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Preface

This document is an update to the specifications contained in the Affected Documents table below. This 
document is a compilation of device and documentation errata, specification clarifications and changes. It is 
intended for hardware system manufacturers and software developers of applications, operating systems, or 
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These 
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set 
Reference, A-L 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set 
Reference, M-U 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set 
Reference, V-Z 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set 
Reference 334569

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System 
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System 
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System 
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System 
Programming Guide, Part 4 332831

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific 
Registers 335592
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This 
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the 
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 10, Volume 1

4 Updates to Chapter 15, Volume 1

5 Updates to Chapter 1, Volume 2A

6 Updates to Chapter 2, Volume 2A

7 Updates to Chapter 3, Volume 2A

8 Updates to Chapter 4, Volume 2B

9 Updates to Chapter 5, Volume 2C

10 Updates to Chapter 6, Volume 2D

11 Updates to Chapter 7, Volume 2D

12 Updates to Chapter 1, Volume 3A

13 Updates to Chapter 4, Volume 3A

14 Updates to Chapter 6, Volume 3A

15 Updates to Chapter 7, Volume 3A

16 Updates to Chapter 10, Volume 3A

17 Updates to Chapter 11, Volume 3A

18 Updates to Chapter 17, Volume 3B

19 Updates to Chapter 18, Volume 3B

20 Updates to Chapter 24, Volume 3B

21 Updates to Chapter 25, Volume 3C

22 Updates to Chapter 26, Volume 3C

23 Updates to Chapter 27, Volume 3C

24 Updates to Chapter 32, Volume 3C

25 Updates to Chapter 34, Volume 3C

26 Updates to Chapter 35, Volume 3C
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27 Updates to Chapter 40, Volume 3D

28 Updates to Chapter 42, Volume 3D

29 Updates to Appendix C, Volume 3D

30 Updates to Chapter 1, Volume 4

31 Updates to Chapter 2, Volume 4

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES
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Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed 
by chapter. Only chapters with changes are included in this document.
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1. Updates to Chapter 1, Volume 1

Change bars and green text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------
Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32 
architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019 and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers 

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, addresses the programming environment for classes of software that host operating systems. The 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers 
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
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• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series 
• Intel® Xeon® Processor Scalable Family 
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family 
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• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem 
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel® 
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the 
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and 
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support 
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and 
support Intel 64 architecture. 

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.
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The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64 
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J 
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and 
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron® 
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and 
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports 
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64 
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64 
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel 
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with the 
families of Intel processors that are based on these architectures. It also gives an overview of the common features 
found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the 
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides 
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms 
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program 
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's 
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX 
registers and data types; also provides an overview of the MMX instruction set. 
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Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides 
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions. 

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2 
extensions, including XMM registers and packed double-precision floating-point data types; provides an overview 
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also 
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides 
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications 
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental 
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel® 
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3, 
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions 
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set, 
FMA and Intel AVX2 extensions and gives guidelines for writing code that access these extensions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set 
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with 
contended locks.

Chapter 17 — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection 
Extensions and gives guidelines for writing code that access these extensions.

Chapter 18 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement 
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 19 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O 
instructions, and I/O protection mechanisms.

Chapter 20 — Processor Identification and Feature Determination. Describes how to determine the CPU 
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS 
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition 
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements 
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU 
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing 
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. This notation is described below.
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1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. 

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers that contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or 

reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

1.3.2.1  Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, 
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

Figure 1-1.  Bit and Byte Order

Byte 3

Data Structure 

Byte 1Byte 2 Byte 0
Lowest

Bit offset

28
24
20
16
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8
4
0

Address

Byte Offset

Highest
Address 32 24 23 16 15 8 7 0
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• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, 0F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment: 

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information. 
See Figure 1-2.
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1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code. 
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field 
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name 
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

SDM29002
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at: 
https://software.intel.com/en-us/articles/intel-sdm

See also: 
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us
https://software.intel.com/en-us/articles/resource-center/
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/security-software-guidance/
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2. Updates to Chapter 5, Volume 1

Change bars and green text show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------
Changes to this chapter: Update to Table 5-2, “Instruction Set Extensions Introduction in Intel 64 and IA-32 
Processors”.
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the 
following groups:
• Section 5.1, “General-Purpose Instructions”.
• Section 5.2, “x87 FPU Instructions”.
• Section 5.3, “x87 FPU AND SIMD State Management Instructions”.
• Section 5.4, “MMX™ Instructions”.
• Section 5.5, “SSE Instructions”.
• Section 5.6, “SSE2 Instructions”.
• Section 5.7, “SSE3 Instructions”.
• Section 5.8, “Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions”.
• Section 5.9, “SSE4 Instructions”.
• Section 5.10, “SSE4.1 Instructions”.
• Section 5.11, “SSE4.2 Instruction Set”.
• Section 5.12, “Intel® AES-NI and PCLMULQDQ”.
• Section 5.13, “Intel® Advanced Vector Extensions (Intel® AVX)”.
• Section 5.14, “16-bit Floating-Point Conversion”.
• Section 5.15, “Fused-Multiply-ADD (FMA)”.
• Section 5.16, “Intel® Advanced Vector Extensions 2 (Intel® AVX2)”.
• Section 5.17, “Intel® Transactional Synchronization Extensions (Intel® TSX)”.
• Section 5.18, “Intel® SHA Extensions”.
• Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512)”.
• Section 5.20, “System Instructions”.
• Section 5.21, “64-Bit Mode Instructions”.
• Section 5.22, “Virtual-Machine Extensions”.
• Section 5.23, “Safer Mode Extensions”.
• Section 5.24, “Intel® Memory Protection Extensions”.
• Section 5.25, “Intel® Software Guard Extensions”.
• Section 5.26, “Shadow Stack Management Instructions”.
• Section 5.27, “Control Transfer Terminating Instructions”.

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are 
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors.

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors.

x87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, 
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.
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MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom 
processors.

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors.

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Atom processors.

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2 
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core 
processors, Intel Atom processors.

IA-32e mode: 64-bit 
mode instructions

Intel 64 processors.

System Instructions Intel 64 and IA-32 processors.

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2.  Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme processors 
QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors 8000 series 
and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions, 
CRC32, POPCNT

Intel® Core™ i7 965 processor, Intel® Xeon® processors X3400, X3500, X5500, X6500, X7500 series, 
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI, 
PCLMULQDQ

Intel® Xeon® processor E7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X 
processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence of 
Intel AES-NI and PCLMULQDQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor E3 and E5 families, 2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor E3-1200 v2 product family, Intel® Xeon® 
processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon 
processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon 
processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.

FMA, AVX2, BMI1, BMI2, 
INVPCID, LZCNT, Intel® 
TSX

Intel® Xeon® processor E3/E5/E7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE Intel Xeon processor E3/E5/E7 v3 product families, 4th Generation Intel Core processor family, Intel Atom 
processors.

PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor based 
on Silvermont microarchitecture.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support
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Intel® SHA Extensions Intel Atom processor based on Goldmont microarchitecture.

ADX Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based on 
Goldmont microarchitecture.

AVX512ER, AVX512PF, 
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Processor Scalable Family, Intel® Core™ i3-
8121U processor.

CLFLUSHOPT, XSAVEC, 
XSAVES, Intel® MPX

Intel Xeon Processor Scalable Family, 6th Generation Intel® Core™ processor family, Intel Atom processor 
based on Goldmont microarchitecture.

SGX1 6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus 
microarchitecture.

AVX512DQ, AVX512BW, 
AVX512VL

Intel Xeon Processor Scalable Family, Intel Core i3-8121U processor.

CLWB Intel Xeon Processor Scalable Family, Intel Atom® processor based on Tremont microarchitecture, 11th 
Generation Intel Core processor family.

PKU Intel Xeon Processor Scalable Family.

AVX512_IFMA, 
AVX512_VBMI

Intel Core i3-8121U processor.

SHA-NI Intel Core i3-8121U processor, Intel Atom processor based on Goldmont microarchitecture.

UMIP Intel Core i3-8121U processor, Intel Atom processor based on Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture.

RDPID 10th Generation Intel® Core™ processor family, Intel Atom processor based on Goldmont Plus 
microarchitecture.

AVX512_4FMAPS, 
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI 2nd Generation Intel® Xeon® Processor Scalable Family, 10th Generation Intel Core processor family.

AVX512_VPOPCNTDQ Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family.

Fast Short REP MOV 10th Generation Intel Core processor family.

GFNI (SSE) 10th Generation Intel Core processor family, Intel Atom processor based on Tremont microarchitecture.

VAES, 
GFNI (AVX/AVX512), 
AVX512_VBMI2, 
VPCLMULQDQ, 
AVX512_BITALG

10th Generation Intel Core processor family.

ENCLV Intel Atom processor based on Tremont microarchitecture.

Split Lock Detection 10th Generation Intel Core processor family, Intel Atom processor based on Tremont microarchitecture.

CLDEMOTE Intel Atom processor based on Tremont microarchitecture.

Direct stores: MOVDIRI, 
MOVDIR64B 

Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor family.

User wait: TPAUSE, 
UMONITOR, UMWAIT

Intel Atom processor based on Tremont microarchitecture.

AVX512_BF16 3rd Generation Intel® Xeon® Processor Scalable Processors.

Table 5-2.  Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set 
Architecture Processor Generation Introduction
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The following sections list instructions in each major group and subgroup. Given for each instruction is its 
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they 
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for 
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and 
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about 
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C 
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32 
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in 
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS). 

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations, 
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and 
miscellaneous subgroups. The sections that follow introduce each subgroup. 

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose and segment registers. They 
also perform specific operations such as conditional moves, stack access, and data conversion.
MOV Move data between general-purpose registers; move data between memory and general-

purpose or segment registers; move immediates to general-purpose registers.
CMOVE/CMOVZ Conditional move if equal/Conditional move if zero.
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero.
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal.
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below.
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal.
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above.
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal.
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less.
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal.
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater.

AVX512_VP2INTERSECT 11th Generation Intel Core processor family.

Key Locker1 11th Generation Intel Core processor family.

Control-flow Enforcement 
Technology (CET)

11th Generation Intel Core processor family.

NOTES:
1. Details on Key Locker can be found in the Intel Key Locker Specification here: https://software.intel.com/con-

tent/www/us/en/develop/download/intel-key-locker-specification.html. 

Table 5-2.  Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set 
Architecture Processor Generation Introduction

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
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CMOVC Conditional move if carry.
CMOVNC Conditional move if not carry.
CMOVO Conditional move if overflow.
CMOVNO Conditional move if not overflow.
CMOVS Conditional move if sign (negative).
CMOVNS Conditional move if not sign (non-negative).
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even.
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd.
XCHG Exchange.
BSWAP Byte swap.
XADD Exchange and add.
CMPXCHG Compare and exchange.
CMPXCHG8B Compare and exchange 8 bytes.
PUSH Push onto stack.
POP Pop off of stack.
PUSHA/PUSHAD Push general-purpose registers onto stack.
POPA/POPAD Pop general-purpose registers from stack.
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword.
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register.
MOVSX Move and sign extend.
MOVZX Move and zero extend.

5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.
ADCX Unsigned integer add with carry.
ADOX Unsigned integer add with overflow.
ADD Integer add.
ADC Add with carry.
SUB Subtract.
SBB Subtract with borrow.
IMUL Signed multiply.
MUL Unsigned multiply.
IDIV Signed divide.
DIV Unsigned divide.
INC Increment.
DEC Decrement.
NEG Negate.
CMP Compare.

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.
DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.
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AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword 
values.
AND Perform bitwise logical AND.
OR Perform bitwise logical OR.
XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.
SHR Shift logical right.
SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.
SHLD Shift left double.
ROR Rotate right.
ROL Rotate left.
RCR Rotate through carry right.
RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of 
a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test.
BTS Bit test and set.
BTR Bit test and reset.
BTC Bit test and complement.
BSF Bit scan forward.
BSR Bit scan reverse.
SETE/SETZ Set byte if equal/Set byte if zero.
SETNE/SETNZ Set byte if not equal/Set byte if not zero.
SETA/SETNBE Set byte if above/Set byte if not below or equal.
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.
SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry.
SETBE/SETNA Set byte if below or equal/Set byte if not above.
SETG/SETNLE Set byte if greater/Set byte if not less or equal.
SETGE/SETNL Set byte if greater or equal/Set byte if not less.
SETL/SETNGE Set byte if less/Set byte if not greater or equal.
SETLE/SETNG Set byte if less or equal/Set byte if not greater.
SETS Set byte if sign (negative).
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SETNS Set byte if not sign (non-negative).
SETO Set byte if overflow.
SETNO Set byte if not overflow.
SETPE/SETP Set byte if parity even/Set byte if parity.
SETPO/SETNP Set byte if parity odd/Set byte if not parity.
TEST Logical compare.
CRC321 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient 

implementation of data integrity protocols.
POPCNT2 This instruction calculates of number of bits set to 1 in the second operand (source) and 

returns the count in the first operand (a destination register).

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control 
program flow.
JMP Jump.
JE/JZ Jump if equal/Jump if zero.
JNE/JNZ Jump if not equal/Jump if not zero.
JA/JNBE Jump if above/Jump if not below or equal.
JAE/JNB Jump if above or equal/Jump if not below.
JB/JNAE Jump if below/Jump if not above or equal.
JBE/JNA Jump if below or equal/Jump if not above.
JG/JNLE Jump if greater/Jump if not less or equal.
JGE/JNL Jump if greater or equal/Jump if not less.
JL/JNGE Jump if less/Jump if not greater or equal.
JLE/JNG Jump if less or equal/Jump if not greater.
JC Jump if carry.
JNC Jump if not carry.
JO Jump if overflow.
JNO Jump if not overflow.
JS Jump if sign (negative).
JNS Jump if not sign (non-negative).
JPO/JNP Jump if parity odd/Jump if not parity.
JPE/JP Jump if parity even/Jump if parity.
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.
RET Return.
IRET Return from interrupt.
INT Software interrupt.
INTO Interrupt on overflow.
BOUND Detect value out of range.

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1
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ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and from memory.
MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.
SCAS/SCASW Scan string/Scan word string.
SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.
LODS/LODSW Load string/Load word string.
LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.
STOS/STOSD Store string/Store doubleword string.
REP Repeat while ECX not zero.
REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or memory.
IN Read from a port.
OUT Write to a port.
INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/OUTSB Output string to port/Output byte string to port.
OUTS/OUTSW Output string to port/Output word string to port.
OUTS/OUTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag.
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CLC Clear the carry flag.
CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.
LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.
CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.
LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,” 
and retrieving processor identification information.
LEA Load effective address.
NOP No operation.
UD Undefined instruction.
XLAT/XLATB Table lookup translation.
CPUID Processor identification.
MOVBE1 Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of 

the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of 

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.
XGETBV Reads the state of an extended control register.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.
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5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1, BMI2
ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract.
BLSI Extract lowest set bit.
BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.
BZHI Zero high bits starting from specified bit position.
LZCNT Count the number leading zero bits.
MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.
PEXT Parallel extraction of bits using a mask.
RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.
SHLX Shift logic left.
SHRX Shift logic right.
TZCNT Count the number trailing zero bits.

5.1.16.1  Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers. 
There are separate feature flags for the following subsets of instructions that operate on general purpose registers, 
and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit 
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced 
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the 
PREFTEHCHWT1 instruction.

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point, 
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8, 
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU 
registers. They also perform conditional move operations on floating-point operands.
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FLD Load floating-point value.
FST Store floating-point value.
FSTP Store floating-point value and pop.
FILD Load integer.
FIST Store integer.
FISTP1 Store integer and pop.
FBLD Load BCD.
FBSTP Store BCD and pop.
FXCH Exchange registers.
FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two

1. SSE3 provides an instruction FISTTP for integer conversion.
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FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
FCOM Compare floating-point.
FCOMP Compare floating-point and pop.
FCOMPP Compare floating-point and pop twice.
FUCOM Unordered compare floating-point.
FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.
FICOMP Compare integer and pop.
FCOMI Compare floating-point and set EFLAGS.
FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).
FXAM Examine floating-point.

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87 floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.
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FINCSTP Increment FPU register stack pointer.
FDECSTP Decrement FPU register stack pointer.
FFREE Free floating-point register.
FINIT Initialize FPU after checking error conditions.
FNINIT Initialize FPU without checking error conditions.
FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.
FNSTCW Store FPU control word without checking error conditions.
FLDCW Load FPU control word.
FSTENV Store FPU environment after checking error conditions.
FNSTENV Store FPU environment without checking error conditions.
FLDENV Load FPU environment.
FSAVE Save FPU state after checking error conditions.
FNSAVE Save FPU state without checking error conditions.
FRSTOR Restore FPU state.
FSTSW Store FPU status word after checking error conditions.
FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.
FNOP FPU no operation.

5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS
Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor 
family:
FXSAVE Save x87 FPU and SIMD state.
FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore, 
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium III processor 
family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel 
64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2 
extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see 
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory, 
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9, 
“Programming with Intel® MMX™ Technology.” 

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each 
subgroup.
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5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX 
registers and memory.
MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.
PUNPCKHWD Unpack high-order words.
PUNPCKHDQ Unpack high-order doublewords.
PUNPCKLBW Unpack low-order bytes.
PUNPCKLWD Unpack low-order words.
PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.
PADDB Add packed byte integers.
PADDW Add packed word integers.
PADDD Add packed doubleword integers.
PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.
PSUBW Subtract packed word integers.
PSUBD Subtract packed doubleword integers.
PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal.
PCMPEQW Compare packed words for equal.
PCMPEQD Compare packed doublewords for equal.
PCMPGTB Compare packed signed byte integers for greater than.
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PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.
PAND Bitwise logical AND.
PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.
PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit 
operands.
PSLLW Shift packed words left logical.
PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.
PSRLW Shift packed words right logical.
PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For 
more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® 
SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for 
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its 
own):
• SIMD single-precision floating-point instructions that operate on the XMM registers.
• MXCSR state management instructions.
• 64-bit SIMD integer instructions that operate on the MMX registers.
• Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.
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5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point values located in XMM registers 
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed 
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1  SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM 
registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or 

between and XMM register and memory.
MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers 

or between and XMM register and memory.
MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an 

XMM register and memory.
MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM 

register to the low quadword of another XMM register.
MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an 

XMM register and memory.
MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM 

register to the high quadword of another XMM register.
MOVMSKPS Extract sign mask from four packed single-precision floating-point values.
MOVSS Move scalar single-precision floating-point value between XMM registers or between an 

XMM register and memory.

5.5.1.2  SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.
ADDPS Add packed single-precision floating-point values.
ADDSS Add scalar single-precision floating-point values.
SUBPS Subtract packed single-precision floating-point values.
SUBSS Subtract scalar single-precision floating-point values.
MULPS Multiply packed single-precision floating-point values.
MULSS Multiply scalar single-precision floating-point values.
DIVPS Divide packed single-precision floating-point values.
DIVSS Divide scalar single-precision floating-point values.
RCPPS Compute reciprocals of packed single-precision floating-point values.
RCPSS Compute reciprocal of scalar single-precision floating-point values.
SQRTPS Compute square roots of packed single-precision floating-point values.
SQRTSS Compute square root of scalar single-precision floating-point values.
RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values.
MAXPS Return maximum packed single-precision floating-point values.
MAXSS Return maximum scalar single-precision floating-point values.
MINPS Return minimum packed single-precision floating-point values.
MINSS Return minimum scalar single-precision floating-point values.



Vol. 1 5-17

INSTRUCTION SET SUMMARY

5.5.1.3  SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point operands.
CMPPS Compare packed single-precision floating-point values.
CMPSS Compare scalar single-precision floating-point values.
COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in 

EFLAGS register.
UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags 

in EFLAGS register.

5.5.1.4  SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision 
floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values.
ORPS Perform bitwise logical OR of packed single-precision floating-point values.
XORPS Perform bitwise logical XOR of packed single-precision floating-point values.

5.5.1.5  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point operands.
UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point 

operands.
UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point 

operands.

5.5.1.6  SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-
precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value.
CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed double-

word integers.
CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer.
CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar double-

word integer.

5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status 
register.
LDMXCSR Load MXCSR register.
STMXCSR Save MXCSR register state.
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5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords 
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4, 
“MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.
PINSRW Insert word.
PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.
PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.
PSHUFW Shuffle packed integer word in MMX register.

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions
The cacheability control instructions provide control over the caching of non-temporal data when storing data from 
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The 
SFENCE instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.
MOVNTQ Non-temporal store of quadword from an MMX register into memory.
MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM 

register into memory.
PREFETCHh Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-

archy
SFENCE Serializes store operations.

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the 
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed 
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions. 
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-
tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate 
subgroups):
• Packed and scalar double-precision floating-point instructions.
• Packed single-precision floating-point conversion instructions.
• 128-bit SIMD integer instructions.
• Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.
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5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions
SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate 
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1  SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data between XMM registers and between 
XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or 

between and XMM register and memory.
MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers 

or between and XMM register and memory.
MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an 

XMM register and memory.
MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an 

XMM register and memory.
MOVMSKPD Extract sign mask from two packed double-precision floating-point values.
MOVSD Move scalar double-precision floating-point value between XMM registers or between an 

XMM register and memory.

5.6.1.2  SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum 
operations on packed and scalar double-precision floating-point operands.
ADDPD Add packed double-precision floating-point values.
ADDSD Add scalar double precision floating-point values.
SUBPD Subtract packed double-precision floating-point values.
SUBSD Subtract scalar double-precision floating-point values.
MULPD Multiply packed double-precision floating-point values.
MULSD Multiply scalar double-precision floating-point values.
DIVPD Divide packed double-precision floating-point values.
DIVSD Divide scalar double-precision floating-point values.
SQRTPD Compute packed square roots of packed double-precision floating-point values.
SQRTSD Compute scalar square root of scalar double-precision floating-point values.
MAXPD Return maximum packed double-precision floating-point values.
MAXSD Return maximum scalar double-precision floating-point values.
MINPD Return minimum packed double-precision floating-point values.
MINSD Return minimum scalar double-precision floating-point values.

5.6.1.3  SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values.
ORPD Perform bitwise logical OR of packed double-precision floating-point values.
XORPD Perform bitwise logical XOR of packed double-precision floating-point values.
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5.6.1.4  SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the 
results of the comparison either to the destination operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values.
CMPSD Compare scalar double-precision floating-point values.
COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags 

in EFLAGS register.
UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set 

flags in EFLAGS register.

5.6.1.5  SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.
SHUFPD Shuffles values in packed double-precision floating-point operands.
UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point 

operands.
UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point 

operands.

5.6.1.6  SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and 
double-precision floating-point values.
CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-

point values.
CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-

point values.
CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-

point values.
CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-

point values.
CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer.
CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword 

integers.
CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value.

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision 
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision 
floating-point instructions.
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CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed double-

word integers.

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords 
contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword.
MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.
PSUBQ Subtract packed quadword integers.
PSHUFLW Shuffle packed low words.
PSHUFHW Shuffle packed high words.
PSHUFD Shuffle packed doublewords.
PSLLDQ Shift double quadword left logical.
PSRLDQ Shift double quadword right logical.
PUNPCKHQDQ Unpack high quadwords.
PUNPCKLQDQ Unpack low quadwords.

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing 
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on 
store operations.
CLFLUSH See Section 5.1.13.
LFENCE Serializes load operations.
MFENCE Serializes load and store operations.
PAUSE Improves the performance of “spin-wait loops”.
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.
MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM 

register into memory.
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.
MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology, 
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into 
the following categories:
• One x87FPU instruction used in integer conversion.
• One SIMD integer instruction that addresses unaligned data loads.
• Two SIMD floating-point packed ADD/SUB instructions.
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• Four SIMD floating-point horizontal ADD/SUB instructions.
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.
• Two thread synchronization instructions.

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode 

specified in the floating-point control word (FCW).

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements 

within the operands; single-precision subtraction on the first and third pairs.
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision 

subtraction on the first pair.

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data elements. The first data element of 

the result is obtained by adding the first and second elements of the first operand; the 
second element by adding the third and fourth elements of the first operand; the third by 
adding the first and second elements of the second operand; and the fourth by adding the 
third and fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand 
from the first element of the first operand; the second element by subtracting the fourth 
element of the first operand from the third element of the first operand; the third by 
subtracting the second element of the second operand from the first element of the second 
operand; and the fourth by subtracting the fourth element of the second operand from the 
third element of the second operand.

HADDPD Performs a double-precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the 
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand 
from the first element of the first operand; the second element by subtracting the second 
element of the second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.
MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.
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MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in 
both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from 
the source.

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.
MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back 

store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS
SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers. 
These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding 

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination 

operands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination 

operands and packs the signed, saturated 16-bit results to the destination operand.
PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination 

operands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by 

subtracting the most significant word from the least significant word of each pair in the 
source and destination operands. The signed 16-bit results are packed and written to the 
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by 
subtracting the most significant word from the least significant word of each pair in the 
source and destination operands. The signed, saturated 16-bit results are packed and 
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by 
subtracting the most significant doubleword from the least significant double word of each 
pair in the source and destination operands. The signed 32-bit results are packed and 
written to the destination operand.
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5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element. 

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce 

an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are 
added horizontally. The signed, saturated 16-bit results are packed to the destination 
operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. 
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of 
the most significant bit of each 18-bit intermediate result and packed to the destination 
operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant 

three or four bits of each shuffle control byte of the control mask form the shuffle index. 
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is 
set, the constant zero is written in the result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-

sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand forming an intermediate value 

of twice the width of an operand. The result is extracted from the intermediate value into 
the destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the 
byte offset specified by the immediate value.

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are 
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2. 

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions 
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory 
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
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• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:
• String and text processing that can take advantage of single-instruction multiple-data programming 

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS
SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to 
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does 
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe 
each subgroup.

5.10.1 Dword Multiply Instructions 
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-

byte region (a streaming line) to be fetched and held in a small set of temporary buffers 
(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in 
the same streaming line may be supplied from the streaming load buffer and can improve 
throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point data elements in the source 

operand to the corresponding data elements in the destination, using an immediate byte 
control. 
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BLENDPS Conditionally copies specified single-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an immediate byte 
control.

BLENDVPD Conditionally copies specified double-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

BLENDVPS Conditionally copies specified single-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding 
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding 
elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions 
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
ROUNDPS Round packed single precision floating-point values into integer values and return rounded 

floating-point values.
ROUNDPD Round packed double precision floating-point values into integer values and return 

rounded floating-point values. 
ROUNDSS Round the low packed single precision floating-point value into an integer value and return 

a rounded floating-point value.
ROUNDSD Round the low packed double precision floating-point value into an integer value and return 

a rounded floating-point value.

5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified offset in an XMM register 

and stores the result to memory or a general-purpose register.
INSERTPS Inserts a single-precision floating-point value from either a 32-bit memory location or 

selected from a specified offset in an XMM register to a specified offset in the destination 
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.

PINSRB Insert a byte value from a register or memory into an XMM register.
PINSRD Insert a dword value from 32-bit register or memory into an XMM register.
PINSRQ Insert a qword value from 64-bit register or memory into an XMM register.
PEXTRB Extract a byte from an XMM register and insert the value into a general-purpose register or 

memory.
PEXTRW Extract a word from an XMM register and insert the value into a general-purpose register 

or memory.
PEXTRD Extract a dword from an XMM register and insert the value into a general-purpose register 

or memory.
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PEXTRQ Extract a qword from an XMM register and insert the value into a general-purpose register 
or memory.

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word element into packed signed word 

integers. 
PMOVZXBW Zero extend the lower 8-bit integer of each packed word element into packed signed word 

integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword element into packed signed 

dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword element into packed signed 

dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword element into packed signed 

dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword element into packed signed 

dword integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword element into packed signed 
qword integers.

PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword element into packed signed 
qword integers.

PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword element into packed signed 
qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword element into packed signed 
qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword element into packed signed 
qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword element into packed signed 
qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
MPSADBW Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word 

integers. 

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally 

packed unsigned words. The resulting value and location (offset within the source) are 
packed into the low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the 

result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.
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5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation.

5.11 SSE4.2 INSTRUCTION SET
Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string 
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2 
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit 
integer SIMD instructions. 
CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0.

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 INTEL® AES-NI AND PCLMULQDQ
Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less 
multiplication for two binary numbers up to 64-bit wide. 
AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM 
register set to use a “vector extension“ (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all 
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to 
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy 
128-bit SIMD floating-point instructions to support three-operand syntax. 

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:
• Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD 

instruction sets.
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• Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit 
SIMD instruction sets.

• Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD 
instruction sets.

• Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction 
sets.

• Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD 
instruction sets.

• Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by 
VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four 

single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into 

eight/four 16-bit floating-point data.

5.15 FUSED-MULTIPLY-ADD (FMA)
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, 
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add 
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on 
256-bit vectors and additional 128-bit and scalar FMA instructions.
• Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric 
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions. 

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector 
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data 
elements from memory.
• Table 14-18 lists promoted vector integer instructions in AVX2.
• Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
XABORT Abort an RTM transaction execution.
XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.
XEND Transaction end of an RTM transaction region.
XTEST Test if executing in a transactional region.
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5.18 INTEL® SHA EXTENSIONS 
Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm 
(SHA), specifically the SHA-1 and SHA-256 variants. 
SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the 

previous message dwords.
SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate 

message dwords.
SHA1NEXTE Calculate SHA1 state E after four rounds.
SHA1RNDS4 Perform four rounds of SHA1 operations.
SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.
SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.
SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)
The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of 
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit, 
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers. 

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX 
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX / Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX / Intel AVX2. Some instruction 
mnemonics in AVX / AVX2 that are promoted into AVX-512 can be replaced by new instruction mnemonics that are 
available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details of EVEX instruction 
encoding are discussed in Section 2.6, “Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

512-bit instruction mnemonics in AVX-512F that are not AVX/AVX2 promotions include:
VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.
VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.
VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VFIXUPIMMPD/PS Perform fix-up to special values in DP/SP FP vectors.
VFIXUPIMMSD/SS Perform fix-up to special values of the low DP/SP FP element.
VGETEXPPD/PS Convert the exponent of DP/SP FP elements of a vector into FP values.
VGETEXPSD/SS Convert the exponent of the low DP/SP FP element in a vector into FP value.
VGETMANTPD/PS Convert the mantissa of DP/SP FP elements of a vector into FP values.
VGETMANTSD/SS Convert the mantissa of the low DP/SP FP element of a vector into FP value.
VINSERTF32X4/64X4 Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA32/64 VMOVDQA with 32/64-bit granular conditional update.
VMOVDQU32/64 VMOVDQU with 32/64-bit granular conditional update.
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VPBLENDMD/Q Blend dword/qword elements using opmask as select control.
VPBROADCASTD/Q Broadcast from general-purpose register to vector register.
VPCMPD/UD Compare packed signed/unsigned dwords using specified primitive.
VPCMPQ/UQ Compare packed signed/unsigned quadwords using specified primitive.
VPCOMPRESSQ/D Compress packed 64/32-bit elements of a vector.
VPERMI2D/Q Full permute of two tables of dword/qword elements overwriting the index vector.
VPERMI2PD/PS Full permute of two tables of DP/SP elements overwriting the index vector.
VPERMT2D/Q Full permute of two tables of dword/qword elements overwriting one source table.
VPERMT2PD/PS Full permute of two tables of DP/SP elements overwriting one source table.
VPEXPANDD/Q Expand packed dword/qword elements of a vector.
VPMAXSQ Compute maximum of packed signed 64-bit integer elements.
VPMAXUD/UQ Compute maximum of packed unsigned 32/64-bit integer elements.
VPMINSQ Compute minimum of packed signed 64-bit integer elements.
VPMINUD/UQ Compute minimum of packed unsigned 32/64-bit integer elements.
VPMOV(S|US)QB Down convert qword elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)QW Down convert qword elements in a vector to word elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)QD Down convert qword elements in a vector to dword elements using truncation (saturation 

| unsigned saturation).
VPMOV(S|US)DB Down convert dword elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)DW Down convert dword elements in a vector to word elements using truncation (saturation | 

unsigned saturation).
VPROLD/Q Rotate dword/qword element left by a constant shift count with conditional update.
VPROLVD/Q Rotate dword/qword element left by shift counts specified in a vector with conditional 

update.
VPRORD/Q Rotate dword/qword element right by a constant shift count with conditional update.
VPRORRD/Q Rotate dword/qword element right by shift counts specified in a vector with conditional 

update.
VPSCATTERDD/DQ Scatter dword/qword elements in a vector to memory using dword indices.
VPSCATTERQD/QQ Scatter dword/qword elements in a vector to memory using qword indices.
VPSRAQ Shift qwords right by a constant shift count and shifting in sign bits.
VPSRAVQ Shift qwords right by shift counts in a vector and shifting in sign bits.
VPTESTNMD/Q Perform bitwise NAND of dword/qword elements of two vectors and write results to 

opmask.
VPTERLOGD/Q Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional 

update.
VPTESTMD/Q Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
VRCP14PD/PS Compute approximate reciprocals of packed DP/SP FP elements of a vector.
VRCP14SD/SS Compute the approximate reciprocal of the low DP/SP FP element of a vector.
VRNDSCALEPD/PS Round packed DP/SP FP elements of a vector to specified number of fraction bits.
VRNDSCALESD/SS Round the low DP/SP FP element of a vector to specified number of fraction bits.
VRSQRT14PD/PS Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.
VRSQRT14SD/SS Compute the approximate reciprocal of square root of the low DP/SP FP element of a 

vector.
VSCALEPD/PS Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified 

in a second vector.
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VSCALESD/SS Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in 
the corresponding element of a second vector.

VSCATTERDD/DQ Scatter SP/DP FP elements in a vector to memory using dword indices.
VSCATTERQD/QQ Scatter SP/DP FP elements in a vector to memory using qword indices.
VSHUFF32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
VSHUFI32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not AVX/AVX2 promotions include:
VCVT(T)PD2QQ Convert packed DP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PD2UQQ Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
VCVT(T)PS2QQ Convert packed SP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PS2UQQ Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
VCVTUQQ2PD/PS Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
VEXTRACTF64X2 Extract a vector from a full-length vector with 64-bit granular update.
VEXTRACTI64X2 Extract a vector from a full-length vector with 64-bit granular update.
VFPCLASSPD/PS Test packed DP/SP FP elements in a vector by numeric/special-value category.
VFPCLASSSD/SS Test the low DP/SP FP element by numeric/special-value category.
VINSERTF64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VINSERTI64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VPMOVM2D/Q Convert opmask register to vector register in 32/64-bit granularity.
VPMOVB2D/Q2M Convert a vector register in 32/64-bit granularity to an opmask register.
VPMULLQ Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed 

result.
VRANGEPD/PS Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified 

range primitive in imm8.
VRANGESD/SS Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-

fied range primitive in imm8.
VREDUCEPD/PS Perform Reduction operation on packed DP/SP FP elements of a vector using specified 

reduction primitive in imm8.
VREDUCESD/SS Perform Reduction operation on the low DP/SP FP element of a vector using specified 

reduction primitive in imm8.

512-bit instruction mnemonics in AVX-512BW that are not AVX/AVX2 promotions include:
VDBPSADBW Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU8/16 VMOVDQU with 8/16-bit granular conditional update.
VPBLENDMB Replaces the VPBLENDVB instruction (using opmask as select control).
VPBLENDMW Blend word elements using opmask as select control.
VPBROADCASTB/W Broadcast from general-purpose register to vector register.
VPCMPB/UB Compare packed signed/unsigned bytes using specified primitive.
VPCMPW/UW Compare packed signed/unsigned words using specified primitive.
VPERMW Permute packed word elements.
VPERMI2B/W Full permute from two tables of byte/word elements overwriting the index vector.
VPMOVM2B/W Convert opmask register to vector register in 8/16-bit granularity.
VPMOVB2M/W2M Convert a vector register in 8/16-bit granularity to an opmask register.
VPMOV(S|US)WB Down convert word elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPSLLVW Shift word elements in a vector left by shift counts in a vector.
VPSRAVW Shift words right by shift counts in a vector and shifting in sign bits.
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VPSRLVW Shift word elements in a vector right by shift counts in a vector.
VPTESTNMB/W Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
VPTESTMB/W Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not AVX/AVX2 promotions include:
VPBROADCASTM Broadcast from opmask register to vector register.
VPCONFLICTD/Q Detect conflicts within a vector of packed 32/64-bit integers.
VPLZCNTD/Q Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:
KADDB/W/D/Q Add two 8/16/32/64-bit opmasks.
KANDB/W/D/Q Logical AND two 8/16/32/64-bit opmasks.
KANDNB/W/D/Q Logical AND NOT two 8/16/32/64-bit opmasks.
KMOVB/W/D/Q Move from or move to opmask register of 8/16/32/64-bit data.
KNOTB/W/D/Q Bitwise NOT of two 8/16/32/64-bit opmasks.
KORB/W/D/Q Logical OR two 8/16/32/64-bit opmasks.
KORTESTB/W/D/Q Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
KSHIFTLB/W/D/Q Shift left 8/16/32/64-bit opmask by specified count.
KSHIFTRB/W/D/Q Shift right 8/16/32/64-bit opmask by specified count.
KTESTB/W/D/Q Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
KUNPCKBW/WD/DQ Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.
KXNORB/W/D/Q Bitwise logical XNOR of two 8/16/32/64-bit opmasks.
KXORB/W/D/Q Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:
VEXP2PD/PS Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
VEXP2SD/SS Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
VRCP28PD/PS Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector. 
VRCP28SD/SS Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector. 
VRSQRT28PD/PS Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements 

of a vector.
VRSQRT28SD/SS Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element 

of a vector.

512-bit instruction mnemonics in AVX-512PF include:
VGATHERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using dword indices.
VGATHERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using qword indices.
VGATHERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
VGATHERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
VSCATTERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using dword indices.
VSCATTERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using qword indices.
VSCATTERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
VSCATTERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using qword indices.
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5.20 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor that are provided to support 
for operating systems and executives.
CLAC Clear AC Flag in EFLAGS register.
STAC Set AC Flag in EFLAGS register.
LGDT Load global descriptor table (GDT) register.
SGDT Store global descriptor table (GDT) register.
LLDT Load local descriptor table (LDT) register.
SLDT Store local descriptor table (LDT) register.
LTR Load task register.
STR Store task register.
LIDT Load interrupt descriptor table (IDT) register.
SIDT Store interrupt descriptor table (IDT) register.
MOV Load and store control registers.
LMSW Load machine status word.
SMSW Store machine status word.
CLTS Clear the task-switched flag.
ARPL Adjust requested privilege level.
LAR Load access rights.
LSL Load segment limit.
VERR Verify segment for reading
VERW Verify segment for writing.
MOV Load and store debug registers.
INVD Invalidate cache, no writeback.
WBINVD Invalidate cache, with writeback.
INVLPG Invalidate TLB Entry.
INVPCID Invalidate Process-Context Identifier.
LOCK (prefix) Perform atomic access to memory (can be applied to a number of general purpose instruc-

tions that provide memory source/destination access).
HLT Halt processor.
RSM Return from system management mode (SMM).
RDMSR Read model-specific register.
WRMSR Write model-specific register.
RDPMC Read performance monitoring counters.
RDTSC Read time stamp counter.
RDTSCP Read time stamp counter and processor ID.
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.
XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.
XSETBV Writes the state of an extended control register.
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RDFSBASE Reads from FS base address at any privilege level.
RDGSBASE Reads from GS base address at any privilege level.
WRFSBASE Writes to FS base address at any privilege level.
WRGSBASE Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword.
CMPSQ Compare string operands.
CMPXCHG16B Compare RDX:RAX with m128.
LODSQ Load qword at address (R)SI into RAX.
MOVSQ Move qword from address (R)SI to (R)DI.
MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.
STOSQ Store RAX at address RDI.
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H.
SYSCALL Fast call to privilege level 0 system procedures.
SYSRET Return from fast systemcall.

5.22 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and 

current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is 

stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS 

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data 
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register 
operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand) 
from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control 

to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control 

to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX 

root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize 

address translation in virtual machines with memory-resident EPT pages.
INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID 

(VPID).
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None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs, 

transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which 

is processor functionality enabled and configured by software in VMX root operation. No 
VM exit occurs.

5.23 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS]  Loads an authenticated code chipset module and enters authenticated code execution 

mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust 

anchored to a chipset supporting Intel Trusted Execution Technology.
GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS] Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

5.24 INTEL® MEMORY PROTECTION EXTENSIONS
Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds 
checking capability to memory references. Details of Intel MPX are described in Chapter 17, “Intel® MPX”.
BNDMK Create a LowerBound and a UpperBound in a register.
BNDCL Check the address of a memory reference against a LowerBound.
BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.
BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment 

form.
BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.
BNDMOV Store to memory of the LowerBound and UpperBound from a register.
BNDLDX Load bounds using address translation.
BNDSTX Store bounds using address translation.

5.25 INTEL® SOFTWARE GUARD EXTENSIONS
Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application 
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as 
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are 
described in CHAPTER 36 through CHAPTER 42 of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3D.
The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel 
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.
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5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS
Shadow stack management instructions allow the program and run-time to perform operations like recovering 
from control protection faults, shadow stack switching, etc. The following instructions are provided.
CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).
RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.
WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS
ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.

Table 5-3.  Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave 

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page



5-38 Vol. 1

INSTRUCTION SET SUMMARY



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

3. Updates to Chapter 10, Volume 1

Updates to Chapter 10 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: 
Basic Architecture.

------------------------------------------------------------------------------------------

Changes to this chapter: Update to Section 10.5.3, “Operation of FXRSTOR”.
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CHAPTER 10
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS (INTEL® SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in the Pentium III processor 
family. These extensions enhance the performance of IA-32 processors for advanced 2-D and 3-D graphics, motion 
video, image processing, speech recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes SSE. Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” 
provides information to assist in writing application programs that use SSE2 extensions. Chapter 12, “Programming 
with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into the IA-32 architecture, 
with the 64-bit MMX registers, 64-bit packed integer data types, and instructions that allowed SIMD operations to 
be performed on packed integers. SSE extensions expand the SIMD execution model by adding facilities for 
handling packed and scalar single-precision floating-point values contained in 128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while maintaining backward compatibility with 
all existing IA-32 processors, applications and operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen XMM registers are available in 

64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-precision floating-point values 

packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point values and that extend SIMD 

operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that operate on data located in MMX 
registers

— 64-bit SIMD integer instructions that support additional operations on packed integer operands located in 
MMX registers

• Instructions that save and restore the state of the MXCSR register.
• Instructions that support explicit prefetching of data, control of the cacheability of data, and control the 

ordering of store operations.
• Extensions to the CPUID instruction. 

These features extend the IA-32 architecture’s SIMD programming model in four important ways: 
• The ability to perform SIMD operations on four packed single-precision floating-point values enhances the 

performance of IA-32 processors for advanced media and communications applications that use computation-
intensive algorithms to perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single-precision floating-point operations in XMM registers and SIMD integer 
operations in MMX registers provides greater flexibility and throughput for executing applications that operate 
on large arrays of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM registers without polluting the 
caches and the ability to prefetch data to selected cache levels before it is actually used. Applications that 
require regular access to large amounts of data benefit from these prefetching and streaming store capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering of store operations when using 
weakly-ordered memory types.
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SSE extensions are fully compatible with all software written for IA-32 processors. All existing software continues 
to run correctly, without modification, on processors that incorporate SSE extensions. Enhancements to CPUID 
permit detection of SSE extensions. SSE extensions are accessible from all IA-32 execution modes: protected 
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE extensions, including: XMM 
registers, the packed single-precision floating-point data type, and SSE instructions. For additional information, 
see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that can be generated with 

SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed 

description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating 
these extensions into an operating-system environment.

10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE instructions operate on the XMM 
registers, MMX registers, and/or memory as follows: 
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, “XMM Registers”) are used to 

operate on packed or scalar single-precision floating-point data. Scalar operations are operations performed on 
individual (unpacked) single-precision floating-point values stored in the low doubleword of an XMM register. 
XMM registers are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, “MXCSR Control and Status 
Register”) provides status and control bits used in SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed 
integer data. They are also used to hold operands for some operations performed between the MMX and XMM 
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the 
existing IA-32 addressing modes to address operands in memory. (MMX and XMM registers cannot be used to 

Figure 10-1.  SSE Execution Environment
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address memory). The general-purpose registers are also used to hold operands for some SSE instructions and 
are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In 64-bit mode, eight additional 
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. Memory operands are 
specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with SSE extensions (see 
Figure 10-2). These registers can be accessed directly using the names XMM0 to XMM7; and they can be accessed 
independently from the x87 FPU and MMX registers and the general-purpose registers (that is, they are not aliased 
to any other of the processor’s registers). 

SSE instructions use the XMM registers only to operate on packed single-precision floating-point operands. SSE2 
extensions expand the functions of the XMM registers to operand on packed or scalar double-precision floating-
point operands and packed integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section 
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used to address memory. 
Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 32-bit, 64-bit, and 128-bit incre-
ments. When storing the entire contents of an XMM register in memory (128-bit store), the data is stored in 16 
consecutive bytes, with the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information for SSE, SSE2, and SSE3 
SIMD floating-point operations. This register contains: 
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations

Figure 10-2.  XMM Registers
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• flush-to-zero flag that provides a means of controlling underflow conditions on SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR instructions and stored 
in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset of the processor; 
attempting to write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions, will result 
in a general-protection exception (#GP) being generated.

10.2.3.1  SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has been detected. They 
are “sticky” flags. That is, after a flag is set, it remains set until explicitly cleared. To clear these flags, use the 
LDMXCSR or the FXRSTOR instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An exception type is masked 
if the corresponding mask bit is set, and it is unmasked if the bit is clear. These mask bits are set upon a power-up 
or reset. This causes all SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag bit, a SIMD floating-point 
exception will not be generated as a result of this change. The unmasked exception will be generated only upon the 
execution of the next SSE/SSE2/SSE3 instruction that detects the unmasked exception condition. 

For more information about the use of the SIMD floating-point exception mask and flag bits, see Section 11.5, 
“SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, “SSE3/SSSE3 And SSE4 Exceptions.”

10.2.3.2  SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results of SIMD floating-point 
instructions are rounded. See Section 4.8.4, “Rounding,” for a description of the function and encoding of the 
rounding control bits.

10.2.3.3  Flush-To-Zero
Bit 15 (FTZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked response to a SIMD 
floating-point underflow condition. When the underflow exception is masked and the flush-to-zero mode is 
enabled, the processor performs the following operations when it detects a floating-point underflow condition.

Figure 10-3.  MXCSR Control/Status Register 
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• Returns a zero result with the sign of the true result.
• Sets the precision and underflow exception flags.

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked response to under-
flow is to deliver the denormalized result (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). 
The flush-to-zero mode is provided primarily for performance reasons. At the cost of a slight precision loss, faster 
execution can be achieved for applications where underflows are common and rounding the underflow result to 
zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-zero mode.

10.2.3.4  Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the processor’s response 
to a SIMD floating-point denormal operand condition. When the denormals-are-zeros flag is set, the processor 
converts all denormal source operands to a zero with the sign of the original operand before performing any 
computations on them. The processor does not set the denormal-operand exception flag (DE), regardless of the 
setting of the denormal-operand exception mask bit (DM); and it does not generate a denormal-operand exception 
if the exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2, “Normalized and 
Denormalized Finite Numbers”). The denormals-are-zeros mode is provided to improve processor performance for 
applications such as streaming media processing, where rounding a denormal operand to zero does not appre-
ciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the denormals-are-
zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with the SSE2 exten-
sions; however, it is fully compatible with the SSE SIMD floating-point instructions (that is, the denormals-are-
zeros flag affects the operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors and in 
some models of the Pentium 4 processor, this flag (bit 6) is reserved. See Section 11.6.3, “Checking for the DAZ 
Flag in the MXCSR Register,” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for instructions for 
preventing such general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE instruc-
tion.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU
The state (XMM registers and MXCSR register) introduced into the IA-32 execution environment with the SSE 
extensions is shared with SSE2 and SSE3 extensions. SSE/SSE2/SSE3 instructions are fully compatible; they can 
be executed together in the same instruction stream with no need to save state when switching between instruc-
tion sets.

XMM registers are independent of the x87 FPU and MMX registers, so SSE/SSE2/SSE3 operations performed on the 
XMM registers can be performed in parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7, 
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states along with the x87 FPU and 
MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision floating-point data type, to the IA-
32 architecture (see Figure 10-4). This data type consists of four IEEE 32-bit single-precision floating-point values 
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packed into a double quadword. (See Figure 4-3 for the layout of a single-precision floating-point value; refer to 
Section 4.2.2, “Floating-Point Data Types,” for a detailed description of the single-precision floating-point format.)

This 128-bit packed single-precision floating-point data type is operated on in the XMM registers or in memory. 
Conversion instructions are provided to convert two packed single-precision floating-point values into two packed 
doubleword integers or a scalar single-precision floating-point value into a doubleword integer (see Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX registers, and between XMM 
registers and general-purpose bit registers. See Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following 
cases: 
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on packed single-precision 
floating-point operands (see Figure 10-5). Each source operand contains four single-precision floating-point 
values, and the destination operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

Figure 10-4.  128-Bit Packed Single-Precision Floating-Point Data Type
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The scalar single-precision floating-point instructions operate on the low (least significant) doublewords of the two 
source operands (X0 and Y0); see Figure 10-6. The three most significant doublewords (X1, X2, and X3) of the first 
source operand are passed through to the destination. The scalar operations are similar to the floating-point oper-
ations performed in the x87 FPU data registers with the precision control field in the x87 FPU control word set for 
single precision (24-bit significand), except that x87 stack operations use a 15-bit exponent range for the result, 
while SSE operations use an 8-bit exponent range.

10.4.1.1  SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between XMM registers and between an 
XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction transfers a double quadword 
operand containing four packed single-precision floating-point values from memory to an XMM register and vice 
versa, or between XMM registers. The memory address must be aligned to a 16-byte boundary; otherwise, a 
general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction performs the same operations as 
the MOVAPS instruction, except that 16-byte alignment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-bit single-precision floating-
point operand from memory to the low doubleword of an XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves two packed single-precision 
floating-point values from memory to the low quadword of an XMM register and vice versa. The high quadword of 
the register is left unchanged.

Figure 10-5.  Packed Single-Precision Floating-Point Operation

Figure 10-6.  Scalar Single-Precision Floating-Point Operation
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The MOVHPS (move high packed single-precision floating-point) instruction moves two packed single-precision 
floating-point values from memory to the high quadword of an XMM register and vice versa. The low quadword of 
the register is left unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction moves two packed single-preci-
sion floating-point values from the low quadword of the source XMM register into the high quadword of the desti-
nation XMM register. The low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction moves two packed single-preci-
sion floating-point values from the high quadword of the source XMM register into the low quadword of the desti-
nation XMM register. The high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction transfers the most significant bit of 
each of the four packed single-precision floating-point numbers in an XMM register to a general-purpose register. 
This 4-bit value can then be used as a condition to perform branching.

10.4.1.2  SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal, square root, reciprocal of 
square root, and maximum/minimum operations on packed and scalar single-precision floating-point values.

The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract packed single-precision 
floating-point values) instructions add and subtract, respectively, two packed single-precision floating-point oper-
ands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract scalar single-precision floating-
point values) instructions add and subtract, respectively, the low single-precision floating-point values of two oper-
ands and store the result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multiplies two packed single-preci-
sion floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multiplies the low single-precision 
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides two packed single-precision 
floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides the low single-precision floating-
point values of two operands and stores the result in the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) instruction computes the approx-
imate reciprocals of values in a packed single-precision floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) instruction computes the approxi-
mate reciprocal of the low single-precision floating-point value in the source operand and stores the result in the 
low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) instruction computes the 
square roots of the values in a packed single-precision floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) instruction computes the square 
root of the low single-precision floating-point value in the source operand and stores the result in the low double-
word of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision floating-point values) instruction 
computes the approximate reciprocals of the square roots of the values in a packed single-precision floating-point 
operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point value) instruction computes the 
approximate reciprocal of the square root of the low single-precision floating-point value in the source operand and 
stores the result in the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically greater 
value from each comparison to the destination operand.
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The MAXSS (return maximum of scalar single-precision floating-point values) instruction compares the low values 
from two packed single-precision floating-point operands and returns the numerically greater value from the 
comparison to the low doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically lesser value 
from each comparison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruction compares the low values 
from two packed single-precision floating-point operands and returns the numerically lesser value from the 
comparison to the low doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed single-precision floating-point 
values. 

The ANDPS (bitwise logical AND of packed single-precision floating-point values) instruction returns the logical 
AND of two packed single-precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point values) instruction returns the 
logical AND NOT of two packed single-precision floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) instruction returns the logical OR of 
two packed single-precision floating-point operands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) instruction returns the logical 
XOR of two packed single-precision floating-point operands.

10.4.2.1  SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point values and return the results 
of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction compares the corresponding values 
from two packed single-precision floating-point operands, using an immediate operand as a predicate, and returns 
a 32-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the immediate 
operand allows the selection of any of 8 compare conditions: equal, less than, less than equal, unordered, not 
equal, not less than, not less than or equal, or ordered.

The CMPSS (compare scalar single-precision, floating-point values) instruction compares the low values from two 
packed single-precision floating-point operands, using an immediate operand as a predicate, and returns a 32-bit 
mask result of all 1s or all 0s for the comparison to the low doubleword of the destination operand. The immediate 
operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) and UCOMISS (unordered 
compare scalar single-precision floating-point values and set EFLAGS) instructions compare the low values of two 
packed single-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the 
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISS instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN; 
the UCOMISS instruction only signals an invalid-operation exception when a source operand is an SNaN.

10.4.2.2  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single-precision floating-point 
values and store the results in the destination operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places any two of the four packed 
single-precision floating-point values from the destination operand into the two low-order doublewords of the 
destination operand, and places any two of the four packed single-precision floating-point values from the source 
operand in the two high-order doublewords of the destination operand (see Figure 10-7). By using the same 
register for the source and destination operands, the SHUFPS instruction can shuffle four single-precision floating-
point values into any order. 
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The UNPCKHPS (unpack and interleave high packed single-precision floating-point values) instruction performs an 
interleaved unpack of the high-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point values) instruction performs an 
interleaved unpack of the low-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-9).

Figure 10-7.  SHUFPS Instruction, Packed Shuffle Operation

Figure 10-8.  UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction, Low Unpack and Interleave Operation
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10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions between single-precision 
floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction 
converts two packed signed doubleword integers into two packed single-precision floating-point values. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. 

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point value) instruction converts a 
signed doubleword integer into a single-precision floating-point value. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. 

The CVTPS2PI (convert packed single-precision floating-point values to packed doubleword integers) instruction 
converts two packed single-precision floating-point values into two packed signed doubleword integers. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. The 
CVTTPS2PI (convert with truncation packed single-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a source value to an 
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword integer) instruction converts a 
single-precision floating-point value into a signed doubleword integer. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with truncation 
scalar single-precision floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruc-
tion, except that truncation is used to round the source value to an integer value (see Section 4.8.4.2, “Truncation 
with SSE and SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32 architecture. These instructions 
operate on data in MMX registers and 64-bit memory locations. 

NOTE
When SSE2 extensions are present in an IA-32 processor, these instructions are extended to 
operate on 128-bit operands in XMM registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute average of packed 
unsigned word integers) instructions compute a SIMD average of two packed unsigned byte or word integer oper-
ands, respectively. For each corresponding pair of data elements in the packed source operands, the elements are 
added together, a 1 is added to the temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into a general-purpose 
register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from memory into a 
selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corresponding signed word 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corresponding signed word inte-
gers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte integers in an MMX 
register and stores the result in the low byte of a general-purpose register. The mask contains the most significant 
bit of each byte in the MMX register. (When operating on 128-bit operands, a 16-bit mask is created.)
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The PMULHUW (multiply packed unsigned word integers and store high result) instruction performs a SIMD 
unsigned multiply of the words in the two source operands and returns the high word of each result to an MMX 
register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute differences of the 
corresponding unsigned byte integers in two source operands, sums the differences, and stores the sum in the low 
word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source operand according to the 
order specified by an 8-bit immediate operand and returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the state of the MXCSR 
register, respectively. The LDMXCSR instruction loads the MXCSR register from memory, while the STMXCSR 
instruction stores the contents of the register to memory.

10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
SSE extensions introduce several new instructions to give programs more control over the caching of data. They 
also introduces the PREFETCHh instructions, which provide the ability to prefetch data to a specified cache level, 
and the SFENCE instruction, which enforces program ordering on stores. These instructions are described in the 
following sections.

10.4.6.1  Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be stored to memory using a non-
temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the data 
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for information 
about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX 
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores 
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX register 
to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-temporal 
hint.

10.4.6.2  Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced 
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of 
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The SSE 
and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a manner 
that minimizes pollution of caches. 

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being 
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the memory type of the destination region is write back (WB), write through (WT), or write combining 
(WC), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be 
updated in-place if the memory type was not WC and line was already in the cache.
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• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to 
memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implementa-
tions may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address speci-
fied for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region 
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other system 
agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for producer-
consumer usage models. Fencing ensures that all system agents have global visibility of the stored data; for 
instance, failure to fence may result in a written cache line staying within a processor and not being visible to other 
agents. 

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one 
possible example, the memory type written to the bus may reflect the memory type for the first store to this line, 
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by 
updating in place data that already reside in the cache hierarchy. For such processors, the 
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential for 
speculative processor reads to bring the data into the caches; in this case, non-temporal stores 
would then update in place, and data would not be flushed from the processor by a subsequent 
fencing operation.

10.4.6.3  PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a suggested cache level, so that 
the data is closer to the processor’s load and store unit when it is needed. These instructions fetch 32 aligned bytes 
(or more, depending on the implementation) containing the addressed byte to a location in the cache hierarchy 
specified by the temporal locality hint (see Table 10-1). In this table, the first-level cache is closest to the processor 
and second-level cache is farther away from the processor than the first-level cache. The hints specify a prefetch 
of either temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). 
Subsequent accesses to temporal data are treated like normal accesses, while those to non-temporal data will 
continue to minimize cache pollution. If the data is already present at a level of the cache hierarchy that is closer 
to the processor, the PREFETCHh instruction will not result in any data movement. The PREFETCHh instructions do 
not affect functional behavior of the program.

See Section 11.6.13, “Cacheability Hint Instructions,” for additional information about the PREFETCHh instructions.

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh Instruction 
Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache
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10.4.6.4  SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This 
instruction guarantees that the result of every store instruction that precedes the store fence in program order is 
globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way 
of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that 
data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor 
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a fast 
save and restore, respectively, of the x87 execution environment (x87 state). (By saving the state of the x87 FPU 
data registers, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers 
and the MXCSR register (SSE state), along with x87 state. 

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions; 
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of 
FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part of the SSE instruction group. They 
have a separate CPUID feature bit to indicate whether they are present (if 
CPUID.01H:EDX.FXSR[bit 24] = 1). 

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes operation of 
FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area
The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address of the 
FXSAVE area on which it operates.

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing cache pollution 

• Pentium III processor—1st-level cache 

• Pentium 4 and Intel Xeon processor—2nd-level cache

Table 10-1.  PREFETCHh Instructions Caching Hints (Contd.)

PREFETCHh Instruction 
Mnemonic Actions
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Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format 
of the first 416 bytes of the legacy region of an FXSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises 
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1  x87 State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU 

Opcode (FOP), respectively.

Table 10-2.  Format of an FXSAVE Area
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU 
IP bits 63:32 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP 
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400
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• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag; 
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of 
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the 
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: FXSAVE saves it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector 
(FPU DS). Otherwise, the processor deprecates the FPU DS value: FXSAVE saves it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 registers is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.

10.5.1.2  SSE State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in response 

to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions 

of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit mode do not 
read these bytes and do not update XMM8–XMM15.

If CR4.OSFXSR = 0, FXSAVE and FXRSTOR may or may not operate on SSE state; this behavior is implementation 
dependent. Moreover, SSE instructions cannot be used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE
The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The instruction stores x87 state 
and SSE state to the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific 
operation and operation determined by instruction prefixes.
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10.5.3 Operation of FXRSTOR
The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. If the value at bytes 27:24 of 
the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets reserved bits), execution of 
FXRSTOR results in a general-protection fault (#GP). Otherwise, the instruction loads x87 state and SSE state rom 
the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific operation and 
operation determined by instruction prefixes.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the general and SIMD floating-
point exceptions that can be generated with the SSE instructions and for guidelines for handling these exceptions 
when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional information about writing appli-
cations and operating-system code using the SSE extensions.
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4. Updates to Chapter 15, Volume 1

Updates to Chapter 15 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: 
Basic Architecture.

------------------------------------------------------------------------------------------

Changes to this chapter: Typo correction in Table 5-4, “Characteristics of Three Rounding Control Interfaces”.
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CHAPTER 15
PROGRAMMING WITH INTEL® AVX-512

15.1 OVERVIEW
The Intel AVX-512 family comprises a collection of instruction set extensions, including AVX-512 Foundation,
AVX-512 Exponential and Reciprocal instructions, AVX-512 Conflict, AVX-512 Prefetch, and additional 512-bit
SIMD instruction extensions. Intel AVX-512 instructions are natural extensions to Intel AVX and Intel AVX2. Intel
AVX-512 introduces the following architectural enhancements:
• Support for 512-bit wide vectors and SIMD register set. 512-bit register state is managed by the operating 

system using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, and Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A). 

• Support for 16 new, 512-bit SIMD registers (for a total of 32 SIMD registers, ZMM0 through ZMM31) in 64-bit 
mode. The extra 16 registers state is managed by the operating system using XSAVE/XRSTOR/XSAVEOPT.

• Support for 8 new opmask registers (k0 through k7) used for conditional execution and efficient merging of 
destination operands. The opmask register state is managed by the operating system using the 
XSAVE/XRSTOR/XSAVEOPT instructions.

• A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The 
EVEX prefix builds upon the foundations of the VEX prefix to provide compact, efficient encoding for function-
ality available to VEX encoding plus the following enhanced vector capabilities: 

• Opmasks.

• Embedded broadcast.

• Instruction prefix-embedded rounding control.

• Compressed address displacements.

15.1.1 512-Bit Wide SIMD Register Support
Intel AVX-512 instructions support 512-bit wide SIMD registers (ZMM0-ZMM31). The lower 256-bits of the ZMM 
registers are aliased to the respective 256-bit YMM registers and the lower 128-bit are aliased to the respective 
128-bit XMM registers.

15.1.2 32 SIMD Register Support
Intel AVX-512 instructions also support 32 SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31 and 
ZMM0-ZMM31). The number of available vector registers in 32-bit mode is still 8.

15.1.3 Eight Opmask Register Support
Intel AVX-512 instructions support 8 opmask registers (k0-k7). The width of each opmask register is architectur-
ally defined as size MAX_KL (64 bits). Seven of the eight opmask registers (k1-k7) can be used in conjunction with 
EVEX-encoded AVX-512 Foundation instructions to provide conditional execution and efficient merging of data 
elements in the destination operand. The encoding of opmask register k0 is typically used when all data elements 
(unconditional processing) are desired. Additionally, the opmask registers are also used as vector flags/element-
level vector sources to introduce novel SIMD functionality as seen in new instructions such as VCOMPRESSPS.
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15.1.4 Instruction Syntax Enhancement
The architecture of EVEX encoding enhances the vector instruction encoding scheme in the following way: 
• 512-bit vector-length, up to 32 ZMM registers, and enhanced vector programming environment are supported 

using the enhanced VEX (EVEX).
The EVEX prefix provides more encodable bit fields than the VEX prefix. In addition to encoding 32 ZMM registers 
in 64-bit mode, instruction encoding using the EVEX prefix can directly encode 7 (out of 8) opmask register oper-
ands to provide conditional processing in vector instruction programming. The enhanced vector programming envi-
ronment can be explicitly expressed in the instruction syntax to include the following elements: 
• An opmask operand: the opmask registers are expressed using the notation “k1” through “k7”. An EVEX-

encoded instruction supporting conditional vector operation using the opmask register k1 is expressed by 
attaching the notation {k1} next to the destination operand. The use of this feature is optional for most instruc-
tions. There are two types of masking (merging and zeroing) differentiated using the EVEX.z bit ({z} in 
instruction signature).

• Embedded broadcast may be supported for some instructions on the source operand that can be encoded as a 
memory vector. Data elements of a memory vector may be conditionally fetched or written to.

• For instruction syntax that operates only on floating-point data in SIMD registers with rounding semantics, the 
EVEX encoding can provide explicit rounding control within the EVEX bit fields at either scalar or 512-bit vector 
length. 

In AVX-512 instructions, vector addition of all elements of the source operands can be expressed in the same 
syntax as AVX instruction:

VADDPS zmm1, zmm2, zmm3

Additionally, the EVEX encoding scheme of AVX-512 Foundation can express conditional vector addition as:

VADDPS zmm1 {k1}{z}, zmm2, zmm3

where:
• Conditional processing and updates to destination are expressed with an opmask register.
• Zeroing behavior of the opmask selected destination element is expressed by the {z} modifier (with merging 

as the default if no modifier is specified).

Figure 15-1.  512-Bit Wide Vectors and SIMD Register Set
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Note that some SIMD instructions supporting three-operand syntax but processing only less than or equal to 128-
bits of data are considered part of the 512-bit SIMD instruction set extensions, because bits MAXVL-1:128 of the 
destination register are zeroed by the processor. The same rule applies to instructions operating on 256-bits of data 
where bits MAXVL-1:256 of the destination register are zeroed.

15.1.5 EVEX Instruction Encoding Support
Intel AVX-512 instructions employ a new encoding prefix, referred to as EVEX, in the Intel 64 and IA-32 instruction 
encoding format. Instruction encoding using the EVEX prefix provides the following capabilities:
• Direct encoding of a SIMD register operand within EVEX (similar to VEX). This provides instruction syntax 

support for three source operands. 
• Compaction of REX prefix functionality and extended SIMD register encoding: the equivalent REX-prefix 

compaction functionality offered by the VEX prefix is provided within EVEX. Furthermore, EVEX extends the 
operand encoding capability to allow direct addressing of up to 32 ZMM registers in 64-bit mode.

• Compaction of SIMD prefix functionality and escape byte encoding: the functionality of a SIMD prefix (66H, 
F2H, F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This 
functionality is provided in the VEX prefix encoding scheme and employed within the EVEX prefix. Similarly, the 
functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted within 
the EVEX prefix encoding. 

• Most EVEX-encoded SIMD numeric and data processing instruction semantics with memory operands have 
more relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 
15.7, “Memory Alignment”).

• Direct encoding of an opmask operand within the EVEX prefix. This provides instruction syntax support for 
conditional vector-element operation and merging of destination operand using an opmask register (k1-k7).

• Direct encoding of a broadcast attribute for instructions with a memory operand source. This provides 
instruction syntax support for elements broadcasting the second operand before being used in the actual 
operation.

• Compressed memory address displacements for a more compact instruction encoding byte sequence.
EVEX encoding applies to SIMD instructions operating on XMM, YMM and ZMM registers. EVEX is not supported for 
instructions operating on MMX or x87 registers. Details of EVEX instruction encoding are discussed in Section 2.6, 
“Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

15.2 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS 
The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded 
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in 
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register. System 
software requirements to support the ZMM state and opmask instructions are described in Section 15.5, “Accessing 
XMM, YMM AND ZMM Registers”.
Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit 
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers needs to 
follow the general procedural flow in Figure 15-2.
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Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports 
the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for ZMM state 
management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence 
accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).

3. Detect CPUID.0x7.0:EBX.AVX512F[bit 16] = 1.

15.2.1 Additional 512-bit Instruction Extensions of the Intel AVX-512 Family
Processor support of the Intel AVX-512 Exponential and Reciprocal instructions are indicated by querying the 
feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512ER[bit 27] = 1, the collection of 

VEXP2PD/VEXP2PS/VRCP28xx/VRSQRT28xx instructions are supported.
Processor support of the Intel AVX-512 Prefetch instructions are indicated by querying the feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512PF[bit 26] = 1, a collection of 

VGATHERPF0xxx/VGATHERPF1xxx/VSCATTERPF0xxx/VSCATTERPF1xxx instructions are supported. 
Detection of 512-bit instructions operating on ZMM states and opmask registers, outside of AVX-512 Foundation, 
needs to follow the general procedural flow in Figure 15-3.

Figure 15-2.  Procedural Flow for Application Detection of AVX-512 Foundation Instructions

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor 
extended state bit vector XCR0 register. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSX-
SAVE. XSETBV is a privileged instruction.
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Yes 
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PREFETCHT1W does not require OS support for XMM/YMM/ZMM/k-reg, SIMD FP exception support.
Procedural Flow of Application Detection of other 512-bit extensions:
Prior to using the Intel AVX-512 Exponential and Reciprocal instructions, the application must identify that the 
operating system supports the XGETBV instruction and the ZMM register state, in addition to confirming the 
processor’s support for ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The 
following simplified sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled 
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512ER[bit 27] = 1.
Prior to using the Intel AVX-512 Prefetch instructions, the application must identify that the operating system 
supports the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for 
ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified 
sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled 
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512PF[bit 26] = 1.

15.3 DETECTION OF 512-BIT INSTRUCTION GROUPS OF INTEL® AVX-512 
FAMILY

In addition to the Intel AVX-512 Foundation instructions, Intel AVX-512 family provides several groups of instruc-
tion extensions that can operate in vector lengths of 512/256/128 bits. Each group is enumerated by a CPUID leaf 
7 feature flag and can be encoded via the EVEX.L’L field to support operation at vector lengths smaller than 512 
bits. These instruction groups are listed in Table 15-1.

Figure 15-3.  Procedural Flow for Application Detection of 512-bit Instructions
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Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in 
Section 15.2.
Detection of other 512-bit sibling instruction groups listed in Table 15-1 (excluding AVX512F) follows the procedure 
described in Figure 15-4:

To detect 512-bit instructions enumerated by AVX512CD, the following sequence is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.
Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same 
flow.

15.4 DETECTION OF INTEL AVX-512 INSTRUCTION GROUPS OPERATING AT 256 
AND 128-BIT VECTOR LENGTHS

For each of the 512-bit instruction groups in the Intel AVX-512 family listed in Table 15-1, the EVEX encoding 
scheme may support a vast majority of these instructions operating at 256-bit or 128-bit (if applicable) vector 
lengths. Encoding support for vector lengths smaller than 512-bits is indicated by CPUID.(EAX=07H, 
ECX=0):EBX[bit 31], abbreviated as AVX512VL.

Table 15-1.  512-bit Instruction Groups in the Intel AVX-512 Family

CPUID Leaf 7 Feature Flag Bit Feature Flag abbreviation of 512-bit Instruction Group SW Detection Flow

CPUID.(EAX=07H, ECX=0):EBX[bit 16] AVX512F (AVX-512 Foundation) Figure 15-2

CPUID.(EAX=07H, ECX=0):EBX[bit 28] AVX512CD Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 17] AVX512DQ Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 30] AVX512BW Figure 15-4

Figure 15-4.  Procedural Flow for Application Detection of 512-bit Instruction Groups
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The AVX512VL flag alone is never sufficient to determine a given Intel AVX-512 instruction may be encoded at 
vector lengths smaller than 512 bits. Software must use the procedure described in Figure 15-5 and Table 15-2.

