-17

MSR_W_PMON_BOX_STATUS

06_2EH . See Table 2-17

MSR_W_PMON_CTR0

06_2EH . See Table 2-17

MSR_W_PMON_CTR1

06_2EH . See Table 2-17

MSR_W_PMON_CTR2

06_2EH . See Table 2-17

MSR_W_PMON_CTR3

06_2EH . See Table 2-17

MSR_W_PMON_EVNT_SEL0

06_2EH . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-464 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_W_PMON_EVNT_SEL1

06_2EH . See Table 2-17

MSR_W_PMON_EVNT_SEL2

06_2EH . See Table 2-17

MSR_W_PMON_EVNT_SEL3

06_2EH . See Table 2-17

MSR_W_PMON_FIXED_CTR

06_2EH . See Table 2-17

MSR_W_PMON_FIXED_CTR_CTL

06_2EH . See Table 2-17

MSR_WEIGHTED_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MTRRfix16K_80000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix16K_A0000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_C0000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_C8000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_D0000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_D8000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_E0000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_E8000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_F0000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRfix4K_F8000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-465

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRfix64K_00000

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase0

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase1

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase2

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase3

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase4

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase5

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase6

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysBase7

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask0

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask1

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask2

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask3

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask4

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-466 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRphysMask5

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask6

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MTRRphysMask7

06_0EH . See Table 2-52

P6 Family . See Table 2-54

MSR_TEST_CTRL

06_86H . See Table 2-14

06_7DH, 06_7EH . See Table 2-44

P6 Family . See Table 2-54

MSR Name and CPUID DisplayFamily_DisplayModel Location

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of Volume 1: Basic Architecture
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.2.1 Instruction Operands

	1.3.3 Hexadecimal and Binary Numbers
	1.3.4 Segmented Addressing
	1.3.5 A New Syntax for CPUID, CR, and MSR Values
	1.3.6 Exceptions

	1.4 Related Literature

	2. Updates to Chapter 5, Volume 1
	Chapter 5 Instruction Set Summary
	5.1 General-Purpose Instructions
	5.1.1 Data Transfer Instructions
	5.1.2 Binary Arithmetic Instructions
	5.1.3 Decimal Arithmetic Instructions
	5.1.4 Logical Instructions
	5.1.5 Shift and Rotate Instructions
	5.1.6 Bit and Byte Instructions
	5.1.7 Control Transfer Instructions
	5.1.8 String Instructions
	5.1.9 I/O Instructions
	5.1.10 Enter and Leave Instructions
	5.1.11 Flag Control (EFLAG) Instructions
	5.1.12 Segment Register Instructions
	5.1.13 Miscellaneous Instructions
	5.1.14 User Mode Extended Sate Save/Restore Instructions
	5.1.15 Random Number Generator Instructions
	5.1.16 BMI1, BMI2
	5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW

	5.2 x87 FPU Instructions
	5.2.1 x87 FPU Data Transfer Instructions
	5.2.2 x87 FPU Basic Arithmetic Instructions
	5.2.3 x87 FPU Comparison Instructions
	5.2.4 x87 FPU Transcendental Instructions
	5.2.5 x87 FPU Load Constants Instructions
	5.2.6 x87 FPU Control Instructions

	5.3 x87 FPU AND SIMD State Management Instructions
	5.4 MMX™ Instructions
	5.4.1 MMX Data Transfer Instructions
	5.4.2 MMX Conversion Instructions
	5.4.3 MMX Packed Arithmetic Instructions
	5.4.4 MMX Comparison Instructions
	5.4.5 MMX Logical Instructions
	5.4.6 MMX Shift and Rotate Instructions
	5.4.7 MMX State Management Instructions

	5.5 SSE Instructions
	5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
	5.5.1.1 SSE Data Transfer Instructions
	5.5.1.2 SSE Packed Arithmetic Instructions
	5.5.1.3 SSE Comparison Instructions
	5.5.1.4 SSE Logical Instructions
	5.5.1.5 SSE Shuffle and Unpack Instructions
	5.5.1.6 SSE Conversion Instructions

	5.5.2 SSE MXCSR State Management Instructions
	5.5.3 SSE 64-Bit SIMD Integer Instructions
	5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

	5.6 SSE2 Instructions
	5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions
	5.6.1.1 SSE2 Data Movement Instructions
	5.6.1.2 SSE2 Packed Arithmetic Instructions
	5.6.1.3 SSE2 Logical Instructions
	5.6.1.4 SSE2 Compare Instructions
	5.6.1.5 SSE2 Shuffle and Unpack Instructions
	5.6.1.6 SSE2 Conversion Instructions

	5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
	5.6.3 SSE2 128-Bit SIMD Integer Instructions
	5.6.4 SSE2 Cacheability Control and Ordering Instructions

	5.7 SSE3 Instructions
	5.7.1 SSE3 x87-FP Integer Conversion Instruction
	5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
	5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
	5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
	5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
	5.7.6 SSE3 Agent Synchronization Instructions

	5.8 Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions
	5.8.1 Horizontal Addition/Subtraction
	5.8.2 Packed Absolute Values
	5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
	5.8.4 Packed Multiply High with Round and Scale
	5.8.5 Packed Shuffle Bytes
	5.8.6 Packed Sign
	5.8.7 Packed Align Right

	5.9 SSE4 Instructions
	5.10 SSE4.1 Instructions
	5.10.1 Dword Multiply Instructions
	5.10.2 Floating-Point Dot Product Instructions
	5.10.3 Streaming Load Hint Instruction
	5.10.4 Packed Blending Instructions
	5.10.5 Packed Integer MIN/MAX Instructions
	5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
	5.10.7 Insertion and Extractions from XMM Registers
	5.10.8 Packed Integer Format Conversions
	5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
	5.10.10 Horizontal Search
	5.10.11 Packed Test
	5.10.12 Packed Qword Equality Comparisons
	5.10.13 Dword Packing With Unsigned Saturation

	5.11 SSE4.2 Instruction Set
	5.11.1 String and Text Processing Instructions
	5.11.2 Packed Comparison SIMD integer Instruction

	5.12 Intel® AES-NI and PCLMULQDQ
	5.13 Intel® Advanced Vector Extensions (Intel® AVX)
	5.14 16-bit Floating-Point Conversion
	5.15 Fused-Multiply-ADD (FMA)
	5.16 Intel® Advanced Vector Extensions 2 (Intel® AVX2)
	5.17 Intel® Transactional Synchronization Extensions (Intel® TSX)
	5.18 Intel® SHA Extensions
	5.19 Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
	5.20 System Instructions
	5.21 64-Bit Mode Instructions
	5.22 Virtual-Machine Extensions
	5.23 Safer Mode Extensions
	5.24 Intel® Memory Protection Extensions
	5.25 Intel® Software Guard Extensions
	5.26 Shadow Stack Management Instructions
	5.27 Control Transfer Terminating Instructions

	3. Updates to Chapter 10, Volume 1
	Chapter 10 Programming with Intel® Streaming SIMD Extensions (Intel® SSE)
	10.1 Overview of SSE Extensions
	10.2 SSE Programming Environment
	10.2.1 SSE in 64-Bit Mode and Compatibility Mode
	10.2.2 XMM Registers
	10.2.3 MXCSR Control and Status Register
	10.2.3.1 SIMD Floating-Point Mask and Flag Bits
	10.2.3.2 SIMD Floating-Point Rounding Control Field
	10.2.3.3 Flush-To-Zero
	10.2.3.4 Denormals-Are-Zeros

	10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU

	10.3 SSE Data Types
	10.4 SSE Instruction Set
	10.4.1 SSE Packed and Scalar Floating-Point Instructions
	10.4.1.1 SSE Data Movement Instructions
	10.4.1.2 SSE Arithmetic Instructions

	10.4.2 SSE Logical Instructions
	10.4.2.1 SSE Comparison Instructions
	10.4.2.2 SSE Shuffle and Unpack Instructions

	10.4.3 SSE Conversion Instructions
	10.4.4 SSE 64-Bit SIMD Integer Instructions
	10.4.5 MXCSR State Management Instructions
	10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
	10.4.6.1 Cacheability Control Instructions
	10.4.6.2 Caching of Temporal vs. Non-Temporal Data
	10.4.6.3 PREFETCHh Instructions
	10.4.6.4 SFENCE Instruction