To illustrate the procedure described in Figure 15-5 and Table 15-2 for software to use EVEX.256 encoded VPCON-
FLICT, the following sequence is provided. It is strongly recommended this sequence is followed.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).
3) Verify CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1, and 
CPUID.0x7.0:EBX.AVX512VL[bit 31] = 1.

In some specific cases, AVX512VL may only support EVEX.256 encoding but not EVEX.128. These cases are listed 
in Table 15-3.

Figure 15-5.  Procedural Flow for Detection of Intel AVX-512 Instructions Operating at Vector Lengths < 512

Table 15-2.  Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group 

Usage of 256/128 Vector Lengths Feature Flag Collection to Verify

AVX512F AVX512F & AVX512VL

AVX512CD AVX512F & AVX512CD & AVX512VL

AVX512DQ AVX512F & AVX512DQ & AVX512VL

AVX512BW AVX512F & AVX512BW & AVX512VL

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check applicable collection of
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Check feature flag
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OS provides processor
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15.5 ACCESSING XMM, YMM AND ZMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e., 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (MAXVL-1:128) of the YMM registers. AVX and FMA instructions with a 
VEX prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written to by many instructions with a VEX.256 prefix. 
XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers. 
The lower 256 bits of a ZMM register are aliased to the corresponding YMM register. Legacy SSE instructions (i.e., 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (MAXVL-1:128) of the ZMM registers, where MAXVL is maximum vector 
length (currently 512 bits). AVX and FMA instructions with a VEX prefix and vector length of 128-bits zero the upper 
384 bits of the ZMM register, while the VEX prefix and vector length of 256-bits zeroes the upper 256 bits of the 
ZMM register.
Upper bits of ZMM registers (511:256) can be read and written to by instructions with an EVEX.512 prefix. 

15.6 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX 
ENCODING

EVEX-encoded AVX-512 instructions support an enhanced vector programming environment. The enhanced vector 
programming environment uses the combination of EVEX bit-field encodings and a set of eight opmask registers to 
provide the following capabilities:
• Conditional vector processing of an EVEX-encoded instruction. Opmask registers k1 through k7 can be used to 

conditionally govern the per-data-element computational operation and the per-element updates to the 
destination operand of an AVX-512 Foundation instruction. Each bit of the opmask register governs one vector 
element operation (a vector element can be 8 bits, 16 bits, 32 bits or 64 bits). 

• In addition to providing predication control on vector instructions via EVEX bit-field encoding, the opmask 
registers can also be used similarly on general-purpose registers as source/destination operands using modR/M 
encoding for non-mask-related instructions. In this case, an opmask register k0 through k7 can be selected.

• In 64-bit mode, 32 vector registers can be encoded using the EVEX prefix.
• Broadcast may be supported for some instructions on the operand that can be encoded as a memory vector. 

The data elements of a memory vector may be conditionally fetched or written to, and the vector size is 
dependent on the data transformation function.

• Flexible rounding control for the register-to-register flavor of EVEX encoded 512-bit and scalar instructions. 
Four rounding modes are supported by direct encoding within the EVEX prefix, overriding MXCSR settings.

• Broadcast of one element to the rest of the destination vector register.
• Compressed 8-bit displacement encoding scheme to increase the instruction encoding density for instructions 

that normally require disp32 syntax.

Table 15-3.  Instruction Mnemonics That Do Not Support EVEX.128 Encoding 

Instruction Group Instruction Mnemonics Supporting EVEX.256 Only Using AVX512VL

AVX512F VBROADCASTSD, VBROADCASTF32X4, VEXTRACTI32X4, VINSERTF32X4, VINSERTI32X4, VPERMD, 
VPERMPD, VPERMPS, VPERMQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2

AVX512CD

AVX512DQ
VBROADCASTF32X2, VBROADCASTF64X2, VBROADCASTI32X4, VBROADCASTI64X2, VEXTRACTI64X2, 

VINSERTF64X2, VINSERTI64X2, 

AVX512BW
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15.6.1 OPMASK Register to Predicate Vector Data Processing
AVX-512 instructions using EVEX encode a predicate operand to conditionally control per-element computational 
operation and updating of the result to the destination operand. The predicate operand is known as the opmask 
register. The opmask is a set of eight architectural registers of size MAX_KL (64-bit). Note that from this set of eight 
architectural registers, only k1 through k7 can be addressed as a predicate operand. k0 can be used as a regular 
source or destination but cannot be encoded as a predicate operand. Note also that a predicate operand can be 
used to enable memory fault-suppression for some instructions with a memory operand (source or destination). 
As a predicate operand, the opmask registers contain one bit to govern the operation/update to each data element 
of a vector register. In general, opmask registers can support instructions with all element sizes: byte (int8), word 
(int16), single-precision floating-point (float32), integer doubleword(int32), double-precision floating-point 
(float64), integer quadword (int64). Therefore, a ZMM vector register can hold 8, 16, 32, or 64 elements in prin-
ciple. The length of an opmask register, MAX_KL, is sufficient to handle up to 64 elements with one bit per element, 
i.e., 64 bits. Masking is supported in most of the AVX-512 instructions. For a given vector length, each instruction 
accesses only the number of least significant mask bits that are needed based on its data type. For example, AVX-
512 Foundation instructions operating on 64-bit data elements with a 512-bit vector length, only use the 8 least 
significant bits of the opmask register.
An opmask register affects an AVX-512 instruction at per-element granularity. Any numeric or non-numeric oper-
ation of each data element and per-element updates of intermediate results to the destination operand are predi-
cated on the corresponding bit of the opmask register. 
An opmask serving as a predicate operand in AVX-512 obeys the following properties:
• The instruction’s operation is not performed for an element if the corresponding opmask bit is not set. This 

implies that no exception or violation can be caused by an operation on a masked-off element. Consequently, 
no MXCSR exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask bit is not 
set. Instead, the destination element value must be preserved (merging-masking) or it must be zeroed out 
(zeroing-masking). 

• For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of 
0.

Note that this feature provides a versatile construct to implement control-flow predication as the mask in effect 
provides a merging behavior for AVX-512 vector register destinations. As an alternative the masking can be used 
for zeroing instead of merging, so that the masked out elements are updated with 0 instead of preserving the old 
value. The zeroing behavior is provided to remove the implicit dependency on the old value when it is not needed.
Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits 
different than 0 (gather and scatter) and instructions that write to memory only accept merging-masking. 
It’s important to note that the per-element destination update rule also applies when the destination operand is a 
memory location. Vectors are written on a per element basis, based on the opmask register used as a predicate 
operand. 
The value of an opmask register can be:
• Generated as a result of a vector instruction (e.g., CMP, FPCLASS, etc.).
• Loaded from memory.
• Loaded from a GPR register.
• Modified by mask-to-mask operations.
Opmask registers can be used for purposes outside of predication. For example, they can be used to manipulate 
sparse sets of elements from a vector, or used to set the EFLAGS based on the 0/0xFFFFFFFFFFFFFFFF/other status 
of the OR of two opmask registers.

15.6.1.1  Opmask Register K0
The only exception to the opmask rules described above is that opmask k0 can not be used as a predicate operand. 
Opmask k0 cannot be encoded as a predicate operand for a vector operation; the encoding value that would select 
opmask k0 will instead select an implicit opmask value of 0xFFFFFFFFFFFFFFFF, thereby effectively disabling 
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masking. Opmask register k0 can still be used for any instruction that takes opmask register(s) as operand(s) 
(either source or destination).
Note that certain instructions implicitly use the opmask as an extra destination operand. In such cases, trying to 
use the “no mask” feature will translate into a #UD fault being raised.

15.6.1.2  Example of Opmask Usages
The example below illustrates the predicated vector add operation and predicated updates of added results into the 
destination operand. The initial state of vector registers zmm0, zmm1, and zmm2 and k3 are:

MSB........................................LSB

zmm0 =
[ 0x00000003 0x00000002 0x00000001 0x00000000 ] (bytes 15 through 0)

[ 0x00000007 0x00000006 0x00000005 0x00000004 ] (bytes 31 through 16)

[ 0x0000000B 0x0000000A 0x00000009 0x00000008 ] (bytes 47 through 32)

[ 0x0000000F 0x0000000E 0x0000000D 0x0000000C ] (bytes 63 through 48)

zmm1 = 
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 15 through 0)

[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 31 through 16)

[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 47 through 32)

[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 63 through 48)

zmm2 = 
[ 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA ] (bytes 15 through 0)

[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)

[ 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC ] (bytes 47 through 32)

[ 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)

k3 = 0x8F03 (1000 1111 0000 0011)

An opmask register serving as a predicate operand is expressed as a curly-braces-enclosed decorator following the 
first operand in the Intel assembly syntax. Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmm0, zmm1

The vpaddd instruction performs 32-bit integer additions on each data element conditionally based on the corre-
sponding bit value in the predicate operand k3. Since per-element operations are not operated if the corresponding 
bit of the predicate mask is not set, the intermediate result is:

[ ********** ********** 0x00000010 0x0000000F ] (bytes 15 through 0)

[ ********** ********** ********** ********** ] (bytes 31 through 16)

[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)

[ 0x0000001E ********** ********** ********** ] (bytes 63 through 48)

where ”**********” indicates that no operation is performed.
This intermediate result is then written into the destination vector register, zmm2, using the opmask register k3 as 
the writemask, producing the following final result:
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zmm2 =

[ 0xAAAAAAAA 0xAAAAAAAA 0x00000010 0x0000000F ] (bytes 15 through 0)

[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)

[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)

[ 0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)

Note that for a 64-bit instruction (for example, vaddpd), only the 8 LSB of mask k3 (0x03) would be used to iden-
tify the predicate operation on each one of the 8 elements of the source/destination vectors.

15.6.2 OpMask Instructions 
AVX-512 Foundation instructions provide a collection of opmask instructions that allow programmers to set, copy, 
or operate on the contents of a given opmask register. There are three types of opmask instructions:
• Mask read/write instructions: These instructions move data between a general-purpose integer register or 

memory and an opmask mask register, or between two opmask registers. For example:

— kmovw k1, ebx; move lower 16 bits of ebx to k1.
• Flag instructions: This category consists of instructions that modify EFLAGS based on the content of opmask 

registers.

— kortestw k1, k2; OR registers k1 and k2 and updated EFLAGS accordingly.
• Mask logical instructions: These instructions perform standard bitwise logical operations between opmask 

registers. 

— kandw k1, k2, k3; AND lowest 16 bits of registers k2 and k3, leaving the result in k1.

15.6.3 Broadcast
EVEX encoding provides a bit-field to encode data broadcast for some load-op instructions, i.e., instructions that 
load data from memory and perform some computational or data movement operation. A source element from 
memory can be broadcasted (repeated) across all the elements of the effective source operand (up to 16 times for 
a 32-bit data element, up to 8 times for a 64-bit data element). This is useful when we want to reuse the same 
scalar operand for all the operations in a vector instruction. Broadcast is only enabled on instructions with an 
element size of 32 bits or 64 bits. Byte and word instructions do not support embedded broadcast.
The functionality of data broadcast is expressed as a curly-braces-enclosed decorator following the last 
register/memory operand in the Intel assembly syntax.
For instance:

vmulps zmm1, zmm2, [rax] {1to16}

The {1to16} primitive loads one float32 (single precision) element from memory, replicates it 16 times to form a 
vector of 16 32-bit floating-point elements, multiplies the 16 float32 elements with the corresponding elements in 
the first source operand vector, and puts each of the 16 results into the destination operand. 

AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives. 

vmovaps [rax] {k3}, zmm19

In contrast, the k3 opmask register is used as the predicate operand in the above example. Only the store opera-
tion on data elements corresponding to the non-zero bits in k3 will be performed.
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15.6.4 Static Rounding Mode and Suppress All Exceptions
In previous SIMD instruction extensions (up to AVX and AVX2), rounding control is generally specified in MXCSR, 
with a handful of instructions providing per-instruction rounding override via encoding fields within the imm8 
operand. AVX-512 offers a more flexible encoding attribute to override MXCSR-based rounding control for floating-
pointing instructions with rounding semantics. This rounding attribute embedded in the EVEX prefix is called Static 
(per instruction) Rounding Mode or Rounding Mode override. This attribute allows programmers to statically apply 
a specific arithmetic rounding mode irrespective of the value of RM bits in MXCSR. It is available only to register-to-
register flavors of EVEX-encoded floating-point instructions with rounding semantic. The differences between these 
three rounding control interfaces are summarized in Table 15-4. 

The static rounding-mode override in AVX-512 also implies the “suppress-all-exceptions” (SAE) attribute. The SAE 
effect is as if all the MXCSR mask bits are set, and none of the MXCSR flags will be updated. Using static rounding-
mode via EVEX without SAE is not supported.
Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit 
to 1 in a register-register vector instruction. In such a case, vector length is assumed to be MAXVL (512-bit in case 
of AVX-512 packed vector instructions) or 128-bit for scalar instructions. Table 15-5 summarizes the possible static 
rounding-mode assignments in AVX-512 instructions.
Note that some instructions already allow specifying the rounding mode statically via immediate bits. In such 
cases, the immediate bits take precedence over the embedded rounding mode (in the same vein that they take 
precedence over whatever MXCSR.RM says).

An example of use would be as follows:

vaddps zmm7 {k6}, zmm2, zmm4, {rd-sae}

This would perform the single-precision floating-point addition of vectors zmm2 and zmm4 with round-towards-
minus-infinity, leaving the result in vector zmm7 using k6 as conditional writemask.

Table 15-4.  Characteristics of Three Rounding Control Interfaces

Rounding Interface
Static Rounding 

Override
Imm8 Embedded Rounding 

Override MXCSR Rounding Control

Semantic Requirement FP rounding FP rounding FP rounding

Prefix Requirement EVEX.B = 1 NA NA

Rounding Control EVEX.L’L IMM8[1:0] or MXCSR.RC
(depending on IMM8[2])

MXCSR.RC

Suppress All Exceptions (SAE) Implied no no

SIMD FP Exception #XM All suppressed Can raise #I, #P (unless SPE is set) MXCSR masking controls

MXCSR flag update No yes (except PE if SPE is set) Yes

Precedence Above MXCSR.RC Above EVEX.L’L Default

Scope 512-bit, reg-reg, 
Scalar reg-reg

ROUNDPx, ROUNDSx, 
VCVTPS2PH, VRNDSCALExx

All SIMD operands, vector lengths

Table 15-5.  Static Rounding Mode

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -inf) + SAE

{ru-sae} Round up (toward +inf) + SAE

{rz-sae} Round toward zero (Truncate) + SAE
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Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.

Examples of instruction instances where the static rounding-mode is not allowed are shown below:

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2, 0x00

; instructions with memory operands

vmulps zmm7 {k6}, zmm2,[rax], {rd-sae}

; instructions with vector length different than MAXVL (512-bit)

vaddps ymm7 {k6}, ymm2, ymm4,{rd-sae}

15.6.5 Compressed Disp8*N Encoding
EVEX encoding supports a new displacement representation that allows for a more compact encoding of memory 
addressing commonly used in unrolled code, where an 8-bit displacement can address a range exceeding the 
dynamic range of an 8-bit value. This compressed displacement encoding is referred to as disp8*N, where N is a 
constant implied by the memory operation characteristic of each instruction. 
The compressed displacement is based on the assumption that the effective displacement (of a memory operand 
occurring in a loop) is a multiple of the granularity of the memory access of each iteration. Since the base register 
in memory addressing already provides byte-granular resolution, the lower bits of the traditional disp8 operand 
become redundant, and can be implied from the memory operation characteristic. 
The memory operation characteristics depend on the following:
• The destination operand is updated as a full vector, a single element, or multi-element tuples.
• The memory source operand (or vector source operand if the destination operand is memory) is fetched (or 

treated) as a full vector, a single element, or multi-element tuples.
For example:
vaddps zmm7, zmm2, disp8[membase + index*8]

The destination zmm7 is updated as a full 512-bit vector, and 64-bytes of data are fetched from memory as a full 
vector; the next unrolled iteration may fetch from memory in 64-byte granularity per iteration. There are 6 bits of 
lowest address that can be compressed, hence N = 2^6 = 64. The contribution of “disp8” to effective address 
calculation is 64*disp8.
vbroadcastf32x4 zmm7, disp8[membase + index*8]

In VBROADCASTF32x4, memory is fetched as a 4tuple of 4 32-bit entities. Hence the common lowest address bits 
that can be compressed are 4, corresponding to the 4tuple width of 2^4 = 16 bytes (4x32 bits). Therefore, N = 
2^4.
For EVEX encoded instructions that update only one element in the destination, or the source element is fetched 
individually, the number of lowest address bits that can be compressed is generally the width in bytes of the data 
element, hence N = 2^(width).

15.7 MEMORY ALIGNMENT 
Memory alignment requirements on EVEX-encoded SIMD instructions are similar to VEX-encoded SIMD instruc-
tions. Memory alignment applies to EVEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 64 bytes of memory with EVEX prefix encoded 

vector length of 512 bits (e.g., VMOVAPD, VMOVAPS, VMOVDQA, etc.). These instructions always require the 
memory address to be aligned on a 64-byte boundary.
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• Explicitly-unaligned SIMD load and store instructions accessing 64 bytes or less of data from memory (e.g., 
VMOVUPD, VMOVUPS, VMOVDQU, VMOVQ, VMOVD, etc.). These instructions do not require the memory 
address to be aligned on a natural vector-length byte boundary.

• Most arithmetic and data processing instructions encoded using EVEX support memory access semantics. 
When these instructions access from memory, there are no alignment restrictions.

Software may see performance penalties when unaligned accesses cross cacheline boundaries or vector-length 
naturally-aligned boundaries, so reasonable attempts to align commonly used data sets should continue to be 
pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand 
sizes and alignment scenarios. The guaranteed atomic operations are described in Section 8.1.1, “Guaranteed 
Atomic Operations” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. AVX and 
FMA instructions do not introduce any new guaranteed atomic memory operations.
AVX-512 instructions may generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when 
CR0.AM=1. 16, 32 and 64-byte memory references will not generate an #AC(0) fault. See Table 15-7 for details.
Certain AVX-512 Foundation instructions always require 64-byte alignment (see the complete list of VEX and EVEX 
encoded instructions in Table 15-6). These instructions will #GP(0) if not aligned to 64-byte boundaries.

15.8 SIMD FLOATING-POINT EXCEPTIONS
AVX-512 instructions can generate SIMD floating-point exceptions (#XM) if embedded “suppress all exceptions” 
(SAE) in EVEX is not set. When SAE is not set, these instructions will respond to exception masks of MXCSR in the 
same way as VEX-encoded AVX instructions. When CR4.OSXMMEXCPT=0, any unmasked FP exceptions generate 
an Undefined Opcode exception (#UD).

Table 15-6.   SIMD Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment Require 64-byte alignment*

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256 VMOVDQA zmm, m512

(V)MOVDQA m128, xmm VMOVDQA m256, ymm VMOVDQA m512, zmm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256 VMOVAPS zmm, m512

(V)MOVAPS m128, xmm VMOVAPS m256, ymm VMOVAPS m512, zmm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256 VMOVAPD zmm, m512

(V)MOVAPD m128, xmm VMOVAPD m256, ymm VMOVAPD m512, zmm

(V)MOVNTDQA xmm, m128 VMOVNTPS m256, ymm VMOVNTPS m512, zmm

(V)MOVNTPS m128, xmm VMOVNTPD m256, ymm VMOVNTPD m512, zmm

(V)MOVNTPD m128, xmm VMOVNTDQ m256, ymm VMOVNTDQ m512, zmm

(V)MOVNTDQ m128, xmm VMOVNTDQA ymm, m256 VMOVNTDQA zmm, m512

Table 15-7.  Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128 VMOVDQU ymm, m256 VMOVDQU zmm, m512

(V)MOVDQU m128, m128 VMOVDQU m256, ymm VMOVDQU m512, zmm

(V)MOVUPS xmm, m128 VMOVUPS ymm, m256 VMOVUPS zmm, m512

(V)MOVUPS m128, xmm VMOVUPS m256, ymm VMOVUPS m512, zmm

(V)MOVUPD xmm, m128 VMOVUPD ymm, m256 VMOVUPD zmm, m512

(V)MOVUPD m128, xmm VMOVUPD m256, ymm VMOVUPD m512, zmm
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15.9 INSTRUCTION EXCEPTION SPECIFICATION
Exception behavior of VEX-encoded AVX / AVX2 instructions are described in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A. Exception behavior of AVX-512 Foundation instructions and additional 
512-bit extensions are described in Section 2.7, “Exception Classifications of EVEX-Encoded instructions” and 
Section 2.8, “Exception Classifications of Opmask instructions”.

15.10 EMULATION
Setting the CR0.EM bit to 1 provides a technique to emulate legacy SSE floating-point instruction sets in software. 
This technique is not supported with AVX instructions, nor FMA instructions. 
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions 
to #UD. Emulation of FMA by the operating system can be done similarly as with emulating AVX instructions. 

15.11 WRITING FLOATING-POINT EXCEPTION HANDLERS
AVX-512, AVX and FMA floating-point exceptions are handled in an entirely analogous way to legacy SSE floating-
point exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must 
provide an exception handler. Section 11.5.1, “SIMD Floating-Point Exceptions”, describes the SIMD floating-point 
exception classes and gives suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.
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5. Updates to Chapter 1, Volume 2A

Updates to Chapter 1 added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: 
Instruction Set Reference, A-L.

------------------------------------------------------------------------------------------

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set 
Reference (order numbers 253666, 253667, 326018 and 334569) are part of a set that describes the architecture 
and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order 

Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019 and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers 

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, addresses the programming environment for classes of software that host operating systems. The 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers 
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
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• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series 
• Intel® Xeon® Processor Scalable Family 
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family
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• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem 
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel® 
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the 
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and 
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support 
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and 
support Intel 64 architecture. 

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.
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The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64 
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J 
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and 
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron® 
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and 
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports 
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64 
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64 
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B, 2C AND 2D: INSTRUCTION SET REFERENCE
A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D content 
follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related 
Intel® manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions 
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode 
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an 
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and 
the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87 
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-U. Continues the description of Intel 64 and IA-32 instructions 
started in Chapter 3. It starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

Chapter 5 — Instruction Set Reference, V-Z. Continues the description of Intel 64 and IA-32 instructions 
started in chapters 3 and 4. It provides the balance of the alphabetized list of instructions and starts Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2C.

Chapter 6 — Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended 
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions. This chapter 
starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

Chapter 7— Instruction Set Reference Unique to Intel® Xeon Phi™ Processors. Describes the instruction 
set that is unique to Intel® Xeon Phi™ processors based on the Knights Landing and Knights Mill microarchitec-
tures. The set is not supported in any other Intel processors.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.
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Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32 
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler 
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. IA-32 processors are “little endian” machines; this means the bytes of 
a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, 

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in IA-32 registers. Depending upon 
the values of reserved register bits will make software dependent upon the unspecified manner in 
which the processor handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

Figure 1-1.  Bit and Byte Order

Byte 3

Data Structure 

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0

Lowest

Bit offset
28
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16
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4
0 Address

Byte Offset
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Address
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1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, 
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three operands, 

depending on the opcode. When present, they take the form of either literals or identifiers for data items. 
Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes in memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP
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1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate 
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information. 
See Figure 1-2.
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at: 
https://software.intel.com/en-us/articles/intel-sdm

See also: 
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field 
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name 
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

SDM29002

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/
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• Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

• Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 
https://software.intel.com/en-us/articles/intel-sdm#optimization

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602
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6. Updates to Chapter 2, Volume 2A

Updates to Chapter 2A added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A: Instruction Set Reference, A-L.

------------------------------------------------------------------------------------------

Changes to this chapter: Update to Table 2-8, “VEX.vvvv to register name mapping”, typo correction in Table 2-
14, “Exception class description”, minor typo correction to heading 2.4.4, “Exceptions Type 4 (>=16 Byte mem 
arg, no alignment, no floating-point exceptions)”, and update to Table 2-39, “#UD Conditions of Operand-
Encoding EVEX Prefix Bit Fields”.
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CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for 
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, 
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an 
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) 
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it 
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H.

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and 
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

• REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output 
instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

Figure 2-1.  Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none3

Address
displacement
of 1, 2, or 4
bytes or none3

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Prefixes of
1 byte each
(optional)1, 2

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section 
2.2.1, “REX Prefixes” for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel® 
AVX)”.
3. Some rare instructions can take an 8B immediate or 8B displacement.
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— BND prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction 
(see Chapter 17, “Intel® MPX,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints1:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some 
instructions).

• Group 4

• 67H—Address-size override prefix.
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description 
of this prefix. 
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes 
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes 
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.
Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for 
a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes 
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.
The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can 
be the default; use of the prefix selects the non-default size. 
Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes 
may use 66H as a mandatory prefix to express distinct functionality.
Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size 
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when 
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Some earlier microarchitectures used these as branch hints, but recent generations have not and they are reserved for future hint 
usage.
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2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the 
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an 
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following: 
• An escape opcode byte 0FH as the primary opcode and a second opcode byte.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous 

bullet).
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not 
considered as a repeat prefix). 
Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following: 
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as 

previous bullet).
For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the 
mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M 
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose 

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an 

addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express 
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and 
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is 
present). If a displacement is required, it can be 1, 2, or 4 bytes.
If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.
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2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table 
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in 
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field 
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the 
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide 
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX 
technology and XMM registers. 
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required 
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M = 
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM 
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode 
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the 
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute. 
If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six 
are represented in decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by 
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the 
column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below 
demonstrates interpretation of one table value.

Figure 2-2.  Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
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NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index. 
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index. 

Table 2-1.  16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used 
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field. 
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling 
factor (determined by SIB byte bits 6 and 7).

Table 2-2.  32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

following address modes:
MOD bits Effective Address
00 [scaled index] + disp32 
01 [scaled index] + disp8 + [EBP]
10  [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are: 
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software 

unmodified. 
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space. 

Table 2-3.  32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.
Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one 
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.
Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode 
byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a 
mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding 
the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and 
0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX 
prefix. See Figure 2-3.

2.2.1.1  Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending 
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte.
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base) 

byte.
• Instructions without ModR/M: the reg field of the opcode.
In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the 
addition of REX prefixes.

2.2.1.2  More on REX Prefix Fields 
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These 
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit 
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions. 
The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality 
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1). 
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix 
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like 

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations. 
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored. 
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

Figure 2-3.  Prefix Ordering in 64-bit Mode

REX

Immediate data 
of 1, 2, or 4 
bytes or none

Address 
displacement of 
1, 2, or 4 bytes 

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 
3-byte 
opcode

(optional)Grp 1, Grp 
2, Grp 3, 
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes
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• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is 
ignored when ModR/M specifies other registers or defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field 

used for accessing GPRs.

Table 2-4.  REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4.  Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5.  Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX  

0100WR0B

Opcode mod

≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX  

0100WR0B

Opcode mod

11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4
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In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s 
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional 
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each 
case behaves.

Figure 2-6.  Memory Addressing With a SIB Byte

Figure 2-7.  Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

mod

≠ 11

ModRM Byte

r/m

100

reg

rrr

scale

ss

SIB Byte

REX PREFIX  

0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index

xxx

OM17Xfig1-5

REX PREFIX  

0100W00B

Opcode

Bbbb

reg

bbb

OM17Xfig1-6



Vol. 2A 2-11

INSTRUCTION FORMAT

2.2.1.3  Displacement 
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement 
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4  Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate 
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For 
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See 
Table 2-6.

2.2.1.5  Immediates 
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the 
processor sign-extends all immediates to 64 bits prior to their use. 
Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV 
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data 
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions 
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to 
a 64-bit operand size. 
For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

Table 2-5.  Special Cases of REX Encodings 
ModR/M or 
SIB 

Sub-field
Encodings

Compatibility Mode 
Operation

Compatibility Mode 
Implications Additional Implications

ModR/M Byte mod ≠ 11 SIB byte present. SIB byte required for 
ESP-based addressing.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

SIB byte also required for R12-based addressing.
r/m = 
b*100(ESP)

ModR/M Byte mod = 0 Base register not 
used.

EBP without a 
displacement must be 
done using 

mod = 01 with 
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

Using RBP or R13 without displacement must be done 
using mod = 01 with a displacement of 0.

r/m = 
b*101(EBP)

SIB Byte index = 
0100(ESP)

Index register not 
used.

ESP cannot be used as 
an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded 
index field allows distinguishing RSP from R12, 
therefore R12 can be used as an index.

SIB Byte base = 
0101(EBP)

Base register is 
unused if mod = 0.

Base register depends 
on mod encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with 
EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

Table 2-6.  Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX
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2.2.1.6  RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An 
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.
In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with 
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative 
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero. 
RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed 
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB 
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current 
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative 
addressing is encoded using a redundant form. 
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than 
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field 
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting 
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B 
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode 
R13 + 0 using a 1-byte displacement of zero. 
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix 
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the 
computed effective address to 32 bits. 

2.2.1.7  Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this 
operand size). These are:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the 
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the 
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8 
becomes the Task Priority Register (TPR). 
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access 
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7.  RIP-Relative Addressing
ModR/M and SIB Sub-field Encodings Compatibility Mode 

Operation
64-bit Mode 
Operation

Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 In 64-bit mode, if one wants to use a Disp32 
without specifying a base register, one can use a 
SIB byte encoding (indicated by MODRM.r/m=100) 
as described in the next row.

r/m = 101 (none)

SIB Byte base = 101 (none) If mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4
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2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field, 
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX 
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite 
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme 
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third 

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a 
subset of SIMD instructions need them. 

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a 
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX 
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax. 
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX 
prefix provides substantially richer capability than the REX prefix. 

Figure 2-8.  Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD. 

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
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2.3.5 The VEX Prefix 
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the 
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX 
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions 
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields 
providing specific capability, they are shown in Figure 2-9. 
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source 

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s 
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded 
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits 
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to 
distinguish encoded values of other VEX bit fields. 

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However 
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is 
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B. 

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement 
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement 
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need 
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For 
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can 
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an 
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions 
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp 
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128 
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two 
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape 
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The 
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant 
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256 
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other 
prefixes. If VEX prefix is present a REX prefix is not supported. 
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are 
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte 
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by 
one byte. This may be helpful in some situations for code alignment. 
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain 
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations. 



Vol. 2A 2-15

INSTRUCTION FORMAT

Figure 2-9.  VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1  VEX Byte 0, bits[7:0] 
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h 
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2  VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit 
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

 

vvvv

1 03 2

L  

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm: 

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L 

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
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This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3  3-byte VEX byte 1, bit[6] - ‘X’ 
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index 
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4  3-byte VEX byte 1, bit[5] - ‘B’ 
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension 
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5  3-byte VEX byte 2, bit[7] - ‘W’ 
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending 
on the specific opcode. 
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a 

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes 
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same 
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently 
ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy 
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the 
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and 
setting to other than zero will cause instruction to #UD.

2.3.5.6  2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest 
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with 
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to 
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits. 
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that 
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source 
register specifier stored in inverted (1’s complement) form. 
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with 
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b 
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and 
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte 
VEX version will ignore this bit).
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Table 2-8.  VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded 
instructions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one 
source operand and one destination operand). 
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with 
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for 

instructions with 2 or more source operands. 
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts. 

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode” 
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b. 

Table 2-9.  Instructions with a VEX.vvvv destination 

VEX.vvvv Dest Register
General-Purpose Register 

(If Applicable)1

NOTES:
1. See Section 2.5, “VEX Encoding Support for GPR Instructions” for additional details.

Valid in Legacy/Compatibility 
32-bit modes?2

2. Only the first eight General-Purpose Registers are accessible/encodable in 16/32b modes.

1111B XMM0/YMM0 RAX/EAX Valid

1110B XMM1/YMM1 RCX/ECX Valid

1101B XMM2/YMM2 RDX/EDX Valid

1100B XMM3/YMM3 RBX/EBX Valid

1011B XMM4/YMM4 RSP/ESP Valid

1010B XMM5/YMM5 RBP/EBP Valid

1001B XMM6/YMM6 RSI/ESI Valid

1000B XMM7/YMM7 RDI/EDI Valid

0111B XMM8/YMM8 R8/R8D Invalid

0110B XMM9/YMM9 R9/R9D Invalid

0101B XMM10/YMM10 R10/R10D Invalid

0100B XMM11/YMM11 R11/R11D Invalid

0011B XMM12/YMM12 R12/R12D Invalid

0010B XMM13/YMM13 R13/R13D Invalid

0001B XMM14/YMM14 R14/R14D Invalid

0000B XMM15/YMM15 R15/R15D Invalid

Opcode Instruction mnemonic

VEX.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8
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The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the 

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction 

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four 
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1  3-byte VEX byte 1, bits[4:0] - “m-mmmm” 
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are 
reserved for future use and will #UD unless 0. 

Table 2-10.   VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2  2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector 
operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits 
255:128 of all YMM registers accessible in the current operating mode.
See the following table.

VEX.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

Opcode Instruction mnemonic
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Table 2-11.  VEX.L interpretation

2.3.6.3  2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix 
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.
See the following table.

Table 2-12.  VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color. 
Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and 
PBLENDVB use imm8[7:4] to encode one of the source registers. 

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits 
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1  Vector Length Transition and Programming Considerations 
An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an 
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast 
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register 
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any 
future extensions to the vector registers. A calling function that uses such extensions should save their state before 
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is 
recommended that software handling involuntary calls accommodate this by not executing instructions encoded 

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2
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with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions, 
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector 
registers. 
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the 
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software 
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first 
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with 
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on 
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits 
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than 
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector 
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true 
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported 
extensions to the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11 
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains 
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing 
In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB 
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2 
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing 
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory 
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is 
supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector 

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.
Table 2-3 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in 
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8D-R15D applicable only in 64-bit 
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-3). In 32-bit mode, 
R8D-R15D does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported 
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in 
64-bit mode and does not apply if encoding in 32-bit mode. 
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2.3.12.1  64-bit Mode VSIB Memory Addressing 
In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of 
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one 
of the 16 vector registers as the vector index register. 
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register. 

2.4 AVX AND SSE INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception 
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”

Table 2-13.  32-Bit VSIB Addressing Forms of the SIB Byte
r32

(In decimal) Base =
(In binary) Base =

EAX/
R8D
0
000

ECX/
R9D
1
001

EDX/
R10D
2
010

EBX/
R11D
3
011

ESP/
R12D
4
100

EBP/
R13D1

5
101

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the

base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

ESI/
R14D
6
110

EDI/
R15D
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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In this entry, “Type2” can be looked up in Table 2-14. 
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction 
summary table. 
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the 
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the 
exception classes defined in this section. For instructions that operate on MMX registers, see 
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 2-14.  Exception class description

See Table 2-15 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point 

Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly 

aligned
None

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
Yes

Type 3
AVX,

Legacy SSE
< 16 byte Yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
No

Type 5
AVX, 

Legacy SSE
< 16 byte No

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7
AVX, 

Legacy SSE
None None

Type 8 AVX None None

Type 11
F16C 8 or 16 byte, Not explicitly 

aligned, no AC#
Yes

Type 12
AVX2 Gathers Not explicitly aligned, no 

AC#
No
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Table 2-15.  Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ, 
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, 
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS, 
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS, 
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS, 
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS, 
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS, 
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS, 
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, 
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, 
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, 
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS, 
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS, 
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS, 
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS, 
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, 
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, 
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD, 
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***, 
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, 
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW, 
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, 
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, 
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, 
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, 
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, 
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, 
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD, 
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, 
(V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ, 
(V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, 
(V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, 
(V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, 
(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, 
VPERMQ, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, 
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, 
(V)PINSRD, (V)PINSRW, (V)PINSRQ, PMOVSXBW, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, 
VSTMXCSR

Type 6
VEXTRACTF128/VEXTRACTFxxxx, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, 
VMASKMOVPS**, VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, 
VPBROADCASTD, VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, 
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD, 
VPGATHERQQ
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(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e. no
alignment checks are performed.

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not
aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are 
listed in Table 2-18 through Table 2-27, certain subsets of AVX instructions may be subject to #UD exception 
depending on the encoded value of the VEX.L field. Table 2-17 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-16.  #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in 
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD, 
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, 
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128, 
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
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Table 2-17.  #UD Exception and VEX.L Field Encoding
Exception 

Class
#UD If VEX.L = 0

#UD If (VEX.L = 1 && AVX2 not present && AVX 
present)

#UD If (VEX.L = 1 && AVX2 
present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D, 
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D, 
VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND, 
VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW, 
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q, 
VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W, 
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D, 
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, 
VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD, 
VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D, 
VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, 
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W, 
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ, 
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

VPCMP(E/I)STRI/M, 
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, 
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD, 
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, 
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128, 
VPERM2F128, 
VBROADCASTSD, 
VBROADCASTF128, 
VINSERTF128, 

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, 
VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, 
VPSRLW, VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12
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2.4.1 Exceptions Type 1 (Aligned memory reference) 

Table 2-18.  Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d 
an

d 
Co

m
pa

ti
bi

lit
y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) 

Table 2-19.  Type 2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

Pr
ot

ec
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d 
an

d 
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m
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lit
y

6
4
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception, 
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.3 Exceptions Type 3 (<16 Byte memory argument) 

Table 2-20.  Type 3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.4 Exceptions Type 4 (>=16 Byte mem arg, no alignment, no floating-point exceptions)

Table 2-21.  Type 4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:
1. LDDQU, MOVUPD, MOVUPS, PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory

operand is not aligned to 16-Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22.  Type 5 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23.  Type 6 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault 
#PF(fault-code)

X X For a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24.  Type 7 Class Exception Conditions

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25.  Type 8 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ≠ 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.4.9 Exceptions Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26.  Type 11 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF 
(fault-code)

X X X For a page fault.

SIMD Floating-Point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.10 Exceptions Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS 
VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded 
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via 

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX 

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15) 

for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only. 
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27.  Type 12 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm ≠ ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If any vector register is used more than once between the destination register, 
mask register and the index register in VSIB addressing.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.
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Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD. 
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.5.1 Exceptions Type 13 (VEX-Encoded GPR Instructions)
The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions. 
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are 
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is 
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details.

2.6 INTEL® AVX-512 ENCODING
The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands) 
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are 
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using 
the VEX prefix, and many other capabilities not available with the VEX prefix. 

Table 2-28.  VEX-Encoded GPR Instructions

Exception Class Instruction

Type 13 ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29.  Type 13 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X X X If VEX.L = 1.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null 
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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The significant feature differences between EVEX and VEX are summarized below.
• EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte 

(C4H is the first byte) prefix.
• EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
• EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded 

vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat 
the content of an opmask register as a single value, are encoded using the VEX prefix.

• EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding 
density of the instruction byte stream.

• EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with 
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding 
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic 
semantic can support “suppress all exceptions” functionality).

2.6.1 Instruction Format and EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10. Note that the values contained 
within brackets are optional.

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed 
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Figure 2-10.  AVX-512 Instruction Format and the EVEX Prefix

Figure 2-11.  Bit Field Layout of the EVEX Prefix1

NOTES:
1. See Table 2-30 for additional details on bit fields.

[Immediate][Prefixes] [Disp16,32][SIB]ModR/MOpcodeEVEX

# of bytes: 4 1 1 1 2, 4 1

[Disp8*N]

1

EVEX 62H P0 P1 P2

P0

7 6 5 4 3 2 01
R X B R’ 0 0 mm

P1

7 6 5 4 3 2 01
W v v v v 1 pp

P2

7 6 5 4 3 2 01
z L’ L b V’ a aa

P[7:0]

P[15:8]

P[23:16]
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The bit fields in P[23:0] are divided into the following functional groups (Table 2-30 provides a tabular summary):
• Reserved bits: P[3:2] must be 0, otherwise #UD.
• Fixed-value bit: P[10] must be 1, otherwise #UD.
• Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is 

identical to VEX.pp.
• Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows 

access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers. 
• Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register 

set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector 
register when SIB or VSIB addressing are not needed.

• Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector 
register operand in a non-destructive source syntax, vector index register operand can access an upper 16 
vector register using P[19].

• Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector 
registers.

• EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to 
64-bit in 64-bit mode.

• Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the 
masked elements or leave masked element unchanged.

• Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different 
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the 
following instruction classes are:

— Broadcasting a single element across the destination vector register: this applies to the instruction class 
with Load+Op semantic where one of the source operand is from memory. 

— Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding 
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

Table 2-30.  EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

-- Reserved P[3 : 2] Must be 0.

-- Fixed Value P[10] Must be 1.

EVEX.mm Compressed legacy escape P[1: 0] Identical to low two bits of VEX.mmmmm.

EVEX.pp Compressed legacy prefix P[9 : 8] Identical to VEX.pp.

EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx). This 
field is encoded in bit inverted format.

EVEX.R’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg. This bit is stored in 
inverted format.

EVEX.X High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.vvvv VVVV register specifier P[14 : 11] Same as VEX.vvvv. This field is encoded in bit inverted format.

EVEX.V’ High-16 VVVV/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present. This bit is 
stored in inverted format.

EVEX.aaa Embedded opmask register specifier P[18 : 16]

EVEX.W Osize promotion/Opcode extension P[15]

EVEX.z Zeroing/Merging P[23]

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L’L Vector length/RC P[22 : 21]
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— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
• Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and 
destination operands are all vector registers.

2.6.2 Register Specifier Encoding and EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in 
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support 
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory 
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction 
syntax and memory addressing in 64-bit mode are shown in Table 2-31. Opmask register encoding is described in 
Section 2.6.3.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are 
shown in Table 2-32.

2.6.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
• Opmask registers that are the source or destination operands of an instruction treating the content of opmask 

register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using 

Table 2-31.  32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

41

NOTES:
1. Not applicable for accessing general purpose registers.

3 [2:0] Reg. Type Common Usages 

REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source

VVVV EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination

RM EVEX.X EVEX.B modrm.r/m GPR, Vector 1st Source or Destination

BASE 0 EVEX.B modrm.r/m GPR memory addressing

INDEX 0 EVEX.X sib.index GPR memory addressing

VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing

Table 2-32.  EVEX Encoding Register Specifiers in 32-bit Mode 

[2:0] Reg. Type Common Usages 

REG modrm.reg GPR, Vector Destination or Source

VVVV EVEX.vvv GPR, Vector 2nd Source or Destination

RM modrm.r/m GPR, Vector 1st Source or Destination

BASE modrm.r/m GPR Memory Addressing

INDEX sib.index GPR Memory Addressing

VIDX sib.index Vector VSIB Memory Addressing
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standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not 
support conditional update of the destination operand.

• An opmask register providing conditional processing and/or conditional update of the destination register of a 
vector instruction is encoded using EVEX.aaa field (see Section 2.6.4).

• An opmask register serving as the destination or source operand of a vector instruction is encoded using 
standard modR/M byte’s reg field and rm fields.

2.6.4 Masking Support in EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of 
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The 
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand. 
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking: 
• Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old 

value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case 
of EVEX.z = 0.

• Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set 
to 0 when the corresponding mask bit has a 0 value. 

AVX-512 Foundation instructions can be divided into the following groups:
• Instructions which support “zeroing-masking”.

— Also allow merging-masking.
• Instructions which require aaa = 000.

— Do not allow any form of masking.
• Instructions which allow merging-masking but do not allow zeroing-masking.

— Require EVEX.z to be set to 0.

— This group is mostly composed of instructions that write to memory.
• Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

2.6.5 Compressed Displacement (disp8*N) Support in EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement 
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length, 
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor 
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64 
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-34 and Table 2-35 below, 

Table 2-33.  Opmask Register Specifier Encoding

[2:0] Register Access Common Usages 

REG modrm.reg k0-k7 Source

VVVV VEX.vvvv k0-k7 2nd Source 

RM modrm.r/m k0-7 1st Source 

{k1} EVEX.aaa k01-k7

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using k0 as the embedded mask.

Opmask
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where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype 
is listed based on the vector length (VL) and other factors affecting it.
Table 2-34 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of 
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data 
element sizes which are either dword or qword (see Section 2.6.11). 
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data 
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-35. Table 2-35 
also includes many broadcast instructions which perform broadcast using a subset of data elements without using 
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-35. Instruc-
tion classified in Table 2-35 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction, 
providing the cross reference for the scaling factor N to encoding memory addressing operand. 
Note that the disp8*N rules still apply when using 16b addressing.

Table 2-34.  Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector 
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-35.  EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by 

EVEX.W64bit N/A 8 8 8

Tuple2
32bit 0 8 8 8

Broadcast (2 elements) 
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements) 
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements) 

Half Mem N/A N/A 8 16 32  SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP
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2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
EVEX.b can provide three types of encoding context, depending on the instruction classes:
• Embedded broadcasting of one data element from a source memory operand to the destination for vector 

instructions with “load+op” semantic.
• Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
• “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that 

do not have rounding semantic.

2.6.7 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit 
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from 
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element 
is loaded from memory and broadcasted to all other elements instead of loading the full memory size. 
The following instruction classes do not support embedded broadcasting:
• Instructions with only one scalar result is written to the vector destination.
• Instructions with explicit broadcast functionality provided by its opcode.
• Instruction semantic is a pure load or a pure store operation.

2.6.8 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of 
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both 
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is 
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.6.9 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded 
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by 
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR 
masking controls are set.

2.6.10 Vector Length Orthogonality 
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths. 
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector 
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg 
instructions with rounding semantic. The table below shows the vector length corresponding to various values of 
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits 
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in 
Table 2-36. 
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2.6.11 #UD Equations for EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and 
opcode dependent.

2.6.11.1  State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-37 lists instruction categories with 
respect to required processor state components. Attempts to execute a given category of instructions while 
enabled states were less than the required bit vector in XCR0 shown in Table 2-37 will cause #UD.

2.6.11.2  Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns 
listed in Table 2-38.

Table 2-36.  EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]

Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC

Reg-reg, FP Instructions w/ rounding semantic or SAE Enable static rounding 
control (SAE implied)

Vector length Implied 
(512 bit or scalar)

00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ

Load+op Instructions w/ memory source Broadcast Control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)

NA

Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)

Must be 0 (otherwise 
#UD)

NA

Table 2-37.  OS XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]

Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b

VEX-encoded instructions operating on YMM YMM xxxxx111b

EVEX-encoded 128-bit instructions ZMM 111xx111b

EVEX-encoded 256-bit instructions ZMM 111xx111b

EVEX-encoded 512-bit instructions ZMM 111xx111b

VEX-encoded instructions operating on opmask k-reg 111xxx11b

Table 2-38.  Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD

P[3 : 2] -- if > 0 if > 0

P[10] -- if 0 if 0

P[1: 0] EVEX.mm if 00b if 00b

P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)
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2.6.11.3  Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 2-39 lists the #UD conditions of EVEX 
prefix bit fields which encodes or modifies register operands.

Table 2-40 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-39.  #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields 

Notation Position  Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.R P[7] ModRM.reg encodes k-reg If EVEX.R = 0 None (BOUND if 
EVEX.RX != 11b)ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)

ModRM.r/m encodes k-reg or GPR None (ignored)

ModRM.r/m without SIB/VSIB None (ignored)

ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)

ModRM.r/m encodes other registers None (valid)

ModRM.r/m base present None (valid)

ModRM.r/m base not present None (ignored)

EVEX.R’ P[4] ModRM.reg encodes k-reg or GPR If 0 None (ignored)

ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvvv P[14 : 11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored

Otherwise If != 1111b If != 1111b

EVEX.V’ P[19] Encodes ZMM/YMM/XMM None (valid) If 0

Otherwise If 0 If 0

Table 2-40.  #UD Conditions of Opmask Related Encoding Field 

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.aaa P[18 : 16] Instructions do not use opmask for conditional processing1.

NOTES:
1. E.g., VPBROADCASTMxxx, VPMOVM2x, VPMOVx2M.

If aaa != 000b If aaa != 000b

Opmask used as conditional processing mask and updated 
at completion2.

2. E.g., Gather/Scatter family.

If aaa = 000b If aaa = 000b;

Opmask used as conditional processing. None (valid3)

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in K0.

None (valid1)

EVEX.z P[23] Vector instruction using opmask as source or destination4. If EVEX.z != 0 If EVEX.z != 0

Store instructions or gather/scatter instructions. If EVEX.z != 0 If EVEX.z != 0

Instruction supporting conditional processing mask with 
EVEX.aaa = 000b.

If EVEX.z != 0 If EVEX.z != 0

VEX.vvvv Varies K-regs are instruction operands not mask control. If vvvv = 0xxxb None
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Table 2-41 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

2.6.12 Device Not Available
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.

2.6.13 Scalar Instructions
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support 
masking (using the least significant bit of the opmask register), but broadcasting is not supported. 

2.7 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this 
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2 
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The 
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named 
“E##NF”. A summary table of exception classes by class names are shown below.

4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

Table 2-41.  #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.L’Lb P[22 : 20] Reg-reg, FP instructions with rounding semantic. None (valid1)

NOTES:
1. L’L specifies rounding control, see Table 2-36, supports {er} syntax.

None (valid1)

Other reg-reg, FP instructions that can cause #XM. None (valid2)

2. L’L specifies vector length, see Table 2-36, supports {sae} syntax.

None (valid2)

Other reg-mem instructions in Table 2-34. None (valid3)

3. L’L specifies vector length, see Table 2-36, supports embedded broadcast syntax

None (valid3)

Other instruction classes4 in Table 2-35.

4. L’L specifies either vector length or ignored.

If EVEX.b > 0 If EVEX.b > 0

Table 2-42.  EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None

Type E1NF Vector Non-temporal Stores Explicitly aligned, no fault suppression None

Type E2 FP Vector Load+op Support fault suppression Yes

Type E2NF FP Vector Load+op No fault suppression Yes

Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression Yes

Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression Yes

Type E4 Integer Vector Load+op Support fault suppression No

Type E4NF Integer Vector Load+op No fault suppression No

Type E5 Legacy-like Promotion Varies, Support fault suppression No
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Table 2-43 lists EVEX-encoded instruction mnemonic by exception classes.

Type E5NF Legacy-like Promotion Varies, No fault suppression No

Type E6 Post AVX Promotion Varies, w/ fault suppression No

Type E6NF Post AVX Promotion Varies, no fault suppression No

Type E7NM Register-to-register op None None

Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression None

Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None

Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression None

Type E11 VCVTPH2PS, VCVTPS2PH Half Vector Length, w/ fault suppression Yes

Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None

Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-43.  EVEX Instructions in each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64

Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPD2QQ, VCVTPD2UQQ, 
VCVTPD2UDQ, VCVTPS2DQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ, VCVTTPD2QQ, 
VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD, VCVTUQQ2PS, 
VDIVPD, VDIVPS, VEXP2PD, VEXP2PS, VFIXUPIMMPD, VFIXUPIMMPS, VFMADDxxxPD, VFMADDxxxPS, 
VFMADDSUBxxxPD, VFMADDSUBxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS, VFMSUBxxxPD, VFMSUBxxxPS, 
VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VGETEXPPD, VGETEXPPS, VGETMANTPD, 
VGETMANTPS, VMAXPD, VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VRANGEPD, VRANGEPS, VREDUCEPD, 
VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, VRCP28PD, VRCP28PS, VRSQRT28PD, VRSQRT28PS, VSCALEFPD, 
VSCALEFPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS

Type E3

VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2QQ, VCVTPS2UQQ, VCVTPS2PD, VCVTSD2SS, VCVTSS2SD, 
VCVTTPS2QQ, VCVTTPS2UQQ, VDIVSD, VDIVSS, VFMADDxxxSD, VFMADDxxxSS, VFMSUBxxxSD, VFMSUBxxxSS, 
VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD, VFIXUPIMMSS, VGETEXPSD, 
VGETEXPSS, VGETMANTSD, VGETMANTSS, VMAXSD, VMAXSS, VMINSD, VMINSS, VMULSD, VMULSS, VRANGESD, 
VRANGESS, VREDUCESD, VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD, 
VRCP28SS, VRSQRT28SD, VRSQRT28SS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS

Type E3NF
VCOMISD, VCOMISS, VCVTSD2SI, VCVTSD2USI, VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VCVTSS2USI, VCVTTSD2SI, 
VCVTTSD2USI, VCVTTSS2SI, VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SS, VUCOMISD, VUCOMISS

Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VBLENDMPD, VBLENDMPS, VFPCLASSPD, VFPCLASSPS, VORPD, VORPS, 
VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ, VPANDND, VPANDNQ, VPBLENDMB, VPBLENDMD, 
VPBLENDMQ, VPBLENDMW, VPCMPD, VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPCMPQ, VPCMPUD, 
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPMADD52LUQ, VPMADD52HUQ, VPMAXSD, VPMAXSQ, VPMAXUD, VPMAXUQ, 
VPMINSD, VPMINSQ, VPMINUD, VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ, VPROLD, 
VPROLQ, VPROLVD, VPROLVQ, VPRORD, VPRORQ, VPRORVD, VPRORVQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, 
VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ, VPSRLD, VPSRLQ)1, VPSUBD, VPSUBQ, VPSUBUSB, VPSUBUSW, 
VPTERNLOGD, VPTERNLOGQ, VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VPXORD, VPXORQ, VPSLLVD, 
VPSLLVQ, VRCP14PD, VRCP14PS, VRSQRT14PD, VRSQRT14PS, VXORPD, VXORPS

Table 2-42.  EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)
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E4.nb2

VCOMPRESSPD, VCOMPRESSPS, VEXPANDPD, VEXPANDPS, VMOVDQU8, VMOVDQU16, VMOVDQU32, 
VMOVDQU64, VMOVUPD, VMOVUPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB, 
VPADDUSW, VPAVGB, VPAVGW, VPCMPB, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPCMPW, VPCMPUB, 
VPCMPUW, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ, VPMAXSB, VPMAXSW, VPMAXUB, 
VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW, VPMULLW, 
VPSLLVW, VPSLLW, VPSRAW, VPSRLVW, VPSRLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, 
VPTESTMW, VPTESTNMB, VPTESTNMW

Type E4NF

VALIGND, VALIGNQ, VPACKSSDW, VPACKUSDW, VPCONFLICTD, VPCONFLICTQ, VPERMD, VPERMI2D, VPERMI2PS, 
VPERMI2PD, VPERMI2Q, VPERMPD, VPERMPS, VPERMQ, VPERMT2D, VPERMT2PS, VPERMT2Q, VPERMT2PD, 
VPERMILPD, VPERMILPS, VPMULTISHIFTQB, VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, 
VPUNPCKLQDQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2, VSHUFPD, VSHUFPS, VUNPCKHPD, 
VUNPCKHPS, VUNPCKLPD, VUNPCKLPS

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP, 
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD, 
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD, 
VPERMW, VPERMI2W, VPERMT2W

Type E5
PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW, 
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, VCVTDQ2PD, VCVTUDQ2PD, VPMOVSXxx, 
VPMOVZXxx

Type E5NF VMOVDDUP

Type E6

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4, 
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4, 
VBROADCASTSD, VBROADCASTSS, VFPCLASSSD, VFPCLASSSS, VPBROADCASTB, VPBROADCASTD, 
VPBROADCASTW, VPBROADCASTQ, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW, 
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW, 
VPMOVUSDW, VPMOVWB, VPMOVSWB, VPMOVUSWB

Type E6NF
VEXTRACTF32X4, VEXTRACTF32X8, VEXTRACTF64X2, VEXTRACTF64X4, VEXTRACTI32X4, VEXTRACTI32X8, 
VEXTRACTI64X2, VEXTRACTI64X4, VINSERTF32X4, VINSERTF32X8, VINSERTF64X2, VINSERTF64X4, 
VINSERTI32X4, VINSERTI32X8, VINSERTI64X2, VINSERTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D

Type 
E7NM.1284

VMOVHLPS, VMOVLHPS

Type E7NM.
(VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVB2M, VPMOVD2M, VPMOVM2B, 
VPMOVM2D, VPMOVM2Q, VPMOVM2W, VPMOVQ2M, VPMOVW2M

Type E9NF
VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD, 
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS

Type E10NF (VCVTSI2SD, VCVTUSI2SD)6

Type E11 VCVTPH2PS, VCVTPS2PH

Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD, 
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS, 
VSCATTERQPD, VSCATTERQPS

Type E12NP
VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS, 
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD, 
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:
1. Operand encoding Full tupletype with immediate.
2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding Mem128 tupletype.

Table 2-43.  EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction
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2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow 
exception class E1.

4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.

Table 2-44.  Type E1 Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in 
a non-canonical form.

General Protection, 
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X If fault suppression not set, and a page fault.
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EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression 
follow exception class E1NF.

Table 2-45.  Type E1NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-46.  Type E2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in a 
non-canonical form.

General Protec-
tion, #GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the CS, 
DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an unaligned 
memory access is made while the current privilege level is 3.

SIMD Floating-
point Exception, 
#XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
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2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception 
class E3.

Table 2-47.  Type E3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
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EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow 
exception class E3NF.

Table 2-48.  Type E3NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X EVEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
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2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow 
exception class E4.

Table 2-49.  Type E4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4.nb subclass (see E4.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression 
follow exception class E4NF.

Table 2-50.  Type E4NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.
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2.7.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault 
suppression follow exception class E5.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault 
suppression follow exception class E5NF.

Table 2-51.  Type E5 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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Table 2-52.  Type E5NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.7.6 Exceptions Type E6 and E6NF

Table 2-53.  Type E6 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow 
exception class E6NF.

Table 2-54.  Type E6NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X For a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.7.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class 
E7NM.

Table 2-55.  Type E7NM Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• Instruction specific EVEX.L’L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.7.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory 
fault suppression follow exception class E9.

Table 2-56.  Type E9 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP 
exception nor support memory fault suppression follow exception class E9NF.

Table 2-57.  Type E9NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.7.9 Exceptions Type E10 and E10NF
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.

Table 2-58.  Type E10 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.



2-62 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded scalar instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP exception nor 
support memory fault suppression follow exception class E10NF.

Table 2-59.  Type E10NF Class Exception Conditions

Exception
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do 
not cause #AC follow exception class E11.

Table 2-60.  Type E11 Class Exception Conditions

Exception
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X If fault suppression not set, and an illegal address in the SS segment.

X If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF (fault-
code)

X X X If fault suppression not set, and a page fault.

SIMD Floating-Point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
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2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

Table 2-61.  Type E12 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).
• If vvvv != 1111b.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

X X X X If index = destination register (gather operation).

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.
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EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-62.  Type E12NP Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.
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2.8 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS
The exception behavior of VEX-encoded opmask instructions are listed below.
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-63.  TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)
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Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If ModRM:[7:6] != 11b.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.
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Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-64.  TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

Exception
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Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null 
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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7. Updates to Chapter 3, Volume 2A

Updates to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: 
Instruction Set Reference, A-L.

------------------------------------------------------------------------------------------

Changes to this chapter:

Updates to the following instructions: AESDEC, AESDECLAST, AESENC, AESENCLAST, CALL, CMPSS, CPUID, 
FRSTOR, GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB, IRET, and LZCNT.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted 
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no 
additional changes are made to the affected instructions. Affected instructions include: VADDPD, VADDPS, 
VADDSD, VADDSS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPS2DQ, VCV-TSD2SI, VCVTSD2SS, 
VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VDIVPD, VDIVPS, VDIVSD, and VDIVSS.



CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-L) in IA-32e, protected, 
virtual-8086, and real-address modes of operation. The set includes general-purpose, x87 FPU, MMX, 
SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction 
Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, and 
Chapter 5, “Instruction Set Reference, V-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2C.

For each instruction, each operand combination is described. A description of the instruction and its operand, an 
operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a 
summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction reference pages in this chapter. It 
explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this chapter. The heading below 
introduces the example. The table below provides an example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

F5 CMC ZO V/V NA Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Vol. 2A 3-1
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3.1.1.1  Opcode Column in the Instruction Summary Table (Instructions without VEX Prefix)
The “Opcode” column in the table above shows the object code produced for each form of the instruction. When 
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of 
entries other than hexadecimal bytes are as follows:
• NP — Indicates the use of 66/F2/F3 prefixes (beyond those already part of the instructions opcode) are not 

allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the 
encoding for a different instruction.

• NFx — Indicates the use of F2/F3 prefixes (beyond those already part of the instructions opcode) are not 
allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the 
encoding for a different instruction.

• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of 
the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX 
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register 
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value 

following the opcode. This value is used to specify a code offset and possibly a new value for the code segment 
register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed 
value. All words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand 
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low 
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the 
opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the register 
operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. 
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign 
to form a single opcode byte.

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register 
(64-Bit Mode only)
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AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not 
encodab
le (N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5
3-2 Vol. 2A
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3.1.1.2  Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)
In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in 
following form (including the modR/M byte if applicable, the immediate byte if applicable):
VEX.[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib,/is4]
• VEX — Indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-

byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX 
only applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W, 
VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the following notations:

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1 (denoted by VEX.256). The VEX.L field 
can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The presence of the notation 
VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with 
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a) 
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b) 
an #UD occurs if there is no VEX.128 version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same 
opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software 
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with 
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte 
encoded with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS).

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction 
mnemonic would be either “SS“, “SD“, or “SI“ for SIMD floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if 
VEX.L is not zero.

— 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this 
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the 

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only

R8B Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9B Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10B Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11B Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12B Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13B Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14B Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15B Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register 
(64-Bit Mode only)
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same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding 
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using 
either the 2-byte or 3-byte form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded 
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH 
and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the corre-
sponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a valid 
encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either 0FH, 0F3AH or 
0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix. 

— 0F,0F3A,0F38 and 2-byte/3-byte VEX: The presence of 0F3A and 0F38 in the opcode column implies 
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode column 
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not 
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— W0: VEX.W=0. 

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended 
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose 
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode 
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does 
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode 
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section 
2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX 
prefix.

— If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of 
VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored. 

• opcode — Instruction opcode.
• /is4 — An 8-bit immediate byte is present containing a source register specifier in either imm8[7:4] (for 64-bit 

mode) or imm8[6:4] (for 32-bit mode), and instruction-specific payload in imm8[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The 

encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3.

EVEX.[128,256,512,LIG].[66,F2,F3].0F/0F3A/0F38.[W0,W1,WIG] opcode [/r] [ib]
• EVEX — The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 2.6.1 for 

more detail on the EVEX prefix.
The encoding of various sub-fields of the EVEX prefix is described using the following notations:

— 128, 256, 512, LIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit, 
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically 
applies to scalar instructions operating on one data element of a vector register.

— 66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp 
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing 
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. 

— 0F,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values 
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH and 0F38H. 
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding 
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid 
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either 0FH, 0F3AH or 
0F38H. 

— W0: EVEX.W=0. 

— W1: EVEX.W=1.
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— WIG: EVEX.W bit ignored
• opcode — Instruction opcode.
• In general, the encoding of EVEX.R and R’, EVEX.X and X’, and EVEX.B and B’ fields are not shown explicitly in 

the opcode column. 

NOTE
Previously, the terms NDS, NDD and DDS were used in instructions with an EVEX (or VEX) prefix. 
These terms indicated that the vvvv field was valid for encoding, and specified register usage. 
These terms are no longer necessary and are redundant with the instruction operand encoding 
tables provided with each instruction. The instruction operand encoding tables give explicit details 
on all operands, indicating where every operand is stored and if they are read or written. If vvvv is 
not listed as an operand in the instruction operand encoding table, then EVEX (or VEX) vvvv must 
be 0b1111.

3.1.1.3  Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program. 
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the 

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16 

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions 
with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The 
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset 
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is 
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one 
of the byte registers (R8B - R15B) available when using REX.R and 64-bit mode. 

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers 
(R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of 
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15. 
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive. 
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the 
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a 
number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32 
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits. 
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH, 
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8B - R15B are available using REX.R in 
64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of 
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memory are found at the address provided by the effective address computation. Word registers R8W - R15W 
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, 
EDI. The contents of memory are found at the address provided by the effective address computation. 
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size 
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, 
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the 
address provided by the effective address computation.

• reg — A general-purpose register used for instructions when the width of the register does not matter to the 
semantics of the operation of the instruction. The register can be r16, r32, or r64.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m64 — A memory quadword operand in memory. 
• m128 — A memory double quadword operand in memory. 
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The 

number to the left of the colon corresponds to the pointer's segment selector. The number to the right 
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are 
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The 
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper 
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with 
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and 
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to 
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR 
registers.

• m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.
• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or 

doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset 
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs 
indicates its size, which is determined by the address-size attribute of the instruction. 

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4, 
and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively) 
floating-point operand in memory. These symbols designate floating-point values that are used as operands for 
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory. 
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i := 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers 

are: MM0 through MM7. The contents of memory are found at the address provided by the effective address 
computation.
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• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. 
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are 
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are 
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of 
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• <XMM0>— Indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second 
source operand using an XMM register. 
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the 
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — A YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are 
available in 64-bit mode. 

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — A YMM register or 256-bit memory operand. 
• <YMM0>— Indicates use of the YMM0 register as an implicit argument.
• bnd — A 128-bit bounds register. BND0 through BND3.
• mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-

lation, Scale is ignored. Only the base and displacement are used in effective address calculation.
• m512 — A 64-byte operand in memory. 
• zmm/m512 — A ZMM register or 512-bit memory operand. 
• {k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7. 

Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of 
masking is determined by using the EVEX.z bit.

• {k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field 
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking. 

• k1 — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0 
through k7.

• mV — A vector memory operand; the operand size is dependent on the instruction.
• vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of 

memory addresses are specified using a common base register, a constant scale factor, and a vector index 
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or 
a ZMM register (vm32z).

• vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of 
memory addresses are specified using a common base register, a constant scale factor, and a vector index 
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or 
a ZMM register (vm64z).

• zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit 
vector loaded from a 32-bit memory location. 

• zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit 
vector loaded from a 64-bit memory location.
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• <ZMM0> — Indicates use of the ZMM0 register as an implicit argument.
• {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form 

of the instruction. This also implies support for SAE (Suppress All Exceptions).
• {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE, 

but do not support embedded rounding control.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having three source operands.
• SRC — The source in a single-source instruction.
• DST — The destination in an instruction. This field is encoded by reg_field.

3.1.1.4  Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction 
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to 
a row entry in the operand encoding definition table that follows the instruction summary table. The operand 
encoding table in each instruction reference page lists each instruction operand (according to each instruction 
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement. 
EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in 
Table 2-34 and Table 2-35, according to tupletypes. The tupletype for an instruction is listed in the operand 
encoding definition table where applicable.

NOTES
• The letters in the Op/En column of an instruction apply ONLY to the encoding definition table 

immediately following the instruction summary table.
• In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of 

the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the 
content of the operand will be updated by the processor.

3.1.1.5  64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the 
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated specific 
instruction extensions. 

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of 

valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not 

supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
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AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the 
round key(s) from the second source operand, using one/two/four 128-bit data (state) from the first source 
operand, and store the result in the destination operand. 
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DE /r 
AESDEC xmm1, xmm2/m128

A V/V AES Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm1 with one 128-bit round key from 
xmm2/m128.

VEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

B V/V AES 
AVX

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm2 with one 128-bit round key from 
xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DE /r 
VAESDEC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using two 128-bit data 
(state) from ymm2 with two 128-bit round keys from 
ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm2 with one 128-bit round key from 
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using two 128-bit data 
(state) from ymm2 with two 128-bit round keys from 
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DE /r
VAESDEC zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using four 128-bit data 
(state) from zmm2 with four 128-bit round keys from 
zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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Operation
AESDEC 
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows( STATE );
STATE := InvSubBytes( STATE );
STATE := InvMixColumns( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDEC (128b and 256b VEX encoded versions)
(KL,V) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
STATE := InvMixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDEC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
STATE := InvMixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] :=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC __m128i _mm_aesdec (__m128i, __m128i)
VAESDEC __m256i _mm256_aesdec_epi128(__m256i, __m256i);
VAESDEC __m512i _mm512_aesdec_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
AESDEC—Perform One Round of an AES Decryption Flow Vol. 2A 3-51



INSTRUCTION SET REFERENCE, A-L
AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, using 
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four 
(depending on vector length) round key(s) from the second source operand, and stores the result in the destination 
operand. 
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-bit 
data (state) from xmm1 with one 128-bit round key 
from xmm2/m128.

VEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-bit 
data (state) from xmm2 with one 128-bit round key 
from xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DF /r 
VAESDECLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round 
keys from ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-bit 
data (state) from xmm2 with one 128-bit round key 
from xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round 
keys from ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DF /r
VAESDECLAST zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using four128-bit 
data (state) from zmm2 with four 128-bit round keys 
from zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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Operation
AESDECLAST 
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows( STATE );
STATE := InvSubBytes( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDECLAST (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDECLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)
VAESDECLAST __m256i _mm256_aesdeclast_epi128(__m256i, __m256i);
VAESDECLAST __m512i _mm512_aesdeclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
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AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of an AES encryption flow using one/two/four (depending on vector length) 
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s) 
from the second source operand, and stores the result in the destination operand. 
Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation
AESENC 
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows( STATE );
STATE := SubBytes( STATE );
STATE := MixColumns( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DC /r 
AESENC xmm1, xmm2/m128

A V/V AES Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm1 with one 128-bit round 
key from xmm2/m128.

VEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm2 with one 128-bit round 
key from the xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DC /r 
VAESENC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES encryption flow, using two 
128-bit data (state) from ymm2 with two 128-bit round 
keys from the ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm2 with one 128-bit round 
key from the xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform one round of an AES encryption flow, using two 
128-bit data (state) from ymm2 with two 128-bit round 
keys from the ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DC /r
VAESENC zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform one round of an AES encryption flow, using four 
128-bit data (state) from zmm2 with four 128-bit round 
keys from the zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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VAESENC (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR I := 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
STATE := MixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i := 0 to KL-1:

STATE := SRC1.xmm[i] // xmm[i] is the i’th xmm word in the SIMD register
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
STATE := MixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i, __m128i)
VAESENC __m256i _mm256_aesenc_epi128(__m256i, __m256i);
VAESENC __m512i _mm512_aesenc_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
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AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of an AES encryption flow using one/two/four (depending on vector length) 
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s) 
from the second source operand, and stores the result in the destination operand. 
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm1 with one 
128-bit round key from xmm2/m128.

VEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm2 with one 
128-bit round key from xmm3/m128; store the result 
in xmm1.

VEX.256.66.0F38.WIG DD /r 
VAESENCLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES encryption flow, 
using two 128-bit data (state) from ymm2 with two 
128-bit round keys from ymm3/m256; store the 
result in ymm1.

EVEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

C V/V VAES
AVX512VL

Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm2 with one 
128-bit round key from xmm3/m128; store the result 
in xmm1.

EVEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2, ymm3/m256

C V/V VAES
AVX512VL

Perform the last round of an AES encryption flow, 
using two 128-bit data (state) from ymm2 with two 
128-bit round keys from ymm3/m256; store the 
result in ymm1.

EVEX.512.66.0F38.WIG DD /r
VAESENCLAST zmm1, zmm2, zmm3/m512

C V/V VAES
AVX512F

Perform the last round of an AES encryption flow, 
using four 128-bit data (state) from zmm2 with four 
128-bit round keys from zmm3/m512; store the 
result in zmm1.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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Operation
AESENCLAST 
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows( STATE );
STATE := SubBytes( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENCLAST (128b and 256b VEX encoded versions)
(KL, VL) = (1,128), (2,256)
FOR I=0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENCLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)
VAESENCLAST __m256i _mm256_aesenclast_epi128(__m256i, __m256i);
VAESENCLAST __m512i _mm512_aesenclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
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CALL—Call Procedure

Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target 
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can 
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call —  A call to a procedure in the current code segment (the segment currently pointed to by the CS 

register), sometimes referred to as an intra-segment call.
• Far Call — A call to a procedure located in a different segment than the current code segment, sometimes 

referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that 

of the currently executing program or procedure.
• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See 
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 7, 
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for infor-
mation on performing task switches with the CALL instruction.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 D N.S. Valid Call near, relative, displacement relative to next 
instruction.