	10.5 FXSAVE and FXRSTOR Instructions
	10.5.1 FXSAVE Area
	10.5.1.1 x87 State
	10.5.1.2 SSE State

	10.5.2 Operation of FXSAVE
	10.5.3 Operation of FXRSTOR

	10.6 Handling SSE Instruction Exceptions
	10.7 Writing Applications with the SSE Extensions

	4. Updates to Chapter 15, Volume 1
	Chapter 15 Programming with Intel® AVX-512
	15.1 Overview
	15.1.1 512-Bit Wide SIMD Register Support
	15.1.2 32 SIMD Register Support
	15.1.3 Eight Opmask Register Support
	15.1.4 Instruction Syntax Enhancement
	15.1.5 EVEX Instruction Encoding Support

	15.2 Detection of AVX-512 Foundation Instructions
	15.2.1 Additional 512-bit Instruction Extensions of the Intel AVX-512 Family

	15.3 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family
	15.4 Detection of Intel AVX-512 Instruction Groups Operating at 256 and 128-bit Vector Lengths
	15.5 Accessing XMM, YMM AND ZMM Registers
	15.6 Enhanced Vector Programming Environment Using EVEX Encoding
	15.6.1 OPMASK Register to Predicate Vector Data Processing
	15.6.1.1 Opmask Register K0
	15.6.1.2 Example of Opmask Usages

	15.6.2 OpMask Instructions
	15.6.3 Broadcast
	15.6.4 Static Rounding Mode and Suppress All Exceptions
	15.6.5 Compressed Disp8*N Encoding

	15.7 Memory Alignment
	15.8 SIMD Floating-Point Exceptions
	15.9 Instruction Exception Specification
	15.10 Emulation
	15.11 Writing floating-point exception handlers

	5. Updates to Chapter 1, Volume 2A
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of Volume 2A, 2B, 2C and 2D: Instruction Set Reference
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Exceptions
	1.3.7 A New Syntax for CPUID, CR, and MSR Values

	1.4 Related Literature

	6. Updates to Chapter 2, Volume 2A
	Chapter 2 Instruction Format
	2.1 Instruction Format for Protected Mode, real-address Mode, and virtual-8086 mode
	2.1.1 Instruction Prefixes
	2.1.2 Opcodes
	2.1.3 ModR/M and SIB Bytes
	2.1.4 Displacement and Immediate Bytes
	2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

	2.2 IA-32e Mode
	2.2.1 REX Prefixes
	2.2.1.1 Encoding
	2.2.1.2 More on REX Prefix Fields
	2.2.1.3 Displacement
	2.2.1.4 Direct Memory-Offset MOVs
	2.2.1.5 Immediates
	2.2.1.6 RIP-Relative Addressing
	2.2.1.7 Default 64-Bit Operand Size

	2.2.2 Additional Encodings for Control and Debug Registers

	2.3 Intel® Advanced Vector Extensions (Intel® AVX)
	2.3.1 Instruction Format
	2.3.2 VEX and the LOCK prefix
	2.3.3 VEX and the 66H, F2H, and F3H prefixes
	2.3.4 VEX and the REX prefix
	2.3.5 The VEX Prefix
	2.3.5.1 VEX Byte 0, bits[7:0]
	2.3.5.2 VEX Byte 1, bit [7] - ‘R’
	2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
	2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
	2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
	2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest Register Specifier

	2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
	2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
	2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
	2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

	2.3.7 The Opcode Byte
	2.3.8 The MODRM, SIB, and Displacement Bytes
	2.3.9 The Third Source Operand (Immediate Byte)
	2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
	2.3.10.1 Vector Length Transition and Programming Considerations

	2.3.11 AVX Instruction Length
	2.3.12 Vector SIB (VSIB) Memory Addressing
	2.3.12.1 64-bit Mode VSIB Memory Addressing

	2.4 AVX and SSE Instruction Exception Specification
	2.4.1 Exceptions Type 1 (Aligned memory reference)
	2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
	2.4.3 Exceptions Type 3 (<16 Byte memory argument)
	2.4.4 Exceptions Type 4 (>=16 Byte mem arg, no alignment, no floating-point exceptions)
	2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
	2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
	2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)
	2.4.8 Exceptions Type 8 (AVX and no memory argument)
	2.4.9 Exceptions Type 11 (VEX-only, mem arg no AC, floating-point exceptions)
	2.4.10 Exceptions Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

	2.5 VEX Encoding Support for GPR Instructions
	2.5.1 Exceptions Type 13 (VEX-Encoded GPR Instructions)

	2.6 Intel® AVX-512 Encoding
	2.6.1 Instruction Format and EVEX
	2.6.2 Register Specifier Encoding and EVEX
	2.6.3 Opmask Register Encoding
	2.6.4 Masking Support in EVEX
	2.6.5 Compressed Displacement (disp8*N) Support in EVEX
	2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
	2.6.7 Embedded Broadcast Support in EVEX
	2.6.8 Static Rounding Support in EVEX
	2.6.9 SAE Support in EVEX
	2.6.10 Vector Length Orthogonality
	2.6.11 #UD Equations for EVEX
	2.6.11.1 State Dependent #UD
	2.6.11.2 Opcode Independent #UD
	2.6.11.3 Opcode Dependent #UD

	2.6.12 Device Not Available
	2.6.13 Scalar Instructions

	2.7 Exception Classifications of EVEX-Encoded instructions
	2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
	2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
	2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
	2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
	2.7.5 Exceptions Type E5 and E5NF
	2.7.6 Exceptions Type E6 and E6NF
	2.7.7 Exceptions Type E7NM
	2.7.8 Exceptions Type E9 and E9NF
	2.7.9 Exceptions Type E10 and E10NF
	2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
	2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

	2.8 Exception Classifications of Opmask instructions

	7. Updates to Chapter 3, Volume 2A
	INSTRUCTION SET REFERENCE, A-L
	AESDEC
	AESDECLAST
	AESENC
	AESENCLAST
	CALL
	CMPSS
	CPUID
	FRSTOR
	GF2P8AFFINEINVQB
	GF2P8AFFINEQB
	GF2P8MULB
	IRET/IRETD/IRETQ
	LZCNT

	8. Updates to Chapter 4, Volume 2B
	PCLMULQDQ
	PSIGNB/PSIGNW/PSIGND
	PSLLW/PSLLD/PSLLQ
	PSRLW/PSRLD/PSRLQ
	PTEST
	RDPMC
	SLDT
	STOS/STOSB/STOSW/STOSD/STOSQ
	TZCNT

	9. Updates to Chapter 5, Volume 2C
	VCVTNE2PS2BF16
	VCVTNEPS2BF16
	VDBPSADBW
	VDPBF16PS
	VFIXUPIMMPD
	VFIXUPIMMPS
	VFMADD132PD/VFMADD213PD/VFMADD231PD
	VP2INTERSECTD/VP2INTERSECTQ
	VPERMD/VPERMW
	VPTESTNMB/W/D/Q
	VTESTPD/VTESTPS
	WBNOINVD

	10. Updates to Chapter 6, Volume 2D
	GETSEC[ENTERACCS]

	11. Updates to Chapter 7, Volume 2D
	PREFETCHWT1

	12. Updates to Chapter 1, Volume 3A
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of The SYSTEM PROGRAMMING GUIDE
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Syntax for CPUID, CR, and MSR Values
	1.3.7 Exceptions

	1.4 Related Literature

	13. Updates to Chapter 4, Volume 3A
	Chapter 4 Paging
	4.1 Paging Modes and Control Bits
	4.1.1 Four Paging Modes
	4.1.2 Paging-Mode Enabling
	4.1.3 Paging-Mode Modifiers
	4.1.4 Enumeration of Paging Features by CPUID

	4.2 Hierarchical Paging Structures: an Overview
	4.3 32-Bit Paging
	4.4 PAE Paging
	4.4.1 PDPTE Registers
	4.4.2 Linear-Address Translation with PAE Paging

	4.5 4-Level Paging and 5-Level Paging
	4.6 Access Rights
	4.6.1 Determination of Access Rights
	4.6.2 Protection Keys