E8 cd CALL rel32 D Valid Valid Call near, relative, displacement relative to next 
instruction. 32-bit displacement sign extended to 
64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, address given in r/m16. 

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in r/m32. 

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in m16:16.

In 32-bit mode: if selector points to a gate, then RIP 
= 32-bit zero extended displacement taken from 
gate; else RIP = zero extended 16-bit offset from 
far pointer referenced in the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, then RIP 
= 64-bit displacement taken from gate; else RIP = 
zero extended 32-bit offset from far pointer 
referenced in the instruction. 

REX.W FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, then RIP 
= 64-bit displacement taken from gate; else RIP = 
64-bit offset from far pointer referenced in the 
instruction. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA



CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-123

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset 
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The 
processor then branches to the address in the current code segment specified by the target operand. The target 
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a 
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this 
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location 
(r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64 
bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute 
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the 
EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute 
offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP 
before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it 
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In 
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is 
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute 
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the 
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction 
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target 
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer 
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the 
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory 
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into 
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access 
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar 
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either 
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The 
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment 
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register. 

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same 
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making 
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand 
is ignored when a call gate is used.) 
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On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to the 
new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a 
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment 
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in 
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor 
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target 
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the 
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment 
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the 
EIP register to re-start the calling task. 

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of 
the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register and 
the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend this 
nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous task 
link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruction differs 
in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET instruction 
to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If 
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64 
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only 
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit 
values can be pushed on the stack. See Chapter 21, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be 
used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are 
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine 
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very 
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly 
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its 
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code 
segment at the same privilege level. However, using this mechanism requires that the target code segment 
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
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operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target 
operand is ignored when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using 
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result 
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0, 
the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the 
upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for 
the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code 
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the 
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task 
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding 
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type 
of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to 
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a 
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far 
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64 
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset 
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the 
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L 
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or 
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer 
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is 
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. 

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack 
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use 
a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for 
the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling proce-
dure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter 
copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called 
within the new code segment.
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Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-Flow Enforcement Tech-
nology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for CET details.

Instruction ordering. Instructions following a far call may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the far call have 
completed execution (the later instructions may execute before data stored by the earlier instructions have become 
globally visible).

Certain situations may lead to the next sequential instruction after a near indirect CALL being speculatively 
executed. If software needs to prevent this (e.g., in order to prevent a speculative execution side channel), then an 
LFENCE instruction opcode can be placed after the near indirect CALL in order to block speculative execution.

Operation

IF near call
THEN IF near relative call

THEN 
IF OperandSize = 64

THEN
tempDEST := SignExtend(DEST); (* DEST is rel32 *) 
tempRIP := RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL) AND DEST != 0

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
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THEN
tempRIP := DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address 

THEN #SS(0); FI;
Push(RIP); 
IF ShadowStackEnabled(CPL)

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(EIP); 
IF ShadowStackEnabled(CPL)

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL)

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
FI;rel/abs
IF (Call near indirect, absolute indirect)

IF EndbranchEnabledAndNotSuppressed(CPL)
IF CPL = 3

THEN
IF ( no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0 )

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

FI;
ELSE

IF ( no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0 )
THEN

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI;

FI;
FI;

FI;
FI; near
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IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address 
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP := DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS := DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP := DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL 
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call 
gate, task gate, or TSS 

THEN #GP(segment selector); FI;
ELSE 

IF segment type is not a conforming or nonconforming code segment or 
64-bit call gate, 

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF DPL > CPL 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address
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THEN #SS(0); FI;
tempEIP := DEST(Offset);
IF target mode = Compatibility mode

    THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN
tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit) 
THEN #GP(0); FI;

IF tempEIP is non-canonical 
THEN #GP(0); FI;

IF ShadowStackEnabled(CPL)
IF OperandSize = 32

THEN
tempPushLIP = CSBASE + EIP;

ELSE
IF OperandSize = 16

THEN
tempPushLIP = CSBASE + IP;

ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;

FI;
FI;
tempPushCS = CS;

FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
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IF (SSP & 0xFFFFFFFF00000000 != 0)
THEN #GP(0); FI;

FI;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL) 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address 

THEN #SS(0); FI;
tempEIP := DEST(Offset);
IF target mode = Compatibility mode

    THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA & CS.L
        tempPushLIP = RIP
    ELSE
        tempPushLIP = CSBASE + EIP;
    FI;

tempPushCS = CS;
FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector); 
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(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;

(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order 0 bits *)
ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);
FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present 

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL

THEN #GP(0); FI;
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IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); FI;

Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL 

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is 
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present 

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN 
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP := 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE 
IF current TSS is 16-bit

THEN
TSSstackAddress := (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP := 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP := 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new stack-segment descriptor; 
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present 

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;
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IF CallGate(InstructionPointer) not within new code-segment limit 
THEN #GP(0); FI;

SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP; 
CS:EIP := CallGate(CS:InstructionPointer); 
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;
SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP; 
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical) 

THEN #GP(0); FI;
SS := NewSS; (* NewSS is NULL)
RSP := NewESP; 
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
IF ShadowStackEnabled(CPL) AND CPL = 3

THEN
IF IA32_EFER.LMA = 0

THEN IA32_PL3_SSP := SSP;
ELSE (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
FI;

FI;
CPL := CodeSegment(DPL)
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

oldSSP := SSP
SSP := IA32_PLi_SSP; (* where i is the CPL *)
IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then #GP *)

THEN #GP(0); FI;
IF ((IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] != 0)
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THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position 0 - must be clear *)
new_token_value = SSP | BUSY_BIT   (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
IF oldSS.DPL != 3

ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(oldSSP);

FI;
FI;
IF EndbranchEnabled (CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:EIP := CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical 

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

(* Align to next 8 byte boundary *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
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ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled (CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

TASK-GATE:
IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF descriptor is not a TSS segment

              THEN #GP(TSS selector); FI;
IF TSS descriptor specifies that the TSS is busy

              THEN #GP(TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.
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Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow 
stack” token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task 
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than 
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate does not indicate it is a code 
segment.
If the segment selector from a call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and the segment pointed to is 
marked not present.
If stack segment does not have room for the return address, parameters, or stack segment 
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, call gate, task gate, or TSS is not present.
#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code 
segment being accessed.
If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the 
code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canonical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-visor 
shadow” stack token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. 
If code segment or 64-bit call gate overlaps non-canonical space. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a 
code segment and has both the D-bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the 
L-bit set and the D-bit clear.
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If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it 
is a code segment. 

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack 
segment when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error 
code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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CMPSS—Compare Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description
Compares the low single-precision floating-point values in the second source operand and the first source operand 
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed. 
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 32-bit memory location. Bits (MAXVL-1:32) of 
the corresponding YMM destination register remain unchanged. The comparison result is a doubleword mask of all 
1s (comparison true) or all 0s (comparison false). 
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 32-bit memory location. The result is stored in the low 32 bits 
of the destination operand; bits 127:32 of the destination operand are copied from the first source operand. Bits 
(MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a doubleword mask of all 1s 
(comparison true) or all 0s (comparison false). 
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand 
can be a XMM register or a 32-bit memory location. The destination operand (first operand) is an opmask register. 
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination 
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared. 

The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 3-1). Bits 5 through 7 of the immediate are reserved. 
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see 

the first 8 rows of Table 3-1). Bits 3 through 7 of the immediate are reserved. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN. 
A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN. 
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F C2 /r ib
CMPSS xmm1, xmm2/m32, imm8

A V/V SSE Compare low single-precision floating-point value in 
xmm2/m32 and xmm1 using bits 2:0 of imm8 as 
comparison predicate.

VEX.LIG.F3.0F.WIG C2 /r ib
VCMPSS xmm1, xmm2, xmm3/m32, 
imm8

B V/V AVX Compare low single-precision floating-point value in 
xmm3/m32 and xmm2 using bits 4:0 of imm8 as 
comparison predicate.

EVEX.LIG.F3.0F.W0 C2 /r ib
VCMPSS k1 {k2}, xmm2, 
xmm3/m32{sae}, imm8

C V/V AVX512F Compare low single-precision floating-point value in 
xmm3/m32 and xmm2 using bits 4:0 of imm8 as 
comparison predicate with writemask k2 and leave the 
result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA

B NA ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
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by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved 
Imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.) 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-7, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 3-9, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSS instructions 
in a similar fashion by extending the syntax listed in Table 3-9.
:

Table 3-8. Pseudo-Op and CMPSS Implementation

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

Table 3-9. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH
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Software should ensure VCMPSS is encoded with VEX.L=0. Encoding VCMPSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Operation
CASE (COMPARISON PREDICATE) OF

0: OP3 := EQ_OQ; OP5 := EQ_OQ;
1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 3-9. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation
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22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPSS (EVEX encoded version) 
CMP0 := SRC1[31:0] OP5 SRC2[31:0];

IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE

THEN DEST[0] := 1;
ELSE DEST[0] := 0; FI;

ELSE DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

CMPSS (128-bit Legacy SSE version)
CMP0 := DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[MAXVL-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent
VCMPSS __mmask8 _mm_cmp_ss_mask( __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_cmp_round_ss_mask( __m128 a, __m128 b, int imm, int sae);
VCMPSS __mmask8 _mm_mask_cmp_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_mask_cmp_round_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm, int sae);
(V)CMPSS __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 3-1, Denormal.

Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
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CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction oper-
ates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-8 shows information returned, depending on the initial value loaded into the EAX register. 

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX 
is higher than the maximum input value for basic or extended function for that processor then the data for the 
highest basic information leaf is returned. For example, using some Intel processors, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)2 
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on 
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID ZO Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, as determined by input entered in 
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH before using 
leaf 0BH.
CPUID—CPU Identification3-198 Vol. 2A
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Table 3-8.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information.

EBX “Genu”

ECX “ntel”

EDX “ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).

EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31 - 24: Initial APIC ID**.

ECX Feature Information (see Figure 3-7 and Table 3-10).

EDX Feature Information (see Figure 3-8 and Table 3-11).

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH and 
Leaf 1FH.

02H EAX Cache and TLB Information (see Table 3-12).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX.* 
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 228.

EAX Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache. 
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.
CPUID—CPU Identification Vol. 2A 3-199
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Bits 07 - 05: Cache Level (starts at 1). 
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13 - 10: Reserved.
Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***. 
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****.

EBX Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.

ECX Bits 31-00: S = Number of Sets**.

EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31 - 03: Reserved = 0.

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result. 
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15 - 00: Smallest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31 - 16: Reserved = 0.

EBX Bits 15 - 00: Largest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31 - 16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.

Bits 31 - 02: Reserved. 

Table 3-8.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
CPUID—CPU Identification3-200 Vol. 2A
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EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf 

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, 
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are 
supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set. 
Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR MSR, IA32_HW_FEEDBACK_CONFIG MSR, 
IA32_PACKAGE_THERM_STATUS MSR bit 26, and IA32_PACKAGE_THERM_INTERRUPT MSR bit 25 are 
supported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bits 31 - 21: Reserved.

EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved. 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as 
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-201
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EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-8: Enumerates the size of the hardware feedback interface structure in number of 4 KB pages; 
add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor's row in the hardware feedback interface struc-
ture. Note that on some parts the index may be same for multiple logical processors. On some parts the 
indices may not be contiguous, i.e., there may be unused rows in the hardware feedback interface struc-
ture.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bit 30: AVX512BW.
Bit 31: AVX512VL.
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ECX Bit 00: PREFETCHWT1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 of the 
IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: 
IA32_INTERRUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and 
IA32_PL0_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDQ.
Bit 11: AVX512_VNNI.
Bit 12: AVX512_BITALG.
Bits 13: Reserved.
Bit 14: AVX512_VPOPCNTDQ. 
Bit 15: Reserved.
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: Reserved.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: Reserved.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 01: Reserved.
Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bits 07-05: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: Reserved.
Bit 10: MD_CLEAR supported.
Bits 14-11: Reserved.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part.
Bits 19-16: Reserved.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit define 
bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs. 
Bits 25 - 21: Reserved.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch pre-
dictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the 
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and IA32_PRED_CMD[0] 
(IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set this 
bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the IA32_FLUSH_CMD 
MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).
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Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR. 

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit being 
set in this MSR indicates that a model specific feature is supported; software must still consult CPUID 
family/model/stepping to determine the behavior of the enumerated feature as features enumerated in 
IA32_CORE_CAPABILITIES may have different behavior on different processor models. 

Additionally, on hybrid parts (CPUID.07H.0H:EDX[15]=1), software must consult the native model ID and 
core type from the Hybrid Information Enumeration Leaf.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit sup-
port the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 

exceeds the value that sub-leaf 0 returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 04-00: Reserved.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion 
instructions from IEEE single precision.

Bits 31-06: Reserved.

EBX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

Direct Cache Access Information Leaf 

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved. 

ECX Reserved.

EDX Reserved. 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring.
Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events. Archi-
tectural event x is supported if EBX[x]=0 && EAX[31:24]>x.

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4. 
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.
Bits 31 - 08: Reserved = 0.
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ECX Bits 31 - 00: Supported fixed counters bit mask. Fixed-function performance counter 'i' is supported if bit 
‘i’ is 1 (first counter index starts at zero). It is recommended to use the following logic to determine if a 
Fixed Counter is supported: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

EDX Bits 04 - 00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID > 
1).
Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14 - 13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31 - 16: Reserved = 0.

Extended Topology Enumeration Leaf 

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence 
of Leaf 1FH before using leaf 0BH.
Most of Leaf 0BH output depends on the initial value in ECX. 
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > 
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3-255: Reserved.
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Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if 
EAX[n] is 1.
Bit 00: x87 state. 
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04 - 03: MPX state.
Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 12 - 10: Reserved.
Bit 13: Used for IA32_XSS.
Bits 15 - 14: Reserved.
Bit 16: Used for IA32_XSS.
Bits 31 - 17: Reserved.

EBX Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the 
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in 
XCR0. 

EDX Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if 
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bits 31 - 04: Reserved.

EBX Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be 
set to 1 only if ECX[n] is 1.
Bits 07 - 00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: Reserved.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.
Bits 15 - 14: Reserved.
Bit 16: HWP state.
Bits 31 - 17: Reserved.

EDX Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can 
be set to 1 only if EDX[n] is 1.
Bits 31 - 00: Reserved.
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Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the 
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid 

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if 
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state 
feature associated with a valid sub-leaf index, n.

EBX Bits 31 - 0: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear 
if bit n is instead supported in XCR0.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component 
located on the next 64-byte boundary following the preceding state component (otherwise, it is located 
immediately following the preceding state component).
Bits 31 - 02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31 - 02: Reserved.

L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

EAX Reserved.

EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and Mem-
ory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31 - 03: Reserved.
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Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31 - 04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to 
get the result.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01- 00: Reserved.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to 
get the result.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31 - 00: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 11 - 00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add one 
to the return value to get the result.
Bits 31 - 12: Reserved.

EBX Bits 31 - 00: Reserved.

ECX Bits 01 - 00: Reserved.
Bit 02: Reports whether the response of the delay values is linear. 
Bits 31 - 03: Reserved.
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EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Intel SGX Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04 - 02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and 
ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bits 31 - 07: Reserved. 

EBX Bits 31 - 00: MISCSELECT. Bit vector of supported extended SGX features.

ECX Bits 31 - 00: Reserved.

EDX Bits 07 - 00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is 
2^(EDX[7:0]).
Bits 15 - 08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2^(EDX[15:8]).
Bits 31 - 16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below. 

EAX Bit 03 - 00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid. 
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the 
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid. 

EDX:ECX:EBX:EAX return 0.
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Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows. 

EAX[11:04]: Reserved (enumerate 0). 
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section. 

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section. 
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows: 
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
If EAX[3:0] 0010b, then this section has confidentiality protection only.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0). 
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved 
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved 
Memory. 
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0). 

EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH 
MSR can be accessed.
Bit 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across 
warm reset.
Bit 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and 
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), 
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] (InjectPsb-
PmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or 
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to Intel 
PT disable. Writes can also set PendToPAPMI and PendPSB.
Bit 31 - 07: Reserved. 

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output 
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31 - 00: Reserved.
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Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.

EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.

ECX Bits 31 - 00: Reserved.

EDX Bits 31 - 00: Reserved.

Time Stamp Counter and Nominal Core Crystal Clock Information Leaf 

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is 0, the nominal core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31 - 00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31 - 00: Reserved = 0.

Processor Frequency Information Leaf 

16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.

EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

EDX Reserved.

NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect 
actual values. Suitable use of this data includes the display of processor information in like manner to the 
processor brand string and for determining the appropriate range to use when displaying processor 
information e.g. frequency history graphs. The returned information should not be used for any other 
purpose as the returned information does not accurately correlate to information / counters returned by 
other processor interfaces. 

While a processor may support the Processor Frequency Information leaf, fields that return a value of 
zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.
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EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.

ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31 - 00: Reserved = 0.

EBX Bits 31 - 00: Reserved = 0.

ECX Bits 31 - 00: Reserved = 0.

EDX Bits 31 - 00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translation structure. 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0. 
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a 
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture. 
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches. 
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an 
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for 
details of a particular product. 
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reports the maximum input value of supported sub-leaf in leaf 18H.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
Each sub-leaf enumerates a different address translation structure. 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0. 
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a 
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture. 
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches. 
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an 
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for 
details of a particular product. 
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)
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EDX Bits 04 - 00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB*.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Key Locker Leaf (EAX = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs and backing up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: If1, the AES wide Key Locker instructions are supported.

EDX Reserved.

Hybrid Information Enumeration Leaf (EAX = 1AH, ECX = 0)

1AH EAX Enumerates the native model ID and core type.
Bits 31-24: Core type

10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™

Bits 23-0: Native model ID of the core. The core-type and native mode ID can be used to uniquely identify 
the microarchitecture of the core. This native model ID is not unique across core types, and not related to 
the model ID reported in CPUID leaf 01H, and does not identify the SOC.

EBX Reserved.

ECX Reserved.

EDX Reserved.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)
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V2 Extended Topology Enumeration Leaf 

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence 
of Leaf 1FH and using this if available.
Most of Leaf 1FH output depends on the initial value in ECX. 
The EDX output of leaf 1FH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > 
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3: Module.
4: Tile.
5: Die.
6-255: Reserved.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)
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EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

ECX Bit 00: LAHF/SAHF available in 64-bit mode.*
Bits 04 - 01: Reserved.
Bit 05: LZCNT.
Bits 07 - 06: Reserved.
Bit 08: PREFETCHW.
Bits 31 - 09: Reserved.

EDX Bits 10 - 00: Reserved.
Bit 11: SYSCALL/SYSRET.**
Bits 19 - 12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25 - 21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.

NOTES:
* LAHF and SAHF are always available in other modes, regardless of the enumeration of this feature flag.
** Intel processors support SYSCALL and SYSRET only in 64-bit mode. This feature flag is always enumer-

ated as 0 outside 64-bit mode.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX
EBX

Reserved = 0.
Reserved = 0.

ECX

EDX

Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
Reserved = 0.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for 
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low eight bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low eight bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor 
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update 
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped)  09H - Reserved
02H - 2 ways  0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** 0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-leaf 2

80000007H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.

80000008H EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.

EBX

ECX
EDX

Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.
Reserved = 0.
Reserved = 0.

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 

come from this field.

Table 3-8.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-217



INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example: 
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-9 for available processor type values. Stepping IDs are provided as needed.

NOTE
See Chapter 20 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display 
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

Figure 3-6.  Version Information Returned by CPUID in EAX

Table 3-9.  Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

OM16525

Processor Type 

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model 

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
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The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a 
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register: 
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand 

strings for IA-32 processors. More information about this field is provided later in this section. 
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line 

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the 
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the 
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-7 and Table 3-10 show encodings for ECX.
• Figure 3-8 and Table 3-11 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID 
prior to using the feature. Software should not depend on future offerings retaining all features.
CPUID—CPU Identification Vol. 2A 3-219



INSTRUCTION SET REFERENCE, A-L
Figure 3-7.  Feature Information Returned in the ECX Register

Table 3-10.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 6, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor.

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST —  Enhanced  Intel  SpeedStep®  Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ  —  Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 —  SSSE3 Extensions

PDCM —  Perf/Debug Capability MSR

VMX — Virtual Machine Extensions 

SSE4_1 —  SSE4.1

OSXSAVE

SSE4_2 —  SSE4.2

DCA —  Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA —  Fused Multiply Add

SSE3  —  SSE3 Extensions

PCID —  Process-context Identifiers

0

DTES64  —  64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
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10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode 
or shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the 
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a 
description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance 
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4_1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4_2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a 
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV 
instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-10.  Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description
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Figure 3-8.  Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
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Table 3-11.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the 
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS 
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional 
trapping of accesses to DR4 and DR5. 

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the 
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and 
PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are 
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table 
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 
4 Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the 
feature. This feature does not define the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor 
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly 
locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to 
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some 
processors permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe 
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries 
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine 
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting 
MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is 
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range 
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the 
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved
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INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs, 
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form 
and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value 

and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set 

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types 

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-12. Table 
3-12 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX 
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, 
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general 
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. 
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see 
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that 
allow processor temperature to be monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and 
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its 
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in 
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the 
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is 
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the 
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt.

Table 3-11.  More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
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Table 3-12.  Encoding of CPUID Leaf 2 Descriptors 
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries
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50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte 
pages, 4-way set associative, 4 entries

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries 

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-12.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 
16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FEH General CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address 
translation parameters.

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-12.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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Example 3-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs 
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register 

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data 
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid 
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an 
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally 
defined fields reported by deterministic cache parameters are documented in Table 3-8.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical 
package. This information is constant for all valid index values. Software can query the raw data reported by 
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to 
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with 
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-8. 

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-8. 
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INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum 
input value for sub-leaves that contain extended feature flags. See Table 3-8. 

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-8), 
the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest 
leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 3-8. 

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural 
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see 
Table 3-8) is greater than Pn 0. See Table 3-8.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover 
the programming facilities and the architectural performance events available in the processor. The details are 
described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH 
before using leaf 0BH.

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported 
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-8.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size requirements 
of the XSAVE/XRSTOR area. See Table 3-8. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns 
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. 
See Table 3-8. Software can use the forward-extendable technique depicted below to query the valid sub-leaves 
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID 
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds 
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the 
IA32_QM_CTR MSR.
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INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each 
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 3-8. 

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 3-8. 

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX 
Enclave Page Cache. See Table 3-8.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor 
Trace extensions. See Table 3-8. 

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in 
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor 
Trace. See Table 3-8. 

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp 
Counter and Core Crystal Clock. See Table 3-8.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 3-8. 

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor 
Attribute Enumeration. See Table 3-8. 

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address 
Translation Parameters. See Table 3-8. 

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 3-8. 

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table 
3-8.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported 
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 3-8. 
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METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 20 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software 
should execute this algorithm on all Intel 64 and IA-32 processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor 
Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input 
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Figure 3-9.  Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
≥ 0x80000004)

CPUID 
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Table 3-13 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the 
processor brand string.

Table 3-13.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”

Figure 3-10.  Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or 
"zHG", or 

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits 
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
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The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand 
identification table that is maintained in memory by system software and is accessible from system- and user-level 
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official 
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can 
then use this index to locate the brand identification string for the processor in the brand identification table. The 
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not 
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand 
index method is no longer supported. Use brand string method instead.

Table 3-14 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Table 3-14.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 
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Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID; 
EAX[7:4] := Model; 
EAX[11:8] := Family; 
EAX[13:12] := Processor type; 
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 3-7. *)
EDX := Feature flags; (* See Figure 3-8. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information; 
 EBX := Cache and TLB information; 
 ECX := Cache and TLB information; 

EDX := Cache and TLB information; 
BREAK;
EAX = 3H:

EAX := Reserved; 
 EBX := Reserved; 
 ECX := ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 3-8. *)
EBX := Deterministic Cache Parameters Leaf; 

 ECX := Deterministic Cache Parameters Leaf; 
EDX := Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 3-8. *)
 EBX := MONITOR/MWAIT Leaf; 
 ECX := MONITOR/MWAIT Leaf; 

EDX := MONITOR/MWAIT Leaf; 
BREAK;
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EAX = 6H:
EAX := Thermal and Power Management Leaf; (* See Table 3-8. *)

 EBX := Thermal and Power Management Leaf; 
 ECX := Thermal and Power Management Leaf; 

EDX := Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-8. *)
EBX := Structured Extended Feature Flags Enumeration Leaf; 

 ECX := Structured Extended Feature Flags Enumeration Leaf; 
EDX := Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 3-8. *)
 EBX := Direct Cache Access Information Leaf; 
 ECX := Direct Cache Access Information Leaf; 

EDX := Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 3-8. *)
 EBX := Architectural Performance Monitoring Leaf; 
 ECX := Architectural Performance Monitoring Leaf; 

EDX := Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := Extended Topology Enumeration Leaf; 

 ECX := Extended Topology Enumeration Leaf; 
EDX := Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 3-8. *)
 EBX := Processor Extended State Enumeration Leaf; 
 ECX := Processor Extended State Enumeration Leaf; 

EDX := Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
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EAX = FH:
EAX := Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 3-8. *)

 EBX := Intel Resource Director Technology Monitoring Enumeration Leaf; 
 ECX := Intel Resource Director Technology Monitoring Enumeration Leaf; 

EDX := Intel Resource Director Technology Monitoring Enumeration Leaf; 
BREAK;
EAX = 10H:

EAX := Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel Resource Director Technology Allocation Enumeration Leaf; 
 ECX := Intel Resource Director Technology Allocation Enumeration Leaf; 

EDX := Intel Resource Director Technology Allocation Enumeration Leaf; 
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel SGX Enumeration Leaf; 
 ECX := Intel SGX Enumeration Leaf; 

EDX := Intel SGX Enumeration Leaf; 
BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 3-8. *)
 EBX := Intel Processor Trace Enumeration Leaf; 
 ECX := Intel Processor Trace Enumeration Leaf; 

EDX := Intel Processor Trace Enumeration Leaf; 
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; (* See Table 3-8. *)
 EBX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 
 ECX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 

EDX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 3-8. *)
 EBX := Processor Frequency Information Enumeration Leaf; 
 ECX := Processor Frequency Information Enumeration Leaf; 

EDX := Processor Frequency Information Enumeration Leaf; 
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-8. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf; 
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf; 

EDX := System-On-Chip Vendor Attribute Enumeration Leaf; 
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 3-8. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf; 
 ECX := Deterministic Address Translation Parameters Enumeration Leaf; 

EDX := Deterministic Address Translation Parameters Enumeration Leaf; 
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 3-8. *)
 EBX := Key Locker Enumeration Leaf; 
 ECX := Key Locker Enumeration Leaf; 

EDX := Key Locker Enumeration Leaf; 
BREAK;
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EAX = 1AH:
EAX := Hybrid Information Enumeration Leaf; (* See Table 3-8. *)
EBX := Hybrid Information Enumeration Leaf; 

 ECX := Hybrid Information Enumeration Leaf; 
EDX := Hybrid Information Enumeration Leaf; 

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := V2 Extended Topology Enumeration Leaf; 

 ECX := V2 Extended Topology Enumeration Leaf; 
EDX := V2 Extended Topology Enumeration Leaf; 

BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved; 
ECX := Reserved; 
EDX := Reserved; 

BREAK;
EAX = 80000001H:

EAX := Reserved; 
EBX := Reserved; 
ECX := Extended Feature Bits (* See Table 3-8.*); 
EDX := Extended Feature Bits (* See Table 3-8. *); 

BREAK;
EAX = 80000002H:

EAX := Processor Brand String; 
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued; 
EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued; 
EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Cache information; 
EDX := Reserved = 0; 

BREAK;
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EAX = 80000007H:
EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX := Reserved = Physical Address Size Information; 
EBX := Reserved = Virtual Address Size Information; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.
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FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified with the source 
operand. This state data is typically written to the specified memory location by a previous FSAVE/FNSAVE instruc-
tion.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately following 
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding FSAVE/FNSAVE 
instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point exception will be 
generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions, 
see the section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1). To avoid raising exceptions when loading a new operating environment, clear 
all the exception flags in the FPU status word that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord := SRC[FPUControlWord];
FPUStatusWord := SRC[FPUStatusWord];
FPUTagWord := SRC[FPUTagWord];
FPUDataPointer := SRC[FPUDataPointer];
FPUInstructionPointer := SRC[FPUInstructionPointer];
FPULastInstructionOpcode := SRC[FPULastInstructionOpcode];

ST(0) := SRC[ST(0)];
ST(1) := SRC[ST(1)];
ST(2) := SRC[ST(2)];
ST(3) := SRC[ST(3)];
ST(4) := SRC[ST(4)];
ST(5) := SRC[ST(5)];
ST(6) := SRC[ST(6)];
ST(7) := SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next 
“waiting” floating-point instruction.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from m94byte or m108byte.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse

Instruction Operand Encoding

Description

The AFFINEINVB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine 
transformation is defined by A * inv(x) + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. The 
inverse of the bytes in x is defined with respect to the reduction polynomial x8 + x4 + x3 + x + 1.
One SIMD register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register 
or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” 
values in the first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of 
the instruction require 16B alignment on their memory operations.
The inverse of each byte is given by the following table. The upper nibble is on the vertical axis and the lower nibble 
is on the horizontal axis. For example, the inverse of 0x95 is 0x8A.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

66 0F3A CF /r /ib
GF2P8AFFINEINVQB xmm1, 
xmm2/m128, imm8

A V/V GFNI Computes inverse affine transformation in the 
finite field GF(2^8).

VEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

VEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1{k1}{z}, 
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1{k1}{z}, 
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.512.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB zmm1{k1}{z}, 
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

define affine_inverse_byte(tsrc2qw, src1byte, imm):
FOR i := 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
* inverse(x) is defined in the table above *
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEINVQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

FOR i := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(tsrc2, SRC1.qword[j].byte[b], imm8)

ELSE IF *zeroing*:
DEST.qword[j].byte[b] := 0

*ELSE DEST.qword[j].byte[b] remains unchanged*
DEST[MAX_VL-1:VL] := 0

Table 3-50.  Inverse Byte Listings

- 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 9

5 ED 5C 5 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 6 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 2 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C B 28 2F A3 DA D4 E4 F A9 27 53 4 1B FC AC E6

D 7A 7 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 D D6 EB C6 E CF AD 8 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 3 8C DD 9C 7D A0 CD 1A 41 1C
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VGF2P8AFFINEINVQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEINVQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_inverse_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEINVQB __m128i _mm_gf2p8affineinv_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_mask_gf2p8affineinv_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_maskz_gf2p8affineinv_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEINVQB __m256i _mm256_gf2p8affineinv_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_mask_gf2p8affineinv_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_maskz_gf2p8affineinv_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m512i _mm512_gf2p8affineinv_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_mask_gf2p8affineinv_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_maskz_gf2p8affineinv_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
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GF2P8AFFINEQB—Galois Field Affine Transformation

Instruction Operand Encoding

Description

The AFFINEB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine 
transformation is defined by A * x + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. One SIMD 
register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register or memory 
operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” values in the 
first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of 
the instruction require16B alignment on their memory operations.

Operation

define parity(x):
t := 0 // single bit
FOR i := 0 to 7:

t = t xor x.bit[i]
return t

define affine_byte(tsrc2qw, src1byte, imm):
FOR i := 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]

return retbyte

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

66 0F3A CE /r /ib
GF2P8AFFINEQB xmm1, 
xmm2/m128, imm8

A V/V GFNI Computes affine transformation in the finite 
field GF(2^8).

VEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite 
field GF(2^8).

VEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite 
field GF(2^8).

EVEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1{k1}{z}, 
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite 
field GF(2^8).

EVEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1{k1}{z}, 
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite 
field GF(2^8).

EVEX.512.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB zmm1{k1}{z}, 
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes affine transformation in the finite 
field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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VGF2P8AFFINEQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

DEST.qword[j].byte[b] := affine_byte(tsrc2, SRC1.qword[j].byte[b], imm8)
ELSE IF *zeroing*:

DEST.qword[j].byte[b] := 0
*ELSE DEST.qword[j].byte[b] remains unchanged*

DEST[MAX_VL-1:VL] := 0

VGF2P8AFFINEQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEQB __m128i _mm_gf2p8affine_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_mask_gf2p8affine_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_maskz_gf2p8affine_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEQB __m256i _mm256_gf2p8affine_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_mask_gf2p8affine_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_maskz_gf2p8affine_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m512i _mm512_gf2p8affine_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_mask_gf2p8affine_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
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GF2P8MULB—Galois Field Multiply Bytes

Instruction Operand Encoding

Description

The instruction multiplies elements in the finite field GF(28), operating on a byte (field element) in the first source 
operand and the corresponding byte in a second source operand. The field GF(28) is represented in polynomial 
representation with the reduction polynomial x8 + x4 + x3 + x + 1.
This instruction does not support broadcasting.
The EVEX encoded form of this instruction supports memory fault suppression. The SSE encoded forms of the 
instruction require16B alignment on their memory operations.

Operation

define gf2p8mul_byte(src1byte, src2byte):
tword := 0
FOR i := 0 to 7:

IF src2byte.bit[i]:
tword := tword XOR (src1byte<< i)

* carry out polynomial reduction by the characteristic polynomial p*
FOR i := 14 downto 8:

p := 0x11B << (i-8) *0x11B = 0000_0001_0001_1011 in binary*
IF tword.bit[i]:

tword := tword XOR p
return tword.byte[0]

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

66 0F38 CF /r
GF2P8MULB xmm1, xmm2/m128

A V/V GFNI Multiplies elements in the finite field GF(2^8). 

VEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1, xmm2, 
xmm3/m128

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8). 

VEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1, ymm2, 
ymm3/m256

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.512.66.0F38.W0 CF /r
VGF2P8MULB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512F
GFNI

Multiplies elements in the finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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VGF2P8MULB dest, src1, src2 (EVEX encoded version)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])

ELSE iF *zeroing*:
DEST.byte[j] := 0

* ELSE DEST.byte[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VGF2P8MULB dest, src1, src2 (128b and 256b VEX encoded versions)
(KL, VL) = (16, 128), (32, 256)
FOR j := 0 TO KL-1:

DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])
DEST[MAX_VL-1:VL] := 0

GF2P8MULB srcdest, src1 (128b SSE encoded version)
FOR j := 0 TO 15:

SRCDEST.byte[j] :=gf2p8mul_byte(SRCDEST.byte[j], SRC1.byte[j])

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8MULB __m128i _mm_gf2p8mul_epi8(__m128i, __m128i);
(V)GF2P8MULB __m128i _mm_mask_gf2p8mul_epi8(__m128i, __mmask16, __m128i, __m128i);
(V)GF2P8MULB __m128i _mm_maskz_gf2p8mul_epi8(__mmask16, __m128i, __m128i);
VGF2P8MULB __m256i _mm256_gf2p8mul_epi8(__m256i, __m256i);
VGF2P8MULB __m256i _mm256_mask_gf2p8mul_epi8(__m256i, __mmask32, __m256i, __m256i);
VGF2P8MULB __m256i _mm256_maskz_gf2p8mul_epi8(__mmask32, __m256i, __m256i);
VGF2P8MULB __m512i _mm512_gf2p8mul_epi8(__m512i, __m512i);
VGF2P8MULB __m512i _mm512_mask_gf2p8mul_epi8(__m512i, __mmask64, __m512i, __m512i);
VGF2P8MULB __m512i _mm512_maskz_gf2p8mul_epi8(__mmask64, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4.
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IRET/IRETD/IRETQ—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by 
an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform 
a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or 
when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled 
“Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended 
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the 
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction performs a far return to the interrupted program or procedure. During 
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image 
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted 
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags 
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting 
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure, 
without a task switch. The code segment being returned to must be equally or less privileged than the interrupt 
handler routine (as indicated by the RPL field of the code segment selector popped from the stack). 

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code 
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then 
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET 
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is 
to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a 
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the 
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET 
instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs. 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CF IRET ZO Valid Valid Interrupt return (16-bit operand size).

CF IRETD ZO Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ ZO Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
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This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the excep-
tion handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64 
bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits. 

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-Flow Enforcement 
Technology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for CET 
details.

Instruction ordering. IRET is a serializing instruction. See Section 8.3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();
EFLAGS := (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
EFLAGS[15:0] := Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE: 
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS := Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)

EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
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EFLAGS[15:0] := Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
FI;

ELSE 
#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

FI;
END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE; 
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit

THEN #GP(0); FI;
END;

RETURN-TO-VIRTUAL-8086-MODE: 
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
(* If shadow stack or indirect branch tracking at CPL3 then #GP(0) *)
IF CR4.CET AND (IA32_U_CET.ENDBR_EN OR IA32_U_CET.SHSTK_EN)

THEN #GP(0); FI;
shadowStackEnabled = ShadowStackEnabled(CPL)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS := tempEFLAGS;
ESP := Pop();
SS := Pop(); (* Pop 2 words; throw away high-order word *)
ES := Pop(); (* Pop 2 words; throw away high-order word *)
DS := Pop(); (* Pop 2 words; throw away high-order word *)
FS := Pop(); (* Pop 2 words; throw away high-order word *)
GS := Pop(); (* Pop 2 words; throw away high-order word *)
IF shadowStackEnabled

(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
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FI;

CPL := 3;
(* Resume execution in Virtual-8086 mode *)
tempOldSSP = SSP;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF shadowStackEnabled

expected_token_value = tempOldSSP | BUSY_BIT  (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP  (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
ESP := Pop();
SS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16 
THEN

ESP := Pop(); (* 16-bit pop; clear upper bits *)
SS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP := Pop();
SS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL 

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
FI;
IF ShadowStackEnabled(CPL)

(* check if 8 byte aligned *)
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IF SSP AND 0x7 != 0
THEN #CP(FAR-RET/IRET); FI;

IF CS(RPL) != 3
THEN

tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)
IF CSBASE + RIP != tempSsEIP

THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;

FI;
tempOldCPL = CPL;
CPL := CS(RPL);

IF OperandSize = 64
THEN

RSP := tempRSP;
SS := tempSS;

ELSE
ESP := tempESP;
SS := tempSS;

FI;
IF new mode != 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
tempOldSSP = SSP;
IF ShadowStackEnabled(CPL)

IF CPL = 3
THEN tempSSP := IA32_PL3_SSP; FI;

IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR
((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)

THEN #GP(0); FI;
SSP := tempSSP
FI;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOldCPL)

expected_token_value = tempOldSSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
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FOR each SegReg in (ES, FS, GS, and DS)
DO

tempDesc := descriptor cache for SegReg (* hidden part of segment register *)
IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code)))

THEN (* Segment register invalid *)
SegmentSelector := 0; (*Segment selector becomes null*)

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0 

  THEN 
 EFLAGS(IOPL) := tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
 FI;

IF ShadowStackEnabled(CPL)
IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)

THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare; CSBASE+RIP zero padded to 64 bit for 32 bit LIP *)

THEN #CP(FAR-RET/IRET); FI;
IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

THEN #CP(FAR-RET/IRET); FI;
IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR

((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)
THEN #GP(0); FI;

FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA = 1
(* In IA-32e-mode the IRET may be switching stacks if the interrupt/exception was delivered
 through an IDT with a non-zero IST *)
(* In IA-32e mode for same CPL IRET there is always a stack switch. The below check verifies if the 
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 stack switch was to self stack and if so, do not try to free the token on this shadow stack. If the 
 tempSSP was not to same stack then there was a stack switch so do attempt to free the token *)

IF tempSSP != SSP
THEN 

expected_token_value = SSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = SSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)

FI;
FI;
SSP := tempSSP

FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop();
tempEFLAGS := Pop();

ELSE IF OperandSize = 16 
THEN

EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP := Pop();
CS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS := Pop();

FI;
IF CS.RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode
THEN

IF OperandSize = 32
THEN

ESP := Pop();
SS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16 
THEN

ESP := Pop(); (* 16-bit pop; clear upper bits *)
SS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP := Pop();
SS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;
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Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the 
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified 
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.
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LZCNT— Count the Number of Leading Zero Bits

Instruction Operand Encoding

Description 

Counts the number of leading most significant zero bits in a source operand (second operand) returning the result 
into a destination (first operand). 
LZCNT differs from BSR. For example, LZCNT will produce the operand size when the input operand is zero. It 
should be noted that on processors that do not support LZCNT, the instruction byte encoding is executed as BSR. 
In 64-bit mode 64-bit operand size requires REX.W=1. 

Operation
temp := OperandSize - 1
DEST := 0
WHILE (temp >= 0) AND (Bit(SRC, temp) = 0)
DO

temp := temp - 1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected
ZF flag is set to 1 in case of zero output (most significant bit of the source is set), and to 0 otherwise, CF flag is set 
to 1 if input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

LZCNT: unsigned __int32 _lzcnt_u32(unsigned __int32 src);

LZCNT: unsigned __int64 _lzcnt_u64(unsigned __int64 src);

Opcode/Instruction Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F BD /r
LZCNT r16, r/m16

RM V/V LZCNT Count the number of leading zero bits in r/m16, return result in r16.

F3 0F BD /r
LZCNT r32, r/m32

RM V/V LZCNT Count the number of leading zero bits in r/m32, return result in r32.

F3 REX.W 0F BD /r
LZCNT r64, r/m64

RM V/N.E. LZCNT Count the number of leading zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.
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8. Updates to Chapter 4, Volume 2B
Change bars and green text show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B: Instruction Set Reference, M-U.

------------------------------------------------------------------------------------------

Changes to this chapter:

Updates to the following instructions: PCLMULQDQ, PSIGNB/PSIGNW/PSIGND, PSLLW/PSLLD/PSLLQ, PSRLW/
PSRLD/PSRLQ, PTEST, RDPMC, SLDT, STOS/STOSB/STOSW/STOSD/STOSQ, and TZCNT.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted 
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no 
additional changes are made to the affected instructions. Affected instructions include: VMULPD, VMULPS, 
VMULSD, VMULSS, VSQRTPD, VSQRTPS, VSQRTSD, VSQRTSS, VSUBPD, VSUBPS, VSUBSD, and VSUBSS.
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PCLMULQDQ—Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand 
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to 
use according to Table 4-13, other bits of the immediate byte are ignored. 
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

A V/V PCLMULQDQ Carry-less multiplication of one quadword of 
xmm1 by one quadword of xmm2/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm1 and xmm2/m128 should be used.

VEX.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

B V/V PCLMULQDQ 
AVX

Carry-less multiplication of one quadword of 
xmm2 by one quadword of xmm3/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm2 and xmm3/m128 should be used.

VEX.256.66.0F3A.WIG 44 /r /ib 
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

B V/V VPCLMULQDQ Carry-less multiplication of one quadword of 
ymm2 by one quadword of ymm3/m256, 
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords 
of ymm2 and ymm3/m256 should be used.

EVEX.128.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

C V/V VPCLMULQDQ
AVX512VL

Carry-less multiplication of one quadword of 
xmm2 by one quadword of xmm3/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm2 and xmm3/m128 should be used.

EVEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

C V/V VPCLMULQDQ
AVX512VL

Carry-less multiplication of one quadword of 
ymm2 by one quadword of ymm3/m256, 
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords 
of ymm2 and ymm3/m256 should be used.

EVEX.512.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ zmm1, zmm2, zmm3/m512, imm8

C V/V VPCLMULQDQ
AVX512F

Carry-less multiplication of one quadword of 
zmm2 by one quadword of zmm3/m512, 
stores the 128-bit result in zmm1. The imme-
diate is used to determine which quadwords 
of zmm2 and zmm3/m512 should be used.

Op/En Tuple Operand 1 Operand2 Operand3 Operand4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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The first source operand and the destination operand are the same and must be a ZMM/YMM/XMM register. The 
second source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location. Bits (VL_MAX-
1:128) of the corresponding YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simplify programming and emit the 
required encoding for imm8.

Operation
define PCLMUL128(X,Y): // helper function

FOR i := 0 to 63:
TMP [ i ] := X[ 0 ] and Y[ i ]
FOR j := 1 to i:

TMP [ i ] := TMP [ i ] xor (X[ j ] and Y[ i - j ])
DEST[ i ] := TMP[ i ]

FOR i := 64 to 126:
TMP [ i ] := 0
FOR j := i - 63 to 63:

TMP [ i ] := TMP [ i ] xor (X[ j ] and Y[ i - j ])
DEST[ i ] := TMP[ i ]

DEST[127] := 0;
RETURN DEST // 128b vector

Table 4-13.  PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL( SRC21[63:0], SRC1[63:0] )

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-

and.

0 1 CL_MUL( SRC2[63:0], SRC1[127:64] )

1 0 CL_MUL( SRC2[127:64], SRC1[63:0] )

1 1 CL_MUL( SRC2[127:64], SRC1[127:64] )

Table 4-14.  Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHQDQ xmm1, xmm2 0001_0000B

PCLMULHQHQDQ xmm1, xmm2 0001_0001B
PCLMULQDQ—Carry-Less Multiplication Quadword4-248 Vol. 2B
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PCLMULQDQ (SSE version)
IF Imm8[0] = 0:

TEMP1 := SRC1.qword[0]
ELSE:

TEMP1 := SRC1.qword[1]
IF Imm8[4] = 0:

TEMP2 := SRC2.qword[0]
ELSE:

TEMP2 := SRC2.qword[1]
DEST[127:0] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:128] (Unmodified)

VPCLMULQDQ (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i= 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

VPCLMULQDQ (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)
VPCLMULQDQ  __m256i _mm256_clmulepi64_epi128(__m256i, __m256i, const int);
VPCLMULQDQ  __m512i _mm512_clmulepi64_epi128(__m512i, __m512i, const int);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4, additionally
#UD If VEX.L = 1.
EVEX-encoded: See Exceptions Type E4NF.
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PSIGNB/PSIGNW/PSIGND — Packed SIGN 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 08 /r1 

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
mm1 depending on the corresponding sign in 
mm2/m64.

66 0F 38 08 /r 

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
xmm1 depending on the corresponding sign in 
xmm2/m128.

NP 0F 38 09 /r1 

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in mm1 depending on the corresponding sign 
in mm2/m128.

66 0F 38 09 /r 

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in xmm1 depending on the corresponding sign 
in xmm2/m128.

NP 0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in mm1 depending on the 
corresponding sign in mm2/m128.

66 0F 38 0A /r 

PSIGND xmm1, xmm2/m128 

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in xmm1 depending on the 
corresponding sign in xmm2/m128. 

VEX.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed byte integers in 
xmm2 depending on the corresponding sign in 
xmm3/m128.

VEX.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed word integers 
in xmm2 depending on the corresponding sign 
in xmm3/m128.

VEX.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed doubleword 
integers in xmm2 depending on the 
corresponding sign in xmm3/m128.

VEX.256.66.0F38.WIG 08 /r

VPSIGNB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed byte integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.256.66.0F38.WIG 09 /r

VPSIGNW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed 16-bit integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.256.66.0F38.WIG 0A /r

VPSIGND ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed doubleword integers in ymm2 
if the corresponding sign in ymm3/m256 is 
less than zero.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Description 

(V)PSIGNB/(V)PSIGNW/(V)PSIGND negates each data element of the destination operand (the first operand) if the 
signed integer value of the corresponding data element in the source operand (the second operand) is less than 
zero. If the signed integer value of a data element in the source operand is positive, the corresponding data 
element in the destination operand is unchanged. If a data element in the source operand is zero, the corre-
sponding data element in the destination operand is set to zero.

(V)PSIGNB operates on signed bytes. (V)PSIGNW operates on 16-bit signed words. (V)PSIGND operates on signed 
32-bit integers.

Legacy SSE instructions: Both operands can be MMX registers. In 64-bit mode, use the REX prefix to access addi-
tional registers. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand is an YMM register or a 256-bit memory location.

Operation 
def byte_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val
   
def word_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val
   
def dword_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val

PSIGNB srcdest, src // MMX 64-bit operands
VL=64
KL := VL/8
for i in 0...KL-1:
   srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src   // MMX 64-bit operands
VL=64
KL := VL/16
FOR i in 0...KL-1:
   srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])
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PSIGND srcdest, src   // MMX 64-bit operands
VL=64
KL := VL/32
FOR i in 0...KL-1:
   srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

PSIGNB srcdest, src   // SSE 128-bit operands
VL=128
KL := VL/8
FOR i in 0...KL-1:
   srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src   // SSE 128-bit operands
VL=128
KL := VL/16
FOR i in 0...KL-1:
   srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])

PSIGND srcdest, src   // SSE 128-bit operands
VL=128
KL := VL/32
FOR i in 0...KL-1:
   srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

VPSIGNB dest, src1, src2   // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/8
FOR i in 0...KL-1:
   dest.byte[i] := byte_sign(src2.byte[i], src1.byte[i])
DEST[MAXVL-1:VL] := 0

VPSIGNW dest, src1, src2   // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/16
FOR i in 0...KL-1:
   dest.word[i] := word_sign(src2.word[i], src1.word[i])
DEST[MAXVL-1:VL] := 0

VPSIGND dest, src1, src2    // AVX 128-bit or 256-bit operands
VL=(128,256)
KL := VL/32
FOR i in 0...KL-1:
   dest.dword[i] := dword_sign(src2.dword[i], src1.dword[i])
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB:  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

(V)PSIGNB:  __m128i _mm_sign_epi8 (__m128i a, __m128i b)

VPSIGNB: __m256i _mm256_sign_epi8 (__m256i a, __m256i b)

PSIGNW:  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

(V)PSIGNW:  __m128i _mm_sign_epi16 (__m128i a, __m128i b)

VPSIGNW: __m256i _mm256_sign_epi16 (__m256i a, __m256i b)

PSIGND:  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

(V)PSIGND:  __m128i _mm_sign_epi32 (__m128i a, __m128i b)

VPSIGND: __m256i _mm256_sign_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F F1 /r1

PSLLW mm, mm/m64

A V/V MMX Shift words in mm left mm/m64 while shifting in 
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 left by xmm2/m128 while 
shifting in 0s.

NP 0F 71 /6 ib

PSLLW mm1, imm8

B V/V MMX Shift words in mm left by imm8 while shifting in 
0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 left by imm8 while shifting 
in 0s.

NP 0F F2 /r1

PSLLD mm, mm/m64

A V/V MMX Shift doublewords in mm left by mm/m64 while 
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 left by xmm2/m128 
while shifting in 0s.

NP 0F 72 /6 ib1

PSLLD mm, imm8

B V/V MMX Shift doublewords in mm left by imm8 while 
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 left by imm8 while 
shifting in 0s.

NP 0F F3 /r1

PSLLQ mm, mm/m64

A V/V MMX Shift quadword in mm left by mm/m64 while 
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128 
while shifting in 0s.

NP 0F 73 /6 ib1

PSLLQ mm, imm8

B V/V MMX Shift quadword in mm left by imm8 while 
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 left by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 left by amount specified in 
xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 left by imm8 while shifting 
in 0s.

VEX.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 left by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 left by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG F1 /r

VPSLLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 left by amount specified in 
xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /6 ib

VPSLLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 left by imm8 while shifting 
in 0s.
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VEX.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /6 ib

VPSLLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 left by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG F3 /r

VPSLLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /6 ib

VPSLLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 left by imm8 while 
shifting in 0s.

EVEX.128.66.0F.WIG F1 /r
VPSLLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.WIG F1 /r
VPSLLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.WIG F1 /r
VPSLLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.WIG 71 /6 ib
VPSLLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 left by imm8 while 
shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /6 ib
VPSLLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 left by imm8 while 
shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /6 ib
VPSLLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 left by imm8 while 
shifting in 0 using writemask k1.

EVEX.128.66.0F.W0 F2 /r
VPSLLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.256.66.0F.W0 F2 /r
VPSLLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.512.66.0F.W0 F2 /r
VPSLLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.128.66.0F.W0 72 /6 ib
VPSLLD xmm1 {k1}{z}, xmm2/m128/m32bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W0 72 /6 ib
VPSLLD ymm1 {k1}{z}, ymm2/m256/m32bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W0 72 /6 ib
VPSLLD zmm1 {k1}{z}, zmm2/m512/m32bcst, 
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.128.66.0F.W1 F3 /r
VPSLLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.256.66.0F.W1 F3 /r
VPSLLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W1 F3 /r
VPSLLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 4-17 gives an example of shifting words in a 64-bit operand. 

The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-
ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and 
the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count 
operand can be either an MMX technology register or an 64-bit memory location.

EVEX.128.66.0F.W1 73 /6 ib
VPSLLQ xmm1 {k1}{z}, xmm2/m128/m64bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W1 73 /6 ib
VPSLLQ ymm1 {k1}{z}, ymm2/m256/m64bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W1 73 /6 ib
VPSLLQ zmm1 {k1}{z}, zmm2/m512/m64bcst, 
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-17.  PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
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128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of 
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register 
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded 
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of the 
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are 
ignored.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count 
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a 
memory location (the variable count version). For the immediate count version, the source operand (the second 
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, 
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination 
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6, or EVEX.128.66.0F 71-73 /6), 
VEX.vvvv/EVEX.vvvv encodes the destination register. 

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN 

DEST[64:0] := 0000000000000000H;
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN 

DEST[64:0] := 0000000000000000H;
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN 

DEST[64:0] := 0000000000000000H;
ELSE

DEST := ZeroExtend(DEST << COUNT);
FI;

LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
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DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT);

FI;
LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)
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DEST[255:240] := ZeroExtend(SRC[255:240] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] := ZeroExtend(SRC[255:224] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] := ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] << COUNT);

FI;

VPSLLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPSLLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORD_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0
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PSLLW (xmm, xmm, xmm/m128) 
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPSLLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR

VPSLLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
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FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSLLD __m512i _mm512_slli_epi32(__m512i a, unsigned int imm);
VPSLLD __m512i _mm512_mask_slli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m512i _mm512_maskz_slli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m256i _mm256_mask_slli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m256i _mm256_maskz_slli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m128i _mm_mask_slli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m128i _mm_maskz_slli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m512i _mm512_sll_epi32(__m512i a, __m128i cnt);
VPSLLD __m512i _mm512_mask_sll_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m512i _mm512_maskz_sll_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m256i _mm256_mask_sll_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m256i _mm256_maskz_sll_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m128i _mm_mask_sll_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLD __m128i _mm_maskz_sll_epi32( __mmask8 k, __m128i a, __m128i cnt);
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VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_maskz_slli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m256i _mm256_mask_slli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m256i _mm256_maskz_slli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m128i _mm_mask_slli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m128i _mm_maskz_slli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_maskz_sll_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m256i _mm256_mask_sll_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m256i _mm256_maskz_sll_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m128i _mm_mask_sll_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m128i _mm_maskz_sll_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m512i _mm512_slli_epi16(__m512i a, unsigned int imm);
VPSLLW __m512i _mm512_mask_slli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m512i _mm512_maskz_slli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m256i _mm256_mask_slli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m256i _mm256_maskz_slli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m128i _mm_mask_slli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m128i _mm_maskz_slli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m512i _mm512_sll_epi16(__m512i a, __m128i cnt);
VPSLLW __m512i _mm512_mask_sll_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m512i _mm512_maskz_sll_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m256i _mm256_mask_sll_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m256i _mm256_maskz_sll_epi16( __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m128i _mm_mask_sll_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m128i _mm_maskz_sll_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSLLW:__m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW:__m64 _mm_sll_pi16(__m64 m, __m64 count)
(V)PSLLW:__m128i _mm_slli_epi16(__m64 m, int count)
(V)PSLLW:__m128i _mm_sll_epi16(__m128i m, __m128i count)
VPSLLW:__m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW:__m256i _mm256_sll_epi16 (__m256i m, __m128i count)
PSLLD:__m64 _mm_slli_pi32(__m64 m, int  count)
PSLLD:__m64 _mm_sll_pi32(__m64 m, __m64 count)
(V)PSLLD:__m128i _mm_slli_epi32(__m128i m, int  count)
(V)PSLLD:__m128i _mm_sll_epi32(__m128i m, __m128i count)
VPSLLD:__m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD:__m256i _mm256_sll_epi32 (__m256i m, __m128i count)
PSLLQ:__m64 _mm_slli_si64(__m64 m, int  count)
PSLLQ:__m64 _mm_sll_si64(__m64 m, __m64 count)
(V)PSLLQ:__m128i _mm_slli_epi64(__m128i m, int  count)
(V)PSLLQ:__m128i _mm_sll_epi64(__m128i m, __m128i count)
VPSLLQ:__m256i _mm256_slli_epi64 (__m256i m, int count)
VPSLLQ:__m256i _mm256_sll_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.
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Other Exceptions
VEX-encoded instructions:

Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSLLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSLLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.
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PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F D1 /r1

PSRLW mm, mm/m64

A V/V MMX Shift words in mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 right by amount 
specified in xmm2/m128 while shifting in 0s.

NP 0F 71 /2 ib1

PSRLW mm, imm8

B V/V MMX Shift words in mm right by imm8 while shifting 
in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 right by imm8 while 
shifting in 0s.

NP 0F D2 /r1

PSRLD mm, mm/m64

A V/V MMX Shift doublewords in mm right by amount 
specified in mm/m64 while shifting in 0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 right by amount 
specified in xmm2 /m128 while shifting in 0s.

NP 0F 72 /2 ib1

PSRLD mm, imm8

B V/V MMX Shift doublewords in mm right by imm8 while 
shifting in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 right by imm8 
while shifting in 0s.

NP 0F D3 /r1

PSRLQ mm, mm/m64

A V/V MMX Shift mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 right by amount 
specified in xmm2/m128 while shifting in 0s.

NP 0F 73 /2 ib1

PSRLQ mm, imm8

B V/V MMX Shift mm right by imm8 while shifting in 0s.

66 0F 73 /2 ib

PSRLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 right by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 right by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 right by imm8 
while shifting in 0s.

VEX.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 right by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG D1 /r

VPSRLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /2 ib

VPSRLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 right by imm8 while 
shifting in 0s.
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VEX.256.66.0F.WIG D2 /r

VPSRLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /2 ib

VPSRLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 right by imm8 
while shifting in 0s.

VEX.256.66.0F.WIG D3 /r

VPSRLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /2 ib

VPSRLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 right by imm8 while 
shifting in 0s.

EVEX.128.66.0F.WIG D1 /r
VPSRLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.WIG D1 /r
VPSRLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.WIG D1 /r
VPSRLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.WIG 71 /2 ib
VPSRLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 right by imm8 
while shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /2 ib
VPSRLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 right by imm8 
while shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /2 ib
VPSRLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 right by imm8 
while shifting in 0s using writemask k1.

EVEX.128.66.0F.W0 D2 /r
VPSRLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.256.66.0F.W0 D2 /r
VPSRLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W0 D2 /r
VPSRLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.128.66.0F.W0 72 /2 ib
VPSRLD xmm1 {k1}{z}, xmm2/m128/m32bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.W0 72 /2 ib
VPSRLD ymm1 {k1}{z}, ymm2/m256/m32bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.W0 72 /2 ib
VPSRLD zmm1 {k1}{z}, zmm2/m512/m32bcst, 
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.W1 D3 /r
VPSRLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.256.66.0F.W1 D3 /r
VPSRLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W1 D3 /r
VPSRLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 4-19 gives an example of shifting words in a 64-bit operand. 

Note that only the low 64-bits of a 128-bit count operand are checked to compute the count.

The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits 
specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand; 
and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instruction 64-bit operand: The destination operand is an MMX technology register; the count operand 
can be either an MMX technology register or an 64-bit memory location.

EVEX.128.66.0F.W1 73 /2 ib
VPSRLQ xmm1 {k1}{z}, xmm2/m128/m64bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.W1 73 /2 ib
VPSRLQ ymm1 {k1}{z}, ymm2/m256/m64bcst, 
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.W1 73 /2 ib
VPSRLQ zmm1 {k1}{z}, zmm2/m512/m64bcst, 
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-19.  PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand
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128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count 
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a 
memory location (the variable count version). For the immediate count version, the source operand (the second 
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, 
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination 
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2, or EVEX.128.66.0F 71-73 /2), 
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST := ZeroExtend(DEST >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE
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DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[255:0] := 0
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] := ZeroExtend(SRC[255:240] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[255:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] := ZeroExtend(SRC[255:224] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] >> COUNT);

FI;
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LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[255:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] := ZeroExtend(SRC[191:128] >> COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);

FI;

VPSRLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPSRLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSRLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)
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VPSRLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
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VPSRLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPSRLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
VPSRLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m256i _mm256_maskz_srli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
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VPSRLD __m256i _mm256_maskz_srl_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m512i _mm512_maskz_srl_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16( __mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRLW:__m64 _mm_srli_pi16(__m64 m, int  count)
PSRLW:__m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW:__m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW:__m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW:__m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW:__m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD:__m64 _mm_srli_pi32 (__m64 m, int  count)
PSRLD:__m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD:__m128i _mm_srli_epi32 (__m128i m, int  count)
(V)PSRLD:__m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD:__m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD:__m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ:__m64 _mm_srli_si64 (__m64 m, int  count)
PSRLQ:__m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ:__m128i _mm_srli_epi64 (__m128i m, int  count)
(V)PSRLQ:__m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ:__m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ:__m256i _mm256_srl_epi64 (__m256i m, __m128i count)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSRLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSRLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.
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PTEST—Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of the first source operand (first 
operand) and the second source operand (second operand). VPTEST sets the CF flag if all bits in the result are 0 of 
the bitwise AND of the second source operand (second operand) and the logical NOT of the destination operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source register can be an XMM register 
or a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)PTEST (128-bit version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0) 

THEN ZF := 1;
ELSE ZF := 0;

IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0) 
THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF := 1;

ELSE ZF := 0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF := 1;

ELSE CF := 0;
DEST (unmodified)
AF := OF := PF := SF := 0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND xmm1 result is all 
0s. Set CF if xmm2/m128 AND NOT xmm1 
result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

PTEST

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST 

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.
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RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with the supported high-order bits 
of the counter. The number of high-order bits loaded into EDX is implementation specific on processors that do no 
support architectural performance monitoring. The width of fixed-function and general-purpose performance coun-
ters on processors supporting architectural performance monitoring are reported by CPUID 0AH leaf. See below for 
the treatment of the EDX register for “fast” reads.

The ECX register specifies the counter type (if the processor supports architectural performance monitoring) and 
counter index. Counter type is specified in ECX[30] to select one of two type of performance counters. If the 
processor does not support architectural performance monitoring, ECX[30:0] specifies the counter index; other-
wise ECX[29:0] specifies the index relative to the base of each counter type. ECX[31] selects “fast” read mode if 
supported. The two counter types are:

General-purpose or special-purpose performance counters are specified with ECX[30] = 0: The number of general-
purpose performance counters on processor supporting architectural performance monitoring are reported by 
CPUID 0AH leaf. The availability of special-purpose counters, as well as the number of general-purpose counters if 
the processor does not support architectural performance monitoring, is model specific; see Chapter 18, “Perfor-
mance Monitoring” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Fixed-function performance counters are specified with ECX[30] = 1. The number fixed-function performance 
counters is enumerated by CPUID 0AH leaf. See Chapter 18, “Performance Monitoring” of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B. This counter type is selected if ECX[30] is set.

The width of fixed-function performance counters and general-purpose performance counters on processors 
supporting architectural performance monitoring are reported by CPUID 0AH leaf. The width of general-purpose 
performance counters are 40-bits for processors that do not support architectural performance monitoring coun-
ters. The width of special-purpose performance counters are implementation specific.

When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE) flag in register CR4 
restricts the use of the RDPMC instruction as follows. When the PCE flag is set, the RDPMC instruction can be 
executed at any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0. 
(When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when executing at privilege 
level 0.

The performance-monitoring counters are event counters that can be programmed to count events such as the 
number of instructions, interrupts received, or cache misses. Chapter 19, “Performance Monitoring Events,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists the events that can be counted 
for various processors in the Intel 64 and IA-32 architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the 
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If 
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction) 
before and/or after the RDPMC instruction.

Performing back-to-back fast reads are not guaranteed to be monotonic. To guarantee monotonicity on back-to-
back reads, a serializing instruction must be placed between the two RDPMC instructions.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC ZO Valid Valid Read performance-monitoring counter 
specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
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The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents of 
the ECX register are used to select the counter, and the event count is stored in the full EAX and EDX registers. The 
RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium 
processor with MMX technology. The earlier Pentium processors have performance-monitoring counters, but they 
must be read with the RDMSR instruction.

Operation

MSCB = Most Significant Counter Bit (* Model-specific *)

IF (((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0)) and (ECX indicates a supported counter))
THEN

EAX := counter[31:0];
EDX := ZeroExtend(counter[MSCB:32]); 

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this 
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be 
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel Xeon, 
and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of 
the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination 
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the 
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The 
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the desti-
nation is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, 
regardless of the operand size.

Operation

DEST := LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
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STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or EAX register 
(respectively) into the destination operand. The destination operand is a memory location, the address of which is 
read from either the ES:EDI or ES:DI register (depending on the address-size attribute of the instruction and the 
mode of operation). The ES segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the STOS mnemonic) allows the destination operand to 
be specified explicitly. Here, the destination operand should be a symbol that indicates the size and location of the 
destination value. The source operand is then automatically selected to match the size of the destination operand 
(the AL register for byte operands, AX for word operands, EAX for doubleword operands). The explicit-operands 
form is provided to allow documentation; however, note that the documentation provided by this form can be 
misleading. That is, the destination operand symbol must specify the correct type (size) of the operand (byte, 
word, or doubleword), but it does not have to specify the correct location. The location is always specified by the 
ES:(E)DI register. These must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword versions of the STOS 
instructions. Here also ES:(E)DI is assumed to be the destination operand and AL, AX, or EAX is assumed to be the 
source operand. The size of the destination and source operands is selected by the mnemonic: STOSB (byte read 
from register AL), STOSW (word from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the (E)DI register is 
incremented or decremented according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, the 
register is incremented; if the DF flag is 1, the register is decremented (the register is incremented or decremented 
by 1 for byte operations, by 2 for word operations, by 4 for doubleword operations).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at address ES:(E)DI; 
For 64-bit mode store AL at address RDI or 
EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX at address ES:(E)DI; 
For 64-bit mode store AX at address RDI or 
EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX at address 
ES:(E)DI; For 64-bit mode store EAX at address 
RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at address ES:(E)DI; 
For 64-bit mode store AL at address RDI or 
EDI.

AB STOSW NA Valid Valid For legacy mode, store AX at address ES:(E)DI; 
For 64-bit mode store AX at address RDI or 
EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX at address 
ES:(E)DI; For 64-bit mode store EAX at address 
RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
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NOTE: To improve performance, more recent processors support modifications to the processor’s operation during 
the string store operations initiated with STOS and STOSB. See Section 7.3.9.3 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 for additional information on fast-string operation.

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the prefix 67H. Using a 
REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The promoted no-operand 
mnemonic is STOSQ. STOSQ (and its explicit operands variant) store a quadword from the RAX register into the 
destination addressed by RDI or EDI. See the summary chart at the beginning of this section for encoding data and 
limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix for block stores of ECX 
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because 
data needs to be moved into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
THEN

DEST := AL;
THEN IF DF = 0

THEN (E)DI := (E)DI + 1; 
ELSE (E)DI := (E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST := AX;

THEN IF DF = 0
THEN (E)DI := (E)DI + 2; 
ELSE (E)DI := (E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST := EAX;
THEN IF DF = 0

THEN (E)DI := (E)DI + 4; 
ELSE (E)DI := (E)DI – 4; 

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST := AL;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 1; 
ELSE (R|E)DI := (R|E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST := AX;
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THEN IF DF = 0
THEN (R|E)DI := (R|E)DI + 2; 
ELSE (R|E)DI := (R|E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST := EAX;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 4; 
ELSE (R|E)DI := (R|E)DI – 4; 

FI;
FI;

ELSE IF (Quadword store using REX.W )
THEN

DEST := RAX;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 8; 
ELSE (R|E)DI := (R|E)DI – 8; 

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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TZCNT — Count the Number of Trailing Zero Bits

Instruction Operand Encoding

Description 

TZCNT counts the number of trailing least significant zero bits in source operand (second operand) and returns the 
result in destination operand (first operand). TZCNT is an extension of the BSF instruction. The key difference 
between TZCNT and BSF instruction is that TZCNT provides operand size as output when source operand is zero 
while in the case of BSF instruction, if source operand is zero, the content of destination operand are undefined. On 
processors that do not support TZCNT, the instruction byte encoding is executed as BSF.

Operation

temp := 0
DEST := 0
DO WHILE ( (temp < OperandSize) and (SRC[ temp] = 0) )

temp := temp +1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected

ZF is set to 1 in case of zero output (least significant bit of the source is set), and to 0 otherwise, CF is set to 1 if 
the input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

TZCNT: unsigned __int32 _tzcnt_u32(unsigned __int32 src);

TZCNT: unsigned __int64 _tzcnt_u64(unsigned __int64 src);

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F BC /r
TZCNT r16, r/m16

A V/V BMI1 Count the number of trailing zero bits in r/m16, return result in r16.

F3 0F BC /r
TZCNT r32, r/m32

A V/V BMI1 Count the number of trailing zero bits in r/m32, return result in r32.

F3 REX.W 0F BC /r
TZCNT r64, r/m64

A V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) NA NA
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.
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9. Updates to Chapter 5, Volume 2C
Change bars and green text show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2C: Instruction Set Reference, V-Z.

------------------------------------------------------------------------------------------

Changes to this chapter:

Added the following instructions: VCVTNE2PS2BF16, VCVTNEPS2BF16, VDPBF16PS, VP2INTERSECTD/
VP2INTERSECTQ, and WBNOINVD.

Updates to the following instructions: VDBPSADBW, VFIXUPIMMPD, VFIXUPIMMPS, VFMADD132PD/
VFMADD213PD/VFMADD231PD, VPERMD/VPERMW, VPTESTNMB/W/D/Q, and VTESTPD/VTESTPS.

In addition to the updated instructions above, several Intel® AVX-512 instructions have two corrections as noted 
below:

1) The MXCSR.RC field is mistakenly called MXCSR.RM; this typo is corrected.

2) The SET_RM(.) function has been updated to be called SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(.).

The two changes listed above affect many instructions and are not included in this change document as no 
additional changes are made to the affected instructions. Affected instructions include: VCVTPD2QQ, 
VCVTPD2UDQ, VCVTPD2UQQ, VCVTPS2UDQ, VCVTPS2QQ, VCVTPS2UQQ, VCVTQQ2PD, VCVTSD2USI, 
VCVTSS2USI, VCVTUDQ2PS, VCVTUQQ2PD, VCVTUQQ2PS, VCVTUSI2SD, VCVTUSI2SS, VFMADD132PD, 
VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADD132SD, 
VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS, VFMADDSUB132PD, 
VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, 
VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS, VFMSUBADD213PS, 
VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PS, VFMSUB132SD, VFMSUB213SD, 
VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS, VFNMADD132PD, VFNMADD213PD, 
VFNMADD231PD, VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADD132SD, VFNMADD213SD, 
VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS, VFNMSUB132PD, VFNMSUB213PD, 
VFNMSUB231PD, VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUB132SD, VFNMSUB213SD, 
VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, VSCALEFPD, VSCALEFSD, VSCALEFPS, 
and VSCALEFSS.
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VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 Data

Instruction Operand Encoding

Description

Converts two SIMD registers of packed single data into a single register of packed BF16 data.
This instruction does not support memory fault suppression.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and 
input denormals are always treated as zero. MXCSR is not consulted nor updated. No floating-point exceptions are 
generated.

Operation

VCVTNE2PS2BF16 dest, src1, src2
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL-1:

IF k1[ i ] or *no writemask*:
IF i < KL/2:

IF src2 is memory and evex.b == 1:
t := src2.fp32[0]

ELSE:
t := src2.fp32[ i ]

ELSE:
t := src1.fp32[ i-KL/2]

// See VCVTNEPS2BF16 for definition of convert helper function 
dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[ i ] := 0

ELSE:  // Merge masking, dest element unchanged
dest.word[ i ] := origdest.word[ i ]

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 xmm1{k1}{z}, 
xmm2, xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from xmm2 and 
xmm3/m128/m32bcst to packed BF16 data in 
xmm1 with writemask k1.

EVEX.256.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 ymm1{k1}{z}, 
ymm2, ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from ymm2 and 
ymm3/m256/m32bcst to packed BF16 data in 
ymm1 with writemask k1.

EVEX.512.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 zmm1{k1}{z}, 
zmm2, zmm3/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Convert packed single data from zmm2 and 
zmm3/m512/m32bcst to packed BF16 data in 
zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTNE2PS2BF16 __m128bh _mm_cvtne2ps_pbh (__m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_mask_cvtne2ps_pbh (__m128bh, __mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_maskz_cvtne2ps_pbh (__mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m256bh _mm256_cvtne2ps_pbh (__m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_mask_cvtne2ps_pbh (__m256bh, __mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_maskz_cvtne2ps_ pbh (__mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m512bh _mm512_cvtne2ps_pbh (__m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_mask_cvtne2ps_pbh (__m512bh, __mmask32, __m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_maskz_cvtne2ps_pbh (__mmask32, __m512, __m512);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.
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VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data

Instruction Operand Encoding

Description

Converts one SIMD register of packed single data into a single register of packed BF16 data.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and 
input denormals are always treated as zero. MXCSR is not consulted nor updated. 
As the instruction operand encoding table shows, the EVEX.vvvv field is not used for encoding an operand. 
EVEX.vvvv is reserved and must be 0b1111 otherwise instructions will #UD.

Operation

Define convert_fp32_to_bfloat16(x):
IF x is zero or denormal:

dest[15] := x[31] // sign preserving zero (denormal go to zero)
dest[14:0] := 0

ELSE IF x is infinity:
dest[15:0] := x[31:16]

ELSE IF x is NAN:
dest[15:0] := x[31:16] // truncate and set MSB of the mantissa to force QNAN
dest[6] := 1

ELSE // normal number
LSB := x[16]
rounding_bias := 0x00007FFF + LSB
temp[31:0] := x[31:0] + rounding_bias // integer add
dest[15:0] := temp[31:16]

RETURN dest

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z}, 
xmm2/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from xmm2/m128 
to packed BF16 data in xmm1 with writemask 
k1.

EVEX.256.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z}, 
ymm2/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Convert packed single data from ymm2/m256 
to packed BF16 data in xmm1 with writemask 
k1.

EVEX.512.F3.0F38.W0 72 /r
VCVTNEPS2BF16 ymm1{k1}{z}, 
zmm2/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Convert packed single data from zmm2/m512 
to packed BF16 data in ymm1 with writemask 
k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA
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VCVTNEPS2BF16 dest, src
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL/2-1:

IF k1[ i ] or *no writemask*:
IF src is memory and evex.b == 1:

t := src.fp32[0]
ELSE:

t := src.fp32[ i ]

dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[ i ] := 0

ELSE:  // Merge masking, dest element unchanged
dest.word[ i ] := origdest.word[ i ]

DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTNEPS2BF16 __m128bh _mm_cvtneps_pbh (__m128);
VCVTNEPS2BF16 __m128bh _mm_mask_cvtneps_pbh (__m128bh, __mmask8, __m128);
VCVTNEPS2BF16 __m128bh _mm_maskz_cvtneps_pbh (__mmask8, __m128);
VCVTNEPS2BF16 __m128bh _mm256_cvtneps_pbh (__m256);
VCVTNEPS2BF16 __m128bh _mm256_mask_cvtneps_pbh (__m128bh, __mmask8, __m256);
VCVTNEPS2BF16 __m128bh _mm256_maskz_cvtneps_pbh (__mmask8, __m256);
VCVTNEPS2BF16 __m256bh _mm512_cvtneps_pbh (__m512);
VCVTNEPS2BF16 __m256bh _mm512_mask_cvtneps_pbh (__m256bh, __mmask16, __m512);
VCVTNEPS2BF16 __m256bh _mm512_maskz_cvtneps_pbh (__mmask16, __m512);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
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VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

Instruction Operand Encoding

Description

Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword 
elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results 
in each 64-bit superblock of the destination register. 
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as 
follows:
• The lower two word results are calculated each from the SAD operation between a sliding dword element within 

a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword 
superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 5-8, is constructed from 
the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of 
the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte 
offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from 
the first source operand is located at byte offset 0.

• The next two word results are calculated each from the SAD operation between a sliding dword element within 
a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corre-
sponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock 
of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in 
the qword superblock from the first source operand is located at byte offset 4.

• The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the 
intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the 
second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the inter-
mediate vector and the second source operand, similarly to PSHUFD.

The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or 
a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at 
16-bit word granularity.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.128.66.0F3A.W0 42 /r ib
VDBPSADBW xmm1 {k1}{z}, xmm2, 
xmm3/m128, imm8

A V/V AVX512VL
AVX512BW

Compute packed SAD word results of unsigned bytes in 
dword block from xmm2 with unsigned bytes of dword 
blocks transformed from xmm3/m128 using the shuffle 
controls in imm8. Results are written to xmm1 under the 
writemask k1.

EVEX.256.66.0F3A.W0 42 /r ib
VDBPSADBW ymm1 {k1}{z}, ymm2, 
ymm3/m256, imm8

A V/V AVX512VL
AVX512BW

Compute packed SAD word results of unsigned bytes in 
dword block from ymm2 with unsigned bytes of dword 
blocks transformed from ymm3/m256 using the shuffle 
controls in imm8. Results are written to ymm1 under the 
writemask k1.

EVEX.512.66.0F3A.W0 42 /r ib
VDBPSADBW zmm1 {k1}{z}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW Compute packed SAD word results of unsigned bytes in 
dword block from zmm2 with unsigned bytes of dword 
blocks transformed from zmm3/m512 using the shuffle 
controls in imm8. Results are written to zmm1 under the 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
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Figure 5-8.  64-bit Super Block of SAD Operation in VDBPSADBW 
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Operation

VDBPSADBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Selection of quadruplets:
FOR I = 0 to VL step 128

TMP1[I+31:I] := select (SRC2[I+127: I], imm8[1:0])
TMP1[I+63: I+32] := select (SRC2[I+127: I], imm8[3:2])
TMP1[I+95: I+64] := select (SRC2[I+127: I], imm8[5:4])
TMP1[I+127: I+96]  := select (SRC2[I+127: I], imm8[7:6])

END FOR

SAD of quadruplets:

FOR I =0 to VL step 64
TMP_DEST[I+15:I] := ABS(SRC1[I+7: I] - TMP1[I+7: I]) +

ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) +
ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) +
ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24]) 

TMP_DEST[I+31: I+16] := ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) +
ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) +
ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) +
ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32])

TMP_DEST[I+47: I+32] := ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) +
ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) +
ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) +
ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40]) 

TMP_DEST[I+63: I+48] := ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) +
ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) +
ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) +
ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48])

ENDFOR

FOR j :=  0 TO KL-1
i :=  j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] :=  TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] :=  0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] :=  0
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Intel C/C++ Compiler Intrinsic Equivalent

VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b int imm8);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4NF.nb.
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VDPBF16PS—Dot Product of BF16 Pairs Accumulated into Packed Single Precision

Instruction Operand Encoding

Description

This instruction performs a SIMD dot-product of two BF16 pairs and accumulates into a packed single precision 
register.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are 
always flushed to zero and input denormals are always treated as zero. MXCSR is not consulted nor updated. 

NaN propagation priorities are described in Table 5-1. 

Operation

Define make_fp32(x):
// The x parameter is bfloat16. Pack it in to upper 16b of a dword. The bit pattern is a legal fp32 value. Return that bit pattern.
dword := 0
dword[31:16] := x
RETURN dword

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 52 /r
VDPBF16PS xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_BF16

Multiply BF16 pairs from xmm2 and 
xmm3/m128, and accumulate the resulting 
packed single precision results in xmm1 with 
writemask k1.

EVEX.256.F3.0F38.W0 52 /r
VDPBF16PS ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_BF16

Multiply BF16 pairs from ymm2 and 
ymm3/m256, and accumulate the resulting 
packed single precision results in ymm1 with 
writemask k1.

EVEX.512.F3.0F38.W0 52 /r
VDPBF16PS zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

A V/V AVX512F
AVX512_BF16

Multiply BF16 pairs from zmm2 and 
zmm3/m512, and accumulate the resulting 
packed single precision results in zmm1 with 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Table 5-1.  NaN Propagation Priorities

NaN Priority Description Comments

1 src1 low is NaN
Lower part has priority over upper part, i.e., it overrides the upper part.

2 src2 low is NaN

3 src1 high is NaN
Upper part may be overridden if lower has NaN.

4 src2 high is NaN

5 srcdest is NaN Dest is propagated if no NaN is encountered by src2.
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VDPBF16PS srcdest, src1, src2
VL = (128, 256, 512)
KL = VL/32

origdest := srcdest
FOR i := 0 to KL-1:

IF k1[ i ] or *no writemask*:
IF src2 is memory and evex.b == 1:

t := src2.dword[0]
ELSE:

t := src2.dword[ i ]

// FP32 FMA with daz in, ftz out and RNE rounding. MXCSR neither consulted nor updated.

srcdest.fp32[ i ] += make_fp32(src1.bfloat16[2*i+1]) * make_fp32(t.bfloat[1])
srcdest.fp32[ i ] += make_fp32(src1.bfloat16[2*i+0]) * make_fp32(t.bfloat[0])

ELSE IF *zeroing*:
srcdest.dword[ i ] := 0

ELSE: // merge masking, dest element unchanged
srcdest.dword[ i ] := origdest.dword[ i ]

srcdest[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VDPBF16PS __m128 _mm_dpbf16_ps(__m128, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_mask_dpbf16_ps( __m128, __mmask8, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_maskz_dpbf16_ps(__mmask8, __m128, __m128bh, __m128bh);
VDPBF16PS __m256 _mm256_dpbf16_ps(__m256, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_mask_dpbf16_ps(__m256, __mmask8, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_maskz_dpbf16_ps(__mmask8, __m256, __m256bh, __m256bh);
VDPBF16PS __m512 _mm512_dpbf16_ps(__m512, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_mask_dpbf16_ps(__m512, __mmask16, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_maskz_dpbf16_ps(__mmask16, __m512, __m512bh, __m512bh);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
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VFIXUPIMMPD—Fix Up Special Packed Float64 Values

Instruction Operand Encoding

Description

Perform fix-up of quad-word elements encoded in double-precision floating-point format in the first source operand 
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding quadword element of 
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are 
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table 
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from 
the first source operand and the preserved element in the first operand are combined as the final results in the 
destination operand (the first operand). 
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each DP FP input data in the first source operand by decoding the 
input data encoding into 8 token types. A response table is defined for each token type that converts the input 
encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 
are computed and stored into zmm1. Elements in the destination with the corresponding bit clear in k1 retain their 
previous values or are set to 0.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.128.66.0F3A.W1 54 /r ib
VFIXUPIMMPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float64 vector xmm1, float64 
vector xmm2 and int64 vector xmm3/m128/m64bcst 
and store the result in xmm1, under writemask.

EVEX.256.66.0F3A.W1 54 /r ib
VFIXUPIMMPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float64 vector ymm1, float64 
vector ymm2 and int64 vector ymm3/m256/m64bcst 
and store the result in ymm1, under writemask.

EVEX.512.66.0F3A.W1 54 /r ib
VFIXUPIMMPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{sae}, imm8

A V/V AVX512F Fix up elements of float64 vector in zmm2 using int64 
vector table in zmm3/m512/m64bcst, combine with 
preserved elements from zmm1, and store the result in 
zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
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Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] := ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[63:0] := dest[63:0];  ; preserve content of DEST
0001: dest[63:0] := tsrc[63:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] := QNaN(tsrc[63:0]);
0011: dest[63:0] := QNAN_Indefinite;
0100: dest[63:0] := -INF;
0101: dest[63:0] := +INF;
0110: dest[63:0] := tsrc.sign? –INF : +INF;
0111: dest[63:0] := -0;
1000: dest[63:0] := +0;
1001: dest[63:0] := -1;
1010: dest[63:0] := +1;
1011: dest[63:0] := ½;
1100: dest[63:0] := 90.0;
1101: dest[63:0] := PI/2;
1110: dest[63:0] := MAX_FLOAT;
1111: dest[63:0] := -MAX_FLOAT;

} ; end of token_response CASE
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; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[63:0];

} ; end of FIXUPIMM_DP()

VFIXUPIMMPD 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[63:0], imm8 [7:0])

ELSE 
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[i+63:i], imm8 [7:0])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
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Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPD __m512d _mm512_fixupimm_pd( __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_pd( __mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_fixupimm_round_pd( __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_round_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_round_pd( __mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m256d _mm256_fixupimm_pd( __m256d a, m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_mask_fixupimm_pd(__m256d a, __mmask8 k, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_maskz_fixupimm_pd( __mmask8 k, __m256d a, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m128d _mm_fixupimm_pd( __m128d a, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_mask_fixupimm_pd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_maskz_fixupimm_pd( __mmask8 k, __m128d a, __m128d b, 128ic, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid

Other Exceptions

See Exceptions Type E2.

Figure 5-9.  VFIXUPIMMPD Immediate Control Description
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VFIXUPIMMPS—Fix Up Special Packed Float32 Values

Instruction Operand Encoding

Description

Perform fix-up of doubleword elements encoded in single-precision floating-point format in the first source operand 
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding doubleword element of 
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are 
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table 
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from 
the first source operand and the preserved element in the first operand are combined as the final results in the 
destination operand (the first operand). 
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each SP FP input data in the first source operand by decoding the 
input data encoding into 8 token types. A response table is defined for each token type that converts the input 
encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPS can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e. zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.128.66.0F3A.W0 54 /r
VFIXUPIMMPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float32 vector xmm1, float32 
vector xmm2 and int32 vector xmm3/m128/m32bcst 
and store the result in xmm1, under writemask.

EVEX.256.66.0F3A.W0 54 /r
VFIXUPIMMPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V AVX512VL
AVX512F

Fix up special numbers in float32 vector ymm1, float32 
vector ymm2 and int32 vector ymm3/m256/m32bcst 
and store the result in ymm1, under writemask.

EVEX.512.66.0F3A.W0 54 /r ib
VFIXUPIMMPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{sae}, imm8

A V/V AVX512F Fix up elements of float32 vector in zmm2 using int32 
vector table in zmm3/m512/m32bcst, combine with 
preserved elements from zmm1, and store the result in 
zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
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Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_SP ( dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] := ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[31:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…) 

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[31:0] := dest[31:0];  ; preserve content of DEST
0001: dest[31:0] := tsrc[31:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] := QNaN(tsrc[31:0]);
0011: dest[31:0] := QNAN_Indefinite;
0100: dest[31:0] := -INF;
0101: dest[31:0] := +INF;
0110: dest[31:0] := tsrc.sign? –INF : +INF;
0111: dest[31:0] := -0;
1000: dest[31:0] := +0;
1001: dest[31:0] := -1;
1010: dest[31:0] := +1;
1011:  dest[31:0] := ½;
1100: dest[31:0] := 90.0;
1101: dest[31:0] := PI/2;
1110: dest[31:0] := MAX_FLOAT;
1111: dest[31:0] := -MAX_FLOAT;

} ; end of token_response CASE 
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; The required fault reporting from imm8 is extracted 
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[31:0];

} ; end of FIXUPIMM_SP()

VFIXUPIMMPS (EVEX)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[31:0], imm8 [7:0])

ELSE 
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[i+31:i], imm8 [7:0])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
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Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPS __m512 _mm512_fixupimm_ps( __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_ps( __mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_fixupimm_round_ps( __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_round_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_round_ps( __mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m256 _mm256_fixupimm_ps( __m256 a, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_mask_fixupimm_ps(__m256 a, __mmask8 k, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_maskz_fixupimm_ps( __mmask8 k, __m256 a, __m256b, __m256i c, int imm8);
VFIXUPIMMPS __m128 _mm_fixupimm_ps( __m128 a, __m128 b, 128i c, int imm8);
VFIXUPIMMPS __m128 _mm_mask_fixupimm_ps(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm8);
VFIXUPIMMPS __m128 _mm_maskz_fixupimm_ps( __mmask8 k, __m128 a, __m128 b, __m128i c, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid

Other Exceptions

See Exceptions Type E2.

Figure 5-10.  VFIXUPIMMPS Immediate Control Description
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VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-
Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W1 98 /r 
VFMADD132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double-precision floating-point 
values from xmm1 and xmm3/mem, add to xmm2 
and put result in xmm1.

VEX.128.66.0F38.W1 A8 /r 
VFMADD213PD xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed double-precision floating-point 
values from xmm1 and xmm2, add to xmm3/mem 
and put result in xmm1.

VEX.128.66.0F38.W1 B8 /r 
VFMADD231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double-precision floating-point 
values from xmm2 and xmm3/mem, add to xmm1 
and put result in xmm1.

VEX.256.66.0F38.W1 98 /r
VFMADD132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point 
values from ymm1 and ymm3/mem, add to ymm2 
and put result in ymm1.

VEX.256.66.0F38.W1 A8 /r 
VFMADD213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point 
values from ymm1 and ymm2, add to ymm3/mem 
and put result in ymm1.

VEX.256.66.0F38.W1 B8 /r 
VFMADD231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double-precision floating-point 
values from ymm2 and ymm3/mem, add to ymm1 
and put result in ymm1.

EVEX.128.66.0F38.W1 98 /r 
VFMADD132PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, add 
to xmm2 and put result in xmm1.

EVEX.128.66.0F38.W1 A8 /r 
VFMADD213PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from xmm1 and xmm2, add to 
xmm3/m128/m64bcst and put result in xmm1.

EVEX.128.66.0F38.W1 B8 /r 
VFMADD231PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, add 
to xmm1 and put result in xmm1.

EVEX.256.66.0F38.W1 98 /r 
VFMADD132PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, add 
to ymm2 and put result in ymm1.

EVEX.256.66.0F38.W1 A8 /r 
VFMADD213PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from ymm1 and ymm2, add to 
ymm3/m256/m64bcst and put result in ymm1.

EVEX.256.66.0F38.W1 B8 /r 
VFMADD231PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Multiply packed double-precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, add 
to ymm1 and put result in ymm1.

EVEX.512.66.0F38.W1 98 /r 
VFMADD132PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, add 
to zmm2 and put result in zmm1.

EVEX.512.66.0F38.W1 A8 /r 
VFMADD213PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point 
values from zmm1 and zmm2, add to 
zmm3/m512/m64bcst and put result in zmm1.

EVEX.512.66.0F38.W1 B8 /r 
VFMADD231PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F Multiply packed double-precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, add 
to zmm1 and put result in zmm1.
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Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using three 
source operands and writes the multiply-add results in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first source 
operand to the two, four or eight packed double-precision floating-point values in the third source operand, adds 
the infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in 
the second source operand, performs rounding and stores the resulting two, four or eight packed double-precision 
floating-point values to the destination operand (first source operand).
VFMADD213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second 
source operand to the two, four or eight packed double-precision floating-point values in the first source operand, 
adds the infinite precision intermediate result to the two, four or eight packed double-precision floating-point 
values in the third source operand, performs rounding and stores the resulting two, four or eight packed double-
precision floating-point values to the destination operand (first source operand).
VFMADD231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second 
source to the two, four or eight packed double-precision floating-point values in the third source operand, adds the 
infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in the 
first source operand, performs rounding and stores the resulting two, four or eight packed double-precision 
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in 
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a 
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The 
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
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Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE 
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0



VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-124 Vol. 2C

VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE 
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0



VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z
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VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_RM(EVEX.RC);

ELSE 
SET_RM(MXCSR.RM);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0



VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxPD __m512d _mm512_fmadd_pd(__m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_fmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask_fmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDxxxPD __m512d _mm512_mask_fmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDxxxPD __m256d _mm256_mask_fmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_maskz_fmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_mask3_fmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_mask_fmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_maskz_fmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_mask3_fmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.



VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a Pair of Mask Registers

INSTRUCTION SET REFERENCE, V-Z

5-300 Vol. 2C

VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a 
Pair of Mask Registers 

Instruction Operand Encoding

Description

This instruction writes an even/odd pair of mask registers. The mask register destination indicated in the 
MODRM.REG field is used to form the basis of the register pair. The low bit of that field is masked off (set to zero) 
to create the first register of the pair.
EVEX.aaa and EVEX.z must be zero.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature Flag Description

EVEX.NDS.128.F2.0F38.W0 68 /r 
VP2INTERSECTD k1+1, xmm2, 
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
xmm3/m128/m32bcst and xmm2.

EVEX.NDS.256.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, ymm2, 
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
ymm3/m256/m32bcst and ymm2.

EVEX.NDS.512.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, zmm2, 
zmm3/m512/m32bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
zmm3/m512/m32bcst and zmm2.

EVEX.NDS.128.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, xmm2, 
xmm3/m128/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
xmm3/m128/m64bcst and xmm2.

EVEX.NDS.256.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, ymm2, 
ymm3/m256/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
ymm3/m256/m64bcst and ymm2.

EVEX.NDS.512.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, zmm2, 
zmm3/m512/m64bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
zmm3/m512/m64bcst and zmm2.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA



VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a Pair of Mask Registers

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-301

Operation

VP2INTERSECTD destmask, src1, src2
(KL, VL) = (4, 128), (8, 256), (16, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[ ] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i := 0 to KL-1:
FOR j := 0 to KL-1:

match := (src1.dword[i] == src2.dword[j])
maskregs[dest_base+0].bit[i] |= match
maskregs[dest_base+1].bit[j] |= match

VP2INTERSECTQ destmask, src1, src2
(KL, VL) = (2, 128), (4, 256), (8, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[ ] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i = 0 to KL-1:
FOR j = 0 to KL-1:

match := (src1.qword[i] == src2.qword[j])
maskregs[dest_base+0].bit[i] |=  match
maskregs[dest_base+1].bit[j] |=  match

Intel C/C++ Compiler Intrinsic Equivalent

VP2INTERSECTD void _mm_2intersect_epi32(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm256_2intersect_epi32(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm512_2intersect_epi32(__m512i, __m512i, __mmask16 *, __mmask16 *);
VP2INTERSECTQ void _mm_2intersect_epi64(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm256_2intersect_epi64(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm512_2intersect_epi64(__m512i, __m512i, __mmask8 *, __mmask8 *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.



VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-351

VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

Instruction Operand Encoding

Description

Copies doublewords (or words) from the second source operand (the third operand) to the destination operand 
(the first operand) according to the indices in the first source operand (the second operand). Note that this instruc-
tion permits a doubleword (word) in the source operand to be copied to more than one location in the destination 
operand.
VEX.256 encoded VPERMD: The first and second operands are YMM registers, the third operand can be a YMM 
register or memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed. 
EVEX encoded VPERMD: The first and second operands are ZMM/YMM registers, the third operand can be a 
ZMM/YMM register, a 512/256-bit memory location or a 512/256-bit vector broadcasted from a 32-bit memory 
location. The elements in the destination are updated using the writemask k1.
VPERMW: first and second operands are ZMM/YMM/XMM registers, the third operand can be a ZMM/YMM/XMM 
register, or a 512/256/128-bit memory location. The destination is updated using the writemask k1.
EVEX.128 encoded versions: Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.256.66.0F38.W0 36 /r
VPERMD ymm1, ymm2, ymm3/m256

A V/V AVX2 Permute doublewords in ymm3/m256 using indices in 
ymm2 and store the result in ymm1.

EVEX.256.66.0F38.W0 36 /r
VPERMD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V AVX512VL
AVX512F

Permute doublewords in ymm3/m256/m32bcst using 
indexes in ymm2 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 36 /r
VPERMD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F Permute doublewords in zmm3/m512/m32bcst using 
indices in zmm2 and store the result in zmm1 using 
writemask k1.

EVEX.128.66.0F38.W1 8D /r
VPERMW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V AVX512VL
AVX512BW

Permute word integers in xmm3/m128 using indexes 
in xmm2 and store the result in xmm1 using writemask 
k1.

EVEX.256.66.0F38.W1 8D /r
VPERMW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V AVX512VL
AVX512BW

Permute word integers in ymm3/m256 using indexes 
in ymm2 and store the result in ymm1 using writemask 
k1.

EVEX.512.66.0F38.W1 8D /r
VPERMW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW Permute word integers in zmm3/m512 using indexes 
in zmm2 and store the result in zmm1 using writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA

B Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA



VPERMD/VPERMW—Permute Packed Doublewords/Words Elements

INSTRUCTION SET REFERENCE, V-Z
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Operation

VPERMD (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
IF VL = 256 THEN n := 2; FI;
IF VL = 512 THEN n := 3; FI;
FOR j := 0 TO KL-1

i := j * 32
id := 32*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := SRC2[31:0];
ELSE DEST[i+31:i] := SRC2[id+31:id];

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMD (VEX.256 encoded version)
DEST[31:0] := (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] := (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] := (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] := (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] := (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] := (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] := (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] := (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAXVL-1:256] := 0

VPERMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128 THEN n := 2; FI;
IF VL = 256 THEN n := 3; FI;
IF VL = 512 THEN n := 4; FI;
FOR j := 0 TO KL-1

i := j * 16
id := 16*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC2[id+15:id]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0



VPERMD/VPERMW—Permute Packed Doublewords/Words Elements
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Intel C/C++ Compiler Intrinsic Equivalent

VPERMD __m512i _mm512_permutexvar_epi32( __m512i idx, __m512i a);
VPERMD __m512i _mm512_mask_permutexvar_epi32(__m512i s, __mmask16 k, __m512i idx, __m512i a);
VPERMD __m512i _mm512_maskz_permutexvar_epi32( __mmask16 k, __m512i idx, __m512i a);
VPERMD __m256i _mm256_permutexvar_epi32( __m256i idx, __m256i a);
VPERMD __m256i _mm256_mask_permutexvar_epi32(__m256i s, __mmask8 k, __m256i idx, __m256i a);
VPERMD __m256i _mm256_maskz_permutexvar_epi32( __mmask8 k, __m256i idx, __m256i a);
VPERMW __m512i _mm512_permutexvar_epi16( __m512i idx, __m512i a);
VPERMW __m512i _mm512_mask_permutexvar_epi16(__m512i s, __mmask32 k, __m512i idx, __m512i a);
VPERMW __m512i _mm512_maskz_permutexvar_epi16( __mmask32 k, __m512i idx, __m512i a);
VPERMW __m256i _mm256_permutexvar_epi16( __m256i idx, __m256i a);
VPERMW __m256i _mm256_mask_permutexvar_epi16(__m256i s, __mmask16 k, __m256i idx, __m256i a);
VPERMW __m256i _mm256_maskz_permutexvar_epi16( __mmask16 k, __m256i idx, __m256i a);
VPERMW __m128i _mm_permutexvar_epi16( __m128i idx, __m128i a);
VPERMW __m128i _mm_mask_permutexvar_epi16(__m128i s, __mmask8 k, __m128i idx, __m128i a);
VPERMW __m128i _mm_maskz_permutexvar_epi16( __mmask8 k, __m128i idx, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPERMD, see Exceptions Type E4NF.
EVEX-encoded VPERMW, see Exceptions Type E4NF.nb.
#UD If VEX.L = 0.

If EVEX.L’L = 0 for VPERMD.



VPTESTNMB/W/D/Q—Logical NAND and Set

INSTRUCTION SET REFERENCE, V-Z

5-502 Vol. 2C

VPTESTNMB/W/D/Q—Logical NAND and Set
Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Description

EVEX.128.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, xmm2, 
xmm3/m128

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed byte integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.256.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, ymm2, 
ymm3/m256

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed byte integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.512.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, zmm2, 
zmm3/m512

A V/V AVX512F
AVX512BW

Bitwise NAND of packed byte integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.128.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, xmm2, 
xmm3/m128

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed word integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.256.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, ymm2, 
ymm3/m256

A V/V AVX512VL
AVX512BW

Bitwise NAND of packed word integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.512.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, zmm2, 
zmm3/m512

A V/V AVX512F
AVX512BW

Bitwise NAND of packed word integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-zero 
status of each element of the result, under writemask k1.

EVEX.128.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, xmm2, 
xmm3/m128/m32bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed doubleword integers in xmm2 and 
xmm3/m128/m32bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.

EVEX.256.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, ymm2, 
ymm3/m256/m32bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed doubleword integers in ymm2 and 
ymm3/m256/m32bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.

EVEX.512.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F Bitwise NAND of packed doubleword integers in zmm2 and 
zmm3/m512/m32bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.

EVEX.128.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, xmm2, 
xmm3/m128/m64bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed quadword integers in xmm2 and 
xmm3/m128/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.

EVEX.256.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, ymm2, 
ymm3/m256/m64bcst

B V/V AVX512VL
AVX512F

Bitwise NAND of packed quadword integers in ymm2 and 
ymm3/m256/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.

EVEX.512.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F Bitwise NAND of packed quadword integers in zmm2 and 
zmm3/m512/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, under 
writemask k1.
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Instruction Operand Encoding

Description

Performs a bitwise logical NAND operation on the byte/word/doubleword/quadword element of the first source 
operand (the second operand) with the corresponding element of the second source operand (the third operand) 
and stores the logical comparison result into each bit of the destination operand (the first operand) according to the 
writemask k1. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and 
second src operands is zero; otherwise it is set to 0.
EVEX encoded VPTESTNMD/Q: The first source operand is a ZMM/YMM/XMM registers. The second source operand 
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted 
from a 32/64-bit memory location. The destination is updated according to the writemask.
EVEX encoded VPTESTNMB/W: The first source operand is a ZMM/YMM/XMM registers. The second source operand 
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the 
writemask.

Operation

VPTESTNMB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j*8
IF MaskBit(j) OR *no writemask*

THEN 
   DEST[j] := (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j*16
IF MaskBit(j) OR *no writemask*

THEN 
   DEST[j] := (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
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VPTESTNMD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j*32
IF MaskBit(j) OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

   THEN DEST[i+31:i] := (SRC1[i+31:i] BITWISE AND SRC2[31:0] == 0)? 1 : 0
ELSE DEST[j] := (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] == 0)? 1 : 0

FI
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
IF MaskBit(j) OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[63:0] == 0)? 1 : 0;
ELSE DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] == 0)? 1 : 0;

FI;
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPTESTNMB __mmask64 _mm512_testn_epi8_mask( __m512i a, __m512i b);
VPTESTNMB __mmask64 _mm512_mask_testn_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTNMB __mmask32 _mm256_testn_epi8_mask(__m256i a, __m256i b);
VPTESTNMB __mmask32 _mm256_mask_testn_epi8_mask(__mmask32, __m256i a, __m256i b);
VPTESTNMB __mmask16 _mm_testn_epi8_mask(__m128i a, __m128i b);
VPTESTNMB __mmask16 _mm_mask_testn_epi8_mask(__mmask16, __m128i a, __m128i b);
VPTESTNMW __mmask32 _mm512_testn_epi16_mask( __m512i a, __m512i b);
VPTESTNMW __mmask32 _mm512_mask_testn_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTNMW __mmask16 _mm256_testn_epi16_mask(__m256i a, __m256i b);
VPTESTNMW __mmask16 _mm256_mask_testn_epi16_mask(__mmask16, __m256i a, __m256i b);
VPTESTNMW __mmask8 _mm_testn_epi16_mask(__m128i a, __m128i b);
VPTESTNMW __mmask8 _mm_mask_testn_epi16_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMD __mmask16 _mm512_testn_epi32_mask( __m512i a, __m512i b);
VPTESTNMD __mmask16 _mm512_mask_testn_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTNMD __mmask8 _mm256_testn_epi32_mask(__m256i a, __m256i b);
VPTESTNMD __mmask8 _mm256_mask_testn_epi32_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMD __mmask8 _mm_testn_epi32_mask(__m128i a, __m128i b);
VPTESTNMD __mmask8 _mm_mask_testn_epi32_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMQ __mmask8 _mm512_testn_epi64_mask(__m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm512_mask_testn_epi64_mask(__mmask8, __m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm256_testn_epi64_mask(__m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm256_mask_testn_epi64_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm_testn_epi64_mask(__m128i a, __m128i b);
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VPTESTNMQ __mmask8 _mm_mask_testn_epi64_mask(__mmask8, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

VPTESTNMD/VPTESTNMQ: See Exceptions Type E4.
VPTESTNMB/VPTESTNMW: See Exceptions Type E4.nb.
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VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-precision elements in the first 
source operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with 
the dest sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits with the 
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with 
VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision elements in the first source 
operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with the dest 
sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the inverted dest 
sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with VEX.W=1 will 
cause #UD.
The first source register is specified by the ModR/M reg field.
128-bit version: The first source register is an XMM register. The second source register can be an XMM register or 
a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single-precision floating-point 
sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single-precision floating-point 
sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double-precision floating-point 
sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double-precision floating-point 
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

VTESTPS (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);

int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
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WBNOINVD—Write Back and Do Not Invalidate Cache

Instruction Operand Encoding

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory 
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back 
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache 
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors 
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on 
logical processor interrupt/event response time. 

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of 
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see 
“Serializing Instructions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBNOINVD void _wbnoinvd(void);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 09

WBNOINVD

ZO V/V WBNOINVD Write back and do not flush internal caches; 
initiate writing-back without flushing of external 
caches.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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10.Updates to Chapter 6, Volume 2D
Change bars and green text show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2D: Instruction Set Reference.

------------------------------------------------------------------------------------------

Changes to this chapter include updates to the instruction GETSEC[ENTERACCS].
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GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an 
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0. 
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency 

between enabled logical processors. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not already be in authenticated code execution mode as launched by a previous 

GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction 

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8). 

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:
• Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated 

processors), or 
• In the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP). 

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS 
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of 
the same package do not have CR0.CD = 0. 

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to 
reaching this point, the processor performs several checks. These include: 
• Establish and check the location and size of the specified authenticated code module to be executed by the 

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external 

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code module 

header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

Opcode Instruction Description

NP 0F 37 

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated 
code module size (bytes).
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• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX 
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below 
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and 
size are used to retrieve the code module from system memory and load it into the internal authenticated code 
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is 
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as 
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error 
condition results in an abort of the authenticated code execution launch and the signaling of a general protection 
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check 
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no 
machine check exception processing is currently in progress. These checks are performed prior to initiating the 
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present 
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking 
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes 
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to 
prevent exposure to existing external event handlers that may not be under the control of the authenticated code 
module. 

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M 
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized 
during authenticated code execution mode. 

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, 
memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are 
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O 
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by 
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the 
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM 
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the 
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel® 
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of 
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can 
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized 
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are 
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor 
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and 
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header 
SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to 
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The 
processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint 
field + module base address (EBX). The AC module based fields used for initializing the processor state are checked 
for consistency and any failure results in a shutdown condition.
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A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the 
processor in Table 6-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after 
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base 
physical address for initial execution in the authenticated environment. As a result, the authenticated code can 
reference EBP for relative address based references, given that the authenticated code module must be position 
independent.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment 
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid. 

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since 
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be 
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Table 6-4.  Register State Initialization after GETSEC[ENTERACCS] 

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are 
disabled.

CR4 MCE←0: Others unchanged Machine Check Exceptions disabled.

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled.

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS].

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to 
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS].

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit; 
[15:0]=CS.sel

Carry forward processor state across 
GETSEC[ENTERACCS].

[E|R]DX Pre-ENTERACCS state: 
GDTR base

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS].

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, 
AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1, 
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr], 
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENABLE See Table 6-5 for example. The number of initialized fields may change due to 
processor implementation.

Performance 
counters and 
counter control 
registers

0H
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Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by 
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once 
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following 
entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared 
upon entry into this mode.

Performance related counters and counter control registers are cleared as part of execution of ENTERACCS. This 
implies any active performance counters at any time of ENTERACCS execution will be disabled. To reactive the 
processor performance counters, this state must be re-initialized and re-enabled.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR 
are preserved because preserving these bits may be important to maintain previously established platform settings 
(See the footnote for Table 6-5.). The remaining bits are cleared for the purpose of establishing a more consistent 
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any 
previous condition established by the MONITOR instruction will be cleared. 

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS], 
certain critical processor state is captured and stored in the general- purpose registers at instruction completion. 
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS], 
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base 
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be 
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the 
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode, 
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended 
that a new IDT context be established before this point. Until such a new IDT context is established, the 
programmer must take care in not executing an INT n instruction or any other operation that would result in an 
exception or trap signaling.

Table 6-5.  IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

Field Bit position Description

Fast strings enable 0 Clear to 0.

FOPCODE compatibility mode 
enable

2 Clear to 0.

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal 
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings 
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Split-lock disable 4 Clear to 0.

Bus lock on cache line splits 
disable

8 Clear to 0.

Hardware prefetch disable 9 Clear to 0.

GV1/2 legacy enable 15 Clear to 0.

MONITOR/MWAIT s/m enable 18 Clear to 0.

Adjacent sector prefetch disable 19 Clear to 0.
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Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module, 
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain 
access to this normally restricted chipset state for the purpose of securing the platform. 

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable 
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established 
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64 ) ≠ 0 ) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM 
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG := 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
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KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := READ(TXT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] := SIGNATURE[I];
COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL≠0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] := 0;
CR4.MCE := 0;
EFLAGS := 00000002h;
IA32_EFER := 0h;
[E|R]BX := [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX := Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX := Pre-GETSEC[ENTERACCS] GDT.base;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;
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DS.AR := 93h;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or 
SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.



GETSEC[ENTERACCS] — Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 6-17

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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11.Updates to Chapter 7, Volume 2D
Change bars and green text show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2D: Instruction Set Reference.

------------------------------------------------------------------------------------------

Changes to this chapter include updates to the instruction PREFETCHWT1. 



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the 
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for 
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction 
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to 
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement 
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHWT1 instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that 
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A 
PREFETCHWT1 instruction is considered a hint to this speculative behavior. Because this speculative fetching can 
occur at any time and is not tied to instruction execution, a PREFETCHWT1 instruction is not ordered with respect 
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHWT1 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHWT1 instructions, or 
any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and 
MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch( char const *, int hint= _MM_HINT_ET1);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint 
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint7-2 Vol. 2D
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint Vol. 2D 7-3
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12.Updates to Chapter 1, Volume 3A
Change bars and green text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.



Vol. 3A 1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, 
Part 1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: 
System Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order 
number 332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-
32 Architecture processors. The other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers 

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming 
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
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• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes.
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series 
• Intel® Xeon® Processor Scalable Family 
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
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• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family
• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem 
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel® 
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the 
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and 
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support 
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and 
support Intel 64 architecture. 
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The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64 
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J 
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and 
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron® 
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and 
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports 
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64 
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64 
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows1:

Chapter 1 — About This Manual. Gives an overview of all eight volumes of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel 
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32 
processors and the mechanisms provided by the architectures to support operating systems and executives, 
including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions 
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel 
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes 
programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1 pins for 
specific interrupt vectors.

1. Model-Specific Registers have been moved out of this volume and into a separate volume: Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.
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Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support 
multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple 
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in 
an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor 
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address 
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface 
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus 
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and 
Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms 
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers 
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache 
control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon processors 
is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™ 
technology that must be handled and considered at the system programming level, including: task switching, 
exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States. 
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task 
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter 
describes the extensible framework of operating system requirements to support processor extended states. 
Processor extended state may be required by instruction set extensions beyond those of 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for 
power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-check 
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes 
for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging 
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the 
time-stamp counter. 

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring 
performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural 
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the 
same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine 
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual Machine Control Structures. Describes components that manage VMX operation. These 
include the working-VMCS pointer and the controlling-VMCS pointer.
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Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions 
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software 
(running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX 
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX 
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support 
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable 
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended 
for a system executive to support virtualization of processor hardware and a system software layer acting as a host 
to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitor Programming Considerations. Describes programming consider-
ations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources. These 
include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must 
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management 
mode (SMM) facilities.

Chapter 35 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 36 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 37 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and 
defines various Intel SGX data structures.

Chapter 38 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an 
enclave, and enclave entry and exit.

Chapter 39 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit 
(AEX).

Chapter 40 — SGX Instruction References. Describes the supervisor and user level instructions provided by 
Intel SGX.

Chapter 41 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX 
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and 
Intel 64 architectures.

Chapter 42 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX 
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are 
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples 
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs, 
external interrupts, and triple faults.
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1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, 

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

Figure 1-1.  Bit and Byte Order
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1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP



Vol. 3A 1-9

ABOUT THIS MANUAL

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.

1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate 
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field 
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name 
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

S 29002
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at: 
https://software.intel.com/en-us/articles/intel-sdm

See also: 
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/articles/intel-sdm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/
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13.Updates to Chapter 4, Volume 3A
Change bars and green text show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

Changes to this chapter include typo corrections and additional information added to section 4.10.2.3, “Details of 
TLB Use”.
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CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address 
translation) is the process of translating linear addresses so that they can be used to access memory or I/O 
devices. Paging translates each linear address to a physical address and determines, for each translation, what 
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such 
accesses (the address’s memory type).

Intel-64 processors support four different paging modes. These modes are identified and defined in Section 4.1. 
Section 4.2 gives an overview of the translation mechanism that is used in all modes. Section 4.3, Section 4.4, and 
Section 4.5 discuss the four paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 discusses exceptions that may be 
generated by paging (page-fault exceptions). Section 4.8 considers data which the processor writes in response to 
linear-address accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to linear addresses. Section 
4.10 provides details of how a processor may cache information about linear-address translation. Section 4.11 
outlines interactions between paging and certain VMX features. Section 4.12 gives an overview of how paging can 
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, LA57, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in control register CR4 (bit 4, bit 5, 

bit 7, bit 12, bit 17, bit 20, bit 21, bit 22, bit 23, and bit 24, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should 
ensure that control register CR3 contains the physical address of the first paging structure that the processor will 
use for linear-address translation (see Section 4.2) and that that structure is initialized as desired. See Table 4-3, 
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, CR4.LA57, and IA32_EFER.LME determine whether 
paging is enabled and, if so, which of four paging modes is in use. Section 4.1.2 explains how to manage these bits 
to establish or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, 
CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE modify the operation of the 
different paging modes.

4.1.1 Four Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical 
addresses. CR4.PAE, CR4.LA57, and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, 
CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE. (CR4.CET is also ignored insofar as it affects linear-address 
access rights.)

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is 
enabled, one of four paging modes is used. The values of CR4.PAE, CR4.LA57, and IA32_EFER.LME determine 
which paging mode is used:
• If CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging uses CR0.WP, 

CR4.PSE, CR4.PGE, CR4.SMEP, CR4.SMAP, and CR4.CET as described in Section 4.1.3 and Section 4.6.
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• If CR4.PAE = 1 and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 4.4. PAE paging 
uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, CR4.CET, and IA32_EFER.NXE as described in Section 4.1.3 and 
Section 4.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0, 4-level paging1 is used.2 4-level paging is detailed 
in Section 4.5 (along with 5-level paging). 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, 
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1, 5-level paging is used. 5-level paging is detailed in 
Section 4.5 (along with 4-level paging). 5-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, 
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

NOTE
32-bit paging and PAE paging can be used only in legacy protected mode (IA32_EFER.LME = 0). In 
contrast, 4-level paging and 5-level paging can be used only IA-32e mode (IA32_EFER.LME = 1).

The four paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are 

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching 

instructions from pages that are otherwise readable.
• Support for PCIDs. With 4-level paging and 5-level paging, software can enable a facility by which a logical 

processor caches information for multiple linear-address spaces. The processor may retain cached information 
when software switches between different linear-address spaces.

• Support for protection keys. With 4-level paging and 5-level paging, each linear address is associated with a 
protection key. Software can use the protection-key rights registers to disable, for each protection key, how 
certain accesses to linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the four paging modes.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus 
uses either 4-level paging or 5-level paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software can-
not directly modify IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

LA57 in 
CR4

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and 
protection 
keys?

None 0 N/A N/A N/A 32 32 N/A No No

32-bit 1 0 02 N/A 32 Up to 403 4 KB
4 MB4 No No

PAE 1 1 0 N/A 32 Up to 52
4 KB
2 MB

Yes5 No

4-level 1 1 1 0 48 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7

5-level 1 1 1 1 57 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7
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Because 32-bit paging and PAE paging are used only in legacy protected mode and because legacy protected mode 
cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear 
addresses.

4-level paging and 5-level paging are used only in IA-32e mode. IA-32e mode has two sub-modes:
• Compatibility mode. This sub-mode uses only 32-bit linear addresses. In this sub-mode, 4-level paging and 5-

level paging treat bits 63:32 of such an address as all 0.
• 64-bit mode. While this sub-mode produces 64-bit linear addresses, the processor enforces canonicality, 

meaning that the upper bits of such an address are identical: bits 63:47 for 4-level paging and bits 63:56 for 
5-level paging. 4-level paging (respectively, 5-level paging) does not use bits 63:48 (respectively, bits 63:57) 
of such addresses.

4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of four paging modes, depending on the values of CR4.PAE, 
IA32_EFER.LME, and CR4.LA57. Figure 4-1 illustrates how software can enable these modes and make transitions 
between them. The following items identify certain limitations and other details:
• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts to do so using WRMSR 

cause a general-protection exception (#GP(0)).
• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do 

so using MOV to CR0 cause a general-protection exception (#GP(0)).
• One node in Figure 4-1 is labeled “IA-32e mode.” This node represents either 4-level paging (if CR4.LA57 = 0) 

or 5-level paging (if CR4.LA57 = 1). As noted in the following items, software cannot modify CR4.LA57 
(effecting transition between 4-level paging and 5-level paging) without first disabling paging.

• CR4.PAE and CR4.LA57 cannot be modified while either 4-level paging or 5-level paging is in use (when 
CR0.PG = 1 and IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-protection 
exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CR0.1

• Software can transition between 32-bit paging and PAE paging by changing the value of CR4.PAE with MOV to 
CR4.

• Software cannot transition directly between 4-level paging (or 5-level paging) and any of other paging mode. 
It must first disable paging (by clearing CR0.PG with MOV to CR0), then set CR4.PAE, IA32_EFER.LME, and 
CR4.LA57 to the desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG 
with MOV to CR0). As noted earlier, an attempt to modify CR4.PAE, IA32_EFER.LME, or CR.LA57 while 4-level 
paging or 5-level paging is enabled causes a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This 
is because VMX transitions can load CR0, CR4, and IA32_EFER in one operation. See Section 4.11.1.

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is 

supported; see Section 4.1.4 and Section 4.3.
4. 32-bit paging uses 4-MByte pages only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Processors that support 4-level paging or 5-level paging do not necessarily support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

1. If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception 
(#GP). Software should transition to compatibility mode and clear CR4.PCIDE before attempting to disable paging. 
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4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, bit 22, 

bit 23, and bit 24, respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write 
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode 
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of 
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and 
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if 
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more information. 
(PAE paging, 4-level paging, and 5-level paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE = 1, 
specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 4-level paging and 5-level paging. PCIDs allow a logical 
processor to cache information for multiple linear-address spaces. See Section 4.10.1 for more information.

Figure 4-1.  Enabling and Changing Paging Modes
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CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software 
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode. 
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and 
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can 
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including 
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE and CR4.PKS enable specification of access rights based on protection keys. 4-level paging and 5-level 
paging associate each linear address with a protection key. When CR4.PKE = 1, the PKRU register specifies, for 
each protection key, whether user-mode linear addresses with that protection key can be read or written. When 
CR4.PKS = 1, the IA32_PKRS MSR does the same for supervisor-mode linear addresses. See Section 4.6 for more 
information.

CR4.CET enables control-flow enforcement technology, including the shadow-stack feature. If CR4.CET = 1, 
certain memory accesses are identified as shadow-stack accesses and certain linear addresses translate to 
shadow-stack pages. Section 4.6 explains how access rights are determined for these accesses and pages. (The 
processor allows CR4.CET to be set only if CR0.WP is also set.)

IA32_EFER.NXE enables execute-disable access rights for PAE paging, 4-level paging, and 5-level paging. If 
IA32_EFER.NXE = 1, instruction fetches can be prevented from specified linear addresses (even if data reads from 
the addresses are allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect 
with 32-bit paging. Software that wants to use this feature to limit instruction fetches from readable pages must 
use PAE paging, 4-level paging, or 5-level paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit 
paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required 
for 4-level paging and 5-level paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section 
4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is 
supported, three bits in certain paging-structure entries select a memory type (used to determine type of 
caching used) from the PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using 
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see 
Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode 
execution prevention (see Section 4.6).

• SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode 
access prevention (see Section 4.6).
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• PKU: protection keys for user-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys for 
user-mode pages (see Section 4.6).

• OSPKE: enabling of protection keys for user-mode pages.
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4] returns the value of CR4.PKE. Thus, protection keys for user-
mode pages are enabled if this flag is 1 (see Section 4.6).

• CET: control-flow enforcement technology.
If CPUID.(EAX=07H,ECX=0H):ECX.CET_SS [bit 7] = 1, CR4.CET may be set to 1, enabling shadow-stack 
pages (see Section 4.6).

• LA57: 57-bit linear addresses and 5-level paging.
If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, CR4.LA57 may be set to 1, enabling 5-level paging.

• PKS: protection keys for supervisor-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, CR4.PKS may be set to 1, enabling protection keys for 
supervisor-mode pages (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing software to disable 
execute access to selected pages (see Section 4.6). (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages may be supported with 4-level paging and 5-
level paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e mode (with either 
4-level paging or 5-level paging). (Processors that do not support CPUID function 80000001H do not allow 
IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors 
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this 
value is reported as follows:

— If CPUID.80000001H:EDX.LM [bit 29] = 0, the value is reported as 32.

— If CPUID.80000001H:EDX.LM [bit 29] = 1 and CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 0, the 
value is reported as 48.

— If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, the value is reported as 57.
(Processors that do not support CPUID function 80000008H, support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All four paging modes translate linear addresses using hierarchical paging structures. This section provides an 
overview of their operation. Section 4.3, Section 4.4, Section 4.5, and Section 4.6 provide details for the four 
paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging, 
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With the other paging modes, each 
entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a 
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of 
these entries identifies the physical address of the region to which the linear address translates (called the page 
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that 
region to which the linear address translates.



Vol. 3A 4-7

PAGING

Each paging-structure entry contains a physical address, which is either the address of another paging structure or 
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the 
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3. A linear address is 
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits) 
selects an entry in a paging structure (initially the one located using CR3). If that entry references another paging 
structure, the process continues with that paging structure and with the portion of the linear address immediately 
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is 
that of the page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the four paging modes (each example locates a 4-KByte page 
frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation 

process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry 
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the 
page offset within the 4-KByte page frame. (See Figure 4-2 for an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using 
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures 
comprise 512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second 
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 4-5 for 
an illustration.)

• With 4-level paging, each paging structure comprises 512 = 29 entries and translation uses 9 bits at a time 
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second, 
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 4-8 
for an illustration.)

• 5-level paging is similar to 4-level paging except that 5-level paging translates 57-bit linear addresses. 
Bits 56:48 identify the first paging-structure entry, while the remaining bits are used as with 4-level paging.

The translation process in each of the examples above completes by identifying a page frame; the page frame is 
part of the translation of the original linear address. In some cases, however, the paging structures may be 
configured so that the translation process terminates before identifying a page frame. This occurs if the process 
encounters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which 
a reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a 
page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with a 4-KByte page frame when only 12 bits remain 
in the linear address; entries identified earlier always reference other paging structures. That may not apply in 
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry 

is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.
• If only 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is 

used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies 
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate 
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes. 
32-bit paging can use 4-MByte pages if CR4.PSE = 1. The other paging modes can use 2-MByte pages (regardless 
of the value of CR4.PSE). 4-level paging and 5-level paging can use 1-GByte pages if the processor supports them 
(see Section 4.1.4).

Paging structures are given different names based on their uses in the translation process. Table 4-2 gives the 
names of the different paging structures. It also provides, for each structure, the source of the physical address 
used to locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry 
from the structure; and details of whether and how such an entry can map a page.
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4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear 
addresses to 40-bit physical addresses.1 Although 40 bits corresponds to 1 TByte, linear addresses are limited to 
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to 
locate the first paging-structure, the page directory. Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 4-2 illustrates the trans-
lation process when it uses a 4-KByte page; Figure 4-3 covers the case of a 4-MByte page. The following items 
describe the 32-bit paging process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see 

Table 4-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address 
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

Table 4-2.   Paging Structures in the Different Paging Modes

Paging Structure Entry 
Name Paging Mode

Physical 
Address of 
Structure

Bits Selecting 
Entry Page Mapping

PML5 table PML5E
32-bit, PAE, 4-level N/A

5-level CR3 56:48 N/A (PS must be 0)

PML4 table PML4E

32-bit, PAE N/A

4-level CR3
47:39 N/A (PS must be 0)

5-level PML5E

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

4-level, 5-level PML4E 38:30 1-GByte page if PS=11

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, 4-level, 5-level PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12

4-KByte page
PAE, 4-level, 5-level 20:12

NOTES:
1. Not all processors support 1-GByte pages; see Section 4.1.4.
2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors sup-

port 4-MByte pages with 32-bit paging; see Section 4.1.4.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor 
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used 
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine MAXPHYADDR and 
whether the PSE-36 mechanism is supported.
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— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the 
linear-address space. Use of the PDE depends on CR4.PSE and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see Table 4-4). The final physical 

address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical 

address specified in bits 31:12 of the PDE (see Table 4-5). A page table comprises 1024 32-bit entries (PTEs). 
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR, and whether 

the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and 
MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the 
PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how such an entry is used.

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.
2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in 

positions 20:13 of a PDE mapping a 4-MByte page will change.

Table 4-3.  Use of CR3 with 32-Bit Paging

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
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Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-

imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYA-
DDR and whether the PSE-36 mechanism is supported.
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Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry
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4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates 
32-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses 
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address 
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one 
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced 
by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 4-7 illus-
trates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a 
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of 
four (4) internal, non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. The logical 
processor loads these registers from the PDPTEs in memory as part of certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 (see Section 4.1.1) and the 

instruction is modifying any of CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the 
PDPTEs are loaded from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the 
address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in 
the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the 
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown 
in Table 4-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by PAE paging. (The corresponding 
bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-7.  Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.
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4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following items 
describe the PAE paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTEi, where i is the value 

of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access 
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits 
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address 
in this region causes a page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified 
in bits 51:12 of PDPTEi (see Table 4-8 in Section 4.4.1). A page directory comprises 512 64-bit entries (PDEs). 
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the 
linear-address space. Use of the PDE depends on its PS flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed 

as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 

bits 51:12 of the PDE (see Table 4-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

Table 4-8.  Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does 
not access the PDPTEs in the page-directory-pointer table during linear-address translation.
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— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to 
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose 
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault 
exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-6.  Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)
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Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see 
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
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Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other paging 
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit 
Position(s)

Contents
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4.5 4-LEVEL PAGING AND 5-LEVEL PAGING
Because the operation of 4-level paging and 5-level paging is very similar, they are described together in this 
section. The following items highlight the distinctions between the two paging modes:
• A logical processor uses 4-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0. 

4-level paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed 
at any given time.

• A logical processor uses 5-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1. 
5-level paging translates 57-bit linear addresses to 52-bit physical addresses. Thus, 5-level paging supports a 
linear-address space sufficient to access the entire physical-address space.

Both paging modes translate linear addresses using a hierarchy of in-memory paging structures located using the 
contents of CR3, which is used to locate the first paging-structure. For 4-level paging, this is the PML4 table, and 
for 5-level paging it is the PML5 table. Use of CR3 with 4-level paging and 5-level paging depends on whether 
process-context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 0.

• Table 4-13 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 1.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by 4-level paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-12.  Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address 
translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table or PML5 table used for linear-address translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)

Table 4-13.  Use of CR3 with 4-Level Paging and 5-Level Paging and CR4.PCIDE = 1

Bit 
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-

tion with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3
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After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified 
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes 
from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently determines 
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

4-level paging and 5-level paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1 
Figure 4-8 illustrates the translation process for 4-level paging when it produces a 4-KByte page; Figure 4-9 covers 
the case of a 2-MByte page, and Figure 4-10 the case of a 1-GByte page. (The process for 5-level paging is similar.)

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Figure 4-8.  Linear-Address Translation to a 4-KByte Page using 4-Level Paging
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Figure 4-9.  Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using 4-Level Paging
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4-level paging and 5-level paging associate with each linear address a protection key. Section 4.6 explains how 
the processor uses the protection key in its determination of the access rights of each linear address.

The remainder of this section describes the translation process used by 4-level paging and 5-level paging in more 
detail, as well has how the page size and protection key are determined. Because the process used by the two 
paging modes is similar, they are described together, with any differences identified, in the following items:
• With 5-level paging, a 4-KByte naturally aligned PML5 table is located at the physical address specified in 

bits 51:12 of CR3 (see Table 4-12). (4-level paging does not use a PML5 table and omits this step.) A PML5 
table comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 56:48 of the linear address.

— Bits 2:0 are all 0.
Because a PML5E is identified using bits 56:48 of the linear address, it controls access to a 256-TByte region of 
the linear-address space.

• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (for 4-
level paging; see Table 4-12) or in bits 51:12 of the PML4E (for 5-level paging; see Table 4-14). A PML4 table 
comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 (for 4-level paging) or in bits 51:12 of the PML4E (for 5-level paging).

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region 
of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the PML4E (see Table 4-15). A page-directory-pointer table comprises 512 64-bit entries 
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the 
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-16). The final physical address is 
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDPTE (see Section 4.6.2).

• If the PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address 
specified in bits 51:12 of the PDPTE (see Table 4-17). A page directory comprises 512 64-bit entries (PDEs). A 
PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the 
linear-address space. Use of the PDE depends on its PS flag:
• If the PDE's PS flag is 1, the PDE maps a 2-MByte page (see Table 4-18). The final physical address is computed 

as follows:

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how 
to determine whether 1-GByte pages are supported.
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— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDE (see Section 4.6.2).

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 
bits 51:12 of the PDE (see Table 4-19). A page table comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-20). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PTE (see Section 4.6.2).

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 4.7).

The following bits in a paging-structure entry are reserved with 4-level paging and 5-level paging (assuming that 
the entry’s P flag is 1):
• Bits 51:MAXPHYADDR are reserved in every paging-structure entry.
• The PS flag is reserved in a PML5E or a PML4E.
• If 1-GByte pages are not supported, the PS flag is reserved in a PDPTE.1

• If the PS flag in a PDPTE is 1, bits 29:13 of the entry are reserved.
• If the PS flag in a PDE is 1, bits 20:13 of the entry are reserved.
• If IA32_EFER.NXE = 0, the XD flag (bit 63) is reserved in every paging-structure entry.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the 4-level and 5-level paging-structure entries. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Table 4-14.  Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a PML4 table

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 256-TByte region controlled by this entry (see 
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table referenced by this 
entry (see Section 4.9.2)
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4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 256-TByte region 
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-15.  Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see 
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region 
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-14.  Format of a PML5 Entry (PML5E) that References a PML4 Table (Contd.)

Bit 
Position(s)

Contents
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Table 4-16.  Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section 
4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise, 
it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. The PAT is supported on all processors that support 4-level paging.
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Table 4-17.  Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-16)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18.  Format of a Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-19)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
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11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section 
4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); 
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-19.  Format of a Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-18)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18.  Format of a Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit 
Position(s)

Contents
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Table 4-20.  Format of a Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); 
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)
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Figure 4-11.  Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging
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4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5 
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by 
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 4.6.1 describes how the processor determines the access rights for each linear address. Section 4.6.2 
provides additional information about how protection keys contribute to access-rights determination. (They do so 
only with 4-level paging and 5-level paging, and only if CR4.PKE = 1 or CR4.PKS = 1.) 

4.6.1 Determination of Access Rights
Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction 
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made 
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those 
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the following: 
accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses 
to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state 
segment (TSS) as part of a task switch or change of CPL. All these accesses are called implicit supervisor-mode 
accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries 
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure 
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

When the shadow-stack feature of control-flow enforcement technology (CET) is enabled, certain accesses to 
linear addresses are considered shadow-stack accesses (see Section 18.2, “Shadow Stacks”in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1). Like ordinary data accesses, each shadow-stack 
access is defined as being either a user access or a supervisor access. In general, a shadow-stack access is a user 
access if CPL = 3 and a supervisor access if CPL < 3. The WRUSS instruction is an exception; although it can be 
executed only if CPL = 0, the processor treats its shadow-stack accesses as user accesses. 

Shadow-stack accesses are allowed only to shadow-stack addresses. A linear address is a shadow-stack 
address if the following are true of the translation of the linear address: (1) the R/W flag (bit 1) is 0 and the dirty 
flag (bit 6) is 1 in the paging-structure entry that maps the page containing the linear address; and (2) the R/W 
flag is 1 in every other paging-structure entry controlling the translation of the linear address.

The following items detail how paging determines access rights (only the items noted explicitly apply to shadow-
stack accesses):
• For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address with a protection key for 
which read access is permitted (see Section 4.6.2).

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read 
access is permitted (see Section 4.6.2).

• If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit or 
explicit:

— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with a 
protection key for which read access is permitted (see Section 4.6.2).

— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

1. With PAE paging, the PDPTEs do not determine access rights.
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— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, data may be written to any supervisor-mode address with a protection key for which 
write access is permitted (see Section 4.6.2).

• If CR0.WP = 1, data may be written to any supervisor-mode address with a translation for which the 
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation and with a protection key 
for which write access is permitted (see Section 4.6.2); data may not be written to any supervisor-
mode address with a translation for which the R/W flag is 0 in any paging-structure entry controlling the 
translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which 
write access is permitted (see Section 4.6.2).

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is 
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address 
with a protection key for which write access is permitted (see Section 4.6.2).

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

• If CR0.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the 
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key 
for which write access is permitted (see Section 4.6.2); data may not be written to any user-mode 
address with a translation for which the R/W flag is 0 in any paging-structure entry controlling the 
translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is 
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address 
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the 
translation and with a protection key for which write access is permitted (see Section 4.6.2); 
data may not be written to any user-mode address with a translation for which the R/W flag is 
0 in any paging-structure entry controlling the translation.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

— Instruction fetches from supervisor-mode addresses.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode 
address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any supervisor-
mode address with a translation for which the XD flag (bit 63) is 0 in every paging-structure entry 
controlling the translation; instructions may not be fetched from any supervisor-mode address with a 
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

— Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

• If CR4.SMEP = 0, access rights depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode 
address.

— For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry 
controlling the translation; instructions may not be fetched from any user-mode address with a 
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.
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• If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.

— Supervisor-mode shadow-stack accesses are allowed only to supervisor-mode shadow-stack addresses 
(see above).

• For user-mode accesses:

— Data reads.
Access rights depend on the mode of the linear address:

• Data may be read from any user-mode address with a protection key for which read access is permitted 
(see Section 4.6.2).

• Data may not be read from any supervisor-mode address.

— Data writes.
Access rights depend on the mode of the linear address:

• Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every 
paging-structure entry controlling the translation and with a protection key for which write access is 
permitted (see Section 4.6.2).

• Data may not be written to any supervisor-mode address.

— Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of 
IA32_EFER.NXE:

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-mode 
address with a translation for which the XD flag is 0 in every paging-structure entry controlling the 
translation.

• Instructions may not be fetched from any supervisor-mode address.

— User-mode shadow-stack accesses made outside enclave mode are allowed only to user-mode shadow-
stack addresses (see above). User-mode shadow-stack accesses made in enclave mode are treated like 
ordinary data accesses (see above).

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). These structures may include information about access rights. The processor may enforce access 
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might 
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section 
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

4.6.2 Protection Keys
4-level paging and 5-level paging associate a 4-bit protection key with each linear address (the protection key 
located in bits 62:59 of the paging-structure entry that mapped the page containing the linear address; see Section 
4.5). Two protection key features control accesses to linear addresses based on their protection keys:
• If CR4.PKE = 1, the PKRU register determines, for each protection key, whether user-mode addresses with that 

protection key may be read or written.
• If CR4.PKS = 1, the IA32_PKRS MSR (MSR index 6E1H) determines, for each protection key, whether 

supervisor-mode addresses with that protection key may be read or written.

32-bit paging and PAE paging do not associate linear addresses with protection keys. For the purposes of Section 
4.6.1, reads and writes are implicitly permitted for all protection keys with either of those paging modes.

The PKRU register (protection-key rights for user pages) is a 32-bit register with the following format: for each i 
(0 ≤ i ≤ 15), PKRU[2i] is the access-disable bit for protection key i (ADi); PKRU[2i+1] is the write-disable bit 
for protection key i (WDi). The IA32_PKRS MSR has the same format (bits 63:32 of the MSR are reserved and must 
be zero).



4-34 Vol. 3A

PAGING

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the 
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set. 
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1 for more information about the XSAVE feature set.

Software can use the RDMSR and WRMSR instructions to read and write the IA32_PKRS MSR. Writes to the 
IA32_PKRS MSR using WRMSR are not serializing. The IA32_PKRS MSR is not XSAVE-managed.

How a linear address’s protection key controls access to the address depends on the mode of the linear address:
• A linear address’s protection key controls only data accesses to the address. It does not in any way affect 

instructions fetches from the address.
• If CR4.PKE = 0, the protection key of a user-mode address does not control data accesses to the address (for 

the purposes of Section 4.6.1, reads and writes of user-mode addresses are implicitly permitted for all 
protection keys).
If CR4.PKE = 1, use of the protection key i of a user-mode address depends on the value of the PKRU register:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, permission may be denied to certain data write accesses:

• User-mode write accesses are not permitted.

• Supervisor-mode write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, WDi does not affect 
supervisor-mode write accesses to user-mode addresses with protection key i.)

• If CR4.PKS = 0, the protection key of a supervisor-mode address does not control data accesses to the address 
(for the purposes of Section 4.6.1, reads and writes of supervisor-mode addresses are implicitly permitted for 
all protection keys).
If CR4.PKS = 1, use of the protection key i of a supervisor-mode address depends on the value of the 
IA32_PKRS MSR:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, IA32_PKRS.WDi does not 
affect write accesses to supervisor-mode addresses with protection key i.)

Protection keys apply to shadow-stack accesses just as they do to ordinary data accesses.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear 
address may cause a page-fault exception for either of two reasons: (1) there is no translation for the linear 
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation 
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a 
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section 
4.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for 
reasons unrelated to paging. See Section 37.3, “Access-control Requirements” and Section 37.20, “Enclave Page 
Cache Map (EPCM)” in Chapter 37, “Enclave Access Control and Data Structures.” Such an exception is called an 
SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordinary 
page faults.
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Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The 
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes 
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so. 
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure 
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should 
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault 
exception on one processor might not do so in the future.

Figure 4-12.  Page-Fault Error Code

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P 
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.
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SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.
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• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either 
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging, 4-level paging, or 5-level paging is in use); 
and (ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault 
exception, not the access rights specified by paging.

• PK flag (bit 5).
This flag is 1 only for data accesses and only with 4-level paging and 5-level paging. In these cases, the setting 
depends on the mode of the address being accessed:

— For accesses to supervisor-mode addresses, the flag is set if (1) CR4.PKS = 1; (2) the linear address has 
protection key i; and (3) the IA32_PKRS MSR (see Section 4.6.2) is such that either (a) ADi = 1; or (b) the 
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access 
causing the page-fault exception was a user-mode access. (Note that this flag may be set on page faults 
due to user-mode accesses to supervisor-mode addresses.)

— For accesses to user-mode addresses, the flag is set if (1) CR4.PKE = 1; (2) the linear address has 
protection key i; and (3) the PKRU register (see Section 4.6.2) is such that either (a) ADi = 1; or (b) the 
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access 
causing the page-fault exception was a user-mode access.

• SS (bit 1).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack accesses in 
enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-fault exception, 
not the access rights specified by paging.

• SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control 
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if 
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers 
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.1 For 
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty 
flag. These flags are provided for use by memory-management software to manage the transfer of pages and 
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed 
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure 
entry in which the PS flag is 1).

NOTE
If software on one logical processor writes to a page while software on another logical processor 
concurrently clears the R/W flag in the paging-structure entry that maps the page, execution on 
some processors may result in the entry’s dirty flag being set (due to the write on the first logical 
processor) and the entry’s R/W flag being clear (due to the update to the entry on the second 
logical processor). This will never occur on a processor that supports control-flow enforcement 
technology (CET). Specifically, a processor that supports CET will never set the dirty flag in a 
paging-structure entry in which the R/W flag is clear.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 4.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging. 
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Memory-management software may clear these flags when a page or a paging structure is initially loaded into 
physical memory. These flags are “sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor 
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see 
Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not be exposed to the 
processor’s self-modifying code detection logic. If the processor is executing code from the same 
memory area that is being used for the paging structures, the setting of these flags may or may not 
result in an immediate change to the executing code stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that access. Chapter 11, “Memory 
Cache Control” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This 
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page 
Attribute Table (PAT; see Section 11.12).1 Section 4.9.1 and Section 4.9.2 explain how paging contributes to 
memory typing depending on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and 
Pentium II Processors)

NOTE
The PAT is supported on all processors that support 4-level paging or 5-level paging. Thus, this 
section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 11-6 in Section 11.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by 
the MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, the PCD and PWT values come 

from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).
• With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent 
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type 
range registers (MTRRs) as specified in Table 11-7 in Section 11.5.2.2.

1. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for how to determine whether the PAT is 
supported.
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The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises 
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by the 
MTRRs with a memory type selected from the PAT. Table 11-11 in Section 11.12.3 specifies how a memory type is 
selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 4-level 

paging):

— For 4-level paging or 5-level paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the 

relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i = 

2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where 

the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant 
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses 
a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the 
processor might not use that change for a subsequent translation using that entry or for access to an affected linear 
address. See Section 4.10.4.2 for how software can ensure that the processor uses the modified memory typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the 
paging structures on the processor. Because the processor does not ensure that the data that it caches are always 
consistent with the structures in memory, it is important for software developers to understand how and when the 
processor may cache such data. They should also understand what actions software can take to remove cached 
data that may be inconsistent and when it should do so. This section provides software developers information 
about the relevant processor operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish 
information cached for different linear-address spaces. Section 4.10.2 and Section 4.10.3 describe how the 
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively. 
Section 4.10.4 explains how software can remove inconsistent cached information by invalidating portions of the 
TLBs and paging-structure caches. Section 4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple 
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if 
CR0.CD = 1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.
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A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE = 
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3. Not all processors 
allow CR4.PCIDE to be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only 
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either 

IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-structure caches (Section 
4.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure 
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID 
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because 
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID, 
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to 
1, Section 4.10 discussed the caching of translation information without any reference to PCIDs. 
While the section now refers to PCIDs in its specification of this caching, this documentation change 
is not intended to imply any change to the behavior of processors that do not allow CR4.PCIDE to 
be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in translation lookaside buffers 
(TLBs). In general, TLBs contain entries that map page numbers to page frames; these terms are defined in 
Section 4.10.2.1. Section 4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 gives 
details of TLB usage. Section 4.10.2.4 explains the global-page feature, which allows software to indicate that 
certain translations should receive special treatment when cached in the TLBs.