	4.7 Page-Fault Exceptions
	4.8 Accessed and Dirty Flags
	4.9 Paging and Memory Typing
	4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium II Processors)
	4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent Processor Families)
	4.9.3 Caching Paging-Related Information about Memory Typing

	4.10 Caching Translation Information
	4.10.1 Process-Context Identifiers (PCIDs)
	4.10.2 Translation Lookaside Buffers (TLBs)
	4.10.2.1 Page Numbers, Page Frames, and Page Offsets
	4.10.2.2 Caching Translations in TLBs
	4.10.2.3 Details of TLB Use
	4.10.2.4 Global Pages

	4.10.3 Paging-Structure Caches
	4.10.3.1 Caches for Paging Structures
	4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
	4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

	4.10.4 Invalidation of TLBs and Paging-Structure Caches
	4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
	4.10.4.2 Recommended Invalidation
	4.10.4.3 Optional Invalidation
	4.10.4.4 Delayed Invalidation

	4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

	4.11 Interactions with Virtual-Machine Extensions (VMX)
	4.11.1 VMX Transitions
	4.11.2 VMX Support for Address Translation

	4.12 Using Paging for Virtual Memory
	4.13 Mapping Segments to Pages

	14. Updates to Chapter 6, Volume 3A
	Chapter 6 Interrupt and Exception Handling
	6.1 Interrupt and Exception Overview
	6.2 Exception and Interrupt Vectors
	6.3 Sources of Interrupts
	6.3.1 External Interrupts
	6.3.2 Maskable Hardware Interrupts
	6.3.3 Software-Generated Interrupts

	6.4 Sources of Exceptions
	6.4.1 Program-Error Exceptions
	6.4.2 Software-Generated Exceptions
	6.4.3 Machine-Check Exceptions

	6.5 Exception Classifications
	6.6 Program or Task Restart
	6.7 NonMaskable Interrupt (NMI)
	6.7.1 Handling Multiple NMIs

	6.8 Enabling and Disabling Interrupts
	6.8.1 Masking Maskable Hardware Interrupts
	6.8.2 Masking Instruction Breakpoints
	6.8.3 Masking Exceptions and Interrupts When Switching Stacks

	6.9 Priority Among Simultaneous Exceptions and Interrupts
	6.10 Interrupt Descriptor Table (IDT)
	6.11 IDT Descriptors
	6.12 Exception and Interrupt Handling
	6.12.1 Exception- or Interrupt-Handler Procedures
	6.12.1.1 Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines
	6.12.1.2 Protection of Exception- and Interrupt-Handler Procedures
	6.12.1.3 Flag Usage By Exception- or Interrupt-Handler Procedure

	6.12.2 Interrupt Tasks

	6.13 Error Code
	6.14 Exception and Interrupt Handling in 64-bit Mode
	6.14.1 64-Bit Mode IDT
	6.14.2 64-Bit Mode Stack Frame
	6.14.3 IRET in IA-32e Mode
	6.14.4 Stack Switching in IA-32e Mode
	6.14.5 Interrupt Stack Table

	6.15 Exception and Interrupt Reference
	Interrupt 0—Divide Error Exception (#DE)
	Interrupt 1—Debug Exception (#DB)
	Interrupt 2—NMI Interrupt
	Interrupt 3—Breakpoint Exception (#BP)
	Interrupt 4—Overflow Exception (#OF)
	Interrupt 5—BOUND Range Exceeded Exception (#BR)
	Interrupt 6—Invalid Opcode Exception (#UD)
	Interrupt 7—Device Not Available Exception (#NM)
	Interrupt 8—Double Fault Exception (#DF)
	Interrupt 9—Coprocessor Segment Overrun
	Interrupt 10—Invalid TSS Exception (#TS)
	Interrupt 11—Segment Not Present (#NP)
	Interrupt 12—Stack Fault Exception (#SS)
	Interrupt 13—General Protection Exception (#GP)
	Interrupt 14—Page-Fault Exception (#PF)
	Interrupt 16—x87 FPU Floating-Point Error (#MF)
	Interrupt 17—Alignment Check Exception (#AC)
	Interrupt 18—Machine-Check Exception (#MC)
	Interrupt 19—SIMD Floating-Point Exception (#XM)
	Interrupt 20—Virtualization Exception (#VE)
	Interrupt 21—Control Protection Exception (#CP)
	Interrupts 32 to 255—User Defined Interrupts

	15. Updates to Chapter 7, Volume 3A
	Chapter 7 Task Management
	7.1 Task Management Overview
	7.1.1 Task Structure
	7.1.2 Task State
	7.1.3 Executing a Task

	7.2 Task Management Data Structures
	7.2.1 Task-State Segment (TSS)
	7.2.2 TSS Descriptor
	7.2.3 TSS Descriptor in 64-bit mode
	7.2.4 Task Register
	7.2.5 Task-Gate Descriptor

	7.3 Task Switching
	7.4 Task Linking
	7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
	7.4.2 Modifying Task Linkages

	7.5 Task Address Space
	7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
	7.5.2 Task Logical Address Space

	7.6 16-Bit Task-State Segment (TSS)
	7.7 Task Management in 64-bit Mode

	16. Updates to Chapter 10, Volume 3A
	Chapter 10 Advanced Programmable Interrupt Controller (APIC)
	10.1 Local and I/O APIC Overview
	10.2 System Bus Vs. APIC Bus
	10.3 The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC
	10.4 Local APIC
	10.4.1 The Local APIC Block Diagram
	10.4.2 Presence of the Local APIC
	10.4.3 Enabling or Disabling the Local APIC
	10.4.4 Local APIC Status and Location
	10.4.5 Relocating the Local APIC Registers
	10.4.6 Local APIC ID
	10.4.7 Local APIC State
	10.4.7.1 Local APIC State After Power-Up or Reset
	10.4.7.2 Local APIC State After It Has Been Software Disabled
	10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
	10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI

	10.4.8 Local APIC Version Register

	10.5 Handling Local Interrupts
	10.5.1 Local Vector Table
	10.5.2 Valid Interrupt Vectors
	10.5.3 Error Handling
	10.5.4 APIC Timer
	10.5.4.1 TSC-Deadline Mode

	10.5.5 Local Interrupt Acceptance

	10.6 Issuing Interprocessor Interrupts
	10.6.1 Interrupt Command Register (ICR)
	10.6.2 Determining IPI Destination
	10.6.2.1 Physical Destination Mode
	10.6.2.2 Logical Destination Mode
	10.6.2.3 Broadcast/Self Delivery Mode
	10.6.2.4 Lowest Priority Delivery Mode

	10.6.3 IPI Delivery and Acceptance

	10.7 System and APIC Bus Arbitration
	10.8 Handling Interrupts
	10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
	10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
	10.8.3 Interrupt, Task, and Processor Priority
	10.8.3.1 Task and Processor Priorities

	10.8.4 Interrupt Acceptance for Fixed Interrupts
	10.8.5 Signaling Interrupt Servicing Completion
	10.8.6 Task Priority in IA-32e Mode
	10.8.6.1 Interaction of Task Priorities between CR8 and APIC

	10.9 Spurious Interrupt
	10.10 APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors)
	10.10.1 Bus Message Formats

	10.11 Message Signalled Interrupts
	10.11.1 Message Address Register Format
	10.11.2 Message Data Register Format

	10.12 Extended XAPIC (x2APIC)
	10.12.1 Detecting and Enabling x2APIC Mode
	10.12.1.1 Instructions to Access APIC Registers
	10.12.1.2 x2APIC Register Address Space
	10.12.1.3 Reserved Bit Checking

	10.12.2 x2APIC Register Availability
	10.12.3 MSR Access in x2APIC Mode
	10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
	10.12.5 x2APIC State Transitions
	10.12.5.1 x2APIC States
	x2APIC After Reset
	x2APIC Transitions From x2APIC Mode
	x2APIC Transitions From Disabled Mode
	State Changes From xAPIC Mode to x2APIC Mode

	10.12.6 Routing of Device Interrupts in x2APIC Mode
	10.12.7 Initialization by System Software
	10.12.8 CPUID Extensions And Topology Enumeration
	10.12.8.1 Consistency of APIC IDs and CPUID