4.10.2.1  Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging modes translate linear 
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called 
the page offset) determine the lower bits of the physical address. The boundary between the page number and 
the page offset is determined by the page size. Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page 
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes 
and the page number comprises bits 31:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• 4-level paging and 5-level paging:
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— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GByte 
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the 
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of 
the linear address.

4.10.2.2  Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations in translation lookaside 
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number. 
It contains the following information from the paging-structure entries used to translate linear addresses with the 
page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear addresses with the page number 

(see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

— The protection key (only with 4-level paging and 5-level paging).
• Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE 

or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these 
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of 
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any 
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

4.10.2.3  Details of TLB Use
Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page 
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate 
that page number. In addition, the processor does not cache a translation for a page number unless the accessed 
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor 
sets any of these accessed flags that is not already 1.

Subject to the limitations given in the previous paragraph, the processor may cache a translation for any linear 
address, even if that address is not used to access memory. For example, the processor may cache translations 
required for prefetches and for accesses that result from speculative execution that would never actually occur in 
the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor 
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear 
address. In this case, the processor may not actually consult the paging structures in memory. The processor may 
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in 
memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified paging-structure 
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache 
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page 
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number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 4-level paging), even 
though part of that page number (e.g., bits 20:12) is part of the offset with respect to the page specified by the 
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address 
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which 
the translation is created. There is no way for software to be aware that multiple translations for smaller pages 
have been used for a large page. For example, an execution of INVLPG for a linear address on such a page invali-
dates any and all smaller-page TLB entries for the translation of any linear address on that page.

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size). 
A reference to a linear address in the address range may use any of these translations. Which translation is used 
may vary from one execution to another, and the choice may be implementation-specific.

4.10.2.4  Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag 
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS 
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global. 
Because the G flag is used only in paging-structure entries that map a page, and because information from such 
entries is not cached in the paging-structure caches, the global-page feature does not affect the behavior of the 
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with 
a PCID different from the current PCID.

4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging structures in memory.

4.10.3.1  Caches for Paging Structures
A processor may support any or all of the following paging-structure caches:
• PML5E cache (5-level paging only). Each PML5E-cache entry is referenced by a 9-bit value and is used for 

linear addresses for which bits 56:40 have that value. The entry contains information from the PML5E used to 
translate such linear addresses:

— The physical address from the PML5E (the address of the PML4 table).

— The value of the R/W flag of the PML5E.

— The value of the U/S flag of the PML5E.

— The value of the XD flag of the PML5E.

— The values of the PCD and PWT flags of the PML5E.
The following items detail how a processor may use the PML5E cache:

— If the processor has a PML5E-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E in memory).

— The processor does not create a PML5E-cache entry unless the P flag is 1 and all reserved bits are 0 in the 
PML5E in memory.

— The processor does not create a PML5E-cache entry unless the accessed flag is 1 in the PML5E in memory; 
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML5E-cache entry even if there are no translations for any linear address that 
might use that entry (e.g., because the P flags are 0 in all entries in the referenced PML4 table).

— If the processor creates a PML5E-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML5E in memory.

• PML4E cache (4-level paging and 5-level paging only). The use of the PML4E cache depends on the paging 
mode:
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— For 4-level paging, each PML4E-cache entry is referenced by a 9-bit value and is used for linear addresses 
for which bits 47:39 have that value.

— For 5-level paging, each PML4E-cache entry is referenced by an 18-bit value and is used for linear 
addresses for which bits 56:39 have that value.

A PML4E-cache entry contains information from the PML5E and PML4E used to translate the relevant linear 
addresses (for 4-level paging, the PML5E does not apply):

— The physical address from the PML4E (the address of the page-directory-pointer table).

— The logical-AND of the R/W flags in the PML5E and the PML4E.

— The logical-AND of the U/S flags in the PML5E and the PML4E.

— The logical-OR of the XD flags in the PML5E and the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4E cache:

— If the processor has a PML4E-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E and PML4E in memory).

— The processor does not create a PML4E-cache entry unless the P flags are 1 and all reserved bits are 0 in 
the PML5E and the PML4E in memory.

— The processor does not create a PML4E-cache entry unless the accessed flags are 1 in the PML5E and the 
PML4E in memory; before caching a translation, the processor sets any accessed flags that are not already 
1.

— The processor may create a PML4E-cache entry even if there are no translations for any linear address that 
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer 
table).

— If the processor creates a PML4E-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML4E in memory.

• PDPTE cache (4-level paging and 5-level paging only).1 The use of the PML4E cache depends on the paging 
mode:

— For 4-level paging, each PDPTE-cache entry is referenced by an 18-bit value and is used for linear 
addresses for which bits 47:30 have that value.

— For 5-level paging, each PDPTE-cache entry is referenced by a 27-bit value and is used for linear addresses 
for which bits 56:30 have that value.

A PDPTE-cache entry contains information from the PML5E, PML4E, PDPTE used to translate the relevant linear 
addresses (for 4-level paging, the PML5E does not apply):

— The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created 
for a PDPTE that maps a 1-GByte page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, and PDPTE.

— The logical-AND of the U/S flags in the PML5E, PML4E, and PDPTE.

— The logical-OR of the XD flags in the PML5E, PML4E, and PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E, PML4E, and PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flags are 1, the PS flags are 0, and the 
reserved bits are 0 in the PML5E, PML4E, and PDPTE in memory.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 4.4.1 and differs from that described here.
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— The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML5E, PML4E 
and PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not 
already 1.

— The processor may create a PDPTE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML5E, PML4E, or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for 
which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for 
which bits 31:21 have that value.

— For 4-level paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses 
for which bits 47:21 have that value.

— For 5-level paging, each PDE-cache entry is referenced by a 36-bit value and is used for linear addresses 
for which bits 56:21 have that value.

A PDE-cache entry contains information from the PML5E, PML4E, PDPTE, and PDE used to translate the relevant 
linear addresses (for 32-bit paging and PAE paging, only the PDE applies; for 4-level paging, the PML5E does 
not apply):

— The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a 
PDE that maps a page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML5E, PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references below to PML5Es, PML4Es, and 
PDPTEs apply only to 4-level paging and to 5-level paging, as appropriate):

— If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E, PML4E, PDPTE, and PDE in memory).

— The processor does not create a PDE-cache entry unless the P flags are 1, the PS flags are 0, and the 
reserved bits are 0 in the PML5E, PML4E, PDPTE, and PDE in memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML5E, PML4E, PDPTE, 
and PDE in memory; before caching a translation, the processor sets any accessed flags that are not 
already 1.

— The processor may create a PDE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML5E, PML4E, PDPTE, or PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other 
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W 
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that 
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the 
appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference other paging 
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the 
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for 
accesses that are a result of speculative execution that would never actually occur in the executed code path.



4-44 Vol. 3A

PAGING

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical processor are associated 
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their 
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the 
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in 
Section 4.10.4.

4.10.3.2  Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the following to determine the physical 
address to which it translates and whether the access should be allowed:
• If the processor finds a TLB entry that is for the page number of the linear address and that is associated with 

the current PCID (or which is global), it may use the physical address, access rights, and other attributes from 
that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an 
entry from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are 
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.) 
as if it had traversed the PDE (and, for 4-level paging and 5-level paging, the PDPTE, PML4E, and PML5E, as 
appropriate) corresponding to the PDE-cache entry.

• The following items apply when 4-level paging or 5-level paging is used:

— If the processor does not find a relevant TLB entry or PDE-cache entry, it may use the upper bits of the 
linear address (for 4-level paging, bits 47:30; for 5-level paging, bits 56:30) to select an entry from the 
PDPTE cache that is associated with the current PCID. It can then use that entry to complete the translation 
process (locating a PDE, etc.) as if it had traversed the PDPTE, the PML4E, and (for 5-level paging) the 
PML5E corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, PDE-cache entry, or PDPTE-cache entry, it may use the 
upper bits of the linear address (for 4-level paging, bits 47:39; for 5-level paging, bits 56:39) to select an 
entry from the PML4E cache that is associated with the current PCID. It can then use that entry to complete 
the translation process (locating a PDPTE, etc.) as if it had traversed the corresponding PML4E.

— With 5-level paging, if the processor does not find a relevant TLB entry, PDE-cache entry, PDPTE-cache 
entry, or PML4E-cache entry, it may use bits 56:48 of the linear address to select an entry from the PML5E 
cache that is associated with the current PCID. It can then use that entry to complete the translation 
process (locating a PML4E, etc.) as if it had traversed the corresponding PML5E.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear 
address to traverse the entire paging-structure hierarchy, as described in Section 4.3, Section 4.4.2, and Section 
4.5.

4.10.3.3  Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs may contain multiple entries associated with a single PCID and with infor-
mation derived from a single paging-structure entry. The following items give some examples for 4-level paging:
• Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-

pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different 
set of linear addresses. Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the same 

physical address. This implies that the physical address in the mth PDPTE in the page-directory-pointer table 
would appear in the PDPTE-cache entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, 
and (p1 & 1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one 
resulting from a reference from the n1

th PML4E and one from the n2
th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical 
address of the PML4 table). This implies the following:
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— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is 
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of 
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then 
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache 
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar 
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page 
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the 
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures 
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since 
been modified.

4.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB 

entries that are for a page number corresponding to the linear address and that are associated with the current 
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section 
4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID, 
regardless of the linear addresses to which they correspond.

• INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the 
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to 
translate the linear address specified in the INVPCID descriptor.2 (The instruction may also invalidate global 
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also 
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates 
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the 
INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 4.10.2.3), the instruction invalidates all of them.

2. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 4.10.2.3), the instruction invalidates all of them.
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— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB 
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not 
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to 
invalidate any TLB entries or entries in paging-structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure 
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE 
from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID 
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H 
except those for global pages. It also invalidates all entries in all paging-structure caches associated with PCID 
000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following 
are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It 

may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current 
PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address. 
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the specified 
PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, this may occur if either 
CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source 
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs 
other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s 
source operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.
• On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may 

invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the 
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure 
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any 
TLB entries that are for a page number corresponding to that linear address and that are associated with the 
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear address 
and that are associated with the current PCID.3 These invalidations ensure that the page-fault exception will not 
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures in 

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to 0, there 
will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with 4-level paging. Since CR4.PCIDE can be set only with 4-level 
paging, task switches occur only with CR4.PCIDE = 0.

3. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate 
the faulting linear address.
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memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures 
were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware 
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page 
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB 
entries corresponding to the translation specified by the paging structures.

4.10.4.2  Recommended Invalidation
The following items provide some recommendations regarding when software should perform invalidations:
• If software modifies a paging-structure entry that maps a page (rather than referencing another paging 

structure), it should execute INVLPG for any linear address with a page number whose translation uses that 
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section 4.10.3.3 
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could 
use MOV to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging structure, it may use one of the 
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the 
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags 
are 0 in all entries in the paging structure referenced by the modified entry), it remains necessary to 
execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G 

flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any 
one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected 
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the 
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the 
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to 
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each 
of the page numbers with translations that would use the entry; if no page numbers that would use the 
entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure 
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section 
4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might 
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one 
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or 
MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if 
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes. A reference to a linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would 
change, for any linear address, both the page size and either the page frame, access rights, or other attributes. 
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g., 

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
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PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the 
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had 
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This 
ensures invalidation of any information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to 
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing 
MOV to CR4 to modify CR4.PGE.

4.10.4.3  Optional Invalidation
The following items describe cases in which software may choose not to invalidate and the potential consequences 
of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is 

because no TLB entry or paging-structure cache entry is created with information from a paging-structure entry 
in which the P flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary 
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is 
because no TLB entry or paging-structure cache entry is created with information from a paging-structure entry 
in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation 
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform 
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode 
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear 
address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure to perform an invalidation may 
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address 
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical address for a linear address 
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure 
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to 
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication 
that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to 
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the 
write and the instruction fetch. Note that the invalidating instructions identified in Section 4.10.4.1 are all 
serializing instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry may contain information cached 
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any 
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by 
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be 
necessary to do so to invalidate multiple TLB entries.)

1. If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to 0, the processor may use a 
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.
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4.10.4.4  Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software developers should understand that, 
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in 
Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:
• If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose 

translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses 

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may 
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has 
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.1 In this case, the effects of the completed accesses may be visible to software even though the overall 
instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when 
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation 
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the 
memory that had been associated with it. However, because of speculative execution (or errant software), there 
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the 
following can happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed 

for an address range that has read side effects.
• The processor may retain entries in the TLBs and paging-structure caches for an extended period of time. 

Software should not assume that the processor will not use entries associated with a linear address simply 
because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are 
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all 
entries in a page table, the processor may subsequently create a PDE-cache entry for the PDE that references 
that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the processor might not generate 
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames 
previously associated with the freed portion of the linear-address space should not be reallocated for another 
purpose until the appropriate invalidations have been performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple Processors
As noted in Section 4.10.4, software that modifies a paging-structure entry may need to invalidate entries in the 
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system 
containing more than one logical processor, software must account for the fact that there may be entries in the 
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure 
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The 
following items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting 
the Intel-64 and IA-32 architectures:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
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1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to 
enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure entries.

3. Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure 
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers 
must take care to ensure that the following conditions are met:
• All logical processors that are using the paging structures that are being modified must participate and perform 

appropriate invalidations after the modifications are made.
• If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the 

operating system must ensure one of the following: (1) that the affected linear-address range is not used 
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating 
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code 
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate 
before any request to modify the paging-structure entries that control that linear-address space. In these cases, 
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear 
addresses, some other mechanism can assure no logical processor is using that range before the request to free it 
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the 
range, free the physical page frames associated with the range, and then signal the other logical processors using 
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete 
their invalidations before the linear-address range and the physical page frames previously associated with that 
range can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)
The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 4.11.1 
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section 
4.11.2 gives an overview of VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called 
VMX transitions. VM entries and VM exits are described in detail in Chapter 26 and Chapter 27, respectively, in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify 
paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they 

allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 4-level paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 4-level paging or 5-level 
paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section 4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the 
virtual-machine control structure (VMCS); see Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 27.5.4.



Vol. 3A 4-51

PAGING

• VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section 
26.3.2.5 and Section 27.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C.

4.11.2 VMX Support for Address Translation
Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C describe two features of the virtual-machine extensions (VMX) that interact directly with 
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.” 
The processor may use this identification to maintain concurrently information for multiple address spaces in its 
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory 
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a 
set of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory 
typing; these are used on conjunction with those specified in this chapter. See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure 
caches and the ways in which software can manage that information. Some of the behaviors documented in 
Section 4.10 may change. See Section 28.3 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the 
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is 
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space 
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor 
generates a page-fault exception as described in Section 4.7. The handler for page-fault exceptions typically 
directs the operating system or executive to load data for the unmapped page from external storage into physical 
memory (perhaps writing a different page from physical memory out to external storage in the process) and to 
map it using paging (by updating the paging structures). When the page has been loaded into physical memory, a 
return from the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same 
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address 
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used, 
a data structure can be partly in memory and partly in disk storage.

4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide support for a wide variety of approaches to memory manage-
ment. When segmentation and paging are combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules can be 
mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see 
Figure 3-2 in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or 
executive. If paging is used, the paging mechanism can map a single linear-address space (contained in a single 
segment) into virtual memory. Alternatively, each program (or task) can have its own large linear-address space 
(contained in its own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared 
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
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phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.

The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and 
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can 
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and 
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be 
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give each 
segment its own page table, as shown in Figure 4-13. This convention gives the segment a single entry in the page 
directory, and this entry provides the access control information for paging the entire segment.

Figure 4-13.  Memory Management Convention That Assigns a Page Table
to Each Segment
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CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an 
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode. 

Chapter 20, “8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor, 
or within the currently executing program or task that requires the attention of a processor. They typically result in 
a forced transfer of execution from the currently running program or task to a special software routine or task 
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or 
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System 
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices. 
Software can also generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by 
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal 
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors 
also permits a machine-check exception to be generated when internal hardware errors and bus errors are 
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended 
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the 
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or 
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected 
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this 
chapter.

6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition 
requiring special handling by the processor is assigned a unique identification number, called a vector number. The 
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor 
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 6.10, “Interrupt 
Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the 
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers 
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not 
use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel 
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices 
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 6.3, 
“Sources of Interrupts”).
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Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This 
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is 
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins 
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the 
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is 
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with 
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively. 
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the 
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section 
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is 
assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts 

Vector Mnemonic Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/O breakpoints; 
single-step; and others.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD instruction or reserved opcode.

 7 #NM Device Not Available (No Math 
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun 
(reserved)

Fault No Floating-point instruction.1

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing 
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other 
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at 
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core 
2, Intel Atom®, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O APIC 
determines the vector number of the interrupt and sends this number to the local APIC. When a system contains 
multiple processors, processors can also send interrupts to one another by means of the system bus (Pentium 4, 
Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium 
processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain 
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled 
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts 
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the 
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is 
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI# 
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called 
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include 

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math 
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Fault Yes 
(Zero)

Any data reference in memory.2

18 #MC Machine Check Abort No Error codes (if any) and source are model 
dependent.3

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point 
instructions4

20 #VE Virtualization Exception Fault No EPT violations5

21 #CP Control Protection Exception Fault Yes RET, IRET, RSTORSSP, and SETSSBSY 
instructions can generate this exception. 
When CET indirect branch tracking is 
enabled, this exception can be generated 
due to a missing ENDBRANCH instruction 
at target of an indirect call or jump.

22-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved) 
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. Processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium III processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)

Vector Mnemonic Description Type Error 
Code

Source
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all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local 
APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section 
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the 
local APIC, the APIC indicates the receipt of an illegal vector. 

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector 
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s 
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an 
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for 
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 6.5, 
“Exception Classifications”).

6.4.2 Software-Generated Exceptions
The INTO, INT1, INT3, and BOUND instructions permit exceptions to be generated in software. These instructions 
allow checks for exception conditions to be performed at points in the instruction stream. For example, INT3 causes 
a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation.1 If INT n provides a 
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector 
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated 
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an 
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off 
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking 
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-

1. The INT n instruction has opcode CD following by an immediate byte encoding the value of n. In contrast, INT1 has opcode F1 and 
INT3 has opcode CC.
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dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and 
returns an error code. 

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, “Machine-Check Architecture,” 
for more information about the machine-check mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the 
instruction that caused the exception can be restarted without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program 

to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to 
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of 
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction 
following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the execution of the trapping instruction. 
Traps allow execution of a program or task to be continued without loss of program continuity. The return 
address for the trap handler points to the instruction to be executed after the trapping instruction.

• Aborts — An abort is an exception that does not always report the precise location of the instruction causing 
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to 
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE
One exception subset normally reported as a fault is not restartable. Such exceptions result in loss 
of some processor state. For example, executing a POPAD instruction where the stack frame 
crosses over the end of the stack segment causes a fault to be reported. In this situation, the 
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD 
instruction had not been executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered programming errors. An application 
causing this class of exceptions should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions 
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be 
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points 
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting 
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in 
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume 
execution of the program or task by restarting the faulting instruction. To ensure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers 
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction. 
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the 
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points 
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow 
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here, 
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler, 
program or task execution continues at the instruction following the INTO instruction.
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The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed 
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut 
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return 
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary 
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken 
at the end of the current iteration with the registers set to execute the next iteration. 

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by 
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction 
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32 
Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and 
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when 
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been 
defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and 

Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling 
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions 
to ensure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed 
executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS 
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt 
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the 
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended 
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see 
Section 6.8.1, “Masking Maskable Hardware Interrupts”). 

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET 
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see 
Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is 
invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and 
RF flags in the EFLAGS register, as described in the following sections.
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6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or 
through the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). When the IF flag is clear, the 
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed 
as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI 
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other 
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0 
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the 
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the 
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is 
an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the 
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag) 
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A 
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL.2 If 
IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.3 
The inhibition ends after delivery of another event (e.g., exception) or the execution of the next instruction.

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF 

instruction can be used to load the modified flags back into the EFLAGS register.
• Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to 

modify the setting of the IF flag.
• When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables 

maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference, 
A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a 
detailed description of the operations these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, “System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction 
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from 
going into a debug exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-Breakpoint 
Exception Condition,” for more information on the use of this flag.

As noted in Section 6.8.3, execution of the MOV or POP instruction to load the SS register suppresses any instruc-
tion breakpoint on the next instruction (just as if EFLAGS.RF were 1).

2. The effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting the VME flag 
in control register CR4: see Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is also impacted by the 
PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

3. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an 
execution of STI.



6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

(Software might also use the POP instruction to load SS and ESP.)

If an interrupt or exception occurs after the new SS segment descriptor has been loaded but before the ESP register 
has been loaded, these two parts of the logical address into the stack space are inconsistent for the duration of the 
interrupt or exception handler (assuming that delivery of the interrupt or exception does not itself load a new stack 
pointer).

To account for this situation, the processor prevents certain events from being delivered after execution of a MOV 
to SS instruction or a POP to SS instruction. The following items provide details:
• Any instruction breakpoint on the next instruction is suppressed (as if EFLAGS.RF were 1).
• Any data breakpoint on the MOV to SS instruction or POP to SS instruction is inhibited until the instruction 

boundary following the next instruction.
• Any single-step trap that would be delivered following the MOV to SS instruction or POP to SS instruction 

(because EFLAGS.TF is 1) is suppressed.
• The suppression and inhibition ends after delivery of an exception or the execution of the next instruction.
• If a sequence of consecutive instructions each loads the SS register (using MOV or POP), only the first is 

guaranteed to inhibit or suppress events in this way.

Intel recommends that software use the LSS instruction to load the SS register and ESP together. The problem 
identified earlier does not apply to LSS, and the LSS instruction does not inhibit events as detailed above.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 
If more than one exception or interrupt is pending at an instruction boundary, the processor services them in a 
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources. 

The events generated by the “Call to Interrupt Procedure” instructions (INT n, INTO, INT3, and INT1), while deliv-
ered using the same mechanism as exceptions and interrupts, are integral to the execution of those instructions 
and do not occur at instruction boundaries. For that reason, they do not appear in Table 6-2.
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While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within 
each class are implementation-dependent and may vary from processor to processor. The processor first services 
a pending exception or interrupt from the class which has the highest priority, transferring execution to the first 
instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending. 
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program or 
task where the exceptions and/or interrupts occurred. 

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check (#MC)

2 Trap on Task Switch

- T flag in TSS is set (#DB)

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint) (#DB)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault (#DB)

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation (#GP)

- Code Page Fault (#PF)

- Control protection exception due to missing ENDBRANCH at target of an indirect call or jump (#CP)

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes (#GP)

- Invalid Opcode (#UD)

- Coprocessor Not Available (#NM)

10 (Lowest) Faults on Executing an Instruction

- Bound error (#BR)

- Invalid TSS (#TS)

- Segment Not Present (#NP)

- Stack fault (#SS)

- General Protection (#GP)

- Data Page Fault (#PF)

- Alignment Check (#AC)

- x87 FPU Floating-point exception (#MF)

- SIMD floating-point exception (#XM)

- Virtualization exception (#VE)

- Control protection exception (#CP)

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.
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6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the 
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array 
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To 
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in 
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than 
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt 
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the 
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line fills. 
The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte. A 
limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, the processor locates the IDT 
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR 
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a memory 
operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization code of an 
operating system when creating an IDT. An operating system also may use it to change from one IDT to another. 
The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be executed at 
any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an incorrectly configured IDT 
could result in incomplete interrupt handling and/or the blocking of interrupt delivery. 
IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each 
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT and accessing the stack.

Figure 6-1.  Relationship of the IDTR and IDT
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6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task 
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate 
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task. 

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer 
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an 
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the 
EFLAGS register (see Section 6.12.1.3, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL 
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-

Figure 6-2.  IDT Gate Descriptors
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tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section 5.8.2, 
“Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task gate, the 
processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL to a task 
gate (see Section 7.3, “Task Switching”).
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6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of 
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for 
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to 
the beginning of the exception- or interrupt-handling procedure.

Figure 6-3.  Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs. 

When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS 
for the currently executing task. On this new stack, the processor pushes the stack segment selector and 
stack pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see 
Figure 6-4). 

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see Figure 
6-4). 

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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6.12.1.1  Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines
When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be execute at a numerically lower privilege level, a shadow stack switch 

occurs. When the shadow stack switch occurs:

a. On a transfer from privilege level 3, if shadow stacks are enabled at privilege level 3 then the SSP is saved 
to the IA32_PL3_SSP MSR. 

b. If shadow stacks are enabled at the privilege level where the handler will execute then the shadow stack for 
the handler is obtained from one of the following MSRs based on the privilege level at which the handler 
executes. 

• IA32_PL2_SSP if handler executes at privilege level 2.

• IA32_PL1_SSP if handler executes at privilege level 1.

• IA32_PL0_SSP if handler executes at privilege level 0.

c. The SSP obtained is then verified to ensure it points to a valid supervisory shadow stack that is not 
currently active by verifying a supervisor shadow stack token at the address pointed to by the SSP. The 
operations performed to verify and acquire the supervisor shadow stack token by making it busy are as 
described in Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1.

d. On this new shadow stack, the processor pushes the CS, LIP (CS.base + EIP), and SSP of the interrupted 
procedure if the interrupted procedure was executing at privilege level less than 3; see Figure 6-5.

• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure and 
shadow stacks are enabled at current privilege level:

a. The processor saves the current state of the CS, LIP (CS.base + EIP), and SSP registers on the current 
shadow stack; see Figure 6-5.
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To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 

When executing a return from an interrupt or exception handler from the same privilege level as the interrupted 
procedure, the processor performs these actions to enforce return address protection:
• Restores the CS and EIP registers to their values prior to the interrupt or exception.

Figure 6-5.  Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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If shadow stack is enabled:

— Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET)) if 
they do not match. 

— Pops the top-of-stack value (the SSP prior to the interrupt or exception) from shadow stack into SSP 
register.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted 
procedure, the processor performs the actions below.
• If shadow stack is enabled at current privilege level:

— If SSP is not aligned to 8 bytes then causes a control protection exception (#CP(FAR-RET/IRET)).

— If privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

• Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match. 

• Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using 
operations described in section Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode), 
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is 
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

6.12.1.2  Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an 

INT n, INT3, or INTO instruction.4 Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are 
placed in more privileged code segments (numerically lower privilege level). For hardware-generated 
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively 
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of 
the following techniques can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for 

handlers that only need to access data available on the stack (for example, divide error exceptions). If the 
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which 
would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always 
run, regardless of the CPL that the interrupted program or task is running at.

4. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode 
CD 01).
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6.12.1.3  Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor 
clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls 
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after 
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response and 
ensures that no single-step exception will be delivered after delivery to the handler. A subsequent IRET instruction 
restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the 
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the 
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack. 
Accessing a handler procedure through a trap gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling 
an exception or interrupt with a separate task offers several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If 

an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler 
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

• The handler can be further isolated from other tasks by giving it a separate address space. This is done by 
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be 
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-6). A switch to the handler task is 
handled in the same manner as an ordinary task switch (see Section 7.3, “Task Switching”). The link back to the 
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms 
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks 
that may be dispatched when interrupts are enabled.
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NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable 
interrupts between the time it completes handling the interrupt and the time it executes the IRET 
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is 
still marked busy, which would cause a general-protection (#GP) exception.

6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error 
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format 
shown in Figure 6-7. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the 
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an 
event external to the program, such as an interrupt or an earlier exception.5 The bit is cleared if the 
exception occurred during delivery of a software interrupt (INT n, INT3, or INTO).

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers 
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT 
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the 
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

Figure 6-6.  Interrupt Task Switch

5. The bit is also set if the exception occurred during delivery of INT1.
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The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate 
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly 
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null 
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)” section in this chapter.

The format of the error code is different for control protection exceptions (#CP). See the “Interrupt 21—Control 
Protection Exception (#CP)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task 
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that 
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the 
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0] 
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE
In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The 
following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional 

and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the 
linear-address space. See Figure 6-8.

Figure 6-7.  Error Code
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In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a 
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in 
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack 
switching mechanisms described in Section 6.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of 
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if 
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If 
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector 
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). 
Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as 64-bit interrupt and trap 
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes. 
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight 
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally, 
rather than only on a CPL change.

When shadow stacks are enabled at the interrupt handler’s privilege level and the interrupted procedure was not 
executing at a privilege level 3, then the processor pushes the CS:LIP:SSP of the interrupted procedure on the 
shadow stack of the interrupt handler (where LIP is the linear address of the return address).

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the 
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to 
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary 
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack 
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily 
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the 
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Figure 6-8.  64-Bit IDT Gate Descriptors
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Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts 
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables 
the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case 
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably 
aligned RSP values in the TSS.

6.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The 
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works 
correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items 
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is 
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to execute 
properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit with an 
IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is running in 64-
bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

When shadow stacks are enabled and the target privilege level is not 3, the CS:LIP from the shadow stack frame is 
compared to the return linear address formed by CS:EIP from the stack. If they do not match then the processor 
caused a control protection exception (#CP(FAR-RET/IRET)), else the processor pops the SSP of the interrupted 
procedure from the shadow stack. If the target privilege level is 3 and shadow stacks are enabled at privilege level 
3, then the SSP for the interrupted procedure is restored from the IA32_PL3_SSP MSR.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and 
the target CPL ≠ 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an 
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the 
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle 
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load 
a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The 
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism 
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch 
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from 
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new 
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in 
order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and RSP are saved on 
the new stack (Figure 6-9). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS 
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not 
loaded from the TSS. Instead, the new SS is forced to NULL.
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6.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy 
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled. 
It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST 
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always 
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy 
task-switch mechanism is not supported in IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate 
descriptor in the interrupt-descriptor table (IDT); see Figure 6-8. The gate descriptor contains a 3-bit IST index 
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the 
value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as 
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

To support this stack-switching mechanism with shadow stacks enabled, the processor provides an MSR, 
IA32_INTERRUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers that are 
selected using the IST index from the gate descriptor. To switch to a shadow stack selected from the interrupt 
shadow stack table pointed to by the IA32_INTERRUPT_SSP_TABLE, the processor requires that the shadow stack 
addresses programmed into this table point to a supervisor shadow stack token; see Figure 6-10.

Figure 6-9.  IA-32e Mode Stack Usage After Privilege Level Change
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6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. They are arranged in the 
order of vector numbers. The information contained in these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can 

be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable 
to interrupts.)

• Description — Gives a general description of the purpose of the exception or interrupt type. It also describes 
how the processor handles the exception or interrupt.

• Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the 
contents of the error code are described. (This section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to. 
It also indicates whether the pointer can be used to restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the state of the currently 
running program or task and the possibilities of restarting the program or task without loss of continuity.

Figure 6-10.  Interrupt Shadow Stack Table
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the 
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting 
instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a 
fault or a trap depends on the condition (see Table 6-3). See Chapter 17, “Debug, Branch Profile, TSC, and Intel® 
Resource Director Technology (Intel® RDT) Features,” for detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the 
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before 
the faulting instruction is executed. The program can resume normal execution upon returning from the debug 
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being 
executed is allowed to complete before the exception is generated. However, the new state of the program is not 
corrupted and execution of the program can continue reliably.

The following items detail the treatment of debug exceptions on the instruction boundary following execution of the 
MOV or the POP instruction that loads the SS register:
• If EFLAGS.TF is 1, no single-step trap is generated.
• If the instruction encounters a data breakpoint, the resulting debug exception is delivered after completion of 

the instruction after the MOV or POP. This occurs even if the next instruction is INT n, INT3, or INTO.
• Any instruction breakpoint on the instruction after the MOV or POP is suppressed (as if EFLAGS.RF were 1).

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to the 
fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any transac-
tional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN instruction 

Table 6-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

Execution of INT11

NOTES:
1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead 

use the INT3 instruction for software breakpoints.

Trap
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and then delivers a #DB. See Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
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Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI 
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 6.5, “Exception 
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program 
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the 
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state 
prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT3, opcode CC) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode 
for the INT3 instruction. (The INT3 instruction is one byte long, which makes it easy to replace an opcode in a code 
segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment 
mapped to the same physical address space as the code segment to place an INT3 instruction in places where it is 
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the 
debug registers. (See Section 17.3.2, “Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the 
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT3 instruc-
tion can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow 
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any 
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN 
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 16.3.7, “RTM-
Enabled Debugger Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action 
of this instruction (INT 3) is slightly different than that of the INT3 instruction (see “INT n/INTO/INT3/INT1—Call 
to Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is 
essentially unchanged because the INT3 instruction does not affect any register or memory locations. The 
debugger can thus resume the suspended program by replacing the INT3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the 
debugger, program execution resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the 
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These 
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow, 
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an 
exception handler can be called automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially 
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus 
resume normal execution upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND 
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If 
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND 
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND 
instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for 

example, the source operand for a LES instruction is not a memory location.
• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not 

support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of 
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) 
when the EM flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is clear 
(0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, 
PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW, 
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, 
PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a 
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD0, UD1 or UD2 instruction. Note that even though it is the execution of the UD0, UD1 or UD2 
instruction that causes the invalid opcode exception, the saved instruction pointer will still points at the UD0, 
UD1 or UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the 
destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not 
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and 
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium 
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary 
decoding of an invalid instruction. (See Section 6.5, “Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes, 
even though undefined, do not generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not 
executed.
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Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in control register CR0 was set 

(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.
• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CR0 were set, 

regardless of the setting of the EM flag.
• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI, 

PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CR0 was set 
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available 
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception 
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point, 
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers 
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available 
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception 
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR 
registers before it executes the instruction. See Section 2.5, “Control Registers,” for more information about the TS 
flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT or FWAIT instructions should 
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For 
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX 
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag 
should be clear. 

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction 
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated 
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and 
call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU, 
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception. 
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The 
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the system.

Table 6-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and Interrupts  1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

21

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Control Protection

Page Faults 14
20

Page Fault
Virtualization Exception
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A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the 
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the 
appropriate fault handler could still lead to a double-fault sequence.

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the 
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In this 
mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is 
received. The processor generates a special bus cycle to indicate that it has entered shutdown mode. Software 
designers may need to be aware of the response of hardware when it goes into shutdown mode. For example, 
hardware may turn on an indicator light on the front panel, generate an NMI interrupt to record diagnostic informa-
tion, invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are pending 
during shutdown, they will be handled after an wake event from shutdown is processed (for example, A20M# inter-
rupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can 
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to 
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or 
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler 
cannot be invoked and the processor must be reset.

Table 6-5.  Conditions for Generating a Double Fault 

First Exception
Second Exception

Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially

Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially

Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault

Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this 
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment 
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium, 
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot 
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and 
reinitialize the x87 FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during 
the execution of instructions that use information from a TSS. Table 6-6 shows the conditions that cause an invalid 
TSS exception to be generated.

Table 6-6.  Invalid TSS Conditions 
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index During a task switch, an attempt to access data in a TSS results in a limit violation or 
canonical fault.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new 
TSS.

LDT segment selector index LDT not valid or not present.

Stack segment selector index The stack segment selector exceeds descriptor table limit.

Stack segment selector index The stack segment selector is NULL.

Stack segment selector index The stack segment descriptor is a non-data segment.

Stack segment selector index The stack segment is not writable.

Stack segment selector index The stack segment DPL ≠ CPL.

Stack segment selector index The stack segment selector RPL ≠ CPL.

Code segment selector index The code segment selector exceeds descriptor table limit.

Code segment selector index The code segment selector is NULL.

Code segment selector index The code segment descriptor is not a code segment type.

Code segment selector index The nonconforming code segment DPL ≠ CPL.

Code segment selector index The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e mode.
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This exception can generated either in the context of the original task or in the context of the new task (see Section 
7.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is 
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is 
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new 
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new 
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references 
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS 
context is not recommended because the processor state may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event 
external to the currently running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP 
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task 
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault. 
See Section 7.3, “Task Switching,” for more information on the task switch process and the possible recovery 
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point. 
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the 
segment descriptor information for the new segment selectors have been loaded in the segment registers), the 
processor will load all the state information from the new TSS before it generates the exception. During a task 
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their 
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not 
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before trying to resume the new task; 
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The task 
switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor to 
check the registers as it loads them from the TSS.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

Table 6-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception 
during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the 

SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a 
task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the 
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the 
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes 
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because 
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to 
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double 
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present 

segment
• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being 
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware 
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the 
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP 
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor, 
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR), 
a program-state change does accompany the exception because the register is not loaded. Recovery from this 
exception is possible by simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not 
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate 
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change 
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occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS, 
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. Operations that can cause a limit 

violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as 
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or 
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space 
for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. This violation can occur 
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different 
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack 
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the 
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register 
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine 
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to 
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. 
However, when the exception results from attempting to load a not-present stack segment during a task switch, 
the CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the 
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 7.3, “Task 
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely 
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should check all segment registers before trying to resume the new 
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose. 
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for 
additional information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.” 
The conditions that cause this exception to be generated comprise all the protection violations that do not cause 
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack 

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS 

during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS 

descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.
• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed 

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086 

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged 

Instructions,” for a list of privileged instructions).
• Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task 

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a 

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.
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• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or 
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned 

on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the 
stack segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while 
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while 
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the 
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid 
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that 
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task 
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If 
it occurs after the commit point, the processor will load all the state information from the new TSS (without 
performing any additional limit, present, or type checks) before it generates the exception. The general-protection 
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. (See the Program State Change description for “Interrupt 
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the 

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and 
it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the type field of the upper 64 bits of a 64-bit call gate is not 0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not 

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the 
following conditions while using the page-translation mechanism to translate a linear address to a physical 
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear, 

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in 

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also 
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If either the 
PKE flag or the PKS flag is set in CR4, the protection-key rights registers may cause page faults on data 
accesses to linear addresses with certain protection keys.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault 
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the 
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP 
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an 
instruction from a user-mode address.

• One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code flag.
• A shadow-stack access is made to a page that is not a shadow-stack page. See Section 18.2, “Shadow Stacks” 

in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and Chapter 4.6, “Access 
Rights.”

• An enclave access violates one of the specified access-control requirements. See Section 37.3, “Access-control 
Requirements” and Section 37.20, “Enclave Page Cache Map (EPCM)” in Chapter 37, “Enclave Access Control 
and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor uses the 
error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any 
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that 
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other exceptions 

(see Figure 6-11). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag 
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did 
so. This flag describes the access causing the page-fault exception, not the access rights specified by 
paging.
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— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the 
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the 
access causing the page-fault exception, not the access rights specified by paging.

— PK flag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a linear address with a 
protection key for which the protection-key rights registers disallow access.

— SS (bit 1).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack 
accesses in enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-
fault exception, not the access rights specified by paging.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is 
set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that 
generated the exception. The page-fault handler can use this address to locate the corresponding page 
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault 
handler; the handler should save the contents of the CR2 register before a second page fault can occur.6 If a 
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set when 

Figure 6-11.  Page-Fault Error Code
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The fault was caused by a page-level protection violation.
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the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-table 
entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the 
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the 
new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes 
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation 
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During 
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first 
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be 
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during 
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault 
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid 
TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause 
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a 
pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register 
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack 
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the 
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with 
trap or interrupt gates), software executing at the same privilege level as the exception handler should initialize a 
new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in this note. 
When the exception handler is running at privilege level 0 (the normal case), the problem is limited to procedures 
or tasks that run at privilege level 0, typically the kernel of the operating system.

6. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These 
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CR0 must be set for an 
interrupt 16 (floating-point error exception) to be generated. (See Section 2.5, “Control Registers,” for a detailed 
description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 19. 

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception type, the x87 FPU 
provides a flag in the x87 FPU status register and a mask bit in the x87 FPU control register. If the x87 FPU detects 
a floating-point error and the mask bit for the exception type is set, the x87 FPU handles the exception automati-
cally by generating a predefined (default) response and continuing program execution. The default responses have 
been designed to provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is encountered in the program’s 
instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU checks for pending x87 
FPU floating-point exceptions (as described in step 2 above). Pending x87 FPU floating-point exceptions are 
ignored for “non-waiting” x87 FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored when executing the state 
management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-point-error exception 
handler can determine the error condition that caused the exception from the settings of the flags in the x87 FPU 
status word. See “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruction that was about to 
be executed when the floating-point-error exception was generated. This is not the faulting instruction in which the 
error condition was detected. The address of the faulting instruction is contained in the x87 FPU instruction pointer 
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register. See Section 8.1.8, “x87 FPU Instruction and Data (Operand) Pointers” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about information the FPU saves 
for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because the handling of the 
exception is delayed until the next waiting x87 FPU floating-point or WAIT/FWAIT instruction following the faulting 
instruction. The x87 FPU, however, saves sufficient information about the error condition to allow recovery from the 
error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87 FPU floating-point 
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to force a pending x87 
FPU floating-point exception to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for more information about synchronization of x87 floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was enabled. Align-
ment checks are only carried out in data (or stack) accesses (not in code fetches or system segment accesses). An 
example of an alignment-check violation is a word stored at an odd byte address, or a doubleword stored at an 
address that is not an integer multiple of 4. Table 6-7 lists the alignment requirements various data types recog-
nized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that must be aligned on word, 
doubleword, and quadword boundaries. A general-protection exception (#GP) is generated 128-bit data types that 
are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.
• AC flag in the EFLAGS register is set.
• The CPL is 3 (including virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user mode). Memory 
references that default to privilege level 0, such as segment descriptor loads, do not generate alignment-check 
exceptions, even when caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level 3 can generate 
an alignment-check exception. Although application programs do not normally store these registers, the fault can 
be avoided by aligning the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte data structure, the first byte 
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is enabled when 
executing these instructions (and CPL is 3), a misaligned memory operand can cause either an alignment-check 
exception or a general-protection exception (#GP) depending on the processor implementation (see “FXSAVE-Save 
x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 

Table 6-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-bits) 8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save Processor 
Extended States” and “XRSTOR—Restore Processor Extended States” in Chapter 5 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2C).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or stores. The LDDQU instruc-
tions loads 128-bit unaligned data. They do not generate general-protection exceptions (#GP) when operands are 
not aligned on a 16-byte boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or 
may not be generated depending on processor implementation when data addresses are not aligned on an 8-byte 
boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause alignment-check faults. 
These instructions are rarely needed by application programs. 

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 6.13. EXT is set if the #AC is 
recognized during delivery of an event other than a software interrupt (see “INT n/INTO/INT3/INT1—Call to Inter-
rupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is not executed.



6-52 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external agent detected 
a bus error. The machine-check exception is model-specific, available on the Pentium and later generations of 
processors. The implementation of the machine-check exception is different between different processor families, 
and these implementations may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID 
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the BINIT# and MCERR# 
pins on the Pentium 4, Intel Xeon, and P6 family processors and the BUSCHK# pin on the Pentium processor. When 
one of these pins is enabled, asserting the pin causes error information to be loaded into machine-check registers 
and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter 15, “Machine-
Check Architecture.” Also, see the data books for the individual processors for processor-specific hardware infor-
mation. 

Exception Error Code

None. Error information is provided by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check state registers are 
directly associated with the error that caused the machine-check exception to be generated (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP 
registers are directly associated with the error that caused the machine-check exception to be generated; if the flag 
is clear, the saved instruction pointer may not be associated with the error (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4. 

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change always accompanies a 
machine-check exception, and an abort class exception is generated. For abort exceptions, information about the 
exception can be collected from the machine-check MSRs, but the program cannot generally be restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear), a machine-check 
exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The appropriate status 
flag in the MXCSR register must be set and the particular exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/ SSE2/SSE3 SIMD 
floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation exceptions; that is, 
they are detected before any arithmetic operation occurs. The numeric underflow, numeric overflow, and inexact 
result exceptions are post-computational exceptions.

See “SIMD Floating-Point Exceptions” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:
• It handles the exception automatically by producing the most reasonable result and allowing program 

execution to continue undisturbed. This is the response to masked exceptions.
• It generates a SIMD floating-point exception, which in turn invokes a software exception handler. This is the 

response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask bit in the MXCSR 
register. If an exception is masked (the corresponding mask bit in the MXCSR register is set), the processor takes 
an appropriate automatic default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-point exceptions (the OSXM-
MEXCPT flag in control register CR4 is set), a software exception handler is invoked through a SIMD floating-point 
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating system 
does not support unmasked SIMD floating-point exceptions), an invalid opcode exception (#UD) is signaled instead 
of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situation does not arise 
where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE/SSE2/SSE3 instruction will catch a 
pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point exceptions were 
masked (causing the corresponding exception flag to be set) and the SIMD floating-point exception was subse-
quently unmasked, then no exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up of two or four sub-
operands), multiple SIMD floating-point exception conditions may be detected. If no more than one exception 
condition is detected for one or more sets of sub-operands, the exception flags are set for each exception condition 
detected. For example, an invalid exception detected for one sub-operand will not prevent the reporting of a divide-
by-zero exception for another sub-operand. However, when two or more exceptions conditions are generated for 
one sub-operand, only one exception condition is reported, according to the precedences shown in Table 6-8. This 
exception precedence sometimes results in the higher priority exception condition being reported and the lower 
priority exception conditions being ignored.
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Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was executed when the 
SIMD floating-point exception was generated. This is the faulting instruction in which the error condition was 
detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the handling of the excep-
tion is immediate unless the particular exception is masked. The available state information is often sufficient to 
allow recovery from the error and re-execution of the faulting instruction if needed.

Table 6-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum, minimum, or certain compare and 
convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower priority exceptions. For exam-

ple, a QNaN divided by zero results in a QNaN, not a divide-by-zero- exception.
2. If masked, then instruction execution continues, and a lower priority exception can occur as well.
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Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause 
virtualization exceptions. See Section 25.5.7.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of program 
continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that 
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the 
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be 
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area. 
See Section 25.5.7.2 for details.
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Interrupt 21—Control Protection Exception (#CP)

Exception Class Fault.

Description

Indicates a control flow transfer attempt violated the control flow enforcement technology constraints.

Exception Error Code

Yes (special format). The processor provides the control protection exception handler with following information 
through the error code on the stack. 

• Bit 14:0 - CPEC

— 1 - NEAR-RET: Indicates the #CP was caused by a near RET instruction.

— 2 - FAR-RET/IRET: Indicates the #CP was caused by a FAR RET or IRET instruction.

— 3 - ENDBRANCH: indicates the #CP was due to missing ENDBRANCH at target of an indirect call or jump 
instruction.

— 4 - RSTORSSP: Indicates the #CP was caused by a shadow-stack-restore token check failure in the 
RSTORSSP instruction.

— 5- SETSSBSY: Indicates #CP was caused by a supervisor shadow stack token check failure in the SETSSBSY 
instruction.

• Bit 15 (ENCL) of the error code, if set to 1, indicates the #CP occurred during enclave execution.

Saved Instruction Pointer

The saved contents of the CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a control protection exception, because the instruction that 
causes the exception to be generated is not executed.

When a control protection exception is generated during a task switch, the program-state may change as follows. 
During a task switch, a control protection exception can occur during any of following operations:
• If task switch is initiated by IRET, CS and LIP stored on old task shadow stack do not match CS and LIP of new 

task (where LIP is the linear address of the return address).
• If task switch is initiated by IRET and SSP of new task loaded from shadow stack of old task (if new task CPL is 

< 3), OR the SSP from IA32_PL3_SSP (if new task CPL = 3) is not aligned to 4 bytes or is a value beyond 4GB.

Figure 6-12.  Exception Error Code Information
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In these cases the exception occurs in the context of the new task. The instruction pointer refers to the first instruc-
tion of the new task, not to the instruction which caused the task switch (or the last instruction to be executed, in 
the case of an interrupt). If the design of the operating system permits control protection faults to occur during 
task-switches, the control protection fault handler should be called through a task gate.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when the interrupt vector number 

associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n instruction or instruction 
following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or the INTR signal. The 
INT n instruction generates the interrupt within the instruction stream. When the processor receives an INTR 
signal, it commits all state changes for all previous instructions before it responds to the interrupt; so, program 
execution can resume upon returning from the interrupt handler.
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CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are only available when 
the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit tasks and the 16-bit 
TSS structure, see Section 7.6, “16-Bit Task-State Segment (TSS).” For information specific to task management in 
64-bit mode, see Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to execute a program, 
a task or process, an operating-system service utility, an interrupt or exception handler, or a kernel or executive 
utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for execution, and 
for switching from one task to another. When operating in protected mode, all processor execution takes place from 
within a task. Even simple systems must define at least one task. More complex systems can use the processor’s 
task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment (TSS). The task execution space 
consists of a code segment, a stack segment, and one or more data segments (see Figure 7-1). If an operating 
system or executive uses the processor’s privilege-level protection mechanism, the task execution space also 
provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage place for task state 
information. In multitasking systems, the TSS also provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor for execution, the 
segment selector, base address, limit, and segment descriptor attributes for the TSS are loaded into the task 
register (see Section 2.4.4, “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is loaded into control 
register CR3.
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7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES, 

FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).
• The state of the shadow stack pointer (SSP).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register. 
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the 
LDT.

7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to 
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the 
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task 

Figure 7-1.  Structure of a Task
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to handle an interrupt or exception, the IDT entry for the interrupt or exception must contain a task gate that holds 
the selector for the interrupt- or exception-handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently running task and the 
dispatched task. During a task switch, the execution environment of the currently executing task (called the task’s 
state or context) is saved in its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction pointed to by the newly loaded 
EIP register. If the task has not been run since the system was last initialized, the EIP will point to the first instruc-
tion of the task’s code; otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task), the TSS 
segment selector for the calling task is stored in the TSS of the called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor performs a task 
switch to handle the interrupt or exception and automatically switches back to the interrupted task upon returning 
from the interrupt-handler task or exception-handler task. This mechanism can also handle interrupts that occur 
during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have a different logical-
to-physical address mapping for LDT-based segments. The page-directory base register (CR3) also is reloaded on a 
task switch, allowing each task to have its own set of page tables. These protection facilities help isolate tasks and 
prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection between tasks. This is true even with 
operating systems that use multiple privilege levels for protection. A task running at privilege level 3 that uses the 
same LDT and page tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other 
tasks.

Use of task management facilities for handling multitasking applications is optional. Multitasking can be handled in 
software, with each software defined task executed in the context of a single IA-32 architecture task.

If shadow stack is enabled, then the SSP of the task is located at the 4 bytes at offset 104 in the 32-bit TSS and is 
used by the processor to establish the SSP when a task switch occurs from a task associated with this TSS. Note 
that the processor does not write the SSP of the task initiating the task switch to the TSS of that task, and instead 
the SSP of the previous task is pushed onto the shadow stack of the new task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one task, and the 
segment selector for the TSS must be loaded into the task register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system segment called the task-state 
segment (TSS). Figure 7-2 shows the format of a TSS for tasks designed for 32-bit CPUs. The fields of a TSS are 
divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, “16-Bit Task-State Segment 
(TSS).” For information about 64-bit mode task structures, see Section 7.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic 
fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior 

to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the 

task switch.
• EFLAGS register field — State of the EFLAGS register prior to the task switch.

Figure 7-2.  32-Bit Task-State Segment (TSS)
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• EIP (instruction pointer) field — State of the EIP register prior to the task switch.
• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task 

switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link 
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is 
created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's LDT.
• CR3 control register field — Contains the base physical address of the page directory to be used by the task. 

Control register CR3 is also known as the page-directory base register (PDBR).
• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a logical address made 

up of the segment selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, 
ESP1, and ESP2). Note that the values in these fields are static for a particular task; whereas, the SS and ESP 
values will change if stack switching occurs within the task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise a debug exception 
when a task switch to this task occurs (see Section 17.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the TSS to the I/O permission bit 
map and interrupt redirection bitmap. When present, these maps are stored in the TSS at higher addresses. 
The I/O map base address points to the beginning of the I/O permission bit map and the end of the interrupt 
redirection bit map. See Chapter 19, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit map. See Section 20.3, 
“Interrupt and Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt redirection 
bit map.

• Shadow Stack Pointer (SSP) — Contains task's shadow stack pointer. The shadow stack of the task should 
have a supervisor shadow stack token at the address pointed to by the task SSP (offset 104). This token will be 
verified and made busy when switching to that shadow stack using a CALL/JMP instruction, and made free 
when switching out of that task using an IRET instruction.

If paging is used: 
• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor table entries for 

each all should be marked as read/write. 
• Task switches are carried out faster if the pages containing these structures are present in memory before the 

task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 shows the format of a TSS 
descriptor. TSS descriptors may only be placed in the GDT; they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the current LDT) causes 
a general-protection exception (#GP) to be generated during CALLs and JMPs; it causes an invalid TSS exception 
(#TS) during IRETs. A general-protection exception is also generated if an attempt is made to load a segment 
selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently running or suspended. 
A type field with a value of 1001B indicates an inactive task; a value of 1011B indicates a busy task. Tasks are not 
recursive. The processor uses the busy flag to detect an attempt to call a task whose execution has been inter-
rupted. To ensure that there is only one busy flag is associated with a task, each TSS should have only one TSS 
descriptor that points to it.
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The base, limit, and DPL fields and the granularity and present flags have functions similar to their use in data-
segment descriptors (see Section 3.4.5, “Segment Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-
bit TSS, the limit field must have a value equal to or greater than 67H, one byte less than the minimum size of a 
TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS excep-
tion (#TS). A larger limit is required if an I/O permission bit map is included or if the operating system stores addi-
tional data. The processor does not check for a limit greater than 67H on a task switch; however, it does check 
when accessing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically equal to or less than 
the DPL of the TSS descriptor) can dispatch the task with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged software can 
perform task switching. However, in multitasking applications, DPLs for some TSS descriptors may be set to 3 to 
allow task switching at the application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a 64-bit TSS is 
described in Section 7.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This expansion also applies to an LDT 
descriptor in 64-bit mode. Table 3-2 provides the encoding information for the segment type field.

Figure 7-3.  TSS Descriptor
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7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 bits 
in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see Figure 2-6). 
This information is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 shows the path the 
processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained 
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS 
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor 
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task 
register) and STR (store task register) instructions load and read the visible portion of the task register: 

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS descriptor 
in the GDT. It then loads the invisible portion of the task register with information from the TSS descriptor. LTR is a 
privileged instruction that may be executed only when the CPL is 0. It’s used during system initialization to put an 
initial value in the task register. Afterwards, the contents of the task register are changed implicitly when a task 
switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose register 
or memory. This instruction can be executed by code running at any privilege level in order to identify the currently 
running task. However, it is normally used only by operating system software. (If CR4.UMIP = 1, STR can be 
executed only when CPL = 0.)

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the limit 
is set to FFFFH.

Figure 7-4.  Format of TSS and LDT Descriptors in 64-bit Mode
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7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see Figure 7-6). It can be placed in the 
GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the 
GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch. When a program or 
procedure makes a call or jump to a task through a task gate, the CPL and the RPL field of the gate selector pointing 
to the task gate must be less than or equal to the DPL of the task-gate descriptor. Note that when a task gate is 
used, the DPL of the destination TSS descriptor is not used.

Figure 7-5.  Task Register

Figure 7-6.  Task-Gate Descriptor

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base AddressTask
Invisible PartVisible Part

TSS

Register

31 16 15 1314 12 11 8 7 0

P
D
P
L

Type

0

31 16 15 0

TSS Segment Selector

1010

DPL
P
TYPE

Descriptor Privilege Level
Segment Present
Segment Type

4

0Reserved

ReservedReserved



Vol. 3A 7-9

TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these structures satisfy 
the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task is stored in the TSS 

descriptor, each task should have only one TSS descriptor. There may, however, be several task gates that 
reference the same TSS descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because they can reside in an LDT and 
can have a DPL that is different from the TSS descriptor's DPL. A program or procedure that does not have 
sufficient privilege to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) may be 
allowed access to the task through a task gate with a higher DPL. Task gates give the operating system greater 
latitude for limiting access to specific tasks.

• Need for an interrupt or exception to be handled by an independent task — Task gates may also reside 
in the IDT, which allows interrupts and exceptions to be handled by handler tasks. When an interrupt or 
exception vector points to a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the IDT can all point to 
the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the 

GDT or the current LDT.

Figure 7-7.  Task Gates Referencing the Same Task
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• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a 
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the 
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task 
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to JMP 
and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new task 
must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions, 
interrupts (except for those identified in the next sentence), and the IRET and INT1 instructions are permitted 
to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated by 
the INT n, INT3, and INTO instructions, the DPL is checked and a general-protection exception (#GP) results if 
it is less than the CPL.1

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal 
to 67H). If the task switch was initiated by IRET and shadow stacks are enabled at the current CPL, then the 
SSP must be aligned to 8 bytes, else a #TS(current task TSS) fault is generated. If CR4.CET is 1, then the TSS 
must be a 32 bit TSS and the limit of the new task’s TSS must be greater than or equal to 107 bytes, else a 
#TS(new task TSS) fault is generated.

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged into 
system memory.

6. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the 
current TSS in the task register and then copies the states of the following registers into the current TSS: all the 
general-purpose registers, segment selectors from the segment registers, the temporarily saved image of the 
EFLAGS register, and the instruction pointer register (EIP).

7. Loads the task register with the segment selector and descriptor for the new task's TSS.

8. If CET is enabled, the processor performs following shadow stack actions:
Read CS of new task from new task TSS
Read EFLAGS of new task from new task TSS
IF EFLAGS.VM = 1

THEN
new task CPL = 3;

ELSE
new task CPL = CS.RPL;

FI;
pushCsLipSsp = 0
IF task switch was initiated by CALL instruction, exception or interrupt

IF shadow stack enabled at current CPL
IF new task CPL < CPL and current task CPL = 3

THEN
IA32_PL3_SSP = SSP (* user → supervisor *)

ELSE
pushCsLipSsp = 1 (* no privilege change; supv → supv; supv → user *) tempSSP = SSP

1. The INT1 has opcode F1; the INT n instruction with n=1 has opcode CD 01.
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tempSsLIP =CSBASE + EIP
tempSsCS = CS

FI;
FI;

FI;
verifyCsLIP = 0
IF task switch was initiated by IRET

IF shadow stacks enabled at current CPL
IF (CPL of new Task = CPL of current Task) OR

(CPL of new Task < 3 AND CPL of current Task < 3) OR
(CPL or new Task < 3 AND CPL of current task = 3)

(* no privilege change or supervisor → supervisor or user → supervisor IRET *)
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
verifyCsLIP = 1

FI;
// Clear busy flag on current shadow stack
 IF ( SSP & 0x07 == 0 ) (* SSP must be aligned to 8B *)

THEN
            expected_token_value = (SSP & ~0x07) | BUSY_BIT;  (* busy - bit 0 - must be set*)
            new_token_value          = SSP                                          (* clear the busy bit *)
            shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)
        FI;

SSP = 0
FI;

FI;

9. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3), the 
EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during the 
load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the new 
task's TSS, but it is not loaded into CR3.)

10. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the 
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy 
(B) flag is left set. (See Table 7-2.)

11. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily saved 
image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt, the NT 
flag is left unchanged in the saved EFLAGS image.

12. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the 
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT 
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

13. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the 
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy 
(B) flag is left set.

14. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with this 
loading and qualification occur in the context of the new task and may corrupt architectural state.
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15. If CET is enabled, the processor performs following shadow stack actions:
IF shadow stack enabled at current CPL OR indirect branch tracking at current CPL

THEN
IF EFLAGS.VM = 1

THEN #TSS(new-Task-TSS);FI;
FI;
IF shadow stack enabled at current CPL

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception (* switch stack *)
new_SSP ← Load the 4 byte from offset 104 in the TSS
// Verify new SSP to be legal
IF new_SSP & 0x07 != 0

THEN #TSS(New-Task-TSS); FI;
expected_token_value = SSP;                     (* busy - bit 0 - must be clear *)
new_token_value          = SSP | BUSY_BIT (* set the busy bit - bit 0*)

    IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, 
                                                                   expected_token_value) != expected_token_value
         THEN #TSS(New-Task-TSS); FI;

SSP = new_SSP
IF pushCsLipSsp = 1 (* call, int, exception from user → user or supv → supv or supv → user *)

Push tempSsCS, tempSsLip, tempSsSSP on shadow stack using 8B pushes
FI;

FI;
FI;
IF task switch initiated by IRET

IF verifyCsLIP = 1
(* do 64 bit comparisons; CS zero padded to 64 bit; CSBASE+EIP zero padded to 64 bit *)
IF tempSsCS and tempSsLIP do not match CS and CSBASE+EIP

THEN #CP(FAR-RET/IRET); FI;
FI;
IF ShadowStackEnabled(CPL)

THEN
IF (verifyCsLIP == 0) tempSSP = IA32_PL3_SSP;

IF tempSSP & 0x03 != 0 THEN #CP(FAR-RET/IRET) // verify aligned to 4 bytes
IF tempSSP[63:32] != 0 THEN # CP(FAR-RET/IRET)

SSP = tempSSP
FI;

FI;
IF EndbranchEnabled(CPL)

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception
IF CPL = 3

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0
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ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

FI;

16. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to 
have been executed.)

NOTES
If all checks and saves have been carried out successfully, the processor commits to the task 
switch. If an unrecoverable error occurs in steps 1 through 8, the processor does not complete the 
task switch and ensures that the processor is returned to its state prior to the execution of the 
instruction that initiated the task switch.

If an unrecoverable error occurs in step 9, architectural state may be corrupted, but an attempt will 
be made to handle the error in the prior execution environment. If an unrecoverable error occurs 
after the commit point (in step 13), the processor completes the task switch (without performing 
additional access and segment availability checks) and generates the appropriate exception prior to 
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself 
before allowing the processor to begin executing the new task. See Chapter 6, “Interrupt 
10—Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task 
when they occur after the commit point of a task switch.

The state of the currently executing task is always saved when a successful task switch occurs. If the task is 
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored to 
the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended 
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is 
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege 
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the 
exception that is generated for each check if an error is detected and the segment that the error code references. 
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model specific 
and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be 
subject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause of 
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1.  Exception Conditions Checked During a Task Switch 
Condition Checked Exception1 Error Code Reference2

Segment selector for a TSS descriptor references 
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

P bit is set in TSS descriptor. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a call, interrupt, or 
exception).

#GP (for JMP, CALL, INT) Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by an IRET instruction). #TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) or 44 (for 16-bit 
TSS).

#TS New Task’s TSS
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The TS (task switched) flag in the control register CR0 is set every time a task switch occurs. System software uses 
the TS flag to coordinate the actions of floating-point unit when generating floating-point exceptions with the rest 
of the processor. The TS flag indicates that the context of the floating-point unit may be different from that of the 
current task. See Section 2.5, “Control Registers”, for a detailed description of the function and use of the TS flag.

TSS segment limit greater than or equal to 108 (for 32-bit TSS) if CR4.CET = 1.3 #TS New Task’s TSS

If shadow stack enabled and SSP not aligned to 8 bytes (for task switch initiated 
by an IRET instruction).3

#TS Current Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 4. #TS New Task’s LDT

If code segment is non-conforming, its DPL should equal its RPL. #TS New Code Segment

If code segment is conforming, its DPL should be less than or equal to its RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

P bit is set in stack segment descriptor. #SS New Stack Segment

Stack segment DPL should equal CPL. #TS New stack segment

P bit is set in new task's LDT descriptor. #TS New Task’s LDT

CS segment selector is valid 4. #TS New Code Segment

P bit is set in code segment descriptor. #NP New Code Segment

Stack segment DPL should equal its RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 4. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment

P bits are set in descriptors of DS, ES, FS, and GS segments. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

Shadow Stack Pointer in a task not aligned to 8 bytes (for task switch initiated by 
a call, interrupt, or exception).3

#TS New Task’s TSS

If EFLAGS.VM=1 and shadow stacks are enabled.3 #TS New Task’s TSS

Supervisor Shadow Stack Token verification failures (for task switch initiated by a 
call, interrupt, jump, or exception):3

- Busy bit already set.

- Address in Shadow stack token does not match SSP value from TSS.

#TS New Task’s TSS

If task switch initiated by IRET, CS and LIP stored on old task shadow stack does 
not match CS and LIP of new task.3

#CP FAR-RET/IRET

If task switch initiated by IRET and SSP of new task loaded from shadow stack of 
old task (if new task CPL is < 3) OR the SSP from IA32_PL3_SSP (if new task CPL 
= 3) fails the following checks:3

- Not aligned to 4 bytes.

- Is beyond 4G.

#CP FAR-RET/IRET

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS is stack-fault 

exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. Valid when CET is enabled.
4. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table's segment limit, 

and refers to a compatible type of descriptor (for example, a segment selector in the CS register only is valid when it points to a 
code-segment descriptor).

Table 7-1.  Exception Conditions Checked During a Task Switch  (Contd.)
Condition Checked Exception1 Error Code Reference2
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7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the EFLAGS register are 
used to return execution to the previous task. EFLAGS.NT = 1 indicates that the currently executing task is nested 
within the execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor copies the segment 
selector for the current TSS to the previous task link field of the TSS for the new task; it then sets EFLAGS.NT = 1. 
If software uses an IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; it then 
uses the value in the previous task link field to return to the previous task. See Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link field is not used and 
EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when nesting is not desired.

Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task link field, and TS flag 
(in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a program to set the NT 
flag and execute an IRET instruction. This might randomly invoke the task specified in the previous link field of the 
current task's TSS. To keep such spurious task switches from succeeding, the operating system should initialize the 
previous task link field in every TSS that it creates to 0.

Figure 7-8.  Nested Tasks

Table 7-2.  Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP instruction Effect of CALL Instruction or 
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new task. Flag is set. Must have been 
clear before.

Flag is set. Must have been 
clear before.

No change. Must have been set.

Busy flag of old task. Flag is cleared. No change. Flag is currently 
set.

Flag is cleared.

NT flag of new task. Set to value from TSS of new 
task.

Flag is set. Set to value from TSS of new 
task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of new 
task.

No change. Loaded with selector 
for old task’s TSS.

No change.

Previous task link field of old 
task.

No change. No change. No change.

TS flag in control register CR0. Flag is set. Flag is set. Flag is set.
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Task
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Previous

TSS
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Task
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7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called (dispatched), a recursive (or 
re-entrant) call to the task would cause the current state of the task to be lost. The busy flag in the TSS segment 
descriptor is provided to prevent re-entrant task switching and a subsequent loss of task state information. The 
processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being generated by a 
CALL instruction, an interrupt, or an exception), the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception), the processor 
generates a general-protection exception (#GP) if the busy flag of the new task is already set. If the task switch 
is initiated with an IRET instruction, the exception is not raised because the processor expects the busy flag to 
be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the task code) or by an 
IRET instruction in the task code, the processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or to any task in a 
nested chain of tasks. The chain of nested suspended tasks may grow to any length, due to multiple calls, inter-
rupts, or exceptions. The busy flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a LOCK protocol (on the 
bus or in the cache) when it sets or clears the busy flag. This lock keeps two processors from invoking the same 
task at the same time. See Section 8.1.2.1, “Automatic Locking,” for more information about setting the busy flag 
in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a chain of linked tasks, use the 
following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that suspended the task to be 
removed). It is assumed that the pre-empting task is the next task (newer task) in the chain from the task to 
be removed. Change the previous task link field to point to the TSS of the next oldest task in the chain or to an 
even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the chain. If more than 
one task is being removed from the chain, the busy flag for each task being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be added to this proce-
dure to ensure that the TSS and its segment descriptor are both locked when the previous task link field is changed 
and the busy flag is cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. These segments include the code, 
data, stack, and system segments referenced in the TSS and any other segments accessed by the task code. The 
segments are mapped into the processor’s linear address space, which is in turn mapped into the processor’s phys-
ical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its own LDT allows the 
task address space to be isolated from other tasks by placing the segment descriptors for all the segments associ-
ated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow specific tasks to 
communicate with or control each other, without dropping the protection barriers for the entire system.
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Because all tasks have access to the GDT, it also is possible to create shared segments accessed through segment 
descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own set of page tables 
for mapping linear addresses to physical addresses. Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one of two ways:
• One linear-to-physical address space mapping is shared among all tasks. — When paging is not 

enabled, this is the only choice. Without paging, all linear addresses map to the same physical addresses. When 
paging is enabled, this form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available physical space if demand-paged 
virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical address space. — This form 
of mapping is accomplished by using a different page directory for each task. Because the PDBR (control 
register CR3) is loaded on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses. If the entries of 
different page directories point to different page tables and the page tables point to different pages of physical 
memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a shared area of the 
physical space, which is accessible to all tasks. This mapping is required so that the mapping of TSS addresses does 
not change while the processor is reading and updating the TSSs during a task switch. The linear address space 
mapped by the GDT also should be mapped to a shared area of the physical space; otherwise, the purpose of the 
GDT is defeated. Figure 7-9 shows how the linear address spaces of two tasks can overlap in the physical space by 
sharing page tables. 

Figure 7-9.  Overlapping Linear-to-Physical Mappings
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7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create shared logical-to-physical 
address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access to the segment descriptors in 

the GDT. If some segment descriptors in the GDT point to segments in the linear-address space that are 
mapped into an area of the physical-address space common to all tasks, then all tasks can share the data and 
code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in their TSSs point to the 
same LDT. If some segment descriptors in a shared LDT point to segments that are mapped to a common area 
of the physical address space, the data and code in those segments can be shared among the tasks that share 
the LDT. This method of sharing is more selective than sharing through the GDT, because the sharing can be 
limited to specific tasks. Other tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to common addresses in linear 
address space — If this common area of the linear address space is mapped to the same area of the physical 
address space for each task, these segment descriptors permit the tasks to share segments. Such segment 
descriptors are commonly called aliases. This method of sharing is even more selective than those listed above, 
because, other segment descriptors in the LDTs may point to independent linear addresses which are not 
shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286 processors (see 
Figure 7-10). This format is supported for compatibility with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory, which is loaded into control 

register CR3. A separate set of page tables for each task is not supported for 16-bit tasks. If a 16-bit task is 
dispatched, the page-table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of the I/O map are supported.
• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the EIP register are lost.
• When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16 bits of the registers 

are modified and not maintained.
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7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. However, the task switching 
mechanism available in protected mode is not supported in 64-bit mode. Task management and switching must be 
performed by software. The processor issues a general-protection exception (#GP) if the following is attempted in 
64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INT n, INT3, INTO, INT1, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment (TSS) must exist. 
Figure 7-11 shows the format of a 64-bit TSS. The TSS holds information important to 64-bit mode and that is not 
directly related to the task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR 
instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit TSS responsible for both 64-bit-
mode programs and compatibility-mode programs.

Figure 7-10.  16-Bit TSS Format
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Figure 7-11.  64-Bit TSS Format
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16.Updates to Chapter 10, Volume 3A
Change bars and green text show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------
Changes to this chapter: Updates to section 10.5.4, “APIC Timer” and typo corrections as necessary.
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CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC, 
was introduced into the IA-32 processors with the Pentium processor (see Section 22.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of the Local APIC”). The local 
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC 

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from 

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the 
processors in the system or to execute system wide functions (such as, booting up processors or distributing 
work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive external interrupt events 
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP 
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected 
processors or groups of processors on the system bus. 

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of 
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and 
exception handling mechanism described in Chapter 6, “Interrupt and Exception Handling.” See Section 6.1, “Inter-
rupt and Exception Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated hardware that control the 
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory 
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device 

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also 
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the 
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O 
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt 
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt 
another processor or group of processors on the system bus. IPIs are used for software self-interrupts, 
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its 
associated processor when a programmed count is reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the 
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see 
Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to 
themselves when the internal thermal sensor has been tripped (see Section 14.8.2, “Thermal Monitor”).
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• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an 
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its 
associated processor (see Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring 
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources. 
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector 
table or LVT (see Section 10.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for 
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For 
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up 
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs) 
through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section 
10.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated 
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6 
family processors). See Section 10.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target 
processor receives an IPI message, its local APIC handles the message automatically (using information included 
in the message such as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor Interrupts,” 
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see 
Figure 10-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices 
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O 
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt 
controller. Note that the local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local APIC”). 
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

 

Figure 10-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems
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Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 10-2 and 10-3). Each 
local APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated inter-
rupts. Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this 
mechanism is commonly not used in MP systems.

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number) 
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to 
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI and 
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family 
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section 
10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”). 

 

Figure 10-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

 

Figure 10-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems
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10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 10-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its 
messages are invisible to software and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 10-2). The I/O APIC sends interrupt requests to the 
processors on the system bus through bridge hardware that is part of the Intel chip set. The bridge hardware 
generates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on 
the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE 
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external 
APIC. See Section 22.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and 
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the 
system bus. With the APIC architecture, they communication through the APIC bus (see Section 10.2, “System Bus 
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC 
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions 
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its 
status. Descriptions of how to program the local APIC are given in Section 10.5.1, “Local Vector Table,” and Section 
10.6.1, “Interrupt Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading 
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical 
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 11.3, 
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially 
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial 
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to 
its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base 
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports 
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended 
processor addressability (see Section 10.12).
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NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to 
addresses within the 4-KByte APIC register space internally and no external bus cycles are 
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses 
to the APIC register space. Thus, for software intended to run on Pentium processors, system 
software should explicitly not map the APIC register space to regular system memory. Doing so can 
result in an invalid opcode exception (#UD) being generated or unpredictable execution.

Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits, 
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using 
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any 

Figure 10-4.  Local APIC Structure
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FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may 
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results 
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers 
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned. 

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated with the programming of the 
local APIC is the IA32_APIC_BASE MSR (see Section 10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem1 the Local APIC ID Register is 
no longer Read/Write; it is Read Only.

1. See Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel,” on page 1, and Section 2.8, “MSRs In the Intel® Microarchi-
tecture Code Name Nehalem” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 to determine which 
processors are based on Nehalem microarchitecture.

Table 10-1 Local APIC Register Address Map 

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section 
10.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.
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FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT Corrected Machine Check Interrupt (CMCI) Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through 
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-

ing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-

dent and may not be present in future IA-32 or Intel 64 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not 

be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software Read/Write
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10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using 
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 9 
of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local 
APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an 
on-chip APIC. The CPUID feature flag for the APIC (see Section 10.4.2, “Presence of the Local APIC”) is also 
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally 
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary 
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and 
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the 
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is 
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return 
to the state described in Section 10.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC 
software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23). The state of the 
local APIC when in this software-disabled state is described in Section 10.4.7.2, “Local APIC State After It 
Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC 
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset 
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the 
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, the thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 10-5). MSR bit 
functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See Section 8.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as 
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see Section 10.4.3, “Enabling or 
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not 
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC registers. This 24-bit value is 
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte 
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR2 through 63 in the IA32_APIC_BASE MSR are reserved.
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10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the base address field of the 
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory 
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to 
different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and 
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID 
is based on system topology and includes encoding for socket position and cluster information (see Figure 8-2 and 
Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some 
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is 
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID 
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a 
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and 
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3# 
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID 
register (see Figure 10-6), and is used as the Initial APIC ID for the processor. 

2. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by 
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)
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For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings 
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium 
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to 
identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following a power-up or reset, after the 
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1  Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s. 

• IRR, ISR, TMR, ICR, LDR, and TPR.

• Timer initial count and timer current count registers.

• Divide configuration register.
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID 

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the 

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 8.4.1, “BSP 

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to 
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will 
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only, 
an AP will not respond to a STPCLK# signal.

Figure 10-6.  Local APIC ID Register
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10.4.7.2  Local APIC State After It Has Been Software Disabled 
When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as 
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 10.4.3, 
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled 
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism 

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception of any interrupt or transmission of any IPIs that are in progress when the local APIC is disabled 

are completed before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep 

its arbitration ID synchronized with the rest of the system.

10.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization 
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as 
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This 
state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

10.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the 
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register. 

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to identify the APIC version 
(see Figure 10-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a 
specific implementation. 

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which 

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT 
entries), the value returned is 3. For processors based on the Intel microarchitecture code 
name Nehalem (which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the 
Spurious Interrupt Vector Register; see Section 10.8.5 and Section 10.9.
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10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for handling local interrupts. These 
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the thermal 
sensor, and the internal APIC error detector. Local interrupt handling facilities include: the LVT, the error status 
register (ESR), the divide configuration register (DCR), and the initial count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the 
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected 

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see 
Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt 
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor 
generates an interrupt (see Section 14.8.2, “Thermal Monitor”). This LVT entry is implementation specific, not 
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance 
counter generates an interrupt on overflow (see Section 18.6.3.5.8, “Generating an Interrupt on Overflow”). 
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base 
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0 
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1 
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error 
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are 
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Figure 10-7.  Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 0BNN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
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Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only 
operate as intended when used in conjunction with a specific trigger mode. The allowable 
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should 
be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored. 

101 (INIT) Delivers an INIT request to the processor core, which causes the processor 
to perform an INIT. When using this delivery mode, the vector field should 

Figure 10-8.  Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†
0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a 

performance monitoring counters interrupt is generated, 
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
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be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter 
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller. 
A special INTA bus cycle corresponding to ExtINT, is routed to the external 
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system, 
usually contained in the compatibility bridge. Only one processor in the 
system should have an LVT entry configured to use the ExtINT delivery 
mode. Not supported for the LVT CMCI register, the LVT thermal monitor 
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 10.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low. 

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the 
interrupt for servicing and is reset when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level 
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is 
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always 
treated as edge sensitive. 
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is 
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive 
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive). 
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset. 
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4): 
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see 
Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 6.2, 
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) as 
valid interrupts.
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When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an 
illegal vector in its Error Status Register (see Section 10.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table 
6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0), 
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is 
actually seen on the input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of 
the ESR is given in Figure 10-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6 
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on 
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used 
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus, 
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local 
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors. 
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should 
be avoided.

Figure 10-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
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• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending. 
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC 
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a 
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectable IPI” error bit. The interrupt is 
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives 
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not delivered 
to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the 
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space 
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel 
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one 
of these instructions to access a reserved register cause a general-protection exception (see Section 
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value 
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears 
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This 
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the 
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt. 
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations. 
This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the initial-
count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the 
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal 
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

Figure 10-10.  Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234
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The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the 
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, a timer interrupt is generated and the timer 
remains at its 0 value until reprogrammed. 

In periodic mode, the timer is started by writing to the initial-count register (as in one-shot mode), and the value 
written is copied into the current-count register, which counts down. The current-count register is automatically 
reloaded from the initial-count register when the count reaches 0 and a timer interrupt is generated, and the 
count-down is repeated. If during the count-down process the initial-count register is set, counting will restart, 
using the new initial-count value. The initial-count register is a read-write register; the current-count register is 
read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that 
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the 
timer interrupt.

NOTE
Changing the mode of the APIC timer (from one-shot to periodic or vice versa) by writing to the 
timer LVT entry does not start the timer. To start the timer, it is necessary to write to the initial-
count register as described above.

10.5.4.1  TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically:
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register.
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If 

CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) 

The supported timer modes are given in Table 10-2. The three modes of the local APIC timer are mutually exclu-
sive.

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead, 
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

 

Figure 10-11.  Initial Count and Current Count Registers

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which 
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the 
IA32_TSC_DEADLINE MSR.3 When the timer generates an interrupt, it disarms itself and clears the 
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning 
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the 
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This 
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that 
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR 

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the 
IA32_TSC_DEADLINE and other MSR registers will occur in program order. 

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR. 
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the 

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a spurious 

timer interrupt. Software is expected to detect such spurious interrupts by checking the current value of the 
time-stamp counter to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the 
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after the 
memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write to 
the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the deadline; no 
fencing is required.)

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt 
acceptance flow chart in Figure 10-17. If the interrupt is accepted, it is logged into the IRR register and handled by 
the processor according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the 
interrupt is not accepted, it is sent back to the local APIC and retried.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may 
not return the actual value of the time-stamp counter; see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the 
time-stamp counter and the IA32_TSC_DEADLINE MSR.
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10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs) 
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can 
be used for the following functions:
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• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for 

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors. 

Interrupts generated with this facility are delivered to the other processors in the system through the system bus 
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a 
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see Figure 10-12) that allows software 
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination 
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status 
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H). In x2APIC mode, 
the ICR uses MSR 830H.

Figure 10-12.  Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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The ICR consists of the following fields. 
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor or 
processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the proces-
sor executing at the lowest priority among the set of processors specified 
in the destination field. The ability for a processor to send a lowest priority 
IPI is model specific and should be avoided by BIOS and operating system 
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector 
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector 
information is ignored. 

101 (INIT) Delivers an INIT request to the target processor or processors, which 
causes them to perform an INIT. As a result of this IPI message, all the tar-
get processors perform an INIT. The vector field must be programmed to 
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs 
(see Section 10.7, “System and APIC Bus Arbitration”). For this delivery 
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is 
sent to all processors, regardless of the value in the destination field or the 
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand. 

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or 
processors. The vector typically points to a start-up routine that is part of 
the BIOS boot-strap code (see Section 8.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried 
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if 
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 10.6.2, “Determining 
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery 
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors, 
and will always be issued as a 1.)
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Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level 
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel 
Xeon processors, and will always be issued as a 0.) 

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and, 
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR. 
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors in 
the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination 
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message 
internally or to issue the message to the bus and “snoop” it as with any 
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination 
field set to FH for Pentium and P6 family processors and to FFH for Pentium 
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical 
destination mode and destination field set to FH for Pentium and P6 family 
processors and to FFH for Pentium 4 and Intel Xeon processors. Support 
for this destination shorthand in conjunction with the lowest-priority deliv-
ery mode is model specific. For Pentium 4 and Intel Xeon processors, when 
this shorthand is used together with lowest priority delivery mode, the IPI 
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination short-
hand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56 
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon 
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination 
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid combinations for the fields in the 
ICR for the Pentium 4 and Intel Xeon processors; Table 10-4 shows the valid combinations for the fields in the ICR 
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the 
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.
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Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an 

edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing 

APIC, which is essentially the same as the “all including self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command Register
Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self Valid2 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert). 

Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.
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10.6.2 Determining IPI Destination
The destination of an IPI5 can be one, all, or a subset (group) of the processors on the system bus. The sender of 
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI.

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination 
processor; in logical destination mode, used to specify a message destination address (MDA) that can be 
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the 
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism 
be used to select a destination processor from a specified group of processors. The ability of a processor to 
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical, 
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following 
sections.

10.6.2.1  Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC ID (see Section 10.4.6, “Local 
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH) 
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery 
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that 
APICs defined in the interrupt address are present and enabled to receive interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local 
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local 
APICs is specified with 0FH.

NOTE
The number of local APICs that can be addressed on the system bus may be restricted by hardware.

10.6.2.2  Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which is 
entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination 
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should 
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority 
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or 
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this 
register is used to create an identifier that can be compared with the MDA.

5. Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.
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NOTE
The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC 
ID register.

Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects 
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical 
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR 
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA. 
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition (non-zero) is 
detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports 
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all 
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded 
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each 
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local 
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local 
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to 
identify a local APICs within the cluster. 
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63 
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members 
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can 
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration 
ID supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported 
in this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This 
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem 
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium 
processors. With this model, a hierarchical network can be created by connecting different flat clusters via 

Figure 10-13.  Logical Destination Register (LDR)

Figure 10-14.  Destination Format Register (DFR)
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independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents. 
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-
chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC 
units.

NOTES
All processors that have their APIC software enabled (using the spurious vector enable/disable bit) 
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed 
before the APIC is software enabled. Since some chipsets do not accurately track a system view of 
the logical mode, program DFRs as soon as possible after starting the processor.

10.6.2.3  Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI 
to all the processors on the system bus and/or back to itself (see Section 10.6.1, “Interrupt Command Register 
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination 
mode is ignored when a destination shorthand is used.

10.6.2.4  Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus, 
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then 
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC 
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority 
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The 
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task 
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest 
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in 
the arbitration priority register (APR) in each local APIC. Figure 10-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 
THEN 

APR[7:0] ← TPR[7:0]
ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

 

Figure 10-15.  Arbitration Priority Register (APR)
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Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV value is the vector number 
for the highest priority bit that is set in the IRR (see Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value 
is the vector number for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitration 
among the destination processors, the processor with the lowest value in its APR handles the IPI and the other 
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt, 
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt 
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not 
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information 
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the 
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information 
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the 
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issues in 
described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC 
bus), the order in which the messages are sent and handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the 
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be 
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to 
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15, 
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus. 
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration 
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID) 
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The 
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and 
Intel Xeon processors do not implement the Arb ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes 
the APIC bus arbitration protocols and bus message formats, while Section 10.6.1, “Interrupt Command Register 
(ICR),” describes the INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register (ICR)”), all bus messages that 
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid 
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly. Additionally, interrupt sources that target the APIC should be masked or changed to no longer target the 
APIC.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or an IPI, the 
manner in which it handles the message depends on processor implementation, as described in the following 
sections.
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10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the specified destination, it 
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR. 

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 
register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered 
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to 
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) The local APIC examines the IPI message to determines if it is the specified destination for the IPI 
as described in Section 10.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its 
acceptance procedure; if it is not the destination, it discards the IPI message. When the message specifies 
lowest-priority delivery mode, the local APIC will arbitrate with the other processors that were designated as 
recipients of the IPI message (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and 
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt 
queues contained in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4, 
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects 
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 

Figure 10-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)
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register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts) 
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in 
greater detail. 

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local 
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor, 
including the servicing of other interrupts. 

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector. 
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by 
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in 
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority 
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the 

Figure 10-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)
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priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits 
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

10.8.3.1  Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the order in which interrupts 
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be 
written by software (TPR is a read/write register); see Figure 10-18. 

NOTE
In this discussion, the term “task” refers to a software defined task, process, thread, program, or 
routine that is dispatched to run on the processor by the operating system. It does not refer to an 
IA-32 architecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables 
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the 
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls 
the value of the processor-priority register (PPR).6

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority 
register (PPR); see Figure 10-19. The PPR is a read-only register. The processor-priority class represents the 
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest 
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 10.8.4 for more details on the ISR.) 
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the 

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

 

Figure 10-18.  Task-Priority Register (TPR)

6. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest Priority Delivery Mode.”

 

Figure 10-19.  Processor-Priority Register (PPR)
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The processor-priority class determines the priority threshold for interrupting the processor. The processor will 
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the 
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor 
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts 
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to delivery and which to 
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt 
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in 
Figure 10-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved 
by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the 
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for 
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the 
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest 
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR 
is then dispatched to the processor core for servicing. 

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by 
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 10.8.5, 
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is 
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in 
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector 
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can 
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued 
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per 
interrupt vector and will reject other interrupts that are received within the same vector. 

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in 
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to 
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt 
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-
priority interrupt has been completed, the servicing of the interrupted interrupt is resumed.

 

Figure 10-20.  IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H 

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H
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The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 10-20). Upon acceptance 
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an EOI 
message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery 
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 10-21). This 
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that 
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority 
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an 
end-of-interrupt message to all I/O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see 
Section 10.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts 
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of 
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see 
Section 10.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both 
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious 
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed 
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in 
the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 10.8.3, “Interrupt, 
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR 
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading 
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be 
blocked. For example: 
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of 

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts. 
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts. 

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR 
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8 

Figure 10-21.  EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H
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instruction completes execution. Software does not need to force serialization after loading the TPR using MOV 
CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0 
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted 
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The 
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or 
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged. 

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must 
be written with zeros. Failure to do this causes a general-protection exception.

10.8.6.1  Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller 
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the 
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority 

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the 

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should 
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the 
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the 
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a 
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this 
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see 
Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates 

a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by 
software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by 
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through 
3 have no effect.

APIC Software Enable/Disable

Figure 10-22.  CR8 Register

63 0

Value after reset: 0H

34

Reserved
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Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3, 
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should 
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not 
support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A 
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or 
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all 
interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using 
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as 
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a 
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs 
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type 
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus. 

Figure 10-23.  Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors. See bit 24 of Local APIC Version Register.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled
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By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is 
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner 
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent 
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous 
winner’s arbitration priority, incremented by 1. 

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless 
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, “Lowest Priority Delivery Mode”) 
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration 
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest 
priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit 
messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts. 
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request 
service by writing a system-specified message to a system-specified address (PCI DWORD memory 
write transaction). The transaction address specifies the message destination while the transaction 
data specifies the message. System software is expected to initialize the message destination and 
message during device configuration, allocating one or more non-shared messages to each MSI 
capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI 
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address 
Register. To request service, the PCI device function writes the contents of the Message Data Register to the 
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message 
addresses). 

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address Register and the Message Data 
Register. The operation issued by the device is a PCI write command to the Message Address Register with the 
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a 
DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

Figure 10-24.  Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
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Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at 
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt 
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s). 
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to 
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — When this bit is set, the message is directed to the processor with the 
lowest interrupt priority among processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field. 

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to FFH; 
it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the 
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to 
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model, 
then Destination ID field must not be set to FFH; the processors identified with this field must be 
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical 
or physical APIC ID for delivery of the lowest priority interrupt. 

• If RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the processor in 
the system that has the matching APIC ID is considered for delivery of that interrupt (this means no re-
direction). 

• If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical destination mode and the 
redirection is limited to only those processors that are part of the logical group of processors based on 
the processor’s logical APIC ID and the Destination ID field in the message. The logical group of 
processors consists of those identified by matching the 8-bit Destination ID with the logical destination 
identified by the Destination Format Register and the Logical Destination Register in each local APIC. 
The details are similar to those described in Section 10.6.2, “Determining IPI Destination.” 

• If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the 
physical or logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in 
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H 
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in 
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions 
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all 
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely 
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility. 
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d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is 
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is 
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt 
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle 
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered 
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 10.4) in a backward compatible 
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following.
• Retains all key elements of compatibility to the xAPIC architecture.

— Delivery modes.

— Interrupt and processor priorities.

— Interrupt sources.

— Interrupt destination types.
• Provides extensions to scale processor addressability for both the logical and physical destination modes.

Figure 10-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16  15 14 13 11 10 8 7 0

63 32
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• Adds new features to enhance performance of interrupt delivery.
• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped 

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit 21 
ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the 
x2APIC mode. 

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the 
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit 
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would 
require system software to disable the local APIC unit. Specifically, attempting to write a value to the 
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a 
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode using 
IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State 
Transitions” provides a detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1  Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for 
accessing the x2APIC registers are architecturally defined and specified in Section 10.12.1.2, “x2APIC Register 
Address Space”. Executing the RDMSR instruction with the APIC register address specified in ECX returns the 
content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these 
bits are reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with 
the APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If 
the register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The 

Figure 10-26.  IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations 

xAPIC global enable 
(IA32_APIC_BASE[11])

x2APIC enable 
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
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Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of 
handling reserved bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2  x2APIC Register Address Space
The MSR address range 800H through 8FFH is architecturally reserved and dedicated for accessing APIC registers 
in x2APIC mode. Table 10-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table 
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in 
xAPIC mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following 
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in 

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are 

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address 
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is 
no register defined at offset 3F0H.

MSR addresses in the range 800H–8FFH that are not listed in Table 10-6 (including 80EH and 831H) are reserved. 
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the 
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all 
x2APIC MSRs (except for the ICR) are reserved. 

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode) Register Name

MSR R/W 
Semantics Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for initial 
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode 
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register 
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes 
#GP(0).

80DH 0D0H Logical Destination Register 
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector 
Register (SVR)

Read/write See Section 10.9 for reserved bits.

810H 100H In-Service Register (ISR); bits 
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only
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817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR); 
bits 31:0 

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register 
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes 
#GP(0). See Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register 
(ICR)

Read/write See Figure 10-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 10-8 for reserved bits.

834H 340H LVT Performance Monitoring 
register

Read/write See Figure 10-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for reserved bits.

838H 380H Initial Count register (for 
Timer)

Read/write

839H 390H Current Count register (for 
Timer)

Read-only

83EH 3E0H Divide Configuration Register 
(DCR; for Timer)

Read/write See Figure 10-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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10.12.1.3  Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception 
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be 
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual 
number of bits that are implemented. All non-implemented bits will return zeros on reads by software. 
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local 
APIC ID register in the system are reserved and cannot be assigned to any logical processor. 

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H. 
Each logical processor in the system (including clusters with a communication fabric) must be configured with an 
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market 
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific 
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the 
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the 
disconnected components into a single system. 

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the 
x2APIC mode as described in Section 10.12.1. Accessing any APIC register in the MSR address range 0800H 
through 08FFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection 
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface 
will behave similar to that of a legacy xAPIC in globally disabled state. Table 10-7 provides the interactions between 
the legacy & extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed 
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC 
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A 
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this 
by inserting a serializing instruction or the sequence MFENCE;LFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC 
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing 
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset 

310H are accessible in x2APIC mode through the MSR at address 830H.
5. SELF IPI register is supported only in x2APIC mode.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available
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10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the 
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry 
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has specified 
that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range used 
for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition MSR 
areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression: “ENTRY_LOW_DW 
& FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading host state) and 
causes an associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these 
states as well as interactions of these states with INIT and reset. 

10.12.5.1  x2APIC States
The valid states for a local x2APIC unit are listed in Table 10-5.
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0.
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0.
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1.
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1.
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution 
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a 
general-protection exception. Figure 10-27 shows the comprehensive state transition diagram for a local x2APIC 
unit. 
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and 
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as follows.
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID are 

the legacy local xAPIC ID, and are stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode.

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Section 10.4 through Section 10.6 for 
details of individual APIC registers).

— Timer initial count and timer current count registers.
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH. 
• The DFR (available only in xAPIC mode) is reset to all 1s. 
• SELF IPI register is reset to zero.
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x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 10-6) 

is preserved across this transition and the logical x2APIC ID (see Figure 10-29) is initialized by hardware during 
this transition as documented in Section 10.12.10.2. The state of the extended fields in other APIC registers, 
which was not initialized at reset, is not architecturally defined across this transition and system software 
should explicitly initialize those programmable APIC registers. 

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local 
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC 
registers are initialized as a result of INIT. 
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is 
initialized as described in Section 10.12.5.1. All the other APIC registers are initialized described in Section 
10.12.5.1. 

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC 
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are 
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception. 
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are 
initialized as described in Section 10.12.5.1. 
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all 
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 10-27.  Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
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x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1, 
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process: 
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved 
across mode transitions. 
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID 
register) are initialized as described in Section 10.12.5.1. 
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC 
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved. 

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express (PCIe) 
devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only the 
following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to 
IOxAPIC units. This made possible through use of the interrupt-remapping architecture specified in the Intel® 
Virtualization Technology for Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to 
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping 
architecture specified in the Intel® Virtualization Technology for Directed I/O (Revision 1.3 and/or later versions). 
Because of this, BIOS must enumerate support for and software must enable this interrupt remapping with 
Extended Interrupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced 
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default 
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC 
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting 
an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that 
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH). 
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The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do 
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology 
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is 

greater than or equal or 11 (0BH), then proceed to next step
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero. 
If both of the above conditions are true, extended topology enumeration leaf is available. If available, the extended 
topology enumeration leaf is the preferred mechanism for enumerating topology. The presence of CPUID leaf 0BH 
in a processor does not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and 
maximum input value for basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported on 
that processor.
The extended topology enumeration leaf is intended to assist software with enumerating processor topology on 
systems that requires 32-bit x2APIC IDs to address individual logical processors. Details of CPUID leaf 0BH can be 
found in the reference pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended topology enumeration leaf of 
CPUID and processors that do not support CPUID leaf 0BH are treated in Section 8.9.4, “Algorithm for Three-Level 
Mappings of APIC_ID”.

10.12.8.1  Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit value returned in 
CPUID.0BH:EDX is facilitated by processor hardware. 
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows BIOS to determine if a system 
has processors with IDs exceeding the 8-bit initial APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID 
(CPUID.01H:EBX[31:24]) is always equal to CPUID.0BH:EDX[7:0]. 
If the values of CPUID.0BH:EDX reported by all logical processors in a system are less than 255, BIOS can transfer 
control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are greater than or equal to 255, 
BIOS must support two options to hand off to OS.
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it should enable x2APIC in the Boot 

Strap Processor (BSP) and all Application Processors (AP) before passing control to the OS. Applications 
requiring processor topology information must use OS provided services based on x2APIC IDs or CPUID.0BH 
leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that only logical processors with 
CPUID.0BH.EDX value less than 255 are enabled. BIOS initialization on all logical processors with 
CPUID.0B.EDX values greater than or equal to 255 must (a) disable APIC and execute CLI in each logical 
processor, and (b) leave these logical processor in the lowest power state so that these processors do not 
respond to INIT IPI during OS boot. The BSP and all the enabled logical processor operate in xAPIC mode after 
BIOS passed control to OS. Application requiring processor topology information can use OS provided legacy 
services based on 8-bit initial APIC IDs or legacy topology information from CPUID.01H and CPUID 04H leaves. 
Even if the BIOS passes control in xAPIC mode, an OS can switch the processors to x2APIC mode later. BIOS 
SMM handler should always read the APIC_BASE_MSR, determine the APIC mode and use the corresponding 
access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 10-12. The lower 32 bits of ICR 
in x2APIC mode is identical to the lower half of the ICR in xAPIC mode, except the Delivery Status bit is removed 
since it is not needed in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode. 
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI message to be sent and the 
destination processor or processors. Self IPIs can also be sent using the SELF IPI register (see Section 10.12.11). 
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A single MSR write to the Interrupt Command Register is required for dispatching an interrupt in x2APIC mode. 
With the removal of the Delivery Status bit, system software no longer has a reason to read the ICR. It remains 
readable only to aid in debugging; however, software should not assume the value returned by reading the ICR is 
the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both logical destination and physical 
destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1  Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. It is a read-only register to 
system software. This 32-bit value is referred to as “logical x2APIC ID”. System software accesses this register via 
the RDMSR instruction reading the MSR at address 80DH. Figure 10-29 provides the layout of the Logical Destina-
tion Register in x2APIC mode. 

Figure 10-28.  Interrupt Command Register (ICR) in x2APIC Mode
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In the xAPIC mode, the Destination Format Register (DFR) through the MMIO interface determines the choice of a 
flat logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the 
Destination Format Register (DFR) is eliminated in x2APIC mode. 
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by 

LDR[31:16]. 
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability 
of ((2^20) - 16) processors in logical destination mode. 
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the 
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will 
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC 
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to 
identify the logical address of a processor within a cluster without needing to know the number of implemented bits 
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster 
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are 
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization 
are provided in Section 10.12.10.2. 

10.12.10.2  Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC 
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. 
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical 
x2APIC ID: 

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors 
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a 
socket/package then multiple cluster IDs can exist within the package. 
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 10.12.5).

Figure 10-29.  Logical Destination Register in x2APIC Mode
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10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs. 

Figure 10-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with 
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self 
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the 
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01 
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a 
general-protection exception. 
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an 
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received 
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the 
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt 
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and 
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message, 
and non-focused lowest priority message. The purpose of each type of message and its format are described below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been 
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local 
APIC. Table 10-1 shows the cycles in an EOI message.

Figure 10-30.  SELF IPI register

Table 10-1.  EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

MSR Address: 083FH
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The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values. 
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the 
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case, 
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section 
10.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 10-4.

10.13.2.1  Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT and lowest-priority-with-
focus interrupts. Table 10-2 shows the cycles in a short message.

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 10-2.  Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

Table 10-1.  EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0
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If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are 
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the 
8-bit logical destination field. 

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15 
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two 
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving 
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the 
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority 
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see 
Section 10.5.3, “Error Handling”) terminate after cycle 21.

10.13.2.2  Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery mode when a focus processor is 
not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the state 
of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see Table 
10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-focused 
lowest priority message are competed. For other combinations of status flags, refer to Section 10.13.2.3, “APIC 
Bus Status Cycles.”

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

Table 10-2.  Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the 
arbitration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots partic-
ipate in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried 
at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In 
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the 
error status register (see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not affected by 
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error 
in cycle 33 will force the sender to resend the message.

10.13.2.3  APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and 
(A1:A1) are examined. Table 10-4 shows how these status flags are interpreted, depending on the current delivery 
mode and existence of a focus processor.

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0 

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
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Table 10-4.  APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update ArbID 
and Cycle#

Message 
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT, 
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
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17.Updates to Chapter 11, Volume 3A
Change bars and green text show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------
Changes to this chapter: Typo corrections as needed.
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CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, and the store buffer in Intel 64 
and IA-32 processors. It also describes the memory type range registers (MTRRs) introduced in the P6 family 
processors and how they are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers (TLBs), and a store buffer for 
temporary on-chip (and external) storage of instructions and data. (Figure 11-1 shows the arrangement of caches, 
TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the characteristics of 
these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The sizes and char-
acteristics of these units are machine specific and may change in future versions of the processor. The 
CPUID instruction returns the sizes and characteristics of the caches and buffers for the processor on which the 
instruction is executed. See “CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 11-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only
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Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2.  Cache Structure of the Intel Core i7 Processors

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® microarchitecture): 12 Kμops, 8-way set 
associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core Solo, Pentium M processor: not 
implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): not implemented.
• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-KByte, 8-way set 

associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 32-byte cache line size; 2-way set 

associative for earlier Pentium processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 8-KByte, 4-way set 
associative, 64-byte cache line size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 16-KByte, 8-way set 
associative, 64-byte cache line size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache line size.
• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M and Intel Xeon processors: 32-

KByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KBytes, 2-way set 

associative for earlier P6 family processors.
• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KByte, 2-way set 

associative for earlier Pentium processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
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STLBData TLB
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L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in quadcore processors), 16-way set 
associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in quadcore processors), 24-way set 
associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 64-byte cache line size.
• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache line size.
• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set associative, 64-byte cache line size 
• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-way set associative, 64-byte cache 

line size, 128-byte sector size.
• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte, 4-way set associative, 

32-byte cache line size.
• Pentium processor (external optional): System specific, typically 256- or 512-KByte, 4-way set associative, 

32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way set associative, 64-byte cache line 
size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-way set associative, 64-byte cache 
line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 128 entries, 4-way set 
associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set 

associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set associative for Pentium processors with MMX 

technology.

Data TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 64-entry DTLB, 4-way set 

associative; 16-entry PDE cache, fully associative.
• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 64 entry, fully set 

associative, shared with large page DTLB.
• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set associative.
• Pentium and P6 family processors: 64 entries, 4-way set associative; fully set, associative for Pentium 

processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for 4-KByte pages in Pentium 

processors with MMX technology.

Second-level Unified 
TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the level 1 (L1) cache, the 
level 2 (L2) cache, and the level 3 (L3) cache. See Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family based on Intel® microarchi-

tecture code name Nehalem and Intel® microarchitecture code name Westmere — The L1 cache is 
divided into two sections: one section is dedicated to caching instructions (pre-decoded instructions) and the 
other caches data. The L2 cache is a unified data and instruction cache. Each processor core has its own L1 and 
L2. The L3 cache is an inclusive, unified data and instruction cache, shared by all processor cores inside a 
physical package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family based on Intel® Core™ micro-
architecture — The L1 cache is divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data and instruction cache located 
on the processor chip; it is shared between two processor cores in a dual-core processor implementation. 
Quad-core processors have two L2, each shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one section is dedicated to caching 
instructions (pre-decoded instructions) and the other caches data. The L2 cache is a unified data and 
instruction cache is located on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is divided into two sections: one 
section is dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2 cache 
is a unified data and instruction cache located on the processor chip. It is shared between two processor cores 
in a dual-core processor implementation. No trace cache is implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® microarchitecture — The trace 
cache caches decoded instructions (μops) from the instruction decoder and the L1 cache contains data. The L2 
and L3 caches are unified data and instruction caches located on the processor chip. Dualcore processors have 
two L2, one in each processor core. Note that the L3 cache is only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to caching instructions (pre-
decoded instructions) and the other to caching data. The L2 cache is a unified data and instruction cache 
located on the processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family processors. There is no trace 
cache. The L2 cache is a unified data and instruction cache external to the processor chip on earlier Pentium 
processors and implemented on the processor chip in later Pentium processors. For Pentium processors where 
the L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel NetBurst microarchitectures, 
Intel Core Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 caches (and L3 caches 
if supported) are 64 bytes wide. The processor always reads a cache line from system memory beginning on a 64-
byte boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant bits clear.) A cache 

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX technology have 4 buffers for 4 

entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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line can be filled from memory with a 8-transfer burst transaction. The caches do not support partially-filled cache 
lines, so caching even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with cache line reads from 
system memory beginning on a 32-byte boundary (5 least-significant bits of a memory address clear.) A cache line 
can be filled from memory with a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all execution modes: 
protected mode, system management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also 
available in all execution modes; however, use of them must be handled carefully in SMM (see Section 34.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up memory accesses 
when paging is enabled by reducing the number of memory accesses that are required to read the page tables 
stored in system memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs for 
4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data TLBs for large 
pages. The TLBs are normally active only in protected mode with paging enabled. When paging is disabled or the 
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly flushed (see Section 
11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction TLB and two levels of data 
TLB. Intel Core i7 processor provides a second-level unified TLB. 

The store buffer is associated with the processors instruction execution units. It allows writes to system memory 
and/or the internal caches to be saved and in some cases combined to optimize the processor’s bus accesses. The 
store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions and data flow 
through these caches without the need for explicit software control. However, knowledge of the behavior of these 
caches may be useful in optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be operated on at once without 
causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances, require intervention by 
system software. For these rare cases, the processor provides privileged cache control instructions for use in 
flushing caches and forcing memory ordering.

There are several instructions that software can use to improve the performance of the L1, L2, and L3 caches, 
including the PREFETCHh, CLFLUSH, and CLFLUSHOPT instructions and the non-temporal move instructions 
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are discussed in Section 
11.5.5, “Cache Management Instructions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in other processors 
(see Section 11.4, “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the processor reads an 
entire cache line into the appropriate cache (L1, L2, L3, or all). This operation is called a cache line fill. If the 
memory location containing that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to memory. This operation is 
called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it first checks if a cache line for 
that memory location exists in the cache. If a valid cache line does exist, the processor (depending on the write 
policy currently in force) can write the operand into the cache instead of writing it out to system memory. This 
operation is called a write hit. If a write misses the cache (that is, a valid cache line is not present for area of 
memory being written to), the processor performs a cache line fill, write allocation. Then it writes the operand into 
the cache line and (depending on the write policy currently in force) can also write it out to memory. If the operand 
is to be written out to memory, it is written first into the store buffer, and then written from the store buffer to 
memory when the system bus is available. (Note that for the Pentium processor, write misses do not result in a 
cache line fill; they always result in a write to memory. For this processor, only read misses result in cache line fills.)
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When operating in an MP system, IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
have the ability to snoop other processor’s accesses to system memory and to their internal caches. They use this 
snooping ability to keep their internal caches consistent both with system memory and with the caches in other 
processors on the bus. For example, in the Pentium and P6 family processors, if through snooping one processor 
detects that another processor intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line fill the next time it accesses 
the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) that another processor is trying 
to access a memory location that it has modified in its cache, but has not yet written back to system memory, the 
snooping processor will signal the other processor (by means of the HITM# signal) that the cache line is held in 
modified state and will perform an implicit write-back of the modified data. The implicit write-back is transferred 
directly to the initial requesting processor and snooped by the memory controller to assure that system memory 
has been updated. Here, the processor with the valid data may pass the data to the other processors without actu-
ally writing it to system memory; however, it is the responsibility of the memory controller to snoop this operation 
and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 caches. In individual pages or 
regions of system memory, it allows the type of caching (also called memory type) to be specified (see Section 
11.5). Memory types currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All reads and writes appear on the 

system bus and are executed in program order without reordering. No speculative memory accesses, page-
table walks, or prefetches of speculated branch targets are made. This type of cache-control is useful for 
memory-mapped I/O devices. When used with normal RAM, it greatly reduces processor performance.

NOTE
The behavior of x87 and SIMD instructions referencing memory is implementation dependent. In 
some implementations, accesses to UC memory may occur more than once. To ensure predictable 
behavior, use loads and stores of general purpose registers to access UC memory that may have 
read or write side effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) memory type, except that 
this memory type can be overridden by programming the MTRRs for the WC memory type. This memory type 
is available in processor families starting from the Pentium III processors and can only be selected through the 
PAT.

Table 11-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be selected through the PAT. Can be 
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by programming MTRRs or by selecting it 
through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. Available by programming MTRRs.
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• Write Combining (WC) — System memory locations are not cached (as with uncacheable memory) and 
coherency is not enforced by the processor’s bus coherency protocol. Speculative reads are allowed. Writes 
may be delayed and combined in the write combining buffer (WC buffer) to reduce memory accesses. If the WC 
buffer is partially filled, the writes may be delayed until the next occurrence of a serializing event; such as an 
SFENCE or MFENCE instruction, CPUID or other serializing instruction, a read or write to uncached memory, an 
interrupt occurrence, or an execution of a LOCK instruction (including one with an XACQUIRE or XRELEASE 
prefix). In addition, an execution of the XEND instruction (to end a transactional region) evicts any writes that 
were buffered before the corresponding execution of the XBEGIN instruction (to begin the transactional region) 
before evicting any writes that were performed inside the transactional region.
This type of cache-control is appropriate for video frame buffers, where the order of writes is unimportant as 
long as the writes update memory so they can be seen on the graphics display. See Section 11.3.1, “Buffering 
of Write Combining Memory Locations,” for more information about caching the WC memory type. This memory 
type is available in the Pentium Pro and Pentium II processors by programming the MTRRs; or in processor 
families starting from the Pentium III processors by programming the MTRRs or by selecting it through the PAT.

• Write-through (WT) — Writes and reads to and from system memory are cached. Reads come from cache 
lines on cache hits; read misses cause cache fills. Speculative reads are allowed. All writes are written to a 
cache line (when possible) and through to system memory. When writing through to memory, invalid cache 
lines are never filled, and valid cache lines are either filled or invalidated. Write combining is allowed. This type 
of cache-control is appropriate for frame buffers or when there are devices on the system bus that access 
system memory, but do not perform snooping of memory accesses. It enforces coherency between caches in 
the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. Reads come from cache lines 
on cache hits; read misses cause cache fills. Speculative reads are allowed. Write misses cause cache line fills 
(in processor families starting with the P6 family processors), and writes are performed entirely in the cache, 
when possible. Write combining is allowed. The write-back memory type reduces bus traffic by eliminating 
many unnecessary writes to system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines are written to system memory 
later, when a write-back operation is performed. Write-back operations are triggered when cache lines need to 
be deallocated, such as when new cache lines are being allocated in a cache that is already full. They also are 
triggered by the mechanisms used to maintain cache consistency. This type of cache-control provides the best 
performance, but it requires that all devices that access system memory on the system bus be able to snoop 
memory accesses to ensure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read misses cause cache fills. 
Writes are propagated to the system bus and cause corresponding cache lines on all processors on the bus to 
be invalidated. Speculative reads are allowed. This memory type is available in processor families starting from 
the P6 family processors by programming the MTRRs (see Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6 Family, Pentium 4, and Intel 
Xeon processors.

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, 
Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel Core Duo, 
Pentium M, Pentium 4 and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors
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11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word cached. They are retained in an 
internal write combining buffer (WC buffer) that is separate from the internal L1, L2, and L3 caches and the store 
buffer. The WC buffer is not snooped and thus does not provide data coherency. Buffering of writes to WC memory 
is done to allow software a small window of time to supply more modified data to the WC buffer while remaining as 
non-intrusive to software as possible. The buffering of writes to WC memory also causes data to be collapsed; that 
is, multiple writes to the same memory location will leave the last data written in the location and the other writes 
will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 and Intel Xeon processors; the WC buffer is made up of several 64-byte WC 
buffers. For the P6 family processors, the WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC buffers one at a time. When one 
or more WC buffers has been filled, the processor has the option of evicting the buffers to system memory. The 
protocol for evicting the WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be sensitive to the fact that the 
writing of data to system memory is being delayed and must deliberately empty the WC buffers when system 
memory coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will make a bus-transaction 
style decision based on how much of the buffer contains valid data. If the buffer is full (for example, all bytes are 
valid), the processor will execute a burst-write transaction on the bus. This results in all 32 bytes (P6 family proces-
sors) or 64 bytes (Pentium 4 and more recent processor) being transmitted on the data bus in a single burst trans-
action. If one or more of the WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one chunk at a time, where a “chunk” 
is 8 bytes). 

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8 partial write transactions 
(for the Pentium 4 and more recent processors) for one WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has started, the data is 
subject to the weak ordering semantics of its definition. Ordering is not maintained between the successive alloca-
tion/deallocation of WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may appear 
as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is evicted to memory as partial writes there 
is no guaranteed ordering between successive partial writes (for example, a partial write for chunk 2 may appear 
on the bus before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are those provided by transaction 
atomicity. For example, with a P6 family processor, a completely full WC buffer will always be propagated as a 
single 32-bit burst transaction using any chunk order. In a WC buffer eviction where data will be evicted as partials, 
all data contained in the same chunk (0 mod 8 aligned) will be propagated simultaneously. Likewise, for more 
recent processors starting with those based on Intel NetBurst microarchitectures, a full WC buffer will always be 
propagated as a single burst transactions, using any chunk order within a transaction. For partial buffer propaga-
tions, all data contained in the same chunk will be propagated simultaneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or write side effects, does not 
include a frame buffer, and uses the write-back memory type for all memory. An I/O agent can perform direct 
memory access (DMA) to write-back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should always use strong unca-
cheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes desirable, because 
those writes cannot be observed at the other port until they reach the memory agent. A system can use strong 
uncacheable, uncacheable, write-through, or write-combining memory for frame buffers or dual-ported memory 
that contains pixel values displayed on a screen. Frame buffer memory is typically large (a few megabytes) and is 
usually written more than it is read by the processor. Using strong uncacheable memory for a frame buffer gener-
ates very large amounts of bus traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace almost all other useful cached 
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lines in the processor's L2 and L3 caches and L1 data cache. Therefore, systems should use write-combining 
memory for frame buffers whenever possible.

Software can use page-level cache control, to assign appropriate effective memory types when software will not 
access data structures in ways that benefit from write-back caching. For example, software may read a large data 
structure once and not access the structure again until the structure is rewritten by another agent. Such a large 
data structure should be marked as uncacheable, or reading it will evict cached lines that the processor will be 
referencing again. 

A similar example would be a write-only data structure that is written to (to export the data to another agent), but 
never read by software. Such a structure can be marked as uncacheable, because software never reads the values 
that it writes (though as uncacheable memory, it will be written using partial writes, while as write-back memory, 
it will be written using line writes, which may not occur until the other agent reads the structure and triggers 
implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are provided that give software 
greater control over the caching, prefetching, and the write-back characteristics of data. These instructions allow 
software to use weakly ordered or processor ordered memory types to improve processor performance, but when 
necessary to force strong ordering on memory reads and/or writes. They also allow software greater control over 
the caching of data. For a description of these instructions and there intended use, see Section 11.5.5, “Cache 
Management Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications are different from accessing 
data in UC memory. When doing code fetches, the processor never transitions from cacheable code to UC code 
speculatively. It also never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an instruction once. It may 
decode consecutive UC instructions in a cacheline without fetching between each instruction. It may also fetch 
additional cachelines from the same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line).  

Because of the above and because cacheline sizes may change in future processors, software should avoid placing 
memory-mapped I/O with read side effects in the same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the Intel 64 and IA-32 architec-
tures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, shared, invalid) cache protocol 
maintains consistency with caches of other processors. The L1 data cache and the L2/L3 unified caches have two 
MESI status flags per cache line. Each line can be marked as being in one of the states defined in Table 11-4. In 
general, the operation of the MESI protocol is transparent to programs.

Table 11-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches of other 
processors?

No No Maybe Maybe

A write to this line … Does not go to the 
system bus.

Does not go to the 
system bus.

Causes the processor to 
gain exclusive ownership 
of the line.

Goes directly to the 
system bus.
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The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI protocol, because the 
instruction cache is not writable. The instruction cache monitors changes in the data cache to maintain consistency 
between the caches when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more information 
on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling the caching of data and 
instructions and for controlling the ordering of reads and writes between the processor, the caches, and memory. 
These mechanisms can be divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures define several dedicated registers 

and various bits within control registers and page- and directory-table entries that control the caching system 
memory locations in the L1, L2, and L3 caches. These mechanisms control the caching of virtual memory pages 
and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 architectures provide several 
instructions that control the caching of data, the ordering of memory reads and writes, and the prefetching of 
data. These instructions allow software to control the caching of specific data structures, to control memory 
coherency for specific locations in memory, and to force strong memory ordering at specific locations in a 
program.

The following sections describe these two groups of cache control mechanisms.

11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for the matter of memory address 
space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers and bits for use in enabling or 
restricting caching to various pages or regions in memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory locations (see Section 2.5, 

“Control Registers”). If the CD flag is clear, caching is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control mechanisms. When the CD flag is 
set, caching is restricted in the processor’s caches (cache hierarchy) for the P6 and more recent processor 
families and prevented for the Pentium processor (see note below). With the CD flag set, however, the caches 
will still respond to snoop traffic. Caches should be explicitly flushed to ensure memory coherency. For highest 
processor performance, both the CD and the NW flags in control register CR0 should be cleared. Table 11-5 
shows the interaction of the CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families starting with P6 family than the 
Pentium processor (see Table 11-5). To ensure memory coherency after the CD flag is set, the caches should 
be explicitly flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the P6 and more 
recent processor families modifies cache line fill and update behavior. Also, setting the CD flag on these 
processors do not force strict ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).
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Figure 11-3.  Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors
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Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to exclusive under control of WB/WT#.
• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code of 0. NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement (see Pentium 4 and Intel Xeon 

processors reference below).
• Write hits update the cache. 
• Only writes to shared lines and write misses update system memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to exclusive under control of the 

WB/WT#.

Yes
Yes

Yes

Yes
Yes

• (P6 and later processor families only.) Strict memory ordering is not enforced unless the MTRRs are 
disabled and/or all memory is referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement.
• Write hits update the cache and change exclusive lines to modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is intended to represent what 

could be implemented in a system based on a Pentium processor with an external, platform specific, write-back L2 cache.
2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and NW bits to 1 selects the no-fill 

cache mode.
3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system memory locations (see 
Section 2.5, “Control Registers”). If the NW and CD flags are clear, write-back is enabled for the whole of 
system memory, but may be restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag; that is, when the CD 
flag is set, the processor uses the no-fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, when the CD flag is set, the 
processor disables caching, regardless of the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and NW flags in control register 
CR0 are set), external snoops are accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 
When snoops are inhibited, address parity is not checked and APCHK# is not asserted for a corrupt 
address; however, when snoops are accepted, address parity is checked and APCHK# is asserted 
for corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type used to access paging 
structures and pages (see Section 4.9, “Paging and Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used to access the first paging 
structure of the current paging-structure hierarchy (see Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced to the IA-32 architecture in 
the P6 family processors) — Controls the flushing of TLB entries for individual pages. See Section 4.10, 
“Caching Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the establishment of global pages with 
the G flag. See Section 4.10, “Caching Translation Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family processors) — Control the type of 
caching used in specific regions of physical memory. Any of the caching types described in Section 11.3, 
“Methods of Caching Available,” can be selected. See Section 11.11, “Memory Type Range Registers (MTRRs),” 
for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) — Extends the memory 
typing capabilities of the processor to permit memory types to be assigned on a page-by-page basis (see 
Section 11.12, “Page Attribute Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Available only in processors 
based on Intel NetBurst microarchitecture) — Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches. 

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to control the caching method 
used for specific areas of memory. They perform similar (but not identical) functions to the MTRRs in the P6 
family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated with the PCD and PWT flags in 
control register CR3 and in the page-directory and page-table entries) permit caching in an external L2 cache 
to be controlled on a page-by-page basis, consistent with the control exercised on the L1 cache of these 
processors. The P6 and more recent processor families do not provide these pins because the L2 cache in 
internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the CD flag is set, 
caching is prevented globally (see Table 11-5). If the CD flag is clear, the page-level cache control flags and/or the 
MTRRs can be used to restrict caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region of system memory uncache-
able, a page-level caching control cannot be used to enable caching for a page in that region. The converse is also 
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true; that is, if a page-level caching control designates a page as uncacheable, an MTRR cannot be used to make 
the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching policies to a page 
and a region of memory, the write-through policy takes precedence. The write-combining policy (which can only be 
assigned through an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used to select memory 
types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit 6] takes precedence over the CD flag, MTRRs, and PAT 
for the L3 cache in those processors. That is, when the third-level cache disable flag is set (cache disabled), the 
other cache controls have no affect on the L3 cache; when the flag is clear (enabled), the cache controls have the 
same affect on the L3 cache as they have on the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor processors based on Intel Core, and 
Intel Atom microarchitectures.

11.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II Processors
The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory type for a page is 
selected with the MTRRs and the PCD and PWT bits in the page-table or page-directory entry for the page. Table 
11-6 describes the mapping of MTRR memory types and page-level caching attributes to effective memory types, 
when normal caching is in effect (the CD and NW flags in control register CR0 are clear). Combinations that appear 
in gray are implementation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

When normal caching is in effect, the effective memory type shown in Table 11-6 is determined using the following 
rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is identical to the
MTRR-defined memory type.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and Pentium II Processors 

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III processors when the PAT bit is not used 
(set to 0) in page-table and page-directory entries.
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2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the WB memory type and 
the MTRR-defined memory type for all other memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP and WC memory 
types and architecturally-defined for the WB, WT, and UC memory types.

11.5.2.2  Selecting Memory Types for Pentium III and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, Pentium 4, Intel Xeon, and Pentium 
III processors use the PAT to select effective page-level memory types. Here, a memory type for a page is selected 
by the MTRRs and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a page-table or page-
directory entry (see Section 11.12.3, “Selecting a Memory Type from the PAT”). Table 11-7 describes the mapping 
of MTRR memory types and PAT entry types to effective memory types, when normal caching is in effect (the CD 
and NW flags in control register CR0 are clear).

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families 
MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP
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11.5.2.3  Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer operand is written to a 
memory location that crosses the page boundary between those two pages, the operand might be written to 
memory twice. This action does not present a problem for writes to actual memory; however, if a device is mapped 
the memory space assigned to the pages, the device might malfunction.

11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills, perform the 
following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the uncached memory 
type (see the discussion of the discussion of the TYPE field and the E flag in Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to ensure system memory coherency. If the caches are 
not flushed, cache hits on reads will still occur and data will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct requirements: (i) discontinue new data 
replacing existing data in the cache (ii) ensure data already in the cache are evicted to memory, (iii) ensure subse-
quent memory references observe UC memory type semantics. Different processor implementation of caching 
control hardware may allow some variation of software implementation of these three requirements. See note 
below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s caching behavior as indicated in 
Table 11-5, but setting the CD flag alone may not be sufficient across all processor families to force 
the effective memory type for all physical memory to be UC nor does it force strict memory 
ordering, due to hardware implementation variations across different processor families. To force 
the UC memory type and strict memory ordering on all of physical memory, it is sufficient to either 
program the MTRRs for all physical memory to be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of steps given above has been 
executed, the cache lines containing the code between the end of the WBINVD instruction and 
before the MTRRS have actually been disabled may be retained in the cache hierarchy. Here, to 

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since the data could never have 

been cached. This attribute is preferred for performance reasons.
2. The UC attribute came from the page-table or page-directory entry and processors are required to check their caches because the 

data may be cached due to page aliasing, which is not recommended.
3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. However, all processors that support both the PAT and the MTRRs determine the effective page-level memory 
types for these combinations as given.

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families  (Contd.)
MTRR Memory Type PAT Entry Value Effective Memory Type
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remove code from the cache completely, a second WBINVD instruction must be executed after the 
MTRRs have been disabled.
For Intel Atom processors, setting the CD flag forces all physical memory to observe UC semantics 
(without requiring memory type of physical memory to be set explicitly). Consequently, software 
does not need to issue a second WBINVD as some other processor generations might require. 

11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. The third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 
cache to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to disable or 
enable the L3 cache, software should disable and flush all the processor caches, as described earlier in Section 
11.5.3, “Preventing Caching,” to prevent of loss of information stored in the L3 cache. After the L3 cache has been 
disabled or enabled, caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the procedure described in Section 
11.5.3, “Preventing Caching,” apply to the entire cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the L1, L2, and L3 caches. The INVD 
and WBINVD instructions are privileged instructions and operate on the L1, L2 and L3 caches as a whole. The 
PREFETCHh, CLFLUSH and CLFLUSHOPT instructions and the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD) offer more granular control over caching, and are available to all privileged 
levels.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3 caches. The INVD 
instruction invalidates all internal cache entries, then generates a special-function bus cycle that indicates that 
external caches also should be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not written back to system memory 
will be lost. Unless there is a specific requirement or benefit to invalidating the caches without writing back the 
modified lines (such as, during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, then invalidates the contents 
of both the L1, L2, and L3 caches. It ensures that cache coherency with main memory is maintained regardless of 
the write policy in effect (that is, write-through or write-back). Following this operation, the WBINVD instruction 
generates one (P6 family processors) or two (Pentium and Intel486 processors) special-function bus cycles to indi-
cate to external cache controllers that write-back of modified data followed by invalidation of external caches 
should occur. The amount of time or cycles for WBINVD to complete will vary due to the size of different cache hier-
archies and other factors. As a consequence, the use of the WBINVD instruction can have an impact on inter-
rupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a cache line from a specified location 
in system memory be prefetched into the cache hierarchy (see Section 11.8, “Explicit Caching”).

The CLFLUSH and CLFLUSHOPT instructions allow selected cache lines to be flushed from memory. These instruc-
tions give a program the ability to explicitly free up cache space, when it is known that cached section of system 
memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) allow data to be 
moved from the processor’s registers directly into system memory without being also written into the L1, L2, 
and/or L3 caches. These instructions can be used to prevent cache pollution when operating on data that is going 
to be modified only once before being stored back into system memory. These instructions operate on data in the 
general-purpose, MMX, and XMM registers.
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11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst microarchitecture that support 
Intel Hyper-Threading Technology. When CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache 
context mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ). Selectable modes are 
adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1  Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When running in adaptive mode, the 
L1 data cache is shared across logical processors in the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor (instead of being competitively 
shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the logical processors use different 
paging modes, processors compete for cache resources. This reduces the effective size of the cache for each logical 
processor. Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2  Shared Mode
In shared mode, the L1 data cache is competitively shared between logical processors. This is true even if the 
logical processors use identical CR3 registers and paging modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that one linear address in the cache 
can point to different physical locations. The mechanism for resolving aliasing can lead to thrashing. For this 
reason, IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based on the Intel NetBurst 
microarchitecture that support Intel Hyper-Threading Technology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the processor causes the associated 
cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition, 
the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has 
been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This 
latter check is based on the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write 
or a snoop of an instruction in a code segment, where the target instruction is already decoded and resident in the 
trace cache, invalidates the entire trace cache. The latter behavior means that programs that self-modify code can 
cause severe degradation of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-32 processors. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the instruction. 
Systems software, such as a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a CPUID instruction, before the 
modified instruction is executed, which will automatically resynchronize the instruction cache and prefetch queue. 
(See Section 8.1.3, “Handling Self- and Cross-Modifying Code,” for more information about the use of self-modi-
fying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache and memory, but if 
the instruction was prefetched before the write, the old version of the instruction could be the one executed. To 
prevent the old instruction from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.
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11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, 
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the element may never 
have been accessed in the normal von Neumann sequence. Implicit caching occurs on the P6 and more recent 
processor families due to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching is an 
extension of the behavior of existing Intel386, Intel486, and Pentium processor systems, since software running 
on these processor families also has not been able to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate the cache when 
changes are made to cacheable data that the cache coherency mechanism does not automatically handle. This 
includes writes to dual-ported or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries. The linear address F000H 
points to physical location B000H (the page-table entry for F000H contains the value B000H), and the page-table 
entry for linear address F000 is PTE_F000.

Example 11-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the last MOV instruction performed 
would place the value at physical location B000H into EBX, rather than the value at the new physical address 
A000H. This situation is remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instructions, that provide software with 
explicit control over the caching of data. These instructions provide “hints” to the processor that the data requested 
by a PREFETCHh instruction should be read into cache hierarchy now or as soon as possible, in anticipation of its 
use. The instructions provide different variations of the hint that allow selection of the cache level into which data 
will be read.

The PREFETCHh instructions can help reduce the long latency typically associated with reading data from memory 
and thus help prevent processor “stalls.” However, these instructions should be used judiciously. Overuse can lead 
to resource conflicts and hence reduce the performance of an application. Also, these instructions should only be 
used to prefetch data from memory; they should not be used to prefetch instructions. For more detailed informa-
tion on the proper use of the prefetch instruction, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual.

11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)
The processor updates its address translation caches (TLBs) transparently to software. Several mechanisms are 
available, however, that allow software and hardware to invalidate the TLBs either explicitly or as a side effect of 
another operation. Most details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches.” In 
addition, the following operations invalidate all TLB entries, irrespective of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
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• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 to modify the PSE, PGE, or 
PAE flag.

• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a store buffer. The store buffer 
improves processor performance by allowing the processor to continue executing instructions without having to 
wait until a write to memory and/or to a cache is complete. It also allows writes to be delayed for more efficient use 
of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use multiple proces-
sors. The processor ensures that write operations are always carried out in program order. It also ensures that the 
contents of the store buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is performed.
• (Pentium III, and more recent processor families only) When using an SFENCE instruction to order stores.
• (Pentium 4 and more recent processor families only) When using an MFENCE instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed description of the operation of 
the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the memory types (see Section 
11.3, “Methods of Caching Available”) with physical-address ranges in system memory. They allow the processor to 
optimize operations for different types of memory such as RAM, ROM, frame-buffer memory, and memory-mapped 
I/O devices. They also simplify system hardware design by eliminating the memory control pins used for this func-
tion on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows multiple ranges to be defined in physical memory, and it defines a set of model-
specific registers (MSRs) for specifying the type of memory that is contained in each range. Table 11-8 shows the 
memory types that can be specified and their properties; Figure 11-4 shows the mapping of physical memory with 
MTRRs. See Section 11.3, “Methods of Caching Available,” for a more detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the fixed and variable MTRRs, 
which in effect makes all of physical memory uncacheable. Initialization software should then set the MTRRs to a 
specific, system-defined memory map. Typically, the BIOS (basic input/output system) software configures the 
MTRRs. The operating system or executive is then free to modify the memory map using the normal page-level 
cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent family, each processor MUST use 
the identical MTRR memory map so that software will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain MTRR consistency between all 
the processors in the system (that is, all processors must use the same MTRR values). The P6 and 
more recent processor families provide no hardware support for maintaining this consistency.
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11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if MTRRs are supported on a 
processor by executing the CPUID instruction and reading the state of the MTRR flag (bit 12) in the feature infor-
mation register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional information about MTRRs can 
be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap MSR for the P6 family processors). The 
IA32_MTRRCAP MSR is a read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this register are as follows:

Table 11-8.  Memory Types That Can Be Encoded in MTRRs 

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H

Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4.  Mapping Physical Memory With MTRRs
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• VCNT (variable range registers count) field, bits 0 through 7 — Indicates the number of variable ranges 
implemented on the processor.

• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs (IA32_MTRR_FIX64K_00000 
through IA32_MTRR_FIX4K_0F8000) are supported when set; no fixed range registers are supported when 
clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type is supported when set; the 
WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-management range register 
(SMRR) interface is supported when bit 11 is set; the SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software attempts to write to the 
IA32_MTRRCAP MSR, a general-protection exception (#GP) is generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable MTRRs and query other 
feature bits in IA32_MTRRCAP to determine additional capabilities that are supported in a processor. For example, 
some processors may report a value of ‘8’ in the VCNT field, other processors may report VCNT with different 
values. 

11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three groups of registers: the 
IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range MTRRs. These registers can be read 
and written to using the RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates the 
availability of these registers on the processor (see Section 11.11.1, “MTRR Feature Identification”).

11.11.2.1  IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family processors) sets the default proper-
ties of the regions of physical memory that are not encompassed by MTRRs. The functions of the flags and field in 
this register are as follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for those physical memory address 

ranges that do not have a memory type specified for them by an MTRR (see Table 11-8 for the encoding of this 
field). The legal values for this field are 0, 1, 4, 5, and 6. All other values result in a general-protection 
exception (#GP) being generated. 
Intel recommends the use of the UC (uncached) memory type for all physical memory addresses where 
memory does not exist. To assign the UC type to nonexistent memory locations, it can either be specified as the 
default type in the Type field or be explicitly assigned with the fixed and variable MTRRs.

Figure 11-5.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported
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Reserved W
C
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F
I
X

89

Reserved

SMRR — SMRR interface supported
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• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled when set; fixed-range MTRRs are 
disabled when clear. When the fixed-range MTRRs are enabled, they take priority over the variable-range 
MTRRs when overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-range MTRRs can 
still be used and can map the range ordinarily covered by the fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are disabled when clear, and the 
UC memory type is applied to all of physical memory. When this flag is set, the FE flag can disable the fixed-
range MTRRs; when the flag is clear, the FE flag has no affect. When the E flag is set, the type specified in the 
default memory type field is used for areas of memory not already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are reserved; the processor generates a 
general-protection exception (#GP) if software attempts to write nonzero values to them.

11.11.2.2  Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these registers is 
divided into 8-bit fields that are used to specify the memory type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range from 0H to 7FFFFH. This range 

is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 — Maps the two 128-KByte 

address ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub-ranges, 8 ranges per 
register.

• Registers IA32_MTRR_FIX4K_C0000 through IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte 
address ranges from C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 ranges per 
register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the corresponding fields of the 
fixed-range MTRRs; Table 11-8 shows memory type encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3  Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type for m variable-
size address ranges, using a pair of MTRRs for each range. The number m of ranges supported is given in bits 7:0 
of the IA32_MTRRCAP MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range; 
the second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. The “n” suffix 
is in the range 0 through m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and MTRRphysMask.

Figure 11-6.  IA32_MTRR_DEF_TYPE MSR
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Figure 11-7 shows flags and fields in these registers. The functions of these flags and fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of 

this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base address of the address range. 

This 24-bit value, in the case where MAXPHYADDR is 36 bits, is extended by 12 bits at the low end to form the 
base address (this automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 bits if the maximum physical 
address size is 36 bits, 28 bits if the maximum physical address size is 40 bits). The mask determines the range 
of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
11.11.3, “Example Base and Mask Calculations.”

— The width of the PhysMask field depends on the maximum physical address size supported by the 
processor. 

CPUID.80000008H reports the maximum physical address size supported by the processor. If 
CPUID.80000008H is not available, software may assume that the processor supports a 36-bit physical 
address size (then PhysMask is 24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are 
reserved). See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Table 11-9.  Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
9BFFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
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All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers are reserved; the processor 
generates a general-protection exception (#GP) if software attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the area not mapped by the mask 
value is set to the default memory type, unless some other MTRR specifies a type for that range. Intel does not 
encourage the use of “discontinuous” ranges.

NOTE
It is possible for software to parse the memory descriptions that BIOS provides by using the 
ACPI/INT15 e820 interface mechanism. This information then can be used to determine how 
MTRRs are initialized (for example: allowing the BIOS to define valid memory ranges and the 
maximum memory range supported by the platform, including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable MTRR ranges.

11.11.2.4  System-Management Range Register Interface 
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to restrict access to a specified 
memory address range used by system-management mode (SMM) software (see Section 34.4.2.1). If the SMRR 
interface is supported, SMM software is strongly encouraged to use it to protect the SMI code and data stored by 
SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). The IA32_SMRR_PHYSBASE 
MSR defines the base address for the SMRAM memory range and the memory type used to access it in SMM. The 
IA32_SMRR_PHYSMASK MSR contains a valid bit and a mask that determines the SMRAM address range protected 
by the SMRR interface. These MSRs may be written only in SMM; an attempt to write them outside of SMM causes 
a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and fields are the following:

Figure 11-7.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range Register Pair

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the SMRR interface has been enabled using 
a model-specific bit in the IA32_FEATURE_CONTROL MSR.

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
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1112

Type

MAXPHYADDR
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Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
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• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of 
this field).

• PhysBase field, bits 12 through 31 — Specifies the base address of the address range. The address must be 
less than 4 GBytes and is automatically aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the range of the region being 
mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
11.11.3, “Example Base and Mask Calculations.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Before attempting to access these SMRR registers, software must test bit 11 in the IA32_MTRRCAP register. If 
SMRR is not supported, reads from or writes to registers cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified address range are treated as 
follows:
• If the logical processor is in SMM, accesses uses the memory type in the IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read accesses return a fixed value for each 

byte. The uncacheable memory type (UC) is used in this case.

The above items apply even if the address range specified overlaps with a range specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical address size of 36 bits. The base 
and mask values entered in variable-range MTRR pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the IA32_MTRR_PHYSBASE3 register, the 12 least-
significant bits are truncated and the value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4 
MBytes), a mask value of FFFE00000H is required. Again, the 12 least-significant bits of this mask value are trun-
cated, so that the value entered in the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen 
so that when any address in the 200000H to 3FFFFFH range is AND’d with the mask value, it will return the same 
value as when the base address is AND’d with the mask value (which is 200000H).

Figure 11-8.  IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register
63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register
63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
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To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base value of 000400H is entered 
in the PhysBase field and a mask value of FFFC00H is entered in the PhysMask field.

Example 11-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system has the following characteris-
tics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64 MBytes. This 

restriction forces the 96 MBytes of system memory to be addressed from 0 to 64 MBytes and from 68 MBytes 
to 100 MBytes, leaving a 4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at address A0000000H. 
• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical address space for this system 
configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are mapped to WB and 
UC memory types) to minimize the number of MTRR registers that are required to configure the memory environ-
ment. This setup also fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical Address Support
For Intel 64 and IA-32 processors that support greater than 36 bits of physical address size, software should query 
CPUID.80000008H to determine the maximum physical address. See the example.

Example 11-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in IA32_MTRR_PHYSMASKn 
registers) is 28 bits instead of 24 bits. For this situation, Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  
Caches 0-64 MByte as WB cache type.
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IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  
Caches A0000000-A0800000 as WC type.

11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following “power of 2” size and alignment 
rules:

1. The minimum range size is 4 KBytes and the base address of the range must be on at least a 4-KByte
boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address must be aligned on a 
2n boundary, where n is a value equal to or greater than 12. The base-address alignment value cannot be less 
than its length. For example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be aligned on 
at least an 8-KByte boundary.

11.11.4.1  MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR), then all memory accesses 
are of the UC memory type. If the MTRRs are enabled, then the memory type used for a memory access is deter-
mined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs are enabled, the
processor uses the memory type stored for the appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type set by the variable-range 
MTRRs:

— If one variable memory range matches, the processor uses the memory type stored in the 
IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are identical, then that memory type 
is used.

— If two or more variable memory ranges match and one of the memory types is UC, the UC memory type 
used.

— If two or more variable memory ranges match and the memory types are WT and WB, the WT memory type 
is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.
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11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in variable-range MTRRs and clear the 
E flag in the IA32_MTRR_DEF_TYPE MSR to disable all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all fixed-range and variable-
range MTRR register fields to 0. Software can then initialize the MTRRs according to known types of memory, 
including memory on devices that it auto-configures. Initialization is expected to occur prior to booting the oper-
ating system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on initializing MTRRs in MP (multiple-
processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a future processor may not imple-
ment all memory types supported by the Pentium 4, Intel Xeon, and P6 family processors. The following rules 
support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker memory ordering model.
For example, the uncacheable type cannot be mapped into any other type, and the write-back, write-through,
and write-protected types cannot be mapped into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that does delay writes, 
because applications of such a memory type may rely on its write-through behavior. Accordingly, the write-
back type cannot be mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by a subsequent read, such as 
the write-protected type, can only be mapped to another type with the same behavior (and there are no others 
for the Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how a memory type is used, 
allowing additional mappings. For example, write-through memory with no associated write side effects can be 
mapped into write-back memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the memory types for memory-
mapped devices. The operating system should provide a driver and application programming interface (API) to 
access and set the MTRRs. The function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1  MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range specified by the parameters 
base and size. The base address is the starting physical address and the size is the number of bytes for the memory 
range. The function automatically aligns the base address and size to 4-KByte boundaries. Pseudocode for the 
MemTypeGet() function is given in Example 11-4.
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Example 11-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap physical-address space 

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType := Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType := Get4KMemType (4KByteRange);
IF NextType != FirstType

THEN return Mixed_Types;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs are not enabled, then 
the UC memory type is returned. If more than one memory type corresponds to the specified range, a status of 
MIXED_TYPES is returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or WP) is 
returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the memory type for a single 4-KByte 
range at a given physical address. The sample code determines whether an PHY_ADDRESS falls within a fixed 
range by comparing the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH 
(16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the 
appropriate bits within one of its MTRRs determine the memory type.

Example 11-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;
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11.11.7.2  MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory range specified by the parame-
ters base and size to the type specified by type. The base address and size are multiples of 4 KBytes and the size 
is not 0.