	10.12.9 ICR Operation in x2APIC Mode
	10.12.10 Determining IPI Destination in x2APIC Mode
	10.12.10.1 Logical Destination Mode in x2APIC Mode
	10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID

	10.12.11 SELF IPI Register

	10.13 APIC Bus Message Formats
	10.13.1 Bus Message Formats
	10.13.2 EOI Message
	10.13.2.1 Short Message
	10.13.2.2 Non-focused Lowest Priority Message
	10.13.2.3 APIC Bus Status Cycles

	17. Updates to Chapter 11, Volume 3A
	Chapter 11 Memory Cache Control
	11.1 Internal Caches, TLBs, and Buffers
	11.2 Caching Terminology
	11.3 Methods of Caching Available
	11.3.1 Buffering of Write Combining Memory Locations
	11.3.2 Choosing a Memory Type
	11.3.3 Code Fetches in Uncacheable Memory

	11.4 Cache Control Protocol
	11.5 Cache Control
	11.5.1 Cache Control Registers and Bits
	11.5.2 Precedence of Cache Controls
	11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors
	11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families
	11.5.2.3 Writing Values Across Pages with Different Memory Types

	11.5.3 Preventing Caching
	11.5.4 Disabling and Enabling the L3 Cache
	11.5.5 Cache Management Instructions
	11.5.6 L1 Data Cache Context Mode
	11.5.6.1 Adaptive Mode
	11.5.6.2 Shared Mode

	11.6 Self-Modifying Code
	11.7 Implicit Caching (Pentium 4, Intel Xeon, and P6 Family Processors)
	11.8 Explicit Caching
	11.9 Invalidating the Translation Lookaside Buffers (TLBs)
	11.10 Store Buffer
	11.11 Memory Type Range Registers (MTRRs)
	11.11.1 MTRR Feature Identification
	11.11.2 Setting Memory Ranges with MTRRs
	11.11.2.1 IA32_MTRR_DEF_TYPE MSR
	11.11.2.2 Fixed Range MTRRs
	11.11.2.3 Variable Range MTRRs
	11.11.2.4 System-Management Range Register Interface

	11.11.3 Example Base and Mask Calculations
	11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support

	11.11.4 Range Size and Alignment Requirement
	11.11.4.1 MTRR Precedences

	11.11.5 MTRR Initialization
	11.11.6 Remapping Memory Types
	11.11.7 MTRR Maintenance Programming Interface
	11.11.7.1 MemTypeGet() Function
	11.11.7.2 MemTypeSet() Function

	11.11.8 MTRR Considerations in MP Systems
	11.11.9 Large Page Size Considerations

	11.12 Page Attribute Table (PAT)
	11.12.1 Detecting Support for the PAT Feature
	11.12.2 IA32_PAT MSR
	11.12.3 Selecting a Memory Type from the PAT
	11.12.4 Programming the PAT
	11.12.5 PAT Compatibility with Earlier IA-32 Processors

	18. Updates to Chapter 17, Volume 3B
	Chapter 17 Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) Features
	17.1 Overview of Debug Support Facilities
	17.2 Debug Registers
	17.2.1 Debug Address Registers (DR0-DR3)
	17.2.2 Debug Registers DR4 and DR5
	17.2.3 Debug Status Register (DR6)
	17.2.4 Debug Control Register (DR7)
	17.2.5 Breakpoint Field Recognition
	17.2.6 Debug Registers and Intel® 64 Processors

	17.3 Debug Exceptions
	17.3.1 Debug Exception (#DB)—Interrupt Vector 1
	17.3.1.1 Instruction-Breakpoint Exception Condition
	17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	17.3.1.3 General-Detect Exception Condition
	17.3.1.4 Single-Step Exception Condition
	17.3.1.5 Task-Switch Exception Condition

	17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
	17.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM)

	17.4 Last Branch, Interrupt, and Exception Recording Overview
	17.4.1 IA32_DEBUGCTL MSR
	17.4.2 Monitoring Branches, Exceptions, and Interrupts
	17.4.3 Single-Stepping on Branches
	17.4.4 Branch Trace Messages
	17.4.4.1 Branch Trace Message Visibility

	17.4.5 Branch Trace Store (BTS)
	17.4.6 CPL-Qualified Branch Trace Mechanism
	17.4.7 Freezing LBR and Performance Counters on PMI
	17.4.8 LBR Stack
	17.4.8.1 LBR Stack and Intel® 64 Processors
	17.4.8.2 LBR Stack and IA-32 Processors
	17.4.8.3 Last Exception Records and Intel 64 Architecture

	17.4.9 BTS and DS Save Area
	17.4.9.1 64 Bit Format of the DS Save Area
	17.4.9.2 Setting Up the DS Save Area
	17.4.9.3 Setting Up the BTS Buffer
	17.4.9.4 Setting Up CPL-Qualified BTS
	17.4.9.5 Writing the DS Interrupt Service Routine

	17.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processors)
	17.5.1 LBR Stack
	17.5.2 LBR Stack in Intel Atom Processors based on the Silvermont Microarchitecture

	17.6 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Microarchitecture
	17.7 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Plus Microarchitecture
	17.8 Last Branch, Interrupt and Exception Recording for Intel® Xeon Phi™ Processor 7200/5200/3200
	17.9 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Nehalem
	17.9.1 LBR Stack
	17.9.2 Filtering of Last Branch Records

	17.10 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy Bridge
	17.11 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Haswell Microarchitecture
	17.11.1 LBR Stack Enhancement

	17.12 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Skylake Microarchitecture
	17.12.1 MSR_LBR_INFO_x MSR
	17.12.2 Streamlined Freeze_LBRs_On_PMI Operation
	17.12.3 LBR Behavior and Deep C-State

	17.13 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	17.13.1 MSR_DEBUGCTLA MSR
	17.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
	17.13.3 Last Exception Records

	17.14 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	17.15 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	17.16 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	17.16.1 DEBUGCTLMSR Register
	17.16.2 Last Branch and Last Exception MSRs
	17.16.3 Monitoring Branches, Exceptions, and Interrupts

	17.17 Time-Stamp Counter
	17.17.1 Invariant TSC
	17.17.2 IA32_TSC_AUX Register and RDTSCP Support
	17.17.3 Time-Stamp Counter Adjustment
	17.17.4 Invariant Time-Keeping

	17.18 Intel® Resource Director Technology (Intel® RDT) Monitoring Features
	17.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
	17.18.2 Enabling Monitoring: Usage Flow
	17.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory Bandwidth Monitoring
	17.18.4 Monitoring Resource Type and Capability Enumeration
	17.18.5 Feature-Specific Enumeration
	17.18.5.1 Cache Monitoring Technology
	17.18.5.2 Memory Bandwidth Monitoring

	17.18.6 Monitoring Resource RMID Association
	17.18.7 Monitoring Resource Selection and Reporting Infrastructure
	17.18.8 Monitoring Programming Considerations
	17.18.8.1 Monitoring Dynamic Configuration
	17.18.8.2 Monitoring Operation With Power Saving Features
	17.18.8.3 Monitoring Operation with Other Operating Modes
	17.18.8.4 Monitoring Operation with RAS Features

	17.19 Intel® Resource Director Technology (Intel® RDT) Allocation Features
	17.19.1 Introduction to Cache Allocation Technology (CAT)
	17.19.2 Cache Allocation Technology Architecture
	17.19.3 Code and Data Prioritization (CDP) Technology
	17.19.4 Enabling Cache Allocation Technology Usage Flow
	17.19.4.1 Enumeration and Detection Support of Cache Allocation Technology
	17.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration
	17.19.4.3 Cache Allocation Technology: Cache Mask Configuration
	17.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features

	17.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology
	17.19.5.1 Mapping Between L3 CDP Masks and CAT Masks

	17.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
	17.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks
	17.19.6.2 Common L2 and L3 CDP Programming Considerations
	17.19.6.3 Cache Allocation Technology Dynamic Configuration
	17.19.6.4 Cache Allocation Technology Operation With Power Saving Features
	17.19.6.5 Cache Allocation Technology Operation with Other Operating Modes
	17.19.6.6 Associating Threads with CAT/CDP Classes of Service