Example 11-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID; 

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED; 

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED; 

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR

THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 

FI;

IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST; 

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;
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flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects conflicts with 
current variable range registers by cycling through them and determining whether the physical address in question 
matches any of the current ranges. During this scan, the algorithm can detect whether any current variable ranges 
overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid executing code with a 
partially valid MTRR setup. The algorithm disables caching by setting the CD flag and clearing the NW flag in control 
register CR0. The caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB entries either 
by clearing the page-global enable (PGE) flag in control register CR4 (if PGE was already set) or by updating control 
register CR3 (if PGE was already clear). Finally, it disables MTRRs by clearing the E flag in the 
IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and again invalidates 
the caches and TLBs. This second invalidation is required because of the processor's aggressive prefetch of both 
instructions and data. The algorithm restores interrupts and re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency between all the 
processors in the system. The Pentium 4, Intel Xeon, and P6 family processors provide no hardware support to 
maintain this consistency. In general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it must load the MTRRs of the 
boot processor while the E flag in register MTRRdefType is 0. The operating system then directs other processors to 
load their MTRRs with the same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to prevent further memory accesses 
until all processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-down style 
algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat the loading and 
enabling process to maintain consistency, using the following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that supports self-snooping, CPUID 
feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.
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7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV from control register CR3 to 
another register and then a MOV from that register back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only variable ranges are being 
modified, software may clear the valid bits for the affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only variable-range registers were 
modified and their individual valid bits were cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4, Intel Xeon, and P6 family 
processors. Executing the WBINVD instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 4 KByte granularity (the same gran-
ularity as 4-KByte pages). The memory type for a given page is cached in the processor’s TLBs. When using large 
pages (2 MBytes, 4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, each with a 
single memory type. Because the memory type for a large page is cached in the TLB, the processor can behave in 
an undefined manner if a large page is mapped to a region of memory that MTRRs have mapped with multiple 
memory types. 

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within a large page are of the 
same type. If a large page maps to a region of memory containing different MTRR-defined memory types, the PCD 
and PWT flags in the page-table entry should be set for the most conservative memory type for that range. For 
example, a large page used for memory mapped I/O and regular memory is mapped as UC memory. Alternatively, 
the operating system can map the region using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory type implies that large pages with 
different memory types may suffer a performance penalty, since they must be marked with the lowest common 
denominator memory type. The same consideration apply to 1 GByte pages, each of which may consist of multiple 
2-Mbyte ranges. 

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the physical memory range from 0 
to 4 MBytes, which is potentially mapped by both the fixed and variable MTRRs. This support is invoked when a 
Pentium 4, Intel Xeon, or P6 family processor detects a large page overlapping the first 1 MByte of this memory 
range with a memory type that conflicts with the fixed MTRRs. Here, the processor maps the memory range as 
multiple 4-KByte pages within the TLB. This operation ensures correct behavior at the cost of performance. To 
avoid this performance penalty, operating-system software should reserve the large page option for regions of 
memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to allow memory types to be 
assigned to regions of physical memory based on linear address mappings. The PAT is a companion feature to the 
MTRRs; that is, the MTRRs allow mapping of memory types to regions of the physical address space, where the PAT 
allows mapping of memory types to pages within the linear address space. The MTRRs are useful for statically 
describing memory types for physical ranges, and are typically set up by the system BIOS. The PAT extends the 
functions of the PCD and PWT bits in page tables to allow all five of the memory types that can be assigned with the 
MTRRs (plus one additional memory type) to also be assigned dynamically to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also available in the Pentium 4 and 
Intel Xeon processors.
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11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing the CPUID instruction with a 
value of 1 in the EAX register. Support for the PAT is indicated by the PAT flag (bit 16 of the values returned to EDX 
register). If the PAT is supported, the operating system or executive can use the IA32_PAT MSR to program the PAT. 
When memory types have been assigned to entries in the PAT, software can then use of the PAT-index bit (PAT) in 
the page-table and page-directory entries along with the PCD and PWT bits to assign memory types from the PAT 
to individual pages.

Note that there is no separate flag or control bit in any of the control registers that enables the PAT. The PAT is 
always enabled on all processors that support it, and the table lookup always occurs whenever paging is enabled, 
in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 4). Figure 11-9. shows the format of the 64-bit 
IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three low-order bits of each field are 
used to specify a memory type. The five high-order bits of each field are reserved, and must be set to all 0s. Each 
of the eight page attribute fields can contain any of the memory type encodings specified in Table 11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9.  IA32_PAT MSR

Table 11-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).
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11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, PCD, and PWT bits must be 
encoded in the page-table or page-directory entry for the page. Table 11-11 shows the possible encodings of the 
PAT, PCD, and PWT bits and the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries that 
point to 4-KByte pages and bit 12 in paging-structure entries that point to larger pages. The PCD and PWT bits are 
bits 4 and 3, respectively, in paging-structure entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the region of physical memory 
in which the page is mapped to determine the effective memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or reset of the processor. The setting 
remain unchanged following a soft reset (INIT reset). 

The values in all the entries of the PAT can be changed by writing to the IA32_PAT MSR using the WRMSR instruc-
tion. The IA32_PAT MSR is read and write accessible (use of the RDMSR and WRMSR instructions, respectively) to 
software operating at a CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT. Attempting to 
write an undefined memory type encoding into the PAT causes a general-protection (#GP) exception to be gener-
ated.

The operating system is responsible for insuring that changes to a PAT entry occur in a manner that maintains the 
consistency of the processor caches and translation lookaside buffers (TLB). This is accomplished by following the 
procedure as specified in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of an 
MTRR in a multiple processor system. It requires a specific sequence of operations that includes flushing the 
processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it is possible to have a single 
physical page mapped to two or more different linear addresses, each with different memory types. Intel does not 
support this practice because it may lead to undefined operations that can result in a system failure. In particular, 
a WC page must never be aliased to a cacheable page because WC writes may not check the processor caches.

Table 11-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
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When remapping a page that was previously mapped as a cacheable memory type to a WC page, an operating 
system can avoid this type of aliasing by doing the following:

1. Remove the previous mapping to a cacheable memory type in the page tables; that is, make them not
present.

2. Flush the TLBs of processors that may have used the mapping, even speculatively.

3. Create a new mapping to the same physical address with a new memory type, for instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. Note on processors that support 
self-snooping, CPUID feature flag bit 27, this step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) and enable page size extensions 
must carefully scrutinize the use of the PAT index bit for the 4-KByte page-table entries. The PAT index bit for a 
page-table entry (bit 7) corresponds to the page size bit in a page-directory entry. Therefore, the operating system 
can only use PAT entries PA0 through PA3 when setting the caching type for a page table that is also used as a page 
directory. If the operating system attempts to use PAT entries PA4 through PA7 when using this memory as a page 
table, it effectively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care should be taken in selecting the 
encodings for entries in the PAT (see Section 11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That is, the PCD and PWT bits in 
page-table entries and in page-directory entries (that point to pages) are always select a memory type for a page 
indirectly by selecting an entry in the PAT. They never select the memory type for a page directly as they do in 
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not support the PAT, the PAT mech-
anism has been designed to allow backward compatibility to earlier processors. This compatibility is provided 
through the ordering of the PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-directory entries) is reserved 
and set to 0. With the PAT bit reserved, only the first four entries of the PAT can be selected with the PCD and PWT 
bits. At power-up or reset (see Table 11-12), these first four entries are encoded to select the same memory types 
as the PCD and PWT bits would normally select directly in an IA-32 processor that does not implement the PAT. So, 
if encodings of the first four entries in the PAT are left unchanged following a power-up or reset, code written to run 
on earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 processors that do implement 
the PAT.
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18.Updates to Chapter 17, Volume 3B
Change bars and green text show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------
Changes to this chapter: Update to section 17.4.9.2, “Setting Up the DS Save Area”.
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CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR

TECHNOLOGY (INTEL® RDT) FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance. 
These facilities are valuable for debugging application software, system software, and multitasking operating 
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a 
programmer or system designer wishes to halt execution of a program and examine the state of the processor 
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made 
to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or 
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.17, “Time-Stamp Counter”.
• Features which allow monitoring of shared platform resources such as the L3 cache are described in Section 

17.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features”.
• Features which enable control over shared platform resources are described in Section 17.19, “Intel® Resource 

Director Technology (Intel® RDT) Allocation Features”.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event 

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint 

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be 

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with 

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an 

instruction.
• Breakpoint instruction (INT3) — Generates a breakpoint exception (#BP) that transfers program control to 

the debugger procedure or task. This instruction is an alternative way to set instruction breakpoints. It is 
especially useful when more than four breakpoints are desired, or when breakpoints are being placed in the 
source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the 
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from 
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages 
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current 
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.
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• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug 
operation of the processor. These registers can be written to and read using the move to/from debug register form 
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions. 

Figure 17-1.  Debug Registers
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Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in 
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers 
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though 
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see 
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug 
register DR7 further specifies breakpoint conditions. 

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control 
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD). 
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers 
DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception 
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in 
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its 

associated breakpoint condition was met when a debug exception was generated. These flags are set if the 
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They 
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on 
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction 
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general 
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for 
further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch 
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State 
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this 
exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception 
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all 
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if 
the processor does not support RTM.
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Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the 
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except 
bit 16, which they should set) before returning to the interrupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1). 
The flags and fields in this register control the following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint 

condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its 
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on 
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the 
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its 
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task 
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in 
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the 
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward 
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact 
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM 
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM is 
also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a 
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a 
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This 
condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent 
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to 
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the 
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4 
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™ 
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the 
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3). 
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.
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If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00. 
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15 
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with 
an of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced 
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with 
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other 
processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a 
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4- 
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte 
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte 
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for 
comparison with the breakpoint address in the selected debug register). These requirements are enforced by the 
processor; it uses LENn field bits to mask the lower address bits in the debug registers. Unaligned data or I/O 
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the 
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug 
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is 
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for 
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Instruction 
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address 
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must 
point to the first prefix.
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17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected 
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug 
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size 
prefixes are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of 
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DR0–DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of 
the processor implementation (address matching is supported only on valid addresses generated by the processor 
implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug 
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions 
are generated and typical exception handler operations.

Table 17-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4
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17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software system. The processor 
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers 
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the 
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-Detect Exception Condition”) 
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at 
one time. The following sections describe each class of debug exception.

Figure 17-2.  DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture
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The INT1 instruction generates a debug exception as a trap. Hardware vendors may use the INT1 instruction for 
hardware debug. For that reason, Intel recommends software vendors instead use the INT3 instruction for software 
breakpoints.

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

17.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified 
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag 
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception 
(#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions 
detected during the decoding or execution of an instruction. However, if an instruction breakpoint is placed on an 
instruction located immediately after a POP SS/MOV SS instruction, the breakpoint will be suppressed as if 
EFLAGS.RF were 1 (see the next paragraph and Section 6.8.3, “Masking Exceptions and Interrupts When 
Switching Stacks,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the 
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint 
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction 
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction 
after the check for instruction breakpoints, CS limit violations, and FP exceptions. Task Switches and IRETD/IRETQ 
instructions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image 
pushed on the stack:
• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the 

value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value 

pushed for RF is 1.

Table 17-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify 
debug registers (usually in conjunction with in-circuit 
emulation)

BD = 1 None Fault

Task switch BT = 1 None Trap

INT1 instruction None None Trap
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• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration, 
the value pushed for RF is 1.

• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was 
called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last 
iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those generated after the last 
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug 
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the 
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image 
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by 
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the 
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image 
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as, 
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a 
page fault), the processor may generate one spurious debug exception after the second exception has been 
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

17.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address 
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses 
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the 
access, so these breakpoint condition causes a trap-class exception to be generated. 

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the 
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write 
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the 
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new 
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see 
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the 
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint 
matching does not occur unless it is enabled by setting the LE and/or the GE flags. 

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor gener-
ates the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

If an execution of the MOV or POP instruction loads the SS register and encounters a data breakpoint, the resulting 
debug exception is delivered after completion of the next instruction (the one after the MOV or POP).

Any pending data or I/O breakpoints are lost upon delivery of an exception. For example, if a machine-check 
exception (#MC) occurs following an instruction that encounters a data breakpoint (but before the resulting debug 
exception is delivered), the data breakpoint is lost. If a MOV or POP instruction that loads the SS register encoun-
ters a data breakpoint, the data breakpoint is lost if the next instruction causes a fault.

Delivery of events due to INT n, INT3, or INTO does not cause a loss of data breakpoints. If a MOV or POP instruc-
tion that loads the SS register encounters a data breakpoint, and the next instruction is software interrupt (INT n, 
INT3, or INTO), a debug exception (#DB) resulting from a data breakpoint will be delivered after the transition to 
the software-interrupt handler. The #DB handler should account for the fact that the #DB may have been delivered 
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after a invocation of a software-interrupt handler, and in particular that the CPL may have changed between recog-
nition of the data breakpoint and delivery of the #DB.

17.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any 
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an 
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The 
debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The 
processor generates the exception before it executes the MOV instruction that accesses a debug register, which 
causes a fault-class exception to be generated. 

17.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the 
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated 
after the instruction is executed. The processor will not generate this exception after the instruction that sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after 
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of 
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n, INT3, and INTO instructions, 
however, do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n 
or INTO instructions rather than executing them directly. To maintain protection, the operating system should 
check the CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an external 
interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This operation 
clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined 
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is 
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler, 
single step an INT n instruction that calls the interrupt handler.

If an occurrence of the MOV or POP instruction loads the SS register executes with EFLAGS.TF = 1, no single-step 
debug exception occurs following the MOV or POP instruction.

17.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe 
this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT3 instruction. See Chapter 6, 
“Interrupt 3—Breakpoint Exception (#BP).” Debuggers use breakpoint exceptions in the same way that they use 
the breakpoint registers; that is, as a mechanism for suspending program execution to examine registers and 
memory locations. With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction 
breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address 
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers, 
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when 
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the 
source code of a program under development.
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17.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory 
(RTM)

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 describes Restricted Transactional Memory (RTM). This is an 
instruction-set interface that allows software to identify transactional regions (or critical sections) using the 
XBEGIN and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region successfully 
reaches an XEND instruction, the processor ensures that all memory operations performed within the region 
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM transac-
tion region does not succeed if the processor cannot commit the updates atomically. When this happens, the 
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor 
discards all updates performed in the region, restores architectural state to appear as if the execution had not 
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional 
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and 
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within an 
RTM transaction region does not resume execution at the fallback instruction address specified with the XBEGIN 
instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is deliv-
ered. (A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear 
DR6.RTM[bit 16] (all other debug exceptions set DR6[16]).

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and 
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel 
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ 
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ 
Processors)”

— Section 17.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Goldmont Microarchitecture”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Sandy Bridge”

— Section 17.11, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Haswell Microarchitecture”

— Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Skylake Microarchitecture”

— Section 17.14, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 17.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.16, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are 
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).
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17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace 
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack 
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H. 

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR 
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.9.1, “LBR Stack” (processors 
based on Intel® Microarchitecture code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,” 
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about the 
TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch 
Trace Store (BTS),” for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL 
is 0. See Section 17.13.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is 
greater than 0. See Section 17.13.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g. 
when a counter overflows and is configured to trigger PMI). See Section 17.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and 
IA32_FIXED_CTRx) are frozen on a PMI request. See Section 17.4.7 for details. 

• FREEZE_WHILE_SMM (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all the 
enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, 

Figure 17-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture
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TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the enable 
bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI delivery will 
be restored, after the SMI handler issues RSM to complete its service. Note that system software must check if 
the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM control bit. 
IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 
12] is reporting 1. See Section 18.8 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is 
also set. See Section 17.3.3.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch 
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers 
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor 
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the 
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register, 
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps 
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The 
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before 
resuming program execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when 
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM. 
A debugging device that is monitoring the system bus can read these messages and synchronize operations with 
taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus, 
as described in Section 17.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and LBR 
bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when TR is 
set. 

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon 
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR 
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR 
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor families that do not provide an externally visible system 

bus (i.e., processors based on the Silvermont microarchitecture or later).

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the 
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task. 
See Section 7.2.1, “Task-State Segment (TSS).”
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17.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to  systems with a front side bus 
(FSB). BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional 
FSB.

17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides 
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last 
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch 
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident 
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most 
recent branch records are always available or it can be configured to generate an interrupt when the buffer is nearly 
full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation of inter-
rupt when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace 
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the 
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if 
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System software can selectively specify 
CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two bit fields, 
BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the CPL of 
BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine 
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and 
performance monitoring are available for processors supporting architectural performance monitoring version 2 or 
greater (i.e. CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL to 
reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are 

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on the 
version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If 
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer 
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable 
IA32_DEBUGCTL.LBR to resume recording branches. When using this feature, software should be careful 
about writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If 
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit 
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance 
counters are associated with the target workload and not polluted by the PMI and activities within the PMI 
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two 
flavors are supported:
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— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If 
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter 
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 18-3). The 
PMCs affected include both general-purpose counters and fixed-function counters (see Section 18.6.2.1, 
“Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the corre-
sponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter 
operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as 
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition, but 
does not change the IA32_PERF_GLOBAL_CTRL MSR. 

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx 
register.

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit 
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR 
(see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

Table 17-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined 
Freeza_Perfmon_On_PMI interface.

Table 17-3.  Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed  

Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on overflow Processor freezes the counters on overflow Unchanged

Processor clears IA32_PERF_GLOBAL_CTRL Processor set 
IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads IA32_PERF_GLOBAL_STATUS 
(0x38E) to examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to 
IA32_PERF_GLOBAL_OVF_CTL (0x390) 

Handler writes mask into 
IA32_PERF_GLOBAL_OVF_RESET (0x390) 

Processor clears IA32_PERF_GLOBAL_STATUS Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables IA32_PERF_GLOBAL_CTRL None Reduced software overhead
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17.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32 
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can 
vary between different processor families. Table 17-4 lists the LBR stack size and TOS pointer range for several 
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID instruc-
tion in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and 
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR) 
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 2, “Model-Specific 
Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for model-
specific MSR addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size 

column of Table 17-4) that store source and destination address of recent branches (see Figure 17-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR 
address store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next consecutive (N-1) MSR address 
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that 
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is 
given in Table 17-4.

17.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the upper 
32-bits of branch addresses will be stored as 0. 

Table 17-4.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH, 06_55H, 
06_66H, 06_7AH, 06_67H, 06_6AH, 06_6CH, 
06_7DH, 06_7EH

32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 17.12.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H, 06_3CH, 
06_45H, 06_46H, 06_3FH, 06_2AH, 06_2DH, 
06_3AH, 06_3EH, 06_1AH, 06_1EH, 06_1FH, 
06_2EH, 06_25H, 06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH, 06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 
06_5DH, 06_1CH, 06_26H, 06_27H, 06_35H, 
06_36H

8 FROM_IP, TO_IP 0 to 7
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Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that 
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective 
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective 
source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR stack. See 
LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of 
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ registers 
in the LBR stack. 

— 000101B (64-bit EIP record format), Flags, TSX, LBR_INFO — Stores 64-bit offset (effective 
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR update 
are reported in the LBR_INFO MSR stack. 

— 000110B (64-bit LIP record format), Flags, Cycles — Stores 64-bit linear address (CS.Base + 
effective address) of respective source/destination. Misprediction info is reported in the upper bits of 
'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 bits 
of the 'TO' registers in the LBR stack (see Section 17.6). 

— 000111B (64-bit LIP record format), Flags, LBR_INFO — Stores 64-bit linear address (CS.Base + 
effective address) of respective source/destination. Misprediction, and elapsed cycles since the last LBR 
update are reported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by 
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and 
“From Linear Address“ using the high and low half of each 64-bit MSR. 

17.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an 
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that 
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is 
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

Figure 17-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides 
the debug store (DS) mechanism. The DS mechanism allows: 
• BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).” 
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The 

capability of PEBS varies across different microarchitectures. See Section 18.6.2.4, “Processor Event Based 
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 18, “Perfor-
mance Monitoring.” 

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear) 

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the 
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two 
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS 

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected. 
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS 

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the 
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence 
of the PEBS event that caused the counter to overflow. When the state information has been logged, the 
counter is automatically reset to a specified value, and event counting begins again. The content layout of a 
PEBS record varies across different implementations that support PEBS. See Section 18.6.2.4.2 for details of 
enumerating PEBS record format.

NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset 
of implementation-specific precise events. See Section 18.5.3.1 for a PEBS enhancement that can 
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on INIT, processor Reset or transition to 
system-management mode (SMM) or IA-32e mode. It is similarly disabled on the generation of a 
machine-check exception on 45nm and 32nm Intel Atom processors and on processors with 
Netburst or Intel Core microarchitecture.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities 
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the 
IA32_MISC_ENABLE MSR (see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 4).

The DS save area is divided into three parts: buffer management area, branch trace store (BTS) buffer, and PEBS 
buffer (see Figure 17-5). The buffer management area is used to define the location and size of the BTS and PEBS 
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in 
their respective buffers and to record the performance counter reset value. The linear address of the first byte of 
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural 

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address 

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should 

be a multiple of the BTS record size (12 bytes) plus 1.
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• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This 
address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must 
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior 
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural 
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address 
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address 
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This 
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it 
must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be 
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 64-bit value that the counter is to be set to when a PEBS record is written. Bits 
beyond the size of the counter are ignored. This value allows state information to be collected regularly every 
time the specified number of events occur. 

Figure 17-5.  DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR



17-20 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Figure 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as 
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was 

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception 

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not 

predicted (clear).

Figure 17-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the begin-
ning of the instruction that caused the event. However, there are cases where the registers may be logged in a 
partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

17.4.9.1  64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 17-8. 

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown in 
Figure 17-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 17-5.

Figure 17-6.  32-bit Branch Trace Record Format

Figure 17-7.  PEBS Record Format
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The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The 
structure of a branch trace record is similar to that shown in Figure 17-6, but each field is 8 bytes in length. This 
makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in 
Figure 17-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This makes 
the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

Figure 17-8.  IA-32e Mode DS Save Area Example1 

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

Figure 17-9.  64-bit Branch Trace Record Format
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Fields in the buffer management area of a DS save area are described in Section 17.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures 
17-9 and Figures 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all 
operating modes. 

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described 
in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using 
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting architec-
tural performance monitoring should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is 

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or 
general-purpose counting (specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the 
following procedure (See Section 18.6.2.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS 
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 17.4.9, “BTS and DS Save Area,” 
and Section 17.4.9.1, “64 Bit Format of the DS Save Area”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section 
10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the 
xAPIC LVT.

Figure 17-10.  64-bit PEBS Record Format
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5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, “Writing the DS Interrupt 
Service Routine.”

The following restrictions should be applied to the DS save area.
• The recording of branch records in the BTS buffer (or PEBS records in the PEBS buffer) may not operate 

properly if accesses to the linear addresses in any of the three DS save area sections cause page faults, VM 
exits, or the setting of accessed or dirty flags in the paging structures (ordinary or EPT). For that reason, 
system software should establish paging structures (both ordinary and EPT) to prevent such occurrences. 
Implications of this may be that an operating system should allocate this memory from a non-paged pool and 
that system software cannot do “lazy” page-table entry propagation for these pages. A virtual-machine 
monitor may choose to allow use of PEBS by guest software only if EPT maps all guest-physical memory as 
present and read/write.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses. 
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the 
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary. 

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the 
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can 
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be 
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all 
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any 
change to control register CR3 will not change the DS addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter 
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

17.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-5), IA32_DEBUGCTL (see Figure 17-3), or 
MSR_DEBUGCTLB (see Figure 17-16) control the generation of branch records and storing of them in the BTS 
buffer; these are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines 
whether the BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simul-
taneously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of 
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later 
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or 
MSR_DEBUGCTLB for Pentium M processors).

Table 17-5.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full
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3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB) 
if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. BTS absolute maximum < 1 
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set 
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

17.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and 
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The 
encoding of these five bits are shown in Table 17-6.

17.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt 
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following 
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of 

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the 

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the 
appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the 
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is 
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during 

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) 
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be 
restored to their original values when exiting the ISR. 

Table 17-6.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the 
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full
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• The processor will not disable the DS save area when the buffer is full and the circular mode has not been 
selected. The current DS setting must be retained and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR 
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like 
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL 

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst 
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition 
before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2 
DUO AND INTEL® ATOM™ PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or 
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities 
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to 
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination 
addresses related to recently executed branches. See Section 17.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is 
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4. 
• Last exception records — See Section 17.13.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI 

operation. 
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if 

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom 
processor families, and Intel processors based on Intel NetBurst microarchitecture. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based 
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store 
destination addresses
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• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store 
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query 
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1. The behavior of the MSR_LER_TO_LIP and the 
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in 
P6 family processors. 

17.5.2 LBR Stack in Intel Atom Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based on 
the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack. 

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported. 
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by 
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

17.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Processors based on the Goldmont microarchitecture extend the capabilities described in Section 17.5.2 with the 
following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0]. 
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 0x680..0x69f) 

and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df). 

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 17-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 17-7.

• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is 
shown in Table 17-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 17.12.2.

• LBR MSRs may be cleared when MWAIT is used to request a C-state that is numerically higher than C1; see 
Section 17.12.3.

Table 17-7.   MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to“ address. See Section 17.4.8.1 for address format.

Cycle Count 
(Saturating)

63:48 R/W Elapsed core clocks since last update to the LBR stack.
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17.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON GOLDMONT PLUS MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont Plus microarchitecture. Processors based on the 
Goldmont Plus microarchitecture extend the capabilities described in Section 17.6 with the following changes:

• Enumeration of new LBR format: encoding 00111b in IA32_PERF_CAPABILITIES[5:0] is supported, see 
Section 17.4.8.1.

• Each LBR stack entry consists of three MSRs:
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data. Layout is the same as 
Table 17-16.

17.8 LAST BRANCH, INTERRUPT AND EXCEPTION RECORDING FOR INTEL® 
XEON PHI™ PROCESSOR 7200/5200/3200

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in the Intel® Xeon Phi™ processor 
7200/5200/3200 series based on the Knights Landing microarchitecture. Eight pairs of MSRs are supported in the 
LBR stack, per thread:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 680H) through MSR_LASTBRANCH_7_FROM_IP (address 687H) 
store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address 6C0H) through MSR_LASTBRANCH_7_TO_IP (address 6C7H) store 
destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported. 
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by 
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query 
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1.The behavior of the MSR_LER_TO_LIP and the 
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in 
the P6 family processors.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name 
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in 
Intel Core 2 processors and adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses 
related to recently executed branches. See Section 17.9.1.
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• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and 
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical 
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are 
observable using the Intel® QPI link.

• Last exception records — See Section 17.13.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI 

operation. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow 

interrupt form the uncore.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if 

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11) for 

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR 

based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only 
captures the subset of branches that are specified by MSR_LBR_SELECT.

Figure 17-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture code name Nehalem

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI
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FREEZE_WHILE_SMM
UNCORE_PMI_EN
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17.9.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is shown in Table 17-8 and Table 17-9.

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-10.

Table 17-10.  LBR Stack Size and TOS Pointer Range

17.9.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all branches will be captured. 
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in 
the LBR. The layout of MSR_LBR_SELECT is shown in Table 17-11.

Table 17-8.   MSR_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.
SIGN_EXt 62:48 R/W Signed extension of bit 47 of this register.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

Table 17-9.   MSR_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to” address. See Section 17.4.8.1 for address format
SIGN_EXt 63:48 R/W Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-11.   MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.9, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name 
Nehalem”, apply to processors based on Intel microarchitecture code name Sandy Bridge. For processors based on 
Intel microarchitecture code name Ivy Bridge, the same holds true. 

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In Intel 
microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The filtering 
semantics for “Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 17-12.

17.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.10, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy 
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell. 

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to 
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-13. If 
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section 
17.10.

Table 17-12.   MSR_LBR_SELECT for Intel® microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-13.   MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.
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The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used 
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become 
less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution flow is 
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list 
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions 
would serve to flush the data captured in the LBR stack, often losing the main execution context. 

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return 
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out 
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call 
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target 

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by 

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP, 
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero 
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and 
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.11.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is 
shown in Table 17-14 and Table 17-9.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are 

undefined.

Table 17-14.   MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.

SIGN_EXT 60:48 R/W Signed extension of bit 47 of this register.

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region

Table 17-13.   MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description
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17.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch 
records:
• enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see Section 

17.4.8.1. 
• Each LBR stack entry consists of a triplets of MSRs: 

— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32. 

Processors based on the Skylake microarchitecture supports the same LBR filtering capabilities as described in 
Table 17-13.

Table 17-15.  LBR Stack Size and TOS Pointer Range

17.12.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 17-16.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 17-16.   MSR_LBR_INFO_x 
Bit Field Bit Offset Access Description

Cycle Count 
(saturating)

15:0 R/W Elapsed core clocks since last update to the LBR stack.

Reserved 60:16 R/W Reserved

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region    OR
                EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

Table 17-14.   MSR_LASTBRANCH_x_FROM_IP with TSX Information (Contd.)
Bit Field Bit Offset Access Description
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17.12.2 Streamlined Freeze_LBRs_On_PMI Operation
The FREEZE_LBRS_ON_PMI feature causes the LBRs to be frozen on a hardware request for a PMI. This prevents 
the LBRs from being overwritten by new branches, allowing the PMI handler to examine the control flow that 
preceded the PMI generation. Architectural performance monitoring version 4 and above supports a streamlined 
FREEZE_LBRs_ON_PMI operation for PMI service routine that replaces the legacy FREEZE_LBRs_ON_PMI opera-
tion (see Section 17.4.7).

While the legacy FREEZE_LBRS_ON_PMI clear the LBR bit in the IA32_DEBUGCTL MSR on a PMI request, the 
streamlined FREEZE_LBRS_ON_PMI will set the LBR_FRZ bit in IA32_PERF_GLOBAL_STATUS. Branches will not 
cause the LBRs to be updated when LBR_FRZ is set. Software can clear LBR_FRZ at the same time as it clears over-
flow bits by setting the LBR_FRZ bit as well as the needed overflow bit when writing to 
IA32_PERF_GLOBAL_STATUS_RESET MSR.

This streamlined behavior avoids race conditions between software and processor writes to IA32_DEBUGCTL that 
are possible with FREEZE_LBRS_ON_PMI clearing of the LBR enable.

17.12.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to 
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the 
FROM, TO, INFO, LAST_BRANCH, LER and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not 
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero. 

17.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS 
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for 
recording taken branches, interrupts and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches, 

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction 
address. 

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken 

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR 
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the 
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the 
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip 
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS 
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs 

(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family 
[CPUID family 0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs 
(MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and 
MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to 
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the 
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Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit 
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also: 
Table 17-17, Figure 17-12, and Section 17.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 17.13.3, “Last Exception Records.”

17.13.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the 
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0 
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to 
this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a 
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example, 
when an instruction or data breakpoint or a single-step trap occurs). See Section 17.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when 
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch 
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to 
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to 
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

Figure 17-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS



Vol. 3B 17-35

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in 
Figure 17-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer 
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last) 
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1. 
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-17 and Figure 17-12.

Table 17-17.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the 
RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two 
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The 
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction 

and the “to” address is the target instruction of the branch. 
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for 

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP 
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that 
caused the exception to be generated and the “to” address is the address of the first instruction in the 
exception handler routine.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15
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Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a 
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch record 
for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the 
branch instruction followed by a record for the interrupt. 

17.13.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 
and Intel® Atom™ processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that 
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors. 
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the 
processor took prior to an exception or interrupt being generated.

17.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability 
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in 
some MSR names and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR 
is located at register address 01D9H. 
See Figure 17-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 

Figure 17-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family
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allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a 
memory-resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start 
at 40H). See Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel 
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based 
on Skylake Microarchitecture,” and Section 2.20, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Figure 17-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors

Figure 17-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor
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17.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M 
PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors. 
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M 
processors, this MSR is located at register address 01D9H. See Figure 17-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the 
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is 
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not 
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

Figure 17-16.  MSR_DEBUGCTLB MSR for Pentium M Processors
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• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M 
Processors, these pairs are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For 
Pentium M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 17.13.3, “Last Exception Records,” and Section 2.21, “MSRs In 
the Pentium M Processor” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

17.16 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the 
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP. 
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.16.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and 
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register 
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode. 
A protected-mode operating system procedure is required to provide user access to this register. Figure 17-18 
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and 

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception 
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data 
breakpoint or single-step trap occurs.

Figure 17-17.  LBR Branch Record Layout for the Pentium M Processor
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• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag. See Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set, 
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear, 
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by 
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section 
17.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When 
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, 
and LastExceptionFromIP MSRs are undefined.

17.16.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the 
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a 
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads 
the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was 
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception 
or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for the 
last branch that the processor took prior to an exception or interrupt being generated. When an exception or inter-
rupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers before 
the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranchFromIP 
MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch 
records for the Pentium 4 and Intel Xeon processors.

17.16.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that 
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time 
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the 
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP 
MSRs prior to recording the to and from addresses of the interrupt or exception.

Figure 17-18.  DEBUGCTLMSR Register (P6 Family Processors)
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When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch, 
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment 
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3), 
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction 
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs 
are offsets into a code segment, software must determine the segment base address of the code segment associ-
ated with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The 
segment base address can be determined by reading the segment selector for the code segment from the stack 
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can 
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

17.17 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an 

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used 

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if 

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core 
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of 
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction 
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp 
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors 

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments 
with every internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel® 
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo 
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel 
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H], 
DisplayModel [17H]); for Intel Atom processors (family [06H], 
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the 
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at 
which the processor is booted. The maximum resolved frequency may differ from the processor base 
frequency, see Section 18.7.2 for more detail. On certain processors, the TSC frequency may not be the same 
as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration 
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core 
changes frequency. This is the architectural behavior moving forward.
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NOTE
To determine average processor clock frequency, Intel recommends the use of performance 
monitoring logic to count processor core clocks over the period of time for which the average is 
required. See Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading 
Technology in Processors Based on Intel NetBurst® Microarchitecture,” and Chapter 19, “Perfor-
mance Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing 
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp 
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in 
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running 
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user 
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should 
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all 
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin 
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as an 
ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-stamp 
counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter on 
processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can be 
written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]], 
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.17.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC. 
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior 
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services 
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with 
a ring transition or access to a platform resource.

17.17.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary TSC register, IA32_TSC_AUX 
that is designed to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized 
by privileged software with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time 
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. 
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity 
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is 
controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC. 
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.
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17.17.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that 
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these 
writes on each logical processor. It may be difficult for software to do this in a way than ensures that all logical 
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address 
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each 
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC, 

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical 

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR 
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software 
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on 
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST 
(bit 1).

17.17.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that runs 
at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship 
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship 
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0] )/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent2.

When ART hardware is reset, both invariant TSC and K are also reset.

17.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including 
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 v3 
family introduced resource monitoring capability in each logical processor to measure specific platform shared 
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is 
described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring 
Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent 
to determine the usage of cache by applications running on the platform. The initial implementation is directed at 
L3 cache monitoring (currently the last level cache in most server platforms).   

Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT 
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case 

2. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that priv-
ileged software can use to manage the time stamp counter for keeping time
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focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation, 
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature 

bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via 

CPUID leaves and sub-leaves). 
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as 
Resource Monitoring IDs (RMIDs). 

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product 
generation on a per software-id basis. 

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory 
Bandwidth for a given software ID at any point during runtime.

17.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the 
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID 
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active 
at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. 
Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and 
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register 
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. Before 
reading back monitored data software must configure an event selection MSR (IA32_QM_EVTSEL) to specify which 
metric is to be reported, and the specific RMID for which the data should be returned. 

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID. 
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the 

cache hierarchy, independent of other monitoring features. 
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the 

cache hierarchy, independent of other monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes 

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory 
controllers on the same package).

17.18.2 Enabling Monitoring: Usage Flow
Figure 17-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such as 
CMT and enable resource monitoring for available resource types and monitoring events.
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17.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory 
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID 
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the 
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available 

resource types (see Section 17.18.4), and monitoring capabilities for each resource type (see Section 
17.18.5). Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration 
infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign 
an RMID to each logical processor, see Section 17.18.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and 
provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 17.18.7. 

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to 
check for error conditions and verify data validity. 

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, 
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query 
available resource types that support monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the 
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute 
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position 
of CPUID.(EAX=0FH, ECX=0):EDX.

17.18.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0) 
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific 
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e. executing CPUID 

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each 

Figure 17-19.  Platform Shared Resource Monitoring Usage Flow
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supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position 
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability 
of that resource type (see Figure 17-21 and Figure 17-22). Reserved bits of CPUID.(EAX=0FH, 
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally, 
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports monitoring 
in the processor.

17.18.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program 
Monitoring MSRs using the resource type associated with the given ResID. 

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs. 
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource 
type, see Figure 17-21. 

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and 
Table 17-18) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software 
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR. 
The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or 
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH, 
ECX=1H).EBX, see Figure 17-21. 

Figure 17-20.  CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

Figure 17-21.  L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H) )
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17.18.5.1  Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH, 
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-18. The 
L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) by multiplying 
with CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

17.18.5.2  Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits will 
be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is 

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy, 
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most 
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if 
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that 
support this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting local from total 
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be 
tracked by subtraction). 

The corresponding Event ID can be looked up from Table 17-18. The L3 bandwidth data accumulated in 
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-18.  Monitoring Supported Event IDs

17.18.6 Monitoring Resource RMID Association
After Monitoring and sub-features has been enumerated, software can begin using the monitoring features. The 
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID. 

Note that the process of associating an RMID with a given software thread is the same for all shared resource moni-
toring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical 
processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that 

Figure 17-22.  L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H) )
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RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later 
with monitoring event codes (retrieving data is discussed in a previous section). 

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR 
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program 
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in 
Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the 
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 ( 1 + CPUID.(EAX=0FH, 
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded. 
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than 
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the 
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external 
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be 
reassigned by the OS or VMM scheduler when an application is migrated across LLCs. 

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g. RMID 
31) may only be supported by one resource type but not by another resource type. 

17.18.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as 
an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT) 
and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported 
back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g. no 
Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly. 

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon 
counters. 

Access to the aggregated monitoring information is accomplished through the following programmable monitoring 
MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance 

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-24. Bits 
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report 
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure 
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of 
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the 
IA32_QM_EVTSEL register are shown in Table 17-18. Note that valid event codes may not necessarily map 
directly to the bit position used to enumerate support for the resource via CPUID. 
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to 
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed 
in Section 17.18.5, which covers feature-specific details.

Figure 17-23.  IA32_PQR_ASSOC MSR
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Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations 
where one thread changes the RMID/EvtID just before another thread reads monitoring data from 
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software 
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be 
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates 
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore, 
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring Technology, 
software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by 
multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

17.18.8 Monitoring Programming Considerations
Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform 
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits are 
used. With Cache Monitoring Technology for instance, the number of bits used will be proportional to the base-two 
logarithm of the total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is suffi-
cient to ensure at most one rollover per sampling period. Any future changes to counter width will be enumerated 
to software. 

Figure 17-24.  IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Figure 17-25.  Software Usage of Cache Monitoring Resources
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17.18.8.1  Monitoring Dynamic Configuration 
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during 
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated 
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used.

17.18.8.2  Monitoring Operation With Power Saving Features
Note that some advanced power management features such as deep package C-states may shrink the L3 cache 
and cause CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data 
out of L3.

17.18.8.3  Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data. 

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters 
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously 
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to 
the prev-SMM RMID upon exit.

17.18.8.4  Monitoring Operation with RAS Features
In general the Reliability, Availability and Serviceability (RAS) features present in Intel Platforms are not expected 
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory 
copies or cache accesses these may be tracked and may influence the shared resource monitoring counter values.

17.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) capa-
bilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon 
processor E5 v4 family (and a subset of communication-focused processors in the Intel Xeon E5 v3 family) intro-
duce capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache. 
Certain Intel Atom processors also provide support for control over the L2 cache, with capabilities as described 
below. The programming interface for Cache Allocation Technology and for the more general allocation capabilities 
are described in the rest of this chapter. The CAT and CDP capabilities, where architecturally supported, may be 
detected and enumerated in software using the CPUID instruction, as described in this chapter.

The Intel Xeon Processor Scalable Family introduces the Memory Bandwidth Allocation (MBA) feature which 
provides indirect control over the memory bandwidth available to CPU cores, and is discussed later in this chapter.

17.19.1 Introduction to Cache Allocation Technology (CAT)
Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or 
similar system service management agent to specify the amount of cache space into which an application can fill 
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized user-
level implementations with minimal OS support are also possible, though not necessarily recommended (see notes 
below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor family, L2 
or L3 cache allocation capability may be provided, and the technology is designed to scale across multiple cache 
levels and technology generations.
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Software can determine which levels are supported in a given platform programmatically using CPUID as described 
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that 

provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID 
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT 
capabilities, such as the max allocation bitmask size, 

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of 
Service via a list of allocation bitmasks, 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a 

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mechanisms 
to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available for 
high priority applications based on guidance from the execution environment as shown in Figure 17-26. The archi-
tecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high 
priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for 
system throughput benefit across uses cases of OSes, VMMs, containers and other scenarios by managing the 
CPUID and MSR interfaces. This section describes the hardware and software support required in the platform 
including what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that 
in Figure 17-26 the L3 Cache is shown as an example resource.

17.19.2 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority 
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or 
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted 
based on the class with which they are associated. Each Class of Service can be configured using capacity bitmasks 
(CBMs) which represent capacity and indicate the degree of overlap and isolation between classes. For each logical 
processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM 
to specify a COS when an application, thread or VM is scheduled. 

The usage of Classes of Service (COS) are consistent across resources and a COS may have multiple resource 
control attributes attached, which reduces software overhead at context swap time. Rather than adding new types 
of COS tags per resource for instance, the COS management overhead is constant. Cache allocation for the indi-
cated application/thread/container/VM is then controlled automatically by the hardware based on the class and the 
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where 
resourceType indicates a resource type (e.g. “L3” for the L3 cache) and “n” indicates a COS number. 

The basic ingredients of Cache Allocation Technology are as follows:

Figure 17-26.  Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications
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• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource 
types are available which can be controlled,

• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length 
of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform, 

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior 
of different classes of service using the bitmasks available, 

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an 
executing software thread (i.e. associating the active CR3 of a logical processor with the COS in 
IA32_PQR_ASSOC), 

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to 
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be 
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bit length of the capacity mask available generally depends on the configuration 
of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a 
processor family as well). Similarly, other parameters such as the number of supported COS may vary for each 
resource type, and these details can be enumerated via CPUID. 

Sample cache capacity bitmasks for a bit length of 8 are shown in Figure 17-27. Please note that all (and only) 
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). Attempts to program a value without 
contiguous '1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in 
way-based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific 
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service 
can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of 

Figure 17-27.  Examples of Cache Capacity Bitmasks
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Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is 
usually beneficial to its performance. 

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented 
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of 
COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case, 
which would allow some lower-priority threads share cache space with the highest priority threads. The third case 
shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility COS0 should 
typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is 
no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which 
has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific 
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, 
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on 
the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition to 
the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of 
service or is entirely isolated in terms of cache space used. 

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically 
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of 
a CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID. 
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are 
selected and associated with different classes of service. For the available Classes of Service the associated CBMs 
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the 
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementations 
supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated other-
wise by Intel. 

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor, 

Figure 17-28.  Class of Service and Cache Capacity Bitmasks
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the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to 
the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application 
thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to 
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on 
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can 
be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement 
implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details 
on specific features such as L3 CAT, L3 CDP, L2 CAT, and L2 CDP. Depending on the specific processor a mix of 
features may be supported, and CPUID provides enumeration capabilities to enable software to dynamically detect 
the set of supported features. 

17.19.3 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of 
code and data fetches to the L2 or L3 cache in a software configurable manner, depending on hardware support, 
which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP 
extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service (COS). 
Support for the L2 CDP feature and the L3 CDP features are separately enumerated (via CPUID) and separately 
controlled (via remapping the L2 CAT MSRs or L3 CAT MSRs respectively). Section 17.19.6.3 and Section 17.19.7 
provide details on enumerating, controlling and enabling L3 and L2 CDP respectively, while this section provides a 
general overview.

The L3 CDP feature was first introduced on the Intel Xeon E5 v4 family of server processors, as an extension to L3 
CAT. The L2 CDP feature is first introduced on future Intel Atom family processors, as an extension to L2 CAT.

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled, 
• the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see 

Figure 17-29), 
• the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP. 

Using the CDP feature, virtual isolation between code and data can be configured on the L2 or L3 cache if desired, 
similar to how some processor cache levels provide separate L1 data and L1 instruction caches. 

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system 
operation, including dynamically enabling or disabling the feature provided that certain software configuration 
requirements are met (see Section 17.19.5). 

An example of the operating mode of CDP is shown in Figure 17-29. Shown at the top are traditional CAT usage 
models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given 
COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations 
where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables 
code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis, 
depending on application and system needs.
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When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports 
16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond 
to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data masks are defined 
per-COS and interleaved in the MSR space as described in subsequent sections.

In cases where CPUID exposes a non-even number of supported Classes of Service for the CAT or CDP features, 
software using CDP should use the lower matched pairs of code/data masks, and any upper unpaired masks should 
not be used. As an example, if CPUID exposes 5 CLOS, when CDP is enabled then two code/data pairs are available 
(masks 0/1 for CLOS[0] data/code and masks 2/3 for CLOS[1] data/code), however the upper un-paired mask 
should not be used (mask 4 in this case) or undefined behavior may result.

17.19.4 Enabling Cache Allocation Technology Usage Flow
Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable 
priority-based resource allocation for a CAT-capable resource.

Figure 17-29.  Code and Data Capacity Bitmasks of CDP
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Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ. 
Common CLOS are used across the features.

17.19.4.1  Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX = 
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control over 
shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available 
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Alloca-
tion Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide 

information on available resource types, and CAT capability for each resource type (see Section 17.19.4.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying 

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM 
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the 
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive. 
See Section 17.19.4.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control 
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using 
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number 
reported for L2 CAT in CPUID. See Section 17.19.4.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at the 
same level as the L3 cache). Software may determine which logical processors share an MSR (for instance local 
to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which logical 
threads observe the change. Example flows for a similar method to determine register scope are described in 
Section 15.5.2, “System Software Recommendation for Managing CMCI and Machine Check Resources”. 
Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs that may share 
a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a 
logical processor to an available COS. The set of COS are common across all allocation features, meaning that 
multiple features may be supported in the same processor without additional software COS management 
overhead at context swap time. See Section 17.19.4.4 for details. 

17.19.4.2  Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e. 

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in 

Figure 17-30.  Cache Allocation Technology Usage Flow
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CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID), 
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is 
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see 
Figure 17-31). 

— For ECX>0, EAX[4:0] reports the length of the capacity bitmask length (ECX=1 or 2 for L2 CAT or L3 CAT 
respectively) using minus-one notation, e.g., a value of 15 corresponds to the capacity bitmask having 
length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the 
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the 
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the capability 
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the 
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain additional feature 
details. 

• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-32. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using 
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an 

Figure 17-31.  CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Figure 17-32.  L3 Cache Allocation Technology and CDP Enumeration 
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integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each 
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to 
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates L3 Code and Data Prioritization Technology is 
supported (see Section 17.19.5). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 17-33. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask length using 
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each 
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to 
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2]: If 1, indicates L2 Code and Data Prioritization Technology is 
supported (see Section 17.19.6). Other bits of CPUID.(EAX=10H, ECX=2):ECX are reserved.

— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical 
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature 
may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnec-
essary thread migrations across processor cores in order to avoid excessive time spent warming up processor 
caches after a migration. In general, for best performance, minimize thread migration and COS migration across 
processor logical threads and processor cores.

Figure 17-33.  L2 Cache Allocation Technology 
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17.19.4.3  Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see 
Section 17.19.4.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the 
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported 
range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and 
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, 
ECX=0):EAX[31:1], for instance, ‘L2’ or ‘L3’ cache. 

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form 
IA32_resourceType_MASK_n: 
• From 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource 

types. The first supported resourceType is 'L3', corresponding to the L3 cache in a platform. The MSRs range 
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service. 

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding 
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H 
through 0D4FH (inclusive). 

Figure 17-34 and Figure 17-35 provide an overview of the relevant registers. 

All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions. 

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (COS) using the 
IA32_PQR_ASSOC MSR as described in Chapter 17, “Class of Service to Cache Mask Association: Common Across 
Allocation Features”.

17.19.4.4  Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set 
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread 

Figure 17-34.  IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

Figure 17-35.  IA32_L2_MASK_n MSRs
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context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs 
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and 
Figure 17-34 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor. 

Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at 
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency. 

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =( 
CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches. 
In all cases, code and data masks for L2 and L3 CDP should be programmed with at least one bit set.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in 
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the 
enforcement feature by default or for legacy operating systems and software.

See Section 17.19.7, “Introduction to Memory Bandwidth Allocation” for important COS programming consider-
ations including maximum values when using CAT and CDP.

17.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology 
L3 CDP is an extension of L3 CAT. The presence of the L3 CDP feature is enumerated via CPUID.(EAX=10H, 
ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to 
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS 
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H, 
ECX=1):EDX.COS_MAX_CAT >>1). 

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR 
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-36. The bit field 
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. 

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence, all logical processors are 
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP. The scope 
of the IA32_L3_QOS_CFG MSR is defined to be the same scope as the L3 cache (e.g., typically per processor 
socket). Refer to Section 17.19.7 for software considerations while enabling or disabling L3 CDP.

17.19.5.1  Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per 
COS. The re-mapping is shown in Table 17-19.

Figure 17-36.  Layout of IA32_L3_QOS_CFG
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Table 17-19.  Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control 
over data fill location and one mask enabling control over code placement. A variety of overlapped and isolated 
mask configurations are possible (see the example in Figure 17-29). 

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length 
of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks 
on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001, 
0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of 
invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0). 

17.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
L2 CDP is an extension of the L2 CAT feature. The presence of the L2 CDP feature is enumerated via 
CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] (see Figure 17-33). Most of the CPUID.(EAX=10H, ECX=2) sub-leaf 
data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT specifies the 
maximum COS applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to 
(CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT >>1). 

If CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] =1, the processor supports L2 CDP and provides a new MSR 
IA32_L2_QOS_CFG at address 0C82H. The layout of IA32_L2_QOS_CFG is shown in Figure 17-37. The bit field 
definition of IA32_L2_QOS_CFG are:
• Bit 0: L2 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. 

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
.... .... ....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code

Figure 17-37.  Layout of IA32_L2_QOS_CFG
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IA32_L2_QOS_CFG default values are all 0s at RESET, and the mask MSRs are all 1s. Hence all logical processors 
are initialized in COS0 allocated with the entire L2 available and with CDP disabled, until software programs CAT 
and CDP. The IA32_L2_QOS_CFG MSR is defined at the same scope as the L2 cache, typically at the module level 
for Intel Atom processors for instance. In processors with multiple modules present it is recommended to program 
the IA32_L2_QOS_CFG MSR consistently across all modules for simplicity.

17.19.6.1  Mapping Between L2 CDP Masks and L2 CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per 
COS. This remapping is the same as the remapping shown in Table 17-19 for L3 CDP, but for the L2 MSR block 
(IA32_L2_QOS_MASK_n) instead of the L3 MSR block (IA32_L3_QOS_MASK_n). The same code / data mask 
mapping algorithm applies to remapping the MSR block between code and data masks. 

As with L3 CDP, when L2 CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling 
programmatic control over data fill location and one mask enabling control over code placement. A variety of over-
lapped and isolated mask configurations are possible (see the example in Figure 17-29). 

Mask MSR field definitions for L2 CDP remain the same as for L2 CAT. Capacity masks must be formed of contiguous 
set bits, with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As 
examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 
0x00F0, 0x0001, 0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or 
disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate 
#GP(0).

17.19.6.2  Common L2 and L3 CDP Programming Considerations
Before enabling or disabling L2 or L3 CDP, software should write all 1's to all of the corresponding CAT/CDP masks 
to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs for the L3 CAT feature). When enabling 
CDP, software should also ensure that only COS number which are valid in CDP operation is used, otherwise unde-
fined behavior may result. For instance in a case with 16 CAT COS, since COS are reduced by half when CDP is 
enabled, software should ensure that only COS 0-7 are in use before enabling CDP (along with writing 1's to all 
mask bits before enabling or disabling CDP). 

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, 
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service 
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should 
consider resetting all threads to COS[0] before enabling or disabling CDP.

17.19.6.3  Cache Allocation Technology Dynamic Configuration 
All Resource Director Technology (RDT) interfaces including the IA32_PQR_ASSOC MSR, CAT/CDP masks, MBA 
delay values and CQM/MBM registers are accessible and modifiable at any time during execution using 
RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the 
following conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in 

CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H, 

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a COS value in IA32_PQR_ASSOC.COS outside of the lower half of the COS space 
will cause undefined performance impact to code and data fetches due to MSR space re-indexing into code/data 
masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned. 

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or 
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently. 
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This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor 
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best 
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.19.6.4  Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some 
advanced power management features such as C-states which may shrink or power off various caches within the 
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take 
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are 
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C. 

If software requires differentiation between threads but not absolute determinism then in many cases it is possible 
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase 
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire 
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache 
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off 
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to 
remain in the cache. If differentiation between threads is the goal of system software then this model allows 
substantial power savings while continuing to deliver performance differentiation. If system software needs 
optimal determinism then power saving modes which flush portions of the caches and power them off should be 
disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents 
are saved across package C-state entry/exit and are not lost.

17.19.6.5  Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of 
SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-
determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power 
management practices that affect CAT operation. 

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with 
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon 
entering SMM, and switching back to the previously running COS upon exit.

17.19.6.6  Associating Threads with CAT/CDP Classes of Service 
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The 
same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP 
is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The 
mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled, 

— Two mask sets exist for each COS number, one for code, one for data. 

— Masks for code/data are interleaved in the MSR address space (see Table 17-19).



17-64 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7 Introduction to Memory Bandwidth Allocation
The Memory Bandwidth Allocation (MBA) feature provides indirect and approximate control over memory band-
width available per-core, and was introduced on the Intel Xeon Processor Scalable Family. This feature provides a 
method to control applications which may be over-utilizing bandwidth relative to their priority in environments such 
as the data-center. 

The MBA feature uses existing constructs from the Resource Director Technology (RDT) feature set including 
Classes of Service (CLOS). A given CLOS used for L3 CAT for instance means the same thing as a CLOS used for 
MBA. Infrastructure such as the MSR used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and 
some elements of the CPUID enumeration (such as CPUID leaf 10H) are shared. 

The high-level implementation of Memory Bandwidth Allocation is shown in Figure 17-38.

As shown in Figure 17-38, the MBA feature introduces a programmable request rate controller between the cores 
and the high-speed interconnect, enabling indirect control over memory bandwidth for cores over-utilizing band-
width relative to their priority. For instance, high-priority cores may be run un-throttled, but lower priority cores 
generating an excessive amount of traffic may be throttled to enable more bandwidth availability for the high-
priority cores. 

Since MBA uses a programmable rate controller between the cores and the interconnect, higher-level shared 
caches and memory controller, bandwidth to these caches may also be reduced, so care should be taken to throttle 
only bandwidth-intense applications which do not use the off-core caches effectively. 

The throttling values exposed by MBA are approximate, and are calibrated to specific traffic patterns. As work-load 
characteristics vary, the throttling values provided may affect each workload differently. In cases where precise 
control is needed, the Memory Bandwidth Monitoring (MBM) feature can be used as input to a software controller 
which makes decisions about the MBA throttling level to apply. 

Enumeration and configuration details are discussed below followed by usage model considerations.

Figure 17-38.  A High-Level Overview of the MBA Feature
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17.19.7.1  Memory Bandwidth Allocation Enumeration
Similar to other RDT features, enumeration of the presence and details of the MBA feature is provided via a sub-
leaf of the CPUID instruction. 

Key components of the enumeration are as follows.
• Support for the MBA feature on the processor, and if MBA is supported, the following details: 

— Number of supported Classes of Service (CLOS) for the processor. 

— The maximum MBA delay value supported (which also implicitly provides a definition of the granularity).

— An indication of whether the delay values which can be programmed are linearly spaced or not.

The presence of any of the RDT features which enable control over shared platform resources is enumerated by 
executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] 
reports 1, the processor supports software control over shared processor resources. Software may then use CPUID 
leaf 10H to enumerate additional details on the specific controls provided. 

Through CPUID leaf 10H software may determine whether MBA is supported on the platform. Specifically, as shown 
in Figure 17-31, bit 3 of the EBX register indicates whether MBA is supported on the processor, and the bit position 
(3) constitutes a Resource ID (ResID) which allows enumeration of MBA details. For instance, if bit 3 is supported 
this implies the presence of CPUID.10H.[ResID=3] as shown in Figure 17-38 which provides the following details. 
• CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] reports the maximum MBA throttling value supported, minus 

one. For instance, a value of 89 indicates that a maximum throttling value of 90 is supported. Additionally, in 
cases where a linear interface (see below) is supported then one hundred minus the maximum throttling value 
indicates the granularity, 10% in this example. 

• CPUID.(EAX=10H, ECX=ResID=3):EBX is reserved.
• CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports whether the response of the delay values is linear (see 

text). 
• CPUID.(EAX=10H, ECX=ResID=3):EDX[15:0] reports the number of Classes of Service (CLOS) supported for 

the feature (minus one). For instance, a reported value of 15 implies a maximum of 16 supported MBA CLOS. 

The number of CLOS supported for the MBA feature may or may not align with other resources such as L3 CAT. In 
cases where the RDT features support different numbers of CLOS the lowest numerical CLOS support the common 
set of features, while higher CLOS may support a subset. For instance, if L3 CAT supports 8 CLOS while MBA 
supports 4 CLOS, all 8 CLOS would have L3 CAT masks available for cache control, but the upper 4 CLOS would not 
offer MBA support. In this case the upper 4 CLOS would not be subject to any throttling control. Software can 
manage supported resources / CLOS in order to either have consistent capabilities across CLOS by using the 
common subset or enable more flexibility by selectively applying resource control where needed based on careful 
CLOS and thread mapping. In all cases, CLOS[0] supports all RDT resource control features present on the plat-
form.

Discussion on the interpretation and usage of the MBA delay values is provided in Section 17.19.7.2 on MBA config-
uration.
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17.19.7.2  Memory Bandwidth Allocation Configuration
The configuration of MBA takes consists of two processes once enumeration is complete.
• Association of threads to Classes of Service (CLOS) - accomplished in a common fashion across RDT features 

as described in Section 17.19.7.1 via the IA32_PQR_ASSOC MSR. As with features such as L3 CAT, software 
may update the CLOS field of the PQR MSR at context swap time in order to maintain the proper association of 
software threads to Classes of Service on the hardware. While logical processors may each be associated with 
independent CLOS, see Section 17.19.7.3 for important usage model considerations (initial versions of the MBA 
feature select the maximum delay value across threads). 

• Configuration of the per-CLOS delay values, accomplished via the IA32_L2_QoS_Ext_BW_Thrtl_n MSR set 
shown in Table 17-20. 

The MBA delay values which may be programmed range from zero (implying zero delay, and full bandwidth avail-
able) to the maximum (MBA_MAX) specified in CPUID as discussed in Section 17.19.7.1. The throttling values are 
approximate and do not sum to 100% across CLOS, rather they should be viewed as a maximum bandwidth “cap” 
per-CLOS.

Software may select an MBA delay value then write the value into one or more of the 
IA32_L2_QoS_Ext_BW_Thrtl_n MSRs to update the delay values applied for a specific CLOS. As shown in Table 
17-20 the base address of the MSRs is at D50H, and the range corresponds to the maximum supported CLOS from 
CPUID.(EAX=10H, ECX=ResID=1):EDX[15:0] as described in Section 17.19.7.1. For instance, if 16 CLOS are 
supported then the valid MSR range will extend from D50H through D5F inclusive.

Figure 17-39.  CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification
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Table 17-20.  MBA Delay Value MSRs

The definition for the MBA delay value MSRs is provided in Figure 17.39. The lower 16 bits are used for MBA delay 
values, and values from zero to the maximum from the CPUID MBA_MAX-1 value are supported. Values outside 
this range will generate #GP(0).

If linear input throttling values are indicated by CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] then values from 
zero through the MBA_MAX field from CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] are supported as inputs. In 
the linear mode the input precision is defined as 100-(MBA_MAX). For instance, if the MBA_MAX value is 90, the 
input precision is 10%. Values not an even multiple of the precision (e.g., 12%) will be rounded down (e.g., to 10% 
delay applied). 
• If linear values are not supported (CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] = 0) then input delay values 

are powers-of-two from zero to the MBA_MAX value from CPUID. In this case any values not a power of two will 
be rounded down the next nearest power of two.

Note that the throttling values provided to software are calibrated through specific traffic patterns, however as 
workload characteristics may vary the response precision and linearity of the delay values will vary across 
products, and should be treated as approximate values only.

17.19.7.3  Memory Bandwidth Allocation Usage Considerations
As the memory bandwidth control that MBA provides is indirect and approximate, using the feature with a closed-
loop controller to also monitor memory bandwidth and how effectively the applications use the cache (via the 
Cache Monitoring Technology feature) may provide additional value. This approach also allows administrators to 
provide a band-width target or set-point which a controller could use to guide MBA throttling values applied, and 
this allows bandwidth control independent of the execution characteristics of the application. 

As control is provided per processor core (the max of the delay values of the per-thread CLOS applied to the core) 
care should be taking in scheduling threads so as to not inadvertently place a high-priority thread (with zero 
intended MBA throttling) next to a low-priority thread (with MBA throttling intended), which would lead to inadver-
tent throttling of the high-priority thread.

Delay Value MSR Address

IA32_L2_QoS_Ext_BW_Thrtl_0 D50H
IA32_L2_QoS_Ext_BW_Thrtl_1 D51H
IA32_L2_QoS_Ext_BW_Thrtl_2 D52H
.... ....

IA32_L2_QoS_Ext_BW_Thrtl_'COS_MAX' D50H + COS_MAX from CPUID.10H.3

Figure 17-40.  IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition
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Base MSR Address = 0xD50
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19.Updates to Chapter 18, Volume 3B
Change bars and green text show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------
Changes to this chapter: Update to section 18.3.1.1.1, “Processor Event Based Sampling (PEBS)”, minor update 
to section 18.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility”, and typo correc-
tions as necessary.
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CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring 
Unit).

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and 
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance. 

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection 
of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based on 
Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and perfor-
mance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel 
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not 
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architectural 
performance events and a set of non-architectural performance events. Newer Intel processor generations support 
enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or interrupt-based event 
sampling usage. These events are non-architectural and vary from one processor model to another. They are 
similar to those available in Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are discussed in Section 18.6.3, 
“Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).” Non-architectural events for a 
given microarchitecture cannot be enumerated using CPUID; and they are listed in Chapter 19, “Performance 
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring. 
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available 
events. The visible behavior of architectural performance events is consistent across processor implementations. 
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events 
are discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors)”

• Section 18.3.1, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Nehalem”

• Section 18.3.2, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Westmere”

• Section 18.3.3, “Intel® Xeon® Processor E7 Family Performance Monitoring Facility”

• Section 18.3.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Sandy Bridge”

• Section 18.3.5, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.6, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.7, “5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance 
Monitoring Facility”
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• Section 18.3.8, “6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor 
Performance Monitoring Facility”

• Section 18.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.4, “Performance monitoring (Intel® Xeon™ Phi Processors)”

• Section 18.4.1, “Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring”

— Section 18.5, “Performance Monitoring (Intel Atom® Processors)”

• Section 18.5.1, “Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)”

• Section 18.5.2, “Performance Monitoring for Silvermont Microarchitecture”

• Section 18.5.3, “Performance Monitoring for Goldmont Microarchitecture”

• Section 18.5.4, “Performance Monitoring for Goldmont Plus Microarchitecture”

• Section 18.5.5, “Performance Monitoring for Tremont Microarchitecture”

— Section 18.6, “Performance Monitoring (Legacy Intel Processors)”

• Section 18.6.1, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

• Section 18.6.2, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

• Section 18.6.3, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

• Section 18.6.4, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on 
Intel NetBurst® Microarchitecture”

• Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading Technology in 
Processors Based on Intel NetBurst® Microarchitecture”

• Section 18.6.5, “Performance Monitoring and Dual-Core Technology”

• Section 18.6.6, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache”

• Section 18.6.7, “Performance Monitoring on L3 and Caching Bus Controller Sub-Systems”

• Section 18.6.8, “Performance Monitoring (P6 Family Processor)”

• Section 18.6.9, “Performance Monitoring (Pentium Processors)”

— Section 18.7, “Counting Clocks”

— Section 18.8, “IA32_PERF_CAPABILITIES MSR Enumeration”

— Section 18.9, “PEBS Facility”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel 
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a 
mechanism for software to enumerate performance events and provides configuration and counting facilities for 
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The 
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support 
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T 
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and 
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture 
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indicate 
the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the Airmont 
microarchitecture support the same performance monitoring capabilities as those based on the Silvermont micro-
architecture.
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Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell microar-
chitectures support version ID 1, 2, and 3. Intel processors based on the Skylake, Kaby Lake and Coffee Lake 
microarchitectures support versionID 4. 

Next generation Intel Atom processors are based on the Goldmont microarchitecture. Intel processors based on 
the Goldmont microarchitecture support versionID 4.

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a 
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance 
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and 

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available to software in a logical processor (each 

IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR).
• Number of bits supported in each IA32_PMCx.
• Number of architectural performance monitoring events supported in a logical processor.

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural 
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version iden-
tifier is greater than zero, architectural performance monitoring capability is supported. Software queries the 
CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX 
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many 
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and performance 
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of 

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8]. Note that this may vary from the number 
of physical counters present on the hardware, because an agent running at a higher privilege level (e.g., a 
VMM) may not expose all counters.

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each 
performance event select register is paired with a corresponding performance counter in the 0C1H address 
block. Note the number of IA32_PERFEVTSELx MSRs may vary from the number of physical counters present 
on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may not expose all 
counters.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits 
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and 
the high-order bits are sign-extended from the value of bit 31. 
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• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field 
is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table 
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when 
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the 
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — Beginning with Sandy Bridge microarchitecture, this bit is reserved (not 
writeable). On processors based on previous microarchitectures, the logical processor toggles the PMi pins and 
increments the counter when performance-monitoring events occur; when clear, the processor toggles the PMi 
pins when the counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock 
followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a 
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

Figure 18-1.  Layout of IA32_PERFEVTSELx MSRs
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• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor 
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If 
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter 
is not incremented. 
This mask is intended for software to characterize microarchitectural conditions that can count multiple 
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If 
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

18.2.1.2  Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all the predefined architectural 
performance events (Table 18-1). The number of architectural events is reported through CPUID.0AH:EAX[31:24], 
while non-zero bits in CPUID.0AH:EBX indicate any architectural events that are not available. 

The behavior of each architectural performance event is expected to be consistent on all processors that support 
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter 
does not advance in the following conditions: 

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted 

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter 14, “Power and 
Thermal Management”)

The performance counter for this event counts across performance state transitions using different core clock 
frequencies

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts 
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction 
are not counted.

Table 18-1.  UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position 
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

7 Topdown Slots 01H A4H
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This event does not increment under VM-exit conditions. Counters continue counting during hardware 
interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles at a fixed frequency while the clock signal on the core is running. The 
event counts at a fixed frequency, irrespective of core frequency changes due to performance state transitions. 
Processors may implement this behavior differently. Current implementations use the core crystal clock, TSC or 
the bus clock. Because the rate may differ between implementations, software should calibrate it to a time 
source with known frequency.

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line in the last level on-die cache. 
The event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but 
may exclude cache line fills due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level on-die cache. The event count may 
include speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache 
line fills due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch 
instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op 
of a branch instruction in the architectural path of execution and experienced misprediction in the branch 
prediction hardware. 
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to 
estimate performance differences is not recommended. 

• Topdown Slots — Event select A4H, Umask 01H
This event counts the total number of available slots for an unhalted logical processor.
The event increments by machine-width of the narrowest pipeline as employed by the Top-down Microarchi-
tecture Analysis method. The count is distributed among unhalted logical processors (hyper-threads) who 
share the same physical core, in processors that support Intel Hyper-Threading Technology.
Software can use this event as the denominator for the top-level metrics of the Top-down Microarchitecture 
Analysis method.

NOTE
Programming decisions or software precisians on functionality should not be based on the event 
values or dependent on the existence of performance monitoring events.

18.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through 
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located 
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK 
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field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do 
not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are 
enabling/disabling event counting and checking the status of counter overflows. Architectural performance 
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of 
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field interface 
in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR records with 
reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only the 
legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on PMI 
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2, 
only the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on 
PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by 
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per 

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits 

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in 
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a 
fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function PMC. 
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

Figure 18-2.  Layout of IA32_FIXED_CTR_CTRL MSR
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• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is 
enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting 
is enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops 
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege 
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an 
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter. 
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is 
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the 
AND’ed results is true; counting is disabled when the result is false.

The behavior of the fixed function performance counters supported by architectural performance version 2 is 
expected to be consistent on all processors that support those counters, and is defined as follows.

Figure 18-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR
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IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each 
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer 
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

Table 18-2.  Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function 
Performance Counter

Address Event Mask Mnemonic Description

IA32_FIXED_CTR0 309H INST_RETIRED.ANY This event counts the number of instructions that retire 
execution. For instructions that consist of multiple uops, 
this event counts the retirement of the last uop of the 
instruction. The counter continues counting during 
hardware interrupts, traps, and in-side interrupt handlers.

IA32_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THREAD

CPU_CLK_UNHALTED.CORE

The CPU_CLK_UNHALTED.THREAD event counts the 
number of core cycles while the logical processor is not in a 
halt state.

If there is only one logical processor in a processor core, 
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of 
the processor core.

The core frequency may change from time to time due to 
transitions associated with Enhanced Intel SpeedStep 
Technology or TM2. For this reason this event may have a 
changing ratio with regards to time.

IA32_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_TSC This event counts the number of reference cycles at the 
TSC rate when the core is not in a halt state and not in a TM 
stop-clock state. The core enters the halt state when it is 
running the HLT instruction or the MWAIT instruction. This 
event is not affected by core frequency changes (e.g., P 
states) but counts at the same frequency as the time stamp 
counter. This event can approximate elapsed time while the 
core was not in a halt state and not in a TM stopclock state.

IA32_FIXED_CTR3 30CH TOPDOWN.SLOTS This event counts the number of available slots for an 
unhalted logical processor. The event increments by 
machine-width of the narrowest pipeline as employed by 
the Top-down Microarchitecture Analysis method. The 
count is distributed among unhalted logical processors 
(hyper-threads) who share the same physical core. 

Software can use this event as the denominator for the 
top-level metrics of the Top-down Microarchitecture 
Analysis method.
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IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

18.2.3 Architectural Performance Monitoring Version 3 
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as 
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e. a processor core 
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• AnyThread counting for processor core supporting two or more logical processors. The interface that supports 

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in Figure 
18-6.

Figure 18-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR
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Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3 for 
processor core comprising of two or more logical processors. When set to 1, it enables counting the associated 
event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx) 
occurring across all logical processors sharing a processor core. When bit 21 is 0, the counter only increments 
the associated event conditions (including matching the thread’s CPL with the OS/USR setting of 
IA32_PERFEVTSELx) occurring in the logical processor which programmed the IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured 
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is 
shown. 