	17.19.7 Introduction to Memory Bandwidth Allocation
	17.19.7.1 Memory Bandwidth Allocation Enumeration
	17.19.7.2 Memory Bandwidth Allocation Configuration
	17.19.7.3 Memory Bandwidth Allocation Usage Considerations

	19. Updates to Chapter 18, Volume 3B
	Chapter 18 Performance Monitoring
	18.1 Performance Monitoring Overview
	18.2 Architectural Performance Monitoring
	18.2.1 Architectural Performance Monitoring Version 1
	18.2.1.1 Architectural Performance Monitoring Version 1 Facilities
	18.2.1.2 Pre-defined Architectural Performance Events

	18.2.2 Architectural Performance Monitoring Version 2
	18.2.3 Architectural Performance Monitoring Version 3
	18.2.3.1 AnyThread Counting and Software Evolution

	18.2.4 Architectural Performance Monitoring Version 4
	18.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
	18.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
	18.2.4.3 IA32_PERF_GLOBAL_INUSE MSR

	18.2.5 Architectural Performance Monitoring Version 5
	18.2.5.1 AnyThread Mode Deprecation
	18.2.5.2 Fixed Counter Enumeration

	18.2.6 Full-Width Writes to Performance Counter Registers

	18.3 Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors)
	18.3.1 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Nehalem
	18.3.1.1 Enhancements of Performance Monitoring in the Processor Core
	18.3.1.2 Performance Monitoring Facility in the Uncore
	18.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility

	18.3.2 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Westmere
	18.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
	18.3.4 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy Bridge
	18.3.4.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
	18.3.4.2 Counter Coalescence
	18.3.4.3 Full Width Writes to Performance Counters
	18.3.4.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
	18.3.4.5 Off-core Response Performance Monitoring
	18.3.4.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series
	18.3.4.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
	18.3.4.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility

	18.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
	18.3.5.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility

	18.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
	18.3.6.1 Processor Event Based Sampling (PEBS) Facility
	18.3.6.2 PEBS Data Format
	18.3.6.3 PEBS Data Address Profiling
	18.3.6.4 Off-core Response Performance Monitoring
	18.3.6.5 Performance Monitoring and Intel® TSX
	18.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
	18.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility

	18.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance Monitoring Facility
	18.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor Performance Monitoring Facility
	18.3.8.1 Processor Event Based Sampling (PEBS) Facility
	18.3.8.2 Off-core Response Performance Monitoring
	18.3.8.3 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake Microarchitecture

	18.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
	18.3.9.1 Processor Event Based Sampling (PEBS) Facility
	18.3.9.2 Off-core Response Performance Monitoring
	18.3.9.3 Performance Metrics

	18.4 Performance monitoring (Intel® Xeon™ Phi Processors)
	18.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring
	18.4.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ processor Tile

	18.5 Performance Monitoring (Intel Atom® Processors)
	18.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
	18.5.2 Performance Monitoring for Silvermont Microarchitecture
	18.5.2.1 Enhancements of Performance Monitoring in the Processor Core
	18.5.2.2 Offcore Response Event
	18.5.2.3 Average Offcore Request Latency Measurement

	18.5.3 Performance Monitoring for Goldmont Microarchitecture
	18.5.3.1 Processor Event Based Sampling (PEBS)
	18.5.3.2 Offcore Response Event
	18.5.3.3 Average Offcore Request Latency Measurement

	18.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
	18.5.4.1 Extended PEBS

	18.5.5 Performance Monitoring for Tremont Microarchitecture
	18.5.5.1 Adaptive PEBS
	18.5.5.2 PEBS output to Intel® Processor Trace
	18.5.5.3 Precise Distribution Support on Fixed Counter 0
	18.5.5.4 Compatibility Enhancements to Offcore Response MSRs

	18.6 Performance Monitoring (Legacy Intel Processors)
	18.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
	18.6.2.1 Fixed-function Performance Counters
	18.6.2.2 Global Counter Control Facilities
	18.6.2.3 At-Retirement Events
	18.6.2.4 Processor Event Based Sampling (PEBS)

	18.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
	18.6.3.1 ESCR MSRs
	18.6.3.2 Performance Counters
	18.6.3.3 CCCR MSRs
	18.6.3.4 Debug Store (DS) Mechanism
	18.6.3.5 Programming the Performance Counters for Non-Retirement Events
	18.6.3.6 At-Retirement Counting
	18.6.3.7 Tagging Mechanism for Replay_event
	18.6.3.8 Processor Event-Based Sampling (PEBS)
	18.6.3.9 Operating System Implications

	18.6.4 Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitecture
	18.6.4.1 ESCR MSRs
	18.6.4.2 CCCR MSRs
	18.6.4.3 IA32_PEBS_ENABLE MSR
	18.6.4.4 Performance Monitoring Events
	18.6.4.5 Counting Clocks on systems with Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitecture

	18.6.5 Performance Monitoring and Dual-Core Technology
	18.6.6 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
	18.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
	18.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controller
	18.6.7.2 GBSQ Event Interface
	18.6.7.3 GSNPQ Event Interface
	18.6.7.4 FSB Event Interface
	18.6.7.5 Common Event Control Interface

	18.6.8 Performance Monitoring (P6 Family Processor)
	18.6.8.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	18.6.8.2 PerfCtr0 and PerfCtr1 MSRs
	18.6.8.3 Starting and Stopping the Performance-Monitoring Counters
	18.6.8.4 Event and Time-Stamp Monitoring Software
	18.6.8.5 Monitoring Counter Overflow

	18.6.9 Performance Monitoring (Pentium Processors)
	18.6.9.1 Control and Event Select Register (CESR)
	18.6.9.2 Use of the Performance-Monitoring Pins
	18.6.9.3 Events Counted

	18.7 Counting Clocks
	18.7.1 Non-Halted Reference Clockticks
	18.7.2 Cycle Counting and Opportunistic Processor Operation
	18.7.3 Determining the Processor Base Frequency
	18.7.3.1 For Intel® Processors Based on Microarchitecture Code Name Sandy Bridge, Ivy Bridge, Haswell and Broadwell
	18.7.3.2 For Intel® Processors Based on Microarchitecture Code Name Nehalem
	18.7.3.3 For Intel® Atom™ Processors Based on the Silvermont Microarchitecture (Including Intel Processors Based on Airmont Microarchitecture)
	18.7.3.4 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core Microarchitecture

	18.8 IA32_PERF_CAPABILITIES MSR Enumeration
	18.8.1 Filtering of SMM Handler Overhead

	18.9 PEBS Facility
	18.9.1 Extended PEBS
	18.9.2 Adaptive PEBS
	18.9.2.1 Adaptive_Record Counter Control
	18.9.2.2 PEBS Record Format
	18.9.2.3 MSR_PEBS_DATA_CFG
	18.9.2.4 PEBS Record Examples

	18.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
	18.9.4 Reduced Skid PEBS

	20. Updates to Chapter 24, Volume 3B
	Chapter 24 Virtual Machine Control Structures
	24.1 Overview
	24.2 Format of the VMCS Region
	24.3 Organization of VMCS Data
	24.4 Guest-State Area
	24.4.1 Guest Register State
	24.4.2 Guest Non-Register State

	24.5 Host-State Area
	24.6 VM-Execution Control Fields
	24.6.1 Pin-Based VM-Execution Controls
	24.6.2 Processor-Based VM-Execution Controls
	24.6.3 Exception Bitmap
	24.6.4 I/O-Bitmap Addresses
	24.6.5 Time-Stamp Counter Offset and Multiplier
	24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	24.6.7 CR3-Target Controls
	24.6.8 Controls for APIC Virtualization
	24.6.9 MSR-Bitmap Address
	24.6.10 Executive-VMCS Pointer
	24.6.11 Extended-Page-Table Pointer (EPTP)
	24.6.12 Virtual-Processor Identifier (VPID)
	24.6.13 Controls for PAUSE-Loop Exiting
	24.6.14 VM-Function Controls
	24.6.15 VMCS Shadowing Bitmap Addresses
	24.6.16 ENCLS-Exiting Bitmap
	24.6.17 ENCLV-Exiting Bitmap
	24.6.18 Control Field for Page-Modification Logging
	24.6.19 Controls for Virtualization Exceptions
	24.6.20 XSS-Exiting Bitmap
	24.6.21 Sub-Page-Permission-Table Pointer (SPPTP)

	24.7 VM-Exit Control Fields
	24.7.1 VM-Exit Controls
	24.7.2 VM-Exit Controls for MSRs

	24.8 VM-Entry Control Fields
	24.8.1 VM-Entry Controls
	24.8.2 VM-Entry Controls for MSRs
	24.8.3 VM-Entry Controls for Event Injection

	24.9 VM-Exit Information Fields
	24.9.1 Basic VM-Exit Information
	24.9.2 Information for VM Exits Due to Vectored Events
	24.9.3 Information for VM Exits That Occur During Event Delivery
	24.9.4 Information for VM Exits Due to Instruction Execution
	24.9.5 VM-Instruction Error Field

	24.10 VMCS Types: Ordinary and Shadow
	24.11 Software Use of the VMCS and Related Structures
	24.11.1 Software Use of Virtual-Machine Control Structures
	24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	24.11.3 Initializing a VMCS
	24.11.4 Software Access to Related Structures
	24.11.5 VMXON Region

	21. Updates to Chapter 25, Volume 3C
	Chapter 25 VMX Non-Root Operation
	25.1 Instructions That Cause VM Exits
	25.1.1 Relative Priority of Faults and VM Exits
	25.1.2 Instructions That Cause VM Exits Unconditionally
	25.1.3 Instructions That Cause VM Exits Conditionally

	25.2 Other Causes of VM Exits
	25.3 Changes to Instruction Behavior in VMX Non-Root Operation
	25.4 Other Changes in VMX Non-Root Operation
	25.4.1 Event Blocking
	25.4.2 Treatment of Task Switches

	25.5 Features Specific to VMX Non-Root Operation
	25.5.1 VMX-Preemption Timer
	25.5.2 Monitor Trap Flag
	25.5.3 Translation of Guest-Physical Addresses Using EPT
	25.5.4 Translation of Guest-Physical Addresses Used by Intel Processor Trace
	25.5.4.1 Guest-Physical Address Translation for Intel PT: Details
	25.5.4.2 Trace-Address Pre-Translation (TAPT)

	25.5.5 APIC Virtualization
	25.5.6 VM Functions
	25.5.6.1 Enabling VM Functions
	25.5.6.2 General Operation of the VMFUNC Instruction
	25.5.6.3 EPTP Switching

	25.5.7 Virtualization Exceptions
	25.5.7.1 Convertible EPT Violations
	25.5.7.2 Virtualization-Exception Information
	25.5.7.3 Delivery of Virtualization Exceptions

	25.6 Unrestricted Guests

	22. Updates to Chapter 26, Volume 3C
	Chapter 26 VM Entries
	26.1 Basic VM-Entry Checks
	26.2 Checks on VMX Controls and Host-State Area
	26.2.1 Checks on VMX Controls
	26.2.1.1 VM-Execution Control Fields
	26.2.1.2 VM-Exit Control Fields
	26.2.1.3 VM-Entry Control Fields

	26.2.2 Checks on Host Control Registers, MSRs, and SSP
	26.2.3 Checks on Host Segment and Descriptor-Table Registers
	26.2.4 Checks Related to Address-Space Size

	26.3 Checking and Loading Guest State
	26.3.1 Checks on the Guest State Area
	26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	26.3.1.2 Checks on Guest Segment Registers
	26.3.1.3 Checks on Guest Descriptor-Table Registers
	26.3.1.4 Checks on Guest RIP, RFLAGS, and SSP
	26.3.1.5 Checks on Guest Non-Register State
	26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

	26.3.2 Loading Guest State
	26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	26.3.2.3 Loading Guest RIP, RSP, RFLAGS, and SSP
	26.3.2.4 Loading Page-Directory-Pointer-Table Entries
	26.3.2.5 Updating Non-Register State

	26.3.3 Clearing Address-Range Monitoring

	26.4 Loading MSRs
	26.5 Trace-Address Pre-Translation (TAPT)
	26.6 Event Injection
	26.6.1 Vectored-Event Injection
	26.6.1.1 Details of Vectored-Event Injection
	26.6.1.2 VM Exits During Event Injection
	26.6.1.3 Event Injection for VM Entries to Real-Address Mode

	26.6.2 Injection of Pending MTF VM Exits

	26.7 Special Features of VM Entry
	26.7.1 Interruptibility State
	26.7.2 Activity State
	26.7.3 Delivery of Pending Debug Exceptions after VM Entry
	26.7.4 VMX-Preemption Timer
	26.7.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery
	26.7.6 NMI-Window Exiting
	26.7.7 VM Exits Induced by the TPR Threshold
	26.7.8 Pending MTF VM Exits
	26.7.9 VM Entries and Advanced Debugging Features

	26.8 VM-Entry Failures During or After Loading Guest State
	26.9 Machine-Check Events During VM Entry

	23. Updates to Chapter 27, Volume 3C
	Chapter 27 VM Exits
	27.1 Architectural State Before a VM Exit
	27.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
	27.2.1 Basic VM-Exit Information
	27.2.2 Information for VM Exits Due to Vectored Events
	27.2.3 Information About NMI Unblocking Due to IRET
	27.2.4 Information for VM Exits During Event Delivery
	27.2.5 Information for VM Exits Due to Instruction Execution

	27.3 Saving Guest State
	27.3.1 Saving Control Registers, Debug Registers, and MSRs
	27.3.2 Saving Segment Registers and Descriptor-Table Registers
	27.3.3 Saving RIP, RSP, RFLAGS, and SSP
	27.3.4 Saving Non-Register State

	27.4 Saving MSRs
	27.5 Loading Host State
	27.5.1 Loading Host Control Registers, Debug Registers, MSRs
	27.5.2 Loading Host Segment and Descriptor-Table Registers
	27.5.3 Loading Host RIP, RSP, RFLAGS, and SSP
	27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
	27.5.5 Updating Non-Register State
	27.5.6 Clearing Address-Range Monitoring

	27.6 Loading MSRs
	27.7 VMX Aborts
	27.8 Machine-Check Events During VM Exit

	24. Updates to Chapter 32, Volume 3C
	Chapter 32 Virtualization of System Resources
	32.1 Overview
	32.2 Virtualization Support for Debugging Facilities
	32.2.1 Debug Exceptions

	32.3 Memory Virtualization
	32.3.1 Processor Operating Modes & Memory Virtualization
	32.3.2 Guest & Host Physical Address Spaces
	32.3.3 Virtualizing Virtual Memory by Brute Force
	32.3.4 Alternate Approach to Memory Virtualization
	32.3.5 Details of Virtual TLB Operation
	32.3.5.1 Initialization of Virtual TLB
	32.3.5.2 Response to Page Faults
	32.3.5.3 Response to Uses of INVLPG
	32.3.5.4 Response to CR3 Writes

	32.4 Microcode Update Facility
	32.4.1 Early Load of Microcode Updates
	32.4.2 Late Load of Microcode Updates

	25. Updates to Chapter 34, Volume 3C
	Chapter 34 System Management Mode
	34.1 System Management Mode Overview
	34.1.1 System Management Mode and VMX Operation

	34.2 System Management Interrupt (SMI)
	34.3 Switching Between SMM and the Other Processor Operating Modes
	34.3.1 Entering SMM
	34.3.2 Exiting From SMM

	34.4 SMRAM
	34.4.1 SMRAM State Save Map
	34.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	34.4.2 SMRAM Caching
	34.4.2.1 System Management Range Registers (SMRR)

	34.5 SMI Handler Execution Environment
	34.5.1 Initial SMM Execution Environment
	34.5.2 SMI Handler Operating Mode Switching
	34.5.3 Control-flow Enforcement Technology Interactions

	34.6 Exceptions and Interrupts Within SMM
	34.7 Managing Synchronous and Asynchronous System Management Interrupts
	34.7.1 I/O State Implementation

	34.8 NMI Handling While in SMM
	34.9 SMM Revision Identifier
	34.10 Auto HALT Restart
	34.10.1 Executing the HLT Instruction in SMM

	34.11 SMBASE Relocation
	34.12 I/O Instruction Restart
	34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	34.13 SMM Multiple-Processor Considerations
	34.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
	34.14.1 Default Treatment of SMI Delivery
	34.14.2 Default Treatment of RSM
	34.14.3 Protection of CR4.VMXE in SMM
	34.14.4 VMXOFF and SMI Unblocking

	34.15 Dual-Monitor Treatment of SMIs and SMM
	34.15.1 Dual-Monitor Treatment Overview
	34.15.2 SMM VM Exits
	34.15.2.1 Architectural State Before a VM Exit
	34.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	34.15.2.3 Recording VM-Exit Information
	34.15.2.4 Saving Guest State
	34.15.2.5 Updating State

	34.15.3 Operation of the SMM-Transfer Monitor
	34.15.4 VM Entries that Return from SMM
	34.15.4.1 Checks on the Executive-VMCS Pointer Field
	34.15.4.2 Checks on VM-Execution Control Fields
	34.15.4.3 Checks on VM-Entry Control Fields
	34.15.4.4 Checks on the Guest State Area
	34.15.4.5 Loading Guest State
	34.15.4.6 VMX-Preemption Timer
	34.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	34.15.4.8 VM Exits Induced by VM Entry
	34.15.4.9 SMI Blocking
	34.15.4.10 Failures of VM Entries That Return from SMM

	34.15.5 Enabling the Dual-Monitor Treatment
	34.15.6 Activating the Dual-Monitor Treatment
	34.15.6.1 Initial Checks
	34.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers
	34.15.6.3 Saving Guest State
	34.15.6.4 Saving MSRs
	34.15.6.5 Loading Host State
	34.15.6.6 Loading MSRs

	34.15.7 Deactivating the Dual-Monitor Treatment

	34.16 SMI and Processor Extended State Management
	34.17 Model-Specific System Management Enhancement
	34.17.1 SMM Handler Code Access Control
	34.17.2 SMI Delivery Delay Reporting
	34.17.3 Blocked SMI Reporting

	26. Updates to Chapter 35, Volume 3C
	Chapter 35 Intel® Processor Trace
	35.1 Overview
	35.1.1 Features and Capabilities
	35.1.1.1 Packet Summary

	35.2 Intel® Processor Trace Operational Model
	35.2.1 Change of Flow Instruction (COFI) Tracing
	35.2.1.1 Direct Transfer COFI
	35.2.1.2 Indirect Transfer COFI
	35.2.1.3 Far Transfer COFI

	35.2.2 Software Trace Instrumentation with PTWRITE
	35.2.3 Power Event Tracing
	35.2.4 Trace Filtering
	35.2.4.1 Filtering by Current Privilege Level (CPL)
	35.2.4.2 Filtering by CR3
	35.2.4.3 Filtering by IP

	35.2.5 Packet Generation Enable Controls
	35.2.5.1 Packet Enable (PacketEn)
	35.2.5.2 Trigger Enable (TriggerEn)
	35.2.5.3 Context Enable (ContextEn)
	35.2.5.4 Branch Enable (BranchEn)
	35.2.5.5 Filter Enable (FilterEn)

	35.2.6 Trace Output
	35.2.6.1 Single Range Output
	35.2.6.2 Table of Physical Addresses (ToPA)
	Single Output Region ToPA Implementation
	ToPA Table Entry Format
	ToPA STOP
	ToPA PMI
	PMI Preservation
	ToPA PMI and Single Output Region ToPA Implementation
	ToPA PMI and XSAVES/XRSTORS State Handling
	ToPA Errors

	35.2.6.3 Trace Transport Subsystem
	35.2.6.4 Restricted Memory Access
	Modifications to Restricted Memory Regions

	35.2.7 Enabling and Configuration MSRs
	35.2.7.1 General Considerations
	35.2.7.2 IA32_RTIT_CTL MSR
	35.2.7.3 Enabling and Disabling Packet Generation with TraceEn
	Disabling Packet Generation
	Other Writes to IA32_RTIT_CTL

	35.2.7.4 IA32_RTIT_STATUS MSR
	35.2.7.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
	35.2.7.6 IA32_RTIT_CR3_MATCH MSR
	35.2.7.7 IA32_RTIT_OUTPUT_BASE MSR
	35.2.7.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR

	35.2.8 Interaction of Intel® Processor Trace and Other Processor Features
	35.2.8.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
	35.2.8.2 TSX and IP Filtering
	35.2.8.3 System Management Mode (SMM)
	35.2.8.4 Virtual-Machine Extensions (VMX)
	35.2.8.5 Intel® Software Guard Extensions (Intel® SGX)
	35.2.8.6 SENTER/ENTERACCS and ACM
	35.2.8.7 Intel® Memory Protection Extensions (Intel® MPX)

	35.3 Configuration and programming Guideline
	35.3.1 Detection of Intel Processor Trace and Capability Enumeration
	35.3.1.1 Packet Decoding of RIP versus LIP
	35.3.1.2 Model Specific Capability Restrictions

	35.3.2 Enabling and Configuration of Trace Packet Generation
	35.3.2.1 Enabling Packet Generation
	35.3.2.2 Disabling Packet Generation

	35.3.3 Flushing Trace Output
	35.3.4 Warm Reset
	35.3.5 Context Switch Consideration
	35.3.5.1 Manual Trace Configuration Context Switch
	35.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS

	35.3.6 Cycle-Accurate Mode
	35.3.6.1 Cycle Counter
	35.3.6.2 Cycle Packet Semantics
	35.3.6.3 Cycle Thresholds

	35.3.7 Decoder Synchronization (PSB+)
	35.3.8 Internal Buffer Overflow
	35.3.8.1 Overflow Impact on Enables
	35.3.8.2 Overflow Impact on Timing Packets

	35.3.9 Operational Errors

	35.4 Trace Packets and Data Types
	35.4.1 Packet Relationships and Ordering
	35.4.1.1 Packet Blocks
	Decoder Implications

	35.4.2 Packet Definitions
	35.4.2.1 Taken/Not-taken (TNT) Packet
	35.4.2.2 Target IP (TIP) Packet
	IP Compression
	Indirect Transfer Compression for Returns (RET)

	35.4.2.3 Deferred TIPs
	35.4.2.4 Packet Generation Enable (TIP.PGE) Packet
	35.4.2.5 Packet Generation Disable (TIP.PGD) Packet
	35.4.2.6 Flow Update (FUP) Packet
	FUP IP Payload

	35.4.2.7 Paging Information (PIP) Packet
	35.4.2.8 MODE Packets
	MODE.Exec Packet
	MODE.TSX Packet

	35.4.2.9 TraceStop Packet
	35.4.2.10 Core:Bus Ratio (CBR) Packet
	35.4.2.11 Timestamp Counter (TSC) Packet
	35.4.2.12 Mini Time Counter (MTC) Packet
	35.4.2.13 TSC/MTC Alignment (TMA) Packet
	35.4.2.14 Cycle Count (CYC) Packet
	35.4.2.15 VMCS Packet
	35.4.2.16 Overflow (OVF) Packet
	35.4.2.17 Packet Stream Boundary (PSB) Packet
	35.4.2.18 PSBEND Packet
	35.4.2.19 Maintenance (MNT) Packet
	35.4.2.20 PAD Packet
	35.4.2.21 PTWRITE (PTW) Packet
	35.4.2.22 Execution Stop (EXSTOP) Packet
	35.4.2.23 MWAIT Packet
	35.4.2.24 Power Entry (PWRE) Packet
	35.4.2.25 Power Exit (PWRX) Packet
	35.4.2.26 Block Begin Packet (BBP)
	35.4.2.27 Block Item Packet (BIP)
	BIP State Value Encodings

	35.4.2.28 Block End Packet (BEP)

	35.5 Tracing in VMX Operation
	35.5.1 VMX-Specific Packets and VMCS Controls
	35.5.2 Managing Trace Packet Generation Across VMX Transitions
	35.5.2.1 System-Wide Tracing
	35.5.2.2 Guest-Only Tracing
	35.5.2.3 Emulation of Intel PT Traced State
	35.5.2.4 TSC Scaling
	35.5.2.5 Failed VM Entry
	35.5.2.6 VMX Abort

	35.6 Tracing and SMM Transfer Monitor (STM)
	35.7 Packet Generation Scenarios
	35.8 Software Considerations
	35.8.1 Tracing SMM Code
	35.8.2 Cooperative Transition of Multiple Trace Collection Agents
	35.8.3 Tracking Time
	35.8.3.1 Time Domain Relationships
	35.8.3.2 Estimating TSC within Intel PT
	35.8.3.3 VMX TSC Manipulation
	35.8.3.4 Calculating Frequency with Intel PT

	27. Updates to Chapter 40, Volume 3D
	Chapter 40 SGX Instruction References
	40.1 Intel® SGX Instruction Syntax and Operation
	40.1.1 ENCLS Register Usage Summary
	40.1.2 ENCLU Register Usage Summary
	40.1.3 ENCLV Register Usage Summary
	40.1.4 Information and Error Codes
	40.1.5 Internal CREGs
	40.1.6 Concurrent Operation Restrictions
	40.1.6.1 Concurrency Tables of Intel® SGX Instructions

	40.2 Intel® SGX Instruction Reference
	ENCLS—Execute an Enclave System Function of Specified Leaf Number
	ENCLU—Execute an Enclave User Function of Specified Leaf Number
	ENCLV—Execute an Enclave VMM Function of Specified Leaf Number

	40.3 Intel® SGX System Leaf Function Reference
	EADD—Add a Page to an Uninitialized Enclave
	EAUG—Add a Page to an Initialized Enclave
	EBLOCK—Mark a page in EPC as Blocked
	ECREATE—Create an SECS page in the Enclave Page Cache
	EDBGRD—Read From a Debug Enclave
	EDBGWR—Write to a Debug Enclave
	EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes
	EINIT—Initialize an Enclave for Execution
	ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark its State
	EMODPR—Restrict the Permissions of an EPC Page
	EMODT—Change the Type of an EPC Page
	EPA—Add Version Array
	ERDINFO—Read Type and Status Information About an EPC Page
	EREMOVE—Remove a page from the EPC
	ETRACK—Activates EBLOCK Checks
	ETRACKC—Activates EBLOCK Checks
	EWB—Invalidate an EPC Page and Write out to Main Memory

	40.4 Intel® SGX User Leaf Function Reference
	EACCEPT—Accept Changes to an EPC Page
	EACCEPTCOPY—Initialize a Pending Page
	EENTER—Enters an Enclave
	EEXIT—Exits an Enclave
	EGETKEY—Retrieves a Cryptographic Key
	EMODPE—Extend an EPC Page Permissions
	EREPORT—Create a Cryptographic Report of the Enclave
	ERESUME—Re-Enters an Enclave

	40.5 Intel® SGX Virtualization Leaf Function Reference
	EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS
	EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS
	ESETCONTEXT—Set the ENCLAVECONTEXT Field in SECS

	28. Updates to Chapter 42, Volume 3D
	Chapter 42 Enclave Code Debug and Profiling
	42.1 Configuration and Controls
	42.1.1 Debug Enclave vs. Production Enclave
	42.1.2 Tool-Chain Opt-in

	42.2 Single Step Debug
	42.2.1 Single Stepping ENCLS Instruction Leafs
	42.2.2 Single Stepping ENCLU Instruction Leafs
	42.2.3 Single-Stepping Enclave Entry with Opt-out Entry
	42.2.3.1 Single Stepping without AEX
	42.2.3.2 Single Step Preempted by AEX Due to Non-SMI Event

	42.2.4 RFLAGS.TF Treatment on AEX
	42.2.5 Restriction on Setting of TF after an Opt-Out Entry
	42.2.6 Trampoline Code Considerations

	42.3 Code and Data Breakpoints
	42.3.1 Breakpoint Suppression
	42.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
	42.3.3 RF Treatment on AEX
	42.3.4 Breakpoint Matching in Intel® SGX Instruction Flows

	42.4 Consideration of the INT1 and INT3 Instructions
	42.4.1 Behavior of INT1 and INT3 Inside an Enclave
	42.4.2 Debugger Considerations
	42.4.3 VMM Considerations

	42.5 Branch Tracing
	42.5.1 BTF Treatment
	42.5.2 LBR Treatment
	42.5.2.1 LBR Stack on Opt-in Entry
	42.5.2.2 LBR Stack on Opt-out Entry
	42.5.2.3 Mispredict Bit, Record Type, and Filtering

	42.6 Interaction with Performance Monitoring
	42.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
	42.6.2 Performance Monitoring with Opt-in Entry
	42.6.3 Performance Monitoring with Opt-out Entry
	42.6.4 Enclave Exit and Performance Monitoring
	42.6.5 PEBS Record Generation on Intel® SGX Instructions
	42.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
	42.6.6.1 Other Interactions with Performance Monitoring

	29. Updates to Appendix C, Volume 3D
	Appendix C VMX Basic Exit Reasons

	30. Updates to Chapter 1, Volume 4
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of The SYSTEM PROGRAMMING GUIDE
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Syntax for CPUID, CR, and MSR Values
	1.3.7 Exceptions

	1.4 Related Literature

	31. Updates to Chapter 2, Volume 4
	Chapter 2 Model-Specific Registers (MSRs)
	2.1 Architectural MSRs
	2.2 MSRs In the Intel® Core™ 2 Processor Family
	2.3 MSRs In the 45 nm and 32 nm Intel Atom® Processor Family
	2.4 MSRs In Intel Processors Based on Silvermont Microarchitecture
	2.4.1 MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
	2.4.2 MSRs In Intel Atom® Processors Based on Airmont Microarchitecture

	2.5 MSRs In Intel Atom® Processors based on Goldmont Microarchitecture
	2.6 MSRs In Intel Atom® Processors Based on Goldmont Plus Microarchitecture
	2.7 MSRs In Intel Atom® Processors Based on Tremont Microarchitecture
	2.8 MSRs In the Intel® Microarchitecture Code Name Nehalem
	2.8.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
	2.8.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

	2.9 MSRs In the Intel® Xeon® Processor 5600 Series (Based on Intel® Microarchitecture Code Name Westmere)
	2.10 MSRs In the Intel® Xeon® Processor E7 Family (Based on Intel® Microarchitecture Code Name Westmere)
	2.11 MSRs In Intel® Processor Family Based on Intel® Microarchitecture Code Name Sandy Bridge
	2.11.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel® Microarchitecture Code Name Sandy Bridge)
	2.11.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code Name Sandy Bridge)
	2.11.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family

	2.12 MSRs In the 3rd Generation Intel® Core™ Processor Family (Based on Intel® microarchitecture code name Ivy Bridge)
	2.12.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E Microarchitecture)
	2.12.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
	2.12.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families

	2.13 MSRs In the 4th Generation Intel® Core™ Processors (Based on Haswell Microarchitecture)
	2.13.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell Microarchitecture)
	2.13.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors

	2.14 MSRs In Intel® Xeon® Processor E5 v3 and E7 v3 Product Family
	2.14.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family

	2.15 MSRs In Intel® Core™ M Processors and 5th Generation Intel Core Processors
	2.16 MSRs In Intel® Xeon® Processors E5 v4 Family
	2.16.1 Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
	2.16.2 Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families

	2.17 MSRs In the 6th Generation, 7th Generation, 8th Generation, 9th Generation, 10th Generation, and 11th Generation Intel® Core™ Processors, Intel® Xeon® Processor Scalable Family, 8th Generation Intel® Core™ i3 Processors, and Intel® Xeon...
	2.17.1 MSRs Specific to 7th Generation and 8th Generation Intel® Core™ Processors based on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture
	2.17.2 MSRs Specific to 8th Generation Intel® Core™ i3 Processors
	2.17.3 MSRs Specific to 10th Generation Intel® Core™ Processors
	2.17.4 MSRs Specific to 11th Generation Intel® Core™ Processors based on Tiger Lake Microarchitecture
	2.17.5 MSRs Specific to Intel® Xeon® Processor Scalable Family

	2.18 MSRs In Intel® Xeon Phi™ Processor 3200/5200/7200 Series and Intel® Xeon Phi™ Processor 7215/7285/7295 Series
	2.19 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	2.19.1 MSRs Unique to Intel® Xeon® Processor MP with L3 Cache

	2.20 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	2.21 MSRs In the Pentium M Processor
	2.22 MSRs In the P6 Family Processors
	2.23 MSRs in Pentium Processors
	2.24 MSR Index