Each control block for a fixed-function performance counter provides an AnyThread (bit position 2 + 4*N, N= 
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the 
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL) 
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in 
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event 
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide 
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 18-8 and 
Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported 
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

NOTE
The number of general-purpose performance monitoring counters (i.e., N in Figure 18-9) can vary 
across processor generations within a processor family, across processor families, or could be 

Figure 18-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 18-7.  IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3
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different depending on the configuration chosen at boot time in the BIOS regarding Intel Hyper 
Threading Technology, (e.g. N=2 for 45 nm Intel Atom processors; N =4 for processors based on 
the Nehalem microarchitecture; for processors based on the Sandy Bridge microarchitecture, N = 
4 if Intel Hyper Threading Technology is active and N=8 if not active). In addition, the number of 
counters may vary from the number of physical counters present on the hardware, because an 
agent running at a higher privilege level (e.g., a VMM) may not expose all counters.

18.2.3.1  AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical 
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While AnyThread counting provides some benefits in 

Figure 18-8.  Layout of Global Performance Monitoring Control MSR

Figure 18-9.  Global Performance Monitoring Overflow Status and Control MSRs
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simple software environments of an earlier era, the evolution contemporary software environments introduce 
certain concepts and pre-requisites that AnyThread counting does not comply with. 

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX 
(see Chapter 23, “Introduction to Virtual-Machine Extensions”) where each VM represents a domain separated 
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in 
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtualiza-
tion or requiring domain separation. 

Specifically, Intel recommends VMM:
• Configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in 

VMX non-Root operation (see CHAPTER 24 for additional information), 
• Clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits 

and VM entries (see CHAPTER 24, CHAPTER 26, and CHAPTER 27).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a 
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted (see relevant sections of Chapter 19, “Performance Monitoring Events”).

18.2.4 Architectural Performance Monitoring Version 4 
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well as 
capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation interface 
that replaces the legacy semantic behavior but retains the same control interface in 
IA32_DEBUGCTL.Freeze_LBRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the following 
enhancement:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 18.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI and 

IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 18.2.4.1. Legacy semantics of Freeze_LBRs_On_PMI 
and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and 
read-only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 18.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

18.2.4.1  Enhancement in IA32_PERF_GLOBAL_STATUS 
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance monitoring 
version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR 
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serves as a control to enable capturing data in 
the LBR stack. To enable capturing LBR records, the following expression must hold with architectural perfmon 
version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ) ) =1
• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the 
performance counters are frozen.
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Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable 
programmable performance counters and fixed counters in the core PMU. To enable counting with the 
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn & 
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ) ) = 1 for programmable counter ‘n’, or 

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi & 
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ) ) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI 
handler to use IA32_DEBUGCTL.Freeze_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 17-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary 
interface to control all performance counters of the logical processor. 

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting 
IA32_PERF_GLOBAL_CTRL as the very last step to commence the overall operation after configuring the individual 
counter registers, controls and PEBS facility. This does not only assure atomic monitoring but also avoids unneces-
sary complications (e.g. race conditions) when software attempts to change the core PMU configuration while some 
counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor Trace 
and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when a PMI 
occurred due to a ToPA entry memory buffer was completely filled. 

IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring oper-
ations with other side-band activities, which apply Intel SGX on processors that support SGX (For additional infor-
mation about Intel SGX, see “Intel® Software Guard Extensions Programming Reference”.):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured 

performance counters (i.e. IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect 
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was 
cleared). 

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of 
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of 
IA32_PERF_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

18.2.4.2  IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in 
IA32_PERF_GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with 
architectural performance monitoring version 4, software can manage the overflow and other indicators in 
IA32_PERF_GLOBAL_STATUS using separate interfaces to set or clear individual bits. 

Figure 18-10.  IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4
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The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by 
IA32_PERF_GLOBAL_STATUS_RESET (see Figure 18-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides 
additional bit fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 18.2.4.1.

The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It 
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET 
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

18.2.4.3  IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s 
performance monitoring facilities. The IA32_MISC_ENABLE.PERFMON_AVAILABLE[bit 7] interface could not serve 
the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1, proposed 
a cooperative sharing protocol that is voluntary for participating software agents. 

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simplifies 
the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 18-13.

Figure 18-11.  IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4

Figure 18-12.  IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

1. Available at http://www.intel.com/sdm
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The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and 
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by a 
profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of 

(IA32_PERFEVTSEL0[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of 

(IA32_PERFEVTSEL1[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of 

(IA32_PERFEVTSEL2[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of 

(IA32_PERFEVTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].
• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of 

(IA32_FIXED_CTR_CTRL[1:0] != 0).
• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of 

(IA32_FIXED_CTR_CTRL[5:4] != 0).
• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of 

(IA32_FIXED_CTR_CTRL[9:8] != 0).
• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 63]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8].

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2.

— Any IA32_PEBS_ENABLES bit which enables PEBS for a general-purpose or fixed-function performance 
counter.

18.2.5 Architectural Performance Monitoring Version 5 
Processors supporting architectural performance monitoring version 5 also support versions 1, 2, 3 and 4, as well 
as capability enumerated by CPUID leaf 0AH. Specifically, version 5 provides the following enhancements:
• Deprecation of Anythread mode, see Section 18.2.5.1.
• Individual enumeration of Fixed counters in CPUID.0AH, see Section 18.2.5.2.

18.2.5.1  AnyThread Mode Deprecation
With Architectural Performance Monitoring Version 5, a processor that supports AnyThread mode deprecation is 
enumerated by CPUID.0AH.EDX[15]. If set, software will not have to follow guidelines in Section 18.2.3.1.

Figure 18-13.  IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4
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18.2.5.2  Fixed Counter Enumeration
With Architectural Performance Monitoring Version 5, register CPUID.0AH.ECX indicates Fixed Counter enumera-
tion. It is a bit mask which enumerates the supported Fixed Counters in a processor. If bit 'i' is set, it implies that 
Fixed Counter 'i' is supported. Software is recommended to use the following logic to check if a Fixed Counter is 
supported on a given processor: 

FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

18.2.6 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the 
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by 
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 18-63. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias 
address starting at 4C1H for IA32_A_PMC0. 

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to 
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] := EDX[COUNTERWIDTH-33:0]);    
IA32_PMCi[31:0] := EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

18.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL® 
XEON® PROCESSORS)

18.3.1 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Nehalem

Intel Core i7 processor family2 supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.3) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is based 
on Intel® microarchitecture code name Nehalem, and provides four general-purpose performance counters 
(IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters 
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2) in the processor core. 

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-31. 
Non-architectural performance monitoring events fall into two broad categories:
• Performance monitoring events in the processor core: These include many events that are similar to 

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally, 
there are several enhancements in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the 
physical processor package. The off-core sub-systems in the physical processor package is loosely referred to 
as “uncore“.

2. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code name Nehalem; the performance 
monitoring facilities described in this section generally also apply.
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• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor 
cores in the physical processor package. It provides additional performance monitoring facility outside of 
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread 
qualification using bit 21 of IA32_PERFEVTSELx MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and 
Section 18.2.3. 

18.3.1.1  Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs, 

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of the 
four performance counter can support processor event based sampling (PEBS) and thread-qualification of 
architectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been 
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel micro-
architecture code name Nehalem has been enhanced to include new data format to capture additional infor-
mation, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency 
facility in processors based on Intel microarchitecture code name Nehalem. This field measures the load latency 
from load's first dispatch of till final data writeback from the memory subsystem. The latency is reported for 
retired demand load operations and in core cycles (it accounts for re-dispatches). This facility is used in 
conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

NOTE
The number of counters available to software may vary from the number of physical counters 
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may 
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section 
18.2.1.

Figure 18-14.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved
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OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 00000000_00000000H

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
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18.3.1.1.1  Processor Event Based Sampling (PEBS)

All general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event supports 
PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the performance 
monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE provides 4 
bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record to be 
captured. 

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR 
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS 
record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based 
on Intel microarchitecture code name Nehalem is shown in Figure 18-15.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state 
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows 
from maximum count to zero, the PEBS hardware is armed. 

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be 
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see 
Figure 18-63).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-63). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the 
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes 
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show 
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-3, and each field in the PEBS record is 64 bits long. The PEBS record 
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent. 
When set, it uses 64-bit DS storage format.

Figure 18-15.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-3.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H
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In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-32e 
mode are written to zero. 

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is indi-
cated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist 
occurred. This value is written so software can determine which counters overflowed when this PEBS record was 
written. Note that this field indicates the overflow status for all counters, regardless of whether they were 
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events 
are listed in Table 18-78. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting 
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the 
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

The recording of PEBS records may not operate properly if accesses to the linear addresses in the DS buffer 
management area or in the PEBS buffer (see below) cause page faults, VM exits, or the setting of accessed or dirty 
flags in the paging structures (ordinary or EPT). For that reason, system software should establish paging struc-
tures (both ordinary and EPT) to prevent such occurrences. Implications of this may be that an operating system 
should allocate this memory from a non-paged pool and that system software cannot do “lazy” page-table entry 
propagation for these pages. A virtual-machine monitor may choose to allow use of PEBS by guest software only if 
EPT maps all guest-physical memory as present and read/write.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into 
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-16.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer 

allocated by software. The processor reads this field to determine the base address of the PEBS buffer.
• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the 

beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next 
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the 
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first 
PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated 
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond 

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

50H R8 A8H Latency value (core cycles)

Table 18-3.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
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the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when 
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to 
continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and 
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first 
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes 
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the 
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance 
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of 
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the 
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate 
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile 
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it 
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these 
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management 
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter 
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be 
modified by the PEBS assist.

Performance Counter Prioritization

Figure 18-16.  PEBS Programming Environment
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Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero (assuming 
IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger. PEBS hard-
ware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 transition 
of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes 
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and 
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will 
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and 
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS 
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow 
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two 
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.3.1.2). It is 
possible for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the 
processor core. Software must check core and uncore status registers to determine the exact origin of counter 
overflow interrupts.

18.3.1.1.2  Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of 
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS 
buffer, see Table 18-3. This field measures the load latency from load's first dispatch of till final data writeback from 
the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts 
for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. 

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.
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The load-latency information written into a PEBS record (see Table 18-3, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in 

processor core clock domain.
• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The 

encoding is shown in Table 18-4. In the descriptions, local memory refers to system memory physically 
attached to a processor package, and remote memory refers to system memory physically attached to another 
processor package. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-17.

Table 18-4.  Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss.

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where no modified copies were found. 

07H1

NOTES:
1. Bit 7 is supported only for processors with a CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is 

reserved.

Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and were serviced by another 
core with a cross core snoop where modified copies were found. 

08H Reserved/L3 MISS. Local homed requests that missed the L3 cache and were serviced by forwarded data following a 
cross package snoop where no modified copies were found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation.

0FH The request was to un-cacheable memory.

Figure 18-17.  Layout of MSR_PEBS_LD_LAT MSR 

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H
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Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than 
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they 
are ignored. The minimum value that may be programmed in this field is 3.

18.3.1.1.3  Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core 
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only 
one off-core response configuration MSR. Table 18-5 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-18. Bits 7:0 specifies the request type of a transaction 
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

Table 18-5.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

Figure 18-18.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Table 18-6.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as 
demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction 
fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a 
write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H
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18.3.1.2  Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in the physical processor 
package that are shared by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache, 
Intel QuickPath Interconnect link logic, and integrated memory controller. The performance monitoring facilities 
inside the uncore operates in the same clock domain as the uncore (U-clock domain), which is usually different 
from the processor core clock domain. The uncore performance monitoring facilities described in this section apply 
to Intel Xeon processor 5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH 
(see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4). An overview of the uncore performance monitoring facilities is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters 

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global uncore performance counter 
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification 
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the 
rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in 
the PCI configuration space register at offset C0H under device number 0 and Function 0. 

18.3.1.2.1  Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function coun-
ters in the uncore. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is 
shared by four processor cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter 

MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

OTHER 7 Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes, WC or 
non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions 
required (snooping).

OTHER_CORE_HI
T_SNP

9 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another 
core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another 
core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data following 
a cross package snoop where no modified copies found. (Remote home requests are not counted)

REMOTE_DRAM 13 L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

NON_DRAM 15 Non-DRAM requests that were serviced by IOH.

Table 18-6.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition (Contd.)

Bit Name Offset Description
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• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive 
an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow 
is enabled by setting IA32_DEBUGCTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a 
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in 
MSR_UNCORE_PERF_GLOBAL_CTRL upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the 
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The 
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 18-20 shows the 
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has 

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has 

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register 

has changed state.

Figure 18-19.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 00000000_00000000H
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MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the 
UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global 
status register are cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit 
position in this register has no effect on the uncore PMU hardware. 

Figure 18-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter 
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter 
MSR_UNCORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing 
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing 
a value other than 1 is ignored.

Figure 18-20.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 18-21.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 00000000_00000000H

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 00000000_00000000H
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18.3.1.2.2  Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and 
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is 
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-22 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared 

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero. 
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition 

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This 

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting 
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the 
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than 
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and 
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the 
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 18-23 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

Figure 18-22.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

Figure 18-23.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event SelectCounter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow
RESET Value — 00000000_00000000H

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 00000000_00000000H
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• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and 
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter 
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits 
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter 
(MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages. 
The event logic unit can filter event counts to specific regions of code or transaction types incoming to the home 
node logic.

18.3.1.2.3  Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit. 
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 18-24. 

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore 
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a 
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message 
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode.

— Bits 47:44 specify the QPI message classes.
Table 18-7 lists the encodings supported in the opcode field.

Figure 18-24.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address
RESET Value — 00000000_00000000H

Opcode
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• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware.

— 100B: Count if only the address field matches.

— 010B: Count if only the opcode field matches.

— 110B: Count if either opcode field matches or the address field matches.

— 001B: Count only if both opcode and address field match.

— Other encoding are reserved.

18.3.1.3  Intel® Xeon® Processor 7500 Series Performance Monitoring Facility
The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as 
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series are 
significantly different The uncore performance monitoring facility consist of many distributed units associated with 
individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of the 
various box units of the uncore is shown in Figure 18-25.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to 
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its 
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box 
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple 
counters within each box. 

Table 18-7.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15
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Table 18-8 summarizes the number MSRs for uncore PMU for each box.

The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the 
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the 
uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple 
counters within the same box, this is somewhat similar the “global control“ programming interface, 
IA32_PERF_GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for 
multiple counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration 
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status 
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The 
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

Figure 18-25.  Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-8.  Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
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The individual MSRs that provide uncore PMU interfaces are listed in Chapter 2, “Model-Specific Registers (MSRs)” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, Table 2-17 under the general 
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL, 

MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS, 

MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL, 

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_CTR, 

MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_EVNT_SEL, 

MSR_S0_PMON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. MSR_M0_PMON_TIMESTAMP, 

MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500 
Series Uncore Performance Monitoring Guide“.

18.3.2 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Westmere

All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities, 
and uncore PMU) described in Section 18.6.3 also apply to processors based on Intel® microarchitecture code 
name Westmere. 

Table 18-5 describes a non-architectural performance monitoring event (event code 0B7H) and associated 
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore 
response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors 
based on Intel microarchitecture code name Westmere. The event code and event mask definitions of Non-archi-
tectural performance monitoring events are listed in Table 19-31. 

The load latency facility is the same as described in Section 18.3.1.1.2, but added enhancement to provide more 
information in the data source encoding field of each load latency record. The additional information relates to 
STLB_MISS and LOCK, see Table 18-13.

18.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as 
those supported in the Intel Xeon processor 5600 series3. The uncore subsystem in the Intel Xeon processor E7 
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-25, with the additional capability that up to 10 C-Box units are 
supported. 

3. Exceptions are indicated for event code 0FH in Table 19-23; and valid bits of data source encoding field of each load 
latency record is limited to bits 5:4 of Table 18-13.
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Table 18-9 summarizes the number MSRs for uncore PMU for each box.

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in the “Intel® 
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

18.3.4 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Sandy Bridge

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor 
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance moni-
toring capability with version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

The core PMU’s capability is similar to those described in Section 18.3.1.1 and Section 18.6.3, with some differ-
ences and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-10.

Table 18-9.  Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-10.  Core PMU Comparison

Box
Intel® microarchitecture code 
name Sandy Bridge

Intel® microarchitecture code 
name Westmere Comment

# of Fixed counters per 
thread

3 3 Use CPUID to determine # of 
counters. See Section 18.2.1.

# of general-purpose 
counters per core

8 8 Use CPUID to determine # of 
counters. See Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 18.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 Use CPUID to determine # of 
counters. See Section 18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI 
with legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based 
Sampling (PEBS) Events

See Table 18-12. See Table 18-78. IA32_PMC4-IA32_PMC7 do 
not support PEBS.
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18.3.4.1  Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors 
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number 
performance counters/event select registers (See Section 18.2.1.1). 

Figure 18-42 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN, 
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a 
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective 
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. 
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer (see Figure 18-27). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has 
occurred in the associated counter. 

PEBS-Load Latency See Section 18.3.4.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding 

PEBS-Precise Store Section 18.3.4.4.3 No

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended 
request and response types.

MSR 1A6H and 1A7H, limited 
response types.

Nehalem supports 1A6H 
only.

Figure 18-26.  IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

Table 18-10.  Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code 
name Sandy Bridge

Intel® microarchitecture code 
name Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
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When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-28). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling.
• Reloading counter values to continue sampling.
• Disabling event counting or interrupt based sampling.

Figure 18-27.  IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

Figure 18-28.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
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18.3.4.2  Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each processor core implements eight 
general-purpose counters. CPUID.0AH:EAX[15:8] will report the number of counters visible to software. 

If a processor core is shared by two logical processors, each logical processors can access up to four counters 
(IA32_PMC0-IA32_PMC3). This is the same as in the prior generation for processors based on Intel microarchitec-
ture code name Nehalem.

If a processor core is not shared by two logical processors, up to eight general-purpose counters are visible. If 
CPUID.0AH:EAX[15:8] reports 8 counters, then IA32_PMC4-IA32_PMC7 would occupy MSR addresses 0C5H 
through 0C8H. Each counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP. 
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or 
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.3.4.3  Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-width writes to the general-
purpose counters, IA32_PMCx. Support of full-width writes are enumerated by 
IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 18.2.4).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results in a sign-extended 32-bit 
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR 
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address IA32_A_PMCx 
by testing IA32_PERF_CAPABILITIES[13].

18.3.4.4  PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, similar to those offered in 
prior generation, with several enhanced features. The key components and differences of PEBS facility relative to 
Intel microarchitecture code name Westmere is summarized in Table 18-11.

Only IA32_PMC0 through IA32_PMC3 support PEBS. 

Table 18-11.  PEBS Facility Comparison

Box
Intel® microarchitecture code name 
Sandy Bridge

Intel® microarchitecture 
code name Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming  Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 18-29 Figure 18-15

PEBS record layout Physical Layout same as Table 18-3. Table 18-3 Enhanced fields at offsets 98H, 
A0H, A8H.

PEBS Events See Table 18-12. See Table 18-78. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-4

PEBS-Precise Store Yes; see Section 18.3.4.4.3. No IA32_PMC3 only

PEBS-PDIR Yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.
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NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture 
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit 
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields 
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations. 

18.3.4.4.1  PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 18-3, but the fields at offset 98H, A0H and 
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load, 

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H): When load latency is enabled, this field will contain three piece of 

information (including an encoded value indicating the source which satisfied the load operation). The source 
field encodings are detailed in Table 18-4. When precise store is enabled, this field will contain information 
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service 
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon 
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The 
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel microarchitecture code name 
Sandy Bridge is shown in Table 18-12.

Figure 18-29.  Layout of IA32_PEBS_ENABLE MSR 

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

62

PS_EN (R/W)
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18.3.4.4.2  Load Latency Performance Monitoring Facility

The load latency facility in Intel microarchitecture code name Sandy Bridge is similar to that in prior microarchitec-
ture. It provides software a means to characterize the average load latency to different levels of cache/memory 
hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see 
Table 18-3 and Section 18.3.4.4.1. This field measures the load latency from load's first dispatch of till final data 
writeback from the memory subsystem. The latency is reported for retired demand load operations and in core 
cycles (it accounts for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 

Table 18-12.  PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

NOTES:
1. Only available on IA32_PMC1.

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H
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programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 00000001.00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is 
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the 
hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-3. The specificity of Data Source entry at 
offset A0H has been enhanced to report three pieces of information. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 18-17.

18.3.4.4.3  Precise Store Facility

Processors based on Intel microarchitecture code name Sandy Bridge offer a precise store capability that comple-
ments the load latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise 
memory reference events with linear address information for both loads and stores can help programmers improve 
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows 
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware 
captures the linear address and other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store 
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to 
capture precise store information.
• Complete the PEBS configuration steps.

Table 18-13.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-4

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved
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• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3 
(IA32_PMC3) supports collection of precise store information. 

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and 
enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, A0H and A8H of Table 18-3. 
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information. 

18.3.4.4.4  Precise Distribution of Instructions Retired (PDIR) 

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the 
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to 
sample where performance bottleneck happened and to help identify its location in instruction address space. Even 
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space. 
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge include a facility referred to 
as precise distribution of Instruction Retired (PDIR). 

The PDIR facility mitigates the “skid” problem by providing an early indication of when the INST_RETIRED counter 
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the counter 
overflow. On processors based on Intel microarchitecture code name Sandy Bridge skid is significantly reduced, 
and can be as little as one instruction. On future implementations PDIR may eliminate skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and processors based on Sandy Bridge microarchitec-
ture must use IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the IA32_PEBS_ENABLE set to 1. 
INST_RETIRED.ALL is a non-architectural performance event, it is not supported in prior generation microarchitec-
tures. Additionally, on processors with CPUID DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool 
that programs PDIR should quiesce the rest of the programmable counters in the core when PDIR is active. 

18.3.4.5  Off-core Response Performance Monitoring 
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response 
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select 
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, 
MSR_OFFCORE_RSP_x. Table 18-15 lists the event code, mask value and additional off-core configuration MSR that 
must be programmed to count off-core response events using IA32_PMCx. 

Table 18-14.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set, 
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a 
locked access.

Reserved A8H Reserved
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The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-30 and Figure 18-31. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information.

Table 18-15.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)

Figure 18-30.  Request_Type Fields for MSR_OFFCORE_RSP_x 

Table 18-16.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads of full and partial cachelines as well as demand data page 
table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a 
write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

OTHER 15 Any other request that crosses IDI, including I/O.

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30
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To properly program this extra register, software must set at least one request type bit and a valid response type 
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and 
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x 
allow an agent software to program numerous combinations that meet the above guideline, not all combinations 
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Figure 18-31.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 

Table 18-17.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

RSPNS_SUPPLIER — Local
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18.3.4.6  Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, 
Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series 
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice 
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of 
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter 
register, similar in style as those described in Section 18.3.1.2.2. The ARB unit in the uncore also provides its local 
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit 
are shown in Figure 18-32.

Table 18-18.  MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 No details on snoop-related information.

SNP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-line was 
valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-line was 
in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

Figure 18-32.  Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event SelectCounter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H
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The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local 

uncore PMU counter, see Table 19-20.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to 

MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1. 
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control. 

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of 
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software 
must then write to bit 13 of IA32_DEBUGCTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI) 

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit 

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request. 

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the 
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit 
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable bit 
(bit 29).

Figure 18-33.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0
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Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

18.3.4.6.1  Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.
• Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-20 can collect performance characteristics of transac-
tions initiated by processor core. In that respect, they are similar to various sub-events in the 
OFFCORE_RESPONSE family of performance events in the core PMU. Information such as data supplier locality 
(LLC HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qualified on a per-thread 
basis. 

On the other hand, uncore performance event logic cannot associate its counts with the same level of per-thread 
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities 
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may 
be less affected by artifacts, complex interactions and other factors.

18.3.4.7  Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge-E. While the processor cores share the same microarchitecture as those of the Intel® 
Xeon® Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor 
series, the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the 
Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.3.4.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in 
Section 18.6.3 through Section 18.3.4.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response 
Supplier Info field shown in Table 18-17 applies to Intel Core Processors with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown in 
Table 18-20. Additionally, there are some small differences in the non-architectural performance monitoring events 
(see Table 19-18).

Table 18-19.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed 
Counter

N.A. N.A. 48 No Uncore
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18.3.4.8  Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the 
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at 
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the 
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the 
uncore sub-system. 

Table 18-21 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel® 
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore PMU 
interfaces are listed in Table 2-24.

18.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are 
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally 
are the same as those described in Section 18.6.3 through Section 18.3.4.5. The non-architectural performance 
monitoring events supported by the processor core are listed in Table 19-18.

18.3.5.1  Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are based 
on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor E5 family 
based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance counter sets 
are provided at logic control unit scope. 

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7 v2 
families are available in “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Programming 
Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 2-28.

Table 18-20.  MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier Info NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Remote 30:23 Remote DRAM Controller (either all 0s or all 1s).

Table 18-21.  Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
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18.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on 
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with version 
ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transactional 
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with 
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Table 18-22.  Core PMU Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

# of Fixed counters per thread 3 3 Use CPUID to determine 
# of counters. See 
Section 18.2.1.

# of general-purpose counters 
per core

8 8 Use CPUID to determine 
# of counters. See 
Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

# of programmable counters per 
thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by 
two threads)

Use CPUID to determine 
# of counters. See 
Section 18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with legacy 
semantics for branch profiling.

• Freeze_while_SMM. 

• Freeze_Perfmon_on_PMI 
with legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based Sampling 
(PEBS) Events

See Table 18-12 and Section 
18.3.6.5.1.

See Table 18-12. IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

PEBS-Precise Store No, replaced by Data Address 
profiling.

Section 18.3.4.4.3

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL)

Yes (using precise 
INST_RETIRED.ALL)

PEBS-EventingIP Yes No

Data Address Profiling Yes No

LBR Profiling Yes Yes

Call Stack Profiling Yes, see Section 17.11. No Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended 
request and response types.

MSR 1A6H and 1A7H; extended 
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. No
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18.3.6.1  Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of 
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-23.

Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

18.3.6.2  PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 18-24. The PEBS record 
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active 
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Table 18-23.  PEBS Facility Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer Programming  Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout  Figure 18-15 Figure 18-29

PEBS record layout Table 18-24; enhanced fields at 
offsets 98H, A0H, A8H, B0H.

Table 18-3; enhanced fields at 
offsets 98H, A0H, A8H.

Precise Events See Table 18-12. See Table 18-12. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-13

PEBS-Precise Store No, replaced by data address 
profiling.

Yes; see Section 18.3.4.4.3.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.
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The layout of PEBS records are almost identical to those shown in Table 18-3. Offset B0H is a new field that records 
the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior 
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and the equivalent 
capability of precise store in prior generation (see Section 18.3.6.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are 
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not 
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H, 
and ABH.

18.3.6.3  PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the 
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by 
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and 
provides additional information about sampled loads and stores. Having precise memory reference events with 
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

Table 18-24.  PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section 
18.3.6.5.1)

Table 18-25.  Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS
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DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of 
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information 
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies 
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture 
DataLA information.
• Complete the PEBS configuration steps.
• Program an event listed in Table 18-25 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3. 
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as 

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets 
98H, A0H and A8H, as shown in Table 18-26. 

18.3.6.3.1  EventingIP Record

The PEBS record layout for processors based on Intel microarchitecture code name Haswell adds a new field at 
offset 0B0H. This is the eventingIP field that records the IP address of the retired instruction that triggered the 
PEBS assist. The EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following 
the PEBS assist.

18.3.6.4  Off-core Response Performance Monitoring 
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. The 
event codes are listed in Table 18-15. Each event code for off-core response monitoring requires programming an 
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according 
to:
• Transaction request type encoding (bits 15:0): see Table 18-27.
• Supplier information (bits 30:16): see Table 18-28.
• Snoop response information (bits 37:31): see Table 18-18.

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Table 18-26.  Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear 
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise 
the store missed the data cache. This information is valid only for the following store events: 
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the 
corresponding store event in Table 18-25.

Reserved A8H Always zero.

Table 18-25.  Precise Events That Supports Data Linear Address Profiling (Contd.)
Event Name Event Name
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The supplier information field listed in Table 18-28. The fields vary across products (according to CPUID signatures) 
and is noted in the description.

Table 18-27.  MSR_OFFCORE_RSP_x Request_Type Definition (Haswell microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count L2 data 
read prefetches or instruction fetches.

DMND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership in 
anticipation of a write.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

COREWB 3 Counts the number of modified cachelines written back.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_L3_DATA_RD 7 Counts the number of data cacheline reads generated by L3 prefetchers.

PF_L3_RFO 8 Counts the number of RFO requests generated by L3 prefetchers.

PF_L3_CODE_RD 9 Counts the number of code reads generated by L3 prefetchers.

SPLIT_LOCK_UC_
LOCK

10 Counts the number of lock requests that split across two cachelines or are to UC memory.

STRM_ST 11 Counts the number of streaming store requests electronically.

Reserved 14:12 Reserved

OTHER 15 Any other request that crosses IDI, including I/O.

Table 18-28.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved
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18.3.6.4.1  Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series

Table 18-28 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature 
06_3FH).

18.3.6.5  Performance Monitoring and Intel® TSX
Chapter 16 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 describes the details of 
Intel® Transactional Synchronization Extensions (Intel® TSX). This section describes performance monitoring 
support for Intel TSX. 

If a processor supports Intel TSX, the core PMU enhances its IA32_PERFEVTSELx MSR with two additional bit fields 
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if 
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 18-34. The 
two additional bit fields are:

Table 18-29.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_45H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 L4 Cache

Reserved 30:26 Reserved

Table 18-30.  MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

L3_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
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• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region, 
regardless of whether that region was aborted or committed. This bit may only be set if the processor supports 
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for 
IA32_PERFEVTSEL2. 

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that 
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code 
region for its aborted execution (if any) and completed execution. 

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. See Table 2-29.

A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the 
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any 
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional 
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing 
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the 
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region 
are discarded. 

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they are listed in Table 19-12.

18.3.6.5.1  Intel TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and 
then the PEBS event is processed.

Two of the TSX performance monitoring events in Table 19-12 also support using PEBS facility to capture additional 
information. They are:
• HLE_RETIRED.ABORT ED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS 
events. In this scenario, a PEBS event is processed following the abort.

Figure 18-34.  Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX
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Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended 
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will 
be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP, 
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first 

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the 
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In 
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-31.

18.3.6.6  Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring 
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a 
similar manner as those described in Section 18.3.4.6. 

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event 
select MSRs in the C-Boxes are identical as shown in Figure 18-32.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control. 

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

Table 18-31.  TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or 
committed. 

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset 
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the 
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded. 

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the 
transactional region that aborted. 

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

Reserved 63:40 Reserved
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The uncore performance events for the C-Box and ARB units are listed in Table 19-13.

18.3.6.7  Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in “Intel® 
Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore 
PMU interfaces are listed in Table 2-33.

18.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance 
Monitoring Facility

The 5th Generation Intel® Core™ processor and the Intel® Core™ M processor families are based on the Broadwell 
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

The core PMU has the same capability as those described in Section 18.3.6. IA32_PERF_GLOBAL_STATUS provide 
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace. 

Details of Intel Processor Trace is described in Chapter 35, “Intel® Processor Trace”. 
IA32_PERF_GLOBAL_OVF_CTRL MSR provide a corresponding reset control bit. 

Table 18-32.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed Counter N.A. N.A. 48 No Uncore

Figure 18-35.  IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture 
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The specifics of non-architectural performance events are listed in Chapter 19, “Performance Monitoring Events”.

18.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor 
Performance Monitoring Facility

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The 7th generation Intel® 
Core™ processor is based on the Kaby Lake microarchitecture. The 8th generation Intel® Core™ processor is based 
on the Coffee Lake microarchitecture. For these microarchitectures, the core PMU supports architectural perfor-
mance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-architectural monitoring 
capabilities. 

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4. 

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transactional 
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with 
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details 
are described in Chapter 42, “Enclave Code Debug and Profiling”.

Figure 18-36.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture 
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Table 18-33.  Core PMU Comparison

Box Intel® Microarchitecture Code Name 
Skylake, Kaby Lake and Coffee Lake

Intel® Microarchitecture Code 
Name Haswell and Broadwell

Comment

# of Fixed counters per thread 3 3 Use CPUID to 
determine # of 
counters. See 
Section 18.2.1.

# of general-purpose counters 
per core

8 8 Use CPUID to 
determine # of 
counters. See 
Section 18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by two 
threads)

Use CPUID to 
determine # of 
counters. See 
Section 18.2.1.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_LBR_on_PMI with 
streamlined semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics 
not supported with 
version 4 or higher.

Counter and Buffer Overflow 
Status Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_RESET

• Set via 
IA32_PERF_GLOBAL_STATUS_SET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS 
Indicators of 
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow 

(applicable to Broadwell 
microarchitecture)

See Section 18.2.4.

Enable control in 
IA32_PERF_GLOBAL_STATUS 

• CTR_Frz
• LBR_Frz

NA See Section 
18.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section 
18.2.4.3.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-PMC7 
do not support 
PEBS.

PEBS for front end events See Section 18.3.8.1.4. No

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.12

LBR Timing Yes No Section 17.12.1

Call Stack Profiling Yes, see Section 17.11 Yes, see Section 17.11 Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; Extended request 
and response types.

MSR 1A6H and 1A7H; Extended 
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. See Section 18.3.6.5.
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18.3.8.1  Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 6th generation, 7th generation and 8th generation Intel Core processors provides a number 
enhancement relative to PEBS in processors based on Haswell/Broadwell microarchitectures. The key components 
and differences of PEBS facility relative to Haswell/Broadwell microarchitecture is summarized in Table 18-34.

Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTES
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero: 
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

18.3.8.1.1  PEBS Data Format

The PEBS record format for the 6th generation, 7th generation and 8th generation Intel Core processors is 
reporting with encoding 0011b in IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 18-35. The PEBS 
record format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is 
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

Table 18-34.  PEBS Facility Comparison

Box Intel® Microarchitecture Code 
Name Skylake, Kaby Lake 

and Coffee Lake

Intel® Microarchitecture Code 
Name Haswell and Broadwell

Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.3.1.1.1  Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-15  Figure 18-15

PEBS-EventingIP Yes Yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-35; enhanced fields 
at offsets 98H- B8H; and TSC 
record field at C0H.

Table 18-24; enhanced fields at 
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS 
resolution

PEBS record 90H resolves the 
eventing counter overflow.

PEBS record 90H reflects 
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

Data Address Profiling Yes Yes

FrontEnd event support FrontEnd_Retried event and 
MSR_PEBS_FRONTEND.

No IA32_PMC0-PMC3 only.
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The layout of PEBS records are largely identical to those shown in Table 18-24. 

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior 
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and data address 
profiling (Section 18.3.6.3).

In the core PMU of the 6th generation, 7th generation and 8th generation Intel Core processors, load latency 
facility and PDIR capabilities and data address profiling are unchanged relative to the 4th generation and 5th 
generation Intel Core processors. Similarly, precise store is replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when 
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the 
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate multiple 
PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS record entry 
to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot of 
the TSC that provides a time line annotation for each PEBS record entry.

18.3.8.1.2  PEBS Events

The list of precise events supported for PEBS in the Skylake, Kaby Lake and Coffee Lake microarchitectures is 
shown in Table 18-36.

Table 18-35.  PEBS Record Format for 6th Generation, 7th Generation
and 8th Generation Intel Core Processor Families

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 18.3.6.5.1)

58H R9 C0H TSC

60H R10
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18.3.8.1.3  Data Address Profiling

The PEBS Data address profiling on the 6th generation, 7th generation and 8th generation Intel Core processors is 
largely unchanged from the prior generation. When the DataLA facility is enabled, the relevant information written 
into a PEBS record affects entries at offsets 98H, A0H and A8H, as shown in Table 18-26. 

Table 18-36.   Precise Events for the Skylake, Kaby Lake and Coffee Lake Microarchitectures
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.3.8.2
4. Instruction with at least one load uop experiencing the condition specified in the UMask.



Vol. 3B 18-61

PERFORMANCE MONITORING

18.3.8.1.4  PEBS Facility for Front End Events

In the 6th generation, 7th generation and 8th generation Intel Core processors, the PEBS facility has been 
extended to allow capturing PEBS data for some microarchitectural conditions related to front end events. The 
frontend microarchitectural conditions supported by PEBS requires the following interfaces:
• The IA32_PERFEVTSELx MSR must select “FrontEnd_Retired” (C6H) in the EventSelect field (bits 7:0) and 

umask = 01H,
• The “FRONTEND_RETIRED” event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported 

frontend event details, see Table 18-38.
• Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 18-38. 

Table 18-37.  Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear 
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise 
the store missed the data cache. This information is valid only for the following store events: 
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Table 18-38.  FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

DSB_MISS 11H Retired Instructions which experienced decode stream buffer (DSB) miss.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional 
requests to the same cache line as an in-flight L1I cache miss will not be counted.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the 
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same 
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the 
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the 
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in 
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration. 

Latency controls the number of cycles and Threshold controls the number of allocation slots that 
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at 
least FE_TRESHOLD number of bubbles each.
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The layout of MSR_PEBS_FRONTEND is given in Table 18-39.

18.3.8.1.5  FRONTEND_RETIRED

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused 
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include 
the following: 
• The event counts only retired (non-speculative) front-end events, i.e. events from just true program execution 

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused 

front-end misses, the count will be only 1 for that line. 
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded 

once. If there were additional misses in the second cacheline, they will not be counted separately. 
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will 

be counted once per that instruction. 
• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted 

once for the fused instruction.
• If a front-end (miss) event occurs outside instruction boundary (e.g. due to processor handling of architectural 

event), it may be reported for the next instruction to retire.

18.3.8.2  Off-core Response Performance Monitoring 
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, 
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-40.
• Supplier information (bits 29:16): see Table 18-41.
• Snoop response information (bits 37:30): see Table 18-42.

Table 18-39.  MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 18-38.

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when 
counting IDQ_READ_BUBBLES event.

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event.

Reserved 63:23 Reserved
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Table 18-41 lists the supplier information field that applies to 6th generation, 7th generation and 8th generation 
Intel Core processors. (6th generation Intel Core processor CPUID signatures: 06_4EH, 06_5EH; 7th generation 
and 8th generation Intel Core processor CPUID signatures: 06_8EH, 06_9EH).

Table 18-42 lists the snoop information field that apply to processors with CPUID signatures 06_4EH, 06_5EH, 
06_8EH, 06_9E, and 06_55H.

Table 18-40.  MSR_OFFCORE_RSP_x Request_Type Definition (Skylake, Kaby Lake 
and Coffee Lake Microarchitectures)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count hw or 
sw prefetches.

DMND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data 
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

Reserved 14:3 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 18-41.  MSR_OFFCORE_RSP_x Supplier Info Field Definition 
(CPUID Signatures 06_4EH, 06_5EH and 06_8EH, 06_9EH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT 22 L4 Cache (if L4 is present in the processor).

Reserved 25:23 Reserved

DRAM 26 Local Node

Reserved 29:27 Reserved

SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).
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18.3.8.2.1  Off-core Response Performance Monitoring for the Intel® Xeon® Processor Scalable Family

The following tables list the requestor and supplier information fields that apply to the Intel® Xeon® Processor 
Scalable Family. 
• Transaction request type encoding (bits 15:0): see Table 18-43.
• Supplier information (bits 29:16): see Table 18-44.
• Supplier information (bits 29:16) with support for Intel® Optane™ DC Persistent Memory support: see 

Table 18-45.
• Snoop response information has not been changed and is the same as in (bits 37:30): see Table 18-42.

Table 18-42.  MSR_OFFCORE_RSP_x Snoop Info Field Definition 
(CPUID Signatures 06_4EH, 06_5EH, 06_8EH, 06_9E and 06_55H)

Subtype Bit Name Offset Description

Snoop Info SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).

SNOOP_NONE 31 No details on snoop-related information.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores.

-For LLC Miss, Rspl was returned by all sockets and data was returned 
from DRAM.

SNOOP_HIT_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit 
denotes a cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO).

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD).

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S).

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 A snoop was needed and data was forwarded from a remote socket. 
This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, 
IFetch/Data_RD/RFT).

SNOOP_HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM 
denotes a cache-line was in modified state before effect as a results 
of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD).

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO).

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 Target was non-DRAM system address. This includes MMIO 
transactions.
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Table 18-44 lists the supplier information field that applies to the Intel Xeon Processor Scalable Family (CPUID 
signature: 06_55H).

Table 18-45 lists the supplier information field that applies to the Intel Xeon Processor Scalable Family (CPUID 
signature: 06_55H, Steppings 0x5H - 0xFH).

Table 18-43.  MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Processor Scalable Family)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count 
hw or sw prefetches.

DEMAND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data 
cacheline. Does not count L2 RFO prefetches.

DEMAND_CODE_RD 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline 
prefetches.

Reserved 3 Reserved.

PF_L2_DATA_RD 4 Counts the number of prefetch data reads into L2.

PF_L2_RFO 5 Counts the number of RFO Requests generated by the MLC prefetches to L2.

Reserved 6 Reserved.

PF_L3_DATA_RD 7 Counts the number of MLC data read prefetches into L3.

PF_L3_RFO 8 Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved.

PF_L1D_AND_SW 10 Counts data cacheline reads generated by hardware L1 data cache prefetcher or software 
prefetch requests.

Reserved 14:11 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 18-44.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_55H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

Reserved 25:22 Reserved

L3_MISS_LOCAL_DRAM 26 L3 Miss: local home requests that missed the L3 cache and were 
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
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18.3.8.3  Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake 
Microarchitecture

Cannon Lake microarchitecture introduces LLC support of up to six processor cores. To support six processor cores 
and eight LLC slices, existing MSRs have been rearranged and new CBo MSRs have been added. Uncore perfor-
mance monitoring software drivers from prior generations of Intel Core processors will need to update the MSR 
addresses. The new MSRs and updated MSR addresses have been added to the Uncore PMU listing in Section 
2.17.2, “MSRs Specific to 8th Generation Intel® Core™ i3 Processors” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

18.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
The 10th generation Intel® Core™ processor is based on Ice Lake microarchitecture. For this microarchitecture, the 
core PMU supports architectural performance monitoring capability with version Id 5 (see Section 18.2.5) and a 
host of non-architectural monitoring capabilities.

The core PMU's capability is similar to those described in Section 18.3.1 through Section 18.3.8, with some differ-
ences and enhancements summarized in Table 18-46.

Table 18-45.  MSR_OFFCORE_RSP_x Supplier Info Field Definition 
(CPUID Signature 06_55H, Steppings 0x5H - 0xFH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

LOCAL_PMM 22 Local home requests that were serviced by local PMM.

REMOTE_HOP0_PMM 23 Hop 0 Remote supplier.

REMOTE_HOP1_PMM 24 Hop 1 Remote supplier.

REMOTE_HOP2P_PMM 25 Hop 2 or more Remote supplier.

L3_MISS_LOCAL_DRAM 26 L3 Miss: Local home requests that missed the L3 cache and were 
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved

Table 18-46.  PEBS Facility Comparison

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee 
Lake Microarchitectures

Comment

Architectural Perfmon 
version

5 4 See Section 18.2.5.

PEBS: Basic functionality Yes Yes See Section 18.3.9.1.

PEBS record format encoding 0100b 0011b See Section 18.6.2.4.2.
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18.3.9.1  Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 10th generation Intel Core processors provides a number of enhancements relative to PEBS 
in processors based on the Skylake, Kaby Lake, and Coffee Lake microarchitectures. Enhancement of PEBS facility 
with Extended PEBS and Adaptive PEBS features are described in detail in Section 18.9.

18.3.9.2  Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, 
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-[N1].
• Response type encoding (bits 16-37) of

— Supplier information: see Table [18-N2].

— Snoop response information: see Table [18-N3].
• All transactions are tracked at cacheline granularity except some in request type OTHER.

Extended PEBS PEBS is extended to all Fixed 
and General Purpose counters 
and to all performance 
monitoring events. 

No See Section 18.9.1.

Adaptive PEBS Yes No See Section 18.9.2.

Performance Metrics Yes (4) No See Section 18.3.9.3.

PEBS-PDIR IA32_FIXED0 only 
(Corresponding counter control 
MSRs must be enabled.)

IA32_PMC1 only.

Table 18-46.  PEBS Facility Comparison

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee 
Lake Microarchitectures

Comment
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Ice Lake microarchitecture has added a new category of Response subtype, called a Combined Response Info. To 
count a feature in this type, all the bits specified must be set to 1.

A valid response type must be a non-zero value of the following expression:

Any | ['OR' of Combined Response Info Bits | [('OR' of Supplier Info Bits) & ('OR' of Snoop Info Bits)]]

If "ANY" bit[16] is set, other response type bits [17-39] are ignored.

Table 18-48 lists the supplier information field that applies to processors based on Ice Lake microarchitecture.

Table 18-47.  MSR_OFFCORE_RSP_x Request_Type Definition 
(Future Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data and page table entry reads.

DEMAND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership 
in anticipation of a write.

DEMAND_CODE_RD 2 Counts demand instruction fetches and instruction prefetches targeting the L1 instruction 
cache.

Reserved 3 Reserved

HWPF_L2_DATA_RD 4 Counts hardware generated data read prefetches targeting the L2 cache.

HWPF_L2_RFO 5 Counts hardware generated prefetches for exclusive ownership (RFO) targeting the L2 
cache.

Reserved 6 Reserved

HWPF_L3 9:7 and 131 Counts hardware generated prefetches of any type targeting the L3 cache.

HWPF_L1D_AND_SWPF 10 Counts hardware generated data read prefetches targeting the L1 data cache and the 
following software prefetches (PREFETCHNTA, PREFETCHT0/1/2).

STREAMING_WR 11 Counts streaming stores.

Reserved 12 Reserved

Reserved 14 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

NOTES:
1. All bits need to be set to 1 to count this type.

Table 18-48.  MSR_OFFCORE_RSP_x Supplier Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Combined 
Response 
Info

DRAM 26, 31, 321

NOTES:
1. All bits need to be set to 1 to count this type.

Requests that are satisfied by DRAM.

NON_DRAM 26, 371 Requests that are satisfied by a NON_DRAM system component. This includes 
MMIO transactions.

L3_MISS 22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 
34, 35, 36, 371

Requests that were not supplied by the L3 Cache. The event includes some 
currently reserved bits in anticipation of future memory designs.

Supplier 
Info

L3_HIT 18,19, 201 Requests that hit in L3 cache. Depending on the snoop response the L3 cache 
may have retrieved the cacheline from another core's cache.

Reserved 17, 21:25, 27:29 Reserved.
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Table 18-49 lists the snoop information field that applies to processors based on Ice Lake microarchitecture.

18.3.9.3  Performance Metrics
The Ice Lake core PMU provides built-in support for Top-down Microarchitecture Analysis (TMA) method level 1 
metrics. These metrics are always available to cross-validate performance observations, freeing general purpose 
counters to count other events in high counter utilization scenarios. For more details about the method, refer to 
Top-Down Analysis Method chapter (Appendix B.1) of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

A new MSR called MSR_PERF_METRICS reports the metrics directly. Software can check (and/or expose to its 
guests) the availability of the PERF_METRICS feature using IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE 
(bit 15). 

This register exposes the four TMA Level 1 metrics. The lower 32 bits are divided into four 8-bit fields, as shown by 
the above figure, each of which is an integer fraction of 255.

Table 18-49.  MSR_OFFCORE_RSP_x Snoop Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Snoop 
Info

Reserved 30 Reserved.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was sent and none of the snooped caches contained the cacheline.

SNOOP_HIT_NO_FWD 34 A snoop was sent and hit in at least one snooped cache. The unmodified 
cacheline was not forwarded back, because the L3 already has a valid copy.

Reserved 35 Reserved.

SNOOP_HITM 36 A snoop was sent and the cacheline was found modified in another core's 
caches. The modified cacheline was forwarded to the requesting core.

Figure 18-37.  MSR_PERF_METRICS Definition

MSR_PERF_METRICS
Address: 329H
Scope: Thread

Reset value : 0x00000000 .00000000

63 55 47 39

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Reserved
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To support built-in performance metrics, new bits have been added to the following MSRs:
• IA32_PERF_GLOBAL_CTRL. EN_PERF_METRICS[48]: If this bit is set and fixed counter 3 is enabled, built-in 

performance metrics are enabled.
• IA32_PERF_GLOBAL_STATUS_SET. SET_OVF_PERF_METRICS[48]: If this bit is set, it will set the status bit in 

the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS_RESET. RESET_OVF_PERF_METRICS[48]: If this bit is set, it will clear the status 

bit in the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS. OVF_PERF_METRICS[48]: If this bit is set, it indicates that a PERF_METRICS-

related resource has overflowed and a PMI is triggered4. If this bit is clear, no such overflow has occurred.

NOTE
Software has to synchronize, e.g., re-start, fixed counter 3 as well as PERF_METRICS when either 
bit 35 or 48 in IA32_PERF_GLOBAL_STATUS is set. Otherwise, PERF_METRICS may return 
undefined values.

The values in MSR_PERF_METRICS are derived from fixed counter 3. Software should start both registers, 
PERF_METRICS and fixed counter 3, from zero. Additionally, software is recommended to periodically clear both 
registers in order to maintain accurate measurements for certain scenarios that involve sampling metrics at high 
rates. 

In order to save/restore PERF_METRICS, software should follow these guidelines:
• PERF_METRICS and fixed counter 3 should be saved and restored together.
• To ensure that PERF_METRICS and fixed counter 3 remain synchronized, both should be disabled during both 

save and restore. Software should enable/disable them atomically, with a single write to 
IA32_PERF_GLOBAL_CTRL to set/clear both EN_PERF_METRICS[bit 48] and EN_FIXED_CTR3[bit 35].

• On state restore, fixed counter 3 must be restored before PERF_METRICS, otherwise undefined results may be 
observed.

18.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS)

NOTE
This section also applies to the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on 
Knights Mill microarchitecture.

18.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring 
The Intel® Xeon Phi™ processor 7200/5200/3200 series are based on the Knights Landing microarchitecture. The 
performance monitoring capabilities are distributed between its tiles (pair of processor cores) and untile 
(connecting many tiles in a physical processor package). Functional details of the tiles and untile of the Knights 
Landing microarchitecture can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Optimization Reference 
Manual.

A complete description of the tile and untile PMU programming interfaces for Intel Xeon Phi processors based on the 
Knights Landing microarchitecture can be found in the Technical Document section at 
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

A tile contains a pair of cores attached to a shared L2 cache and is similar to those found in Intel® Atom™ proces-
sors based on the Silvermont microarchitecture. The processor provides several new capabilities on top of the 
Silvermont performance monitoring facilities.

4. An overflow of fixed counter 3 should normally happen first if software follows Intel’s recommendations.
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The processor supports architectural performance monitoring capability with version ID 3 (see Section 18.2.3) and 
a host of non-architectural performance monitoring capabilities. The processor provides two general-purpose 
performance counters (IA32_PMC0, IA32_PMC1) and three fixed-function performance counters 
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in the processor also uses the IA32_PERFEVTSELx MSR to configure a 
set of non-architecture performance monitoring events to be counted by the corresponding general-purpose 
performance counter.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 
and Section 18.2.3. The processor supports AnyThread counting in three architectural performance monitoring 
events.

18.4.1.1  Enhancements of Performance Monitoring in the Intel® Xeon Phi™ processor Tile
The Intel® Xeon Phi™ processor tile includes the following enhancements to the Silvermont microarchitecture.
• AnyThread support. This facility is limited to following three architectural events: Instructions Retired, 

Unhalted Core Cycles, Unhalted Reference Cycles using IA32_FIXED_CTR0-2 and Unhalted Core Cycles, 
Unhalted Reference Cycles using IA32_PERFEVTSELx.

• PEBS-DLA (Processor Event-Based Sampling-Data Linear Address) fields. The processor provides memory 
address in addition to the Silvermont PEBS record support on select events. The PEBS recording format as 
reported by IA32_PERF_CAPABILITIES [11:8] is 2.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor tile to subsystems outside the tile (untile). Counting off-core 
response requires additional event qualification configuration facility in conjunction with IA32_PERFEVTSELx. 
Two off-core response MSRs are provided to use in conjunction with specific event codes that must be specified 
with IA32_PERFEVTSELx. Two cores do not share the off-core response MSRs. Knights Landing expands off-
core response capability to match the processor untile changes.

• Average request latency measurement. The off-core response counting facility can be combined to use two 
performance counters to count the occurrences and weighted cycles of transaction requests. This facility is 
updated to match the processor untile changes.

18.4.1.1.1  Processor Event-Based Sampling

The processor supports processor event based sampling (PEBS). PEBS is supported using IA32_PMC0 (see also 
Section 17.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 18.6.2.4).

The list of PEBS events supported in the processor is shown in the following table.

Table 18-50.  PEBS Performance Events for the Knights Landing Microarchitecture
Event Name Event Select Sub-event UMask Data Linear

Address Support

BR_INST_RETIRED C4H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

CALL F9H No

REL_CALL FDH No

IND_CALL FBH No

NON_RETURN_IND EBH No

FAR_BRANCH BFH No

RETURN F7H No
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The PEBS record format 2 supported by processors based on the Knights Landing microarchitecture is shown in 
Table 18-51, and each field in the PEBS record is 64 bits long. 

18.4.1.1.2  Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
1A7H) in conjunction with umask value 02H. Table 18-52 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

BR_MISP_RETIRED C5H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

IND_CALL FBH No

NON_RETURN_IND EBH No

RETURN F7H No

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H Yes

L2_MISS_LOADS 04H Yes

DLTB_MISS_LOADS 08H Yes

RECYCLEQ 03H LD_BLOCK_ST_FORWARD 01H Yes

LD_SPLITS 08H Yes

Table 18-51.  PEBS Record Format for the Knights Landing Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H PSDLA

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-52.  OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Table 18-50.  PEBS Performance Events for the Knights Landing Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask Data Linear

Address Support
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Some of the MSR_OFFCORE_RESP [0,1] register bits are not valid in this processor and their use is reserved. The 
layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 registers are defined in Table 18-53. Bits 15:0 specifies 
the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 spec-
ifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details. 

Table 18-53.  Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers

Main Sub-field Bit Name Description

Request Type 0 DEMAND_DATA_RD Demand cacheable data and L1 prefetch data reads.

1 DEMAND_RFO Demand cacheable data writes.

2 DEMAND_CODE_RD Demand code reads and prefetch code reads.

3 Reserved Reserved.

4 Reserved Reserved.

5 PF_L2_RFO L2 data RFO prefetches (includes PREFETCHW instruction).

6 PF_L2_CODE_RD L2 code HW prefetches.

7 PARTIAL_READS Partial reads (UC or WC).

8 PARTIAL_WRITES Partial writes (UC or WT or WP). Valid only for 
OFFCORE_RESP_1 event. Should only be used on PMC1. 
This bit is reserved for OFFCORE_RESP_0 event.

9 UC_CODE_READS UC code reads.

10 BUS_LOCKS Bus locks and split lock requests.

11 FULL_STREAMING_STO
RES

Full streaming stores (WC). Valid only for OFFCORE_RESP_1 
event. Should only be used on PMC1. This bit is reserved for 
OFFCORE_RESP_0 event.

12 SW_PREFETCH Software prefetches.

13 PF_L1_DATA_RD L1 data HW prefetches.

14 PARTIAL_STREAMING_
STORES

Partial streaming stores (WC). Valid only for 
OFFCORE_RESP_1 event. Should only be used on PMC1. 
This bit is reserved for OFFCORE_RESP_0 event.

15 ANY_REQUEST Account for any requests.

Response Type Any 16 ANY_RESPONSE Account for any response.

Data Supply from 
Untile

17 NO_SUPP No Supplier Details.

18 Reserved Reserved.

19 L2_HIT_OTHER_TILE_N
EAR

Other tile L2 hit E Near.

20 Reserved Reserved.

21 MCDRAM_NEAR MCDRAM Local.

22 MCDRAM_FAR_OR_L2_
HIT_OTHER_TILE_FAR

MCDRAM Far or Other tile L2 hit far.

23 DRAM_NEAR DRAM Local.

24 DRAM_FAR DRAM Far.
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18.4.1.1.3  Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit 
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0].

Refer to Section 18.5.2.3, “Average Offcore Request Latency Measurement,” for typical usage. Note that 
MSR_OFFCORE_RESPx registers are not shared between cores in Knights Landing. This allows one core to measure 
average latency while other core is measuring different offcore response events.

18.5 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS)

18.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting the 
aggregate capabilities of versionID 1, 2, and 3; see Section 18.2.3) and a host of non-architectural monitoring 
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters 
(IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2). 

Data Supply from 
within same tile

25 L2_HITM_THIS_TILE M-state.

26 L2_HITE_THIS_TILE E-state.

27 L2_HITS_THIS_TILE S-state.

28 L2_HITF_THIS_TILE F-state.

29 Reserved Reserved.

30 Reserved Reserved.

Snoop Info; Only 
Valid in case of 
Data Supply from 
Untile

31 SNOOP_NONE None of the cores were snooped.

32 NO_SNOOP_NEEDED No snoop was needed to satisfy the request.

33 Reserved Reserved.

34 Reserved Reserved.

35 HIT_OTHER_TILE_FWD Snoop request hit in the other tile with data forwarded.

36 HITM_OTHER_TILE A snoop was needed and it HitM-ed in other core's L1 cache. 
HitM denotes a cache-line was in modified state before 
effect as a result of snoop.

37 NON_DRAM Target was non-DRAM system address. This includes MMIO 
transactions.

Outstanding 
requests

Weighted cycles 38 OUTSTANDING (Valid 
only for 
MSR_OFFCORE_RESP0. 
Should only be used on 
PMC0. This bit is 
reserved for 
MSR_OFFCORE_RESP1).

If set, counts total number of weighted cycles of any 
outstanding offcore requests with data response. Valid only 
for OFFCORE_RESP_0 event. Should only be used on PMC0. 
This bit is reserved for OFFCORE_RESP_1 event.

Table 18-53.  Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers (Contd.)

Main Sub-field Bit Name Description
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NOTE
The number of counters available to software may vary from the number of physical counters 
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may 
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section 
18.2.1.

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-31.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors 
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e. if 
IA32_PERFEVTSELx.AnyThread =1, event counts include monitored conditions due to either logical processors in 
the same processor core. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and 
Section 18.2.3. 

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the 
same qualifying actions like those listed in Table 18-71, Table 18-72, Table 18-73, and Table 18-74. One or more 
of these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-31 in 
Chapter 19, “Performance Monitoring Events.” Precise Event Based Monitoring is supported using IA32_PMC0 (see 
also Section 17.4.9, “BTS and DS Save Area”).

18.5.2 Performance Monitoring for Silvermont Microarchitecture
Intel processors based on the Silvermont microarchitecture report architectural performance monitoring versionID 
= 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. Intel processors based on the 
Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and 
three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). Intel 
Atom processors based on the Airmont microarchitecture support the same performance monitoring capabilities as 
those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR 
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-30.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in 
Section 18.2.1.1 and Section 18.2.3. Architectural and non-architectural performance monitoring events in the 
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx 
MSR. 

18.5.2.1  Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits. 
• Off-core response counting facility. This facility in the processor core allows software to count certain 

transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two 
performance counters to count the occurrences and weighted cycles of transaction requests.

18.5.2.1.1  Processor Event Based Sampling (PEBS)

In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using 
IA32_PMC0 (see also Section 17.4.9). 
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PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 18.6.2.4). 

The list of precise events supported in the Silvermont microarchitecture is shown in Table 18-54.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchitec-
ture is shown in Table 18-55, and each field in the PEBS record is 64 bits long. 

Table 18-54.  PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-55.  PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved
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18.5.2.2  Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
1A7H) in conjunction with umask value 02H. Table 18-56 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-38 and Figure 18-39. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details. 

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-56.  OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Figure 18-38.  Request_Type Fields for MSR_OFFCORE_RSPx 

Table 18-55.  PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W) 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W) 
REQUEST TYPE  — SW_PREFETCH (R/W)
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To properly program this extra register, software must set at least one request type bit (Table 18-57) and a valid 
response type pattern (Table 18-58, Table 18-59). Otherwise, the event count reported will be zero. It is permis-
sible and useful to set multiple request and response type bits in order to obtain various classes of off-core 
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that 
meet the above guideline, not all combinations produce meaningful data.

Table 18-57.  MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as 
demand data page table entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by 
a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT and 
WP)

UC_IFETCH 9 Counts the number of UC instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

SW_PREFETCH 12 Counts software prefetch requests

PF_DATA_RD 13 Counts DCU hardware prefetcher data read requests

PARTIAL_STRM_ST 14 Streaming store requests

ANY 15 Any request that crosses IDI, including I/O.

Figure 18-39.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx 

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)
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To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

18.5.2.3  Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using two 
performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corresponding 
IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a request type in 
MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white setting the 
remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the same request 
type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting 
MSR_OFFCORE_RSP1.ANY_RESPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be 
obtained by dividing the value of the IA32_PMCx register that counted weight cycles by the register that counted 
requests.

Table 18-58.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 18-59.  MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 No details on snoop-related information.

Reserved 32 Reserved

SNOOP_MISS 33 Counts the number of snoop misses when L2 misses.

SNOOP_HIT 34 Counts the number of snoops hit in the other module where no modified copies were 
found.

Reserved 35 Reserved

HITM 36 Counts the number of snoops hit in the other module where modified copies were 
found in other core's L1 cache.

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 Enable average latency measurement by counting weighted cycles of outstanding 
offcore requests of the request type specified in bits 15:0 and any response (bits 37:16 
cleared to 0). 

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the 
specified programmable counter IA32_PMCx and the occurrence of specified requests 
are counted in the other programmable counter.
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18.5.3 Performance Monitoring for Goldmont Microarchitecture
Intel Atom processors based on the Goldmont microarchitecture report architectural performance monitoring 
versionID = 4 (see Section 18.2.4) and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in 
Section 18.2.1.1 and Section 18.2.3. The Goldmont microarchitecture does not support Hyper-Threading and thus 
architectural and non-architectural performance monitoring events ignore the AnyThread qualification regardless 
of its setting in the IA32_PERFEVTSELx MSR. However, Goldmont does not set the AnyThread deprecation bit 
(CPUID.0AH:EDX[15]).

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 18.5.2 , with 
some differences and enhancements summarized in Table 18-60.

Table 18-60.  Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

# of Fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
18.2.1.

# of general-purpose 
counters per core

4 2 Use CPUID to determine # 
of counters. See Section 
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 18.2.2.

Architectural Performance 
Monitoring version ID

4 3 Use CPUID to determine # 
of counters. See Section 
18.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_LBR_on_PMI with 
streamlined semantics for 
branch profiling.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with legacy 
semantics for branch profiling.

See Section 17.4.7.

Legacy semantics not 
supported with version 4 
or higher.

Counter and Buffer 
Overflow Status 
Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via 
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of 
Overflow/Overhead/Interfer
ence

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 18.2.4.

Enable control in 
IA32_PERF_GLOBAL_STATU
S 

• CTR_Frz, 
• LBR_Frz

No See Section 18.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 18.2.4.3.

Processor Event Based 
Sampling (PEBS) Events

General-Purpose Counter 0 only. 
Supports all events (precise and 
non-precise). Precise events are 
listed in Table 18-61.

See Section 18.5.2.1.1. General-
Purpose Counter 0 only. Only 
supports precise events (see 
Table 18-54).

IA32_PMC0 only.
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18.5.3.1  Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations 
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture, 
PEBS is supported using IA32_PMC0 for all events (see Section 17.4.9). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time 
the sample was generated. 

Precise events work the same way on Goldmont microarchitecture as on the Silvermont microarchitecture. The 
record will be generated after an instruction that causes the event when the counter is already overflowed and will 
capture the architectural state at this point (see Section 18.6.2.4 and Section 17.4.9). The eventingIP in the record 
will indicate the instruction that caused the event. The list of precise events supported in the Goldmont microarchi-
tecture is shown in Table 18-61.

In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record 
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction 
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the 
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will 
be generated at the next opportunity and capture the state at the processor's current retirement point. It is likely 
that the instruction fetch that caused the event to increment was beyond that current retirement point. Other 
examples of non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED. 
CPU_CLK_UNHALTED.CORE_P will increment each cycle that the processor is awake. When the counter over-flows, 
there may be many instructions in various stages of execution. Additionally, zero, one or multiple instructions may 
be retired the cycle that the counter overflows. HARDWARE_INTERRUPTS.RECEIVED increments independent of 
any instructions being executed. For all non-precise events, the PEBS record will be generated at the next oppor-
tunity, after the counter has overflowed. The PEBS facility thus allows for identification of the instructions which 
were executing when the event overflowed.

After generating a record for a non-precise event, the PEBS facility reloads the counter and resumes execution, just 
as is done for precise events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect 
the sample and reload the counter, the PEBS facility can collect samples even when interrupts are masked and 
without using NMI. Since a PEBS record is generated immediately when a counter for a non-precise event is 
enabled, it may also be generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

PEBS record format 
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 18-62; enhanced fields at 
offsets 90H- 98H; and TSC record 
field at C0H.

Table 18-55.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core 
has its own register.

MSR 1A6H and 1A7H, shared by a 
pair of cores.

Nehalem supports 1A6H 
only.

Table 18-60.  Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment
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The PEBS record format supported by processors based on the Intel Goldmont microarchitecture is shown in 
Table 18-62, and each field in the PEBS record is 64 bits long. 

Table 18-61.  Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H
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On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless of 
processor mode.

With PEBS record format encoding 0011b, offset 90H reports the "Applicable Counter" field, which indicates which 
counters actually requested generating a PEBS record. This allows software to correlate the PEBS record entry 
properly with the instruction that caused the event even when multiple counters are configured to record PEBS 
records and multiple bits are set in the field. Additionally, offset C0H captures a snapshot of the TSC that provides 
a time line annotation for each PEBS record entry.

18.5.3.1.1  PEBS Data Linear Address Profiling

Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source 
Encoding or Latency Value fields that are also part of Data Address Profiling; those fields are present in the record 
but are reserved. 

For Goldmont microarchitecture, the Data Linear Address field will record the linear address of memory accesses in 
the previous instruction (e.g. the one that triggered a precise event that caused the PEBS record to be generated). 
Goldmont microarchitecture may record a Data Linear Address for the instruction that caused the event even for 
events not related to memory accesses. This may differ from other microarchitectures.

18.5.3.1.2  Reduced Skid PEBS

For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism miti-
gates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing the 
machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly reducing 
skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See Section 
18.3.4.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including, INST_RETIRED, except 
for UOPS_RETIRED. However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or 
CMASK fields are set.

With Reduced Skid PEBS, the skid is precisely one event occurrence. Hence if counting INST_RETIRED, PEBS will 
indicate the instruction that follows that which caused the counter to overflow.

Table 18-62.  PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10



18-84 Vol. 3B

PERFORMANCE MONITORING

For the Reduced Skid mechanism to operate correctly, the performance monitoring counters should not be recon-
figured or modified when they are running with PEBS enabled. The counters need to be disabled (e.g. via 
IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g. what event is specified in 
IA32_PERFEVTSELx or whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR 
write to IA32_PMCx and IA32_A_PMCx).

18.5.3.1.3  Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] 

In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the 
PEBS_Interrupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when 
PEBS_Index < PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound 
condition is encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable 
Counters, however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

18.5.3.2  Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
1A7H) in conjunction with umask value 02H. Table 18-56 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 18-63.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 18-58. 
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in 

Table 18-64. 
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore 

transaction requests using two programmable counter simultaneously; see Section 18.5.2.3 for details. 

Table 18-63.  MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 Counts cacheline read for ownership (RFO) requests due to demand writes (excludes 
prefetches).

DEMAND_CODE_RD 2 Counts demand instruction cacheline and I-side prefetch requests that miss the 
instruction cache.

COREWB 3 Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.

PARTIAL_READS 7 Counts demand data partial reads, including data in uncacheable (UC) or uncacheable 
(WC) write combining memory types.

PARTIAL_WRITES 8 Counts partial writes, including uncacheable (UC), write through (WT) and write 
protected (WP) memory type writes.

UC_CODE_READS 9 Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 Counts bus lock and split lock requests.

FULL_STREAMING_STORES 11 Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 Counts cacheline requests due to software prefetch instructions.
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To properly program this extra register, software must set at least one request type bit (Table 18-57) and a valid 
response type pattern (either Table 18-58 or Table 18-64). Otherwise, the event count reported will be zero. It is 
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core 
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that 
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

Any_Response Bit | L2 Hit | ‘OR’ of Snoop Info Bits | Outstanding Bit

18.5.3.3  Average Offcore Request Latency Measurement
In Goldmont microarchitecture, measurement of average latency of offcore transaction requests is the same as 
described in Section 18.5.2.3.

18.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
Intel Atom processors based on the Goldmont Plus microarchitecture report architectural performance monitoring 
versionID = 4 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

Goldmont Plus performance monitoring capabilities are similar to Goldmont capabilities. The differences are in 
specific events and in which counters support PEBS. Goldmont Plus introduces the ability for fixed performance 
monitoring counters to generate PEBS records. 

PF_L1_DATA_RD 13 Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMING_STORES 14 Counts partial cacheline writes due to streaming stores.

ANY_REQUEST 15 Counts requests to the uncore subsystem.

Table 18-64.  MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS 
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MISS_O
R_NO_SNOOP_NEEDED

33 A true miss to this module, for which a snoop request missed the other module or 
no snoop was performed/needed. 

L2_MISS.HIT_OTHER_CO
RE_NO_FWD

34 A snoop hit in the other processor module, but no data forwarding is required.

Reserved 35 Reserved

L2_MISS.HITM_OTHER_C
ORE

36 Counts the number of snoops hit in the other module or other core's L1 where 
modified copies were found.

L2_MISS.NON_DRAM 37 Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding 
requests1

NOTES:
1. See Section 18.5.2.3, “Average Offcore Request Latency Measurement” for details on how to use this bit to extract average latency.

OUTSTANDING 38 Counts weighted cycles of outstanding offcore requests of the request type 
specified in bits 15:0, from the time the XQ receives the request and any 
response is received. Bits 37:16 must be set to 0. This bit is only available in 
MSR_OFFCORE_RESP0.

Table 18-63.  MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description
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Goldmont Plus will set the AnyThread deprecation CPUID bit (CPUID.0AH:EDX[15]) to indicate that the Any-Thread 
bits in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL have no effect. 

The core PMU's capability is similar to that of the Goldmont microarchitecture described in Section 18.6.3, with 
some differences and enhancements summarized in Table 18-65.

18.5.4.1  Extended PEBS
The PEBS facility in Goldmont Plus microarchitecture provides a number of enhancements relative to PEBS in 
processors from previous generations. Enhancement of PEBS facility with the Extended PEBS feature are de-
scribed in detail in section 18.9.

18.5.5 Performance Monitoring for Tremont Microarchitecture
Intel Atom processors based on the Tremont microarchitecture report architectural performance monitoring 
versionID = 5 and support non-architectural monitoring capabilities described in this section. 

Architectural performance monitoring version 5 capabilities are described in Section 18.2.5.

Tremont performance monitoring capabilities are similar to Goldmont Plus capabilities, with the following exten-
sions:
• Support for Adaptive PEBS.
• Support for PEBS output to Intel® Processor Trace.
• Precise Distribution support on Fixed Counter0.
• Compatibility enhancements to off-core response MSRs, MSR_OFFCORE_RSPx.

The differences and enhancements between Tremont microarchitecture and Goldmont Plus microarchitecture are 
summarized in Table 18-66.

Table 18-65.  Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitectures

Box Goldmont Plus Microarchitecture Goldmont Microarchitecture Comment

# of Fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
18.2.1.

# of general-purpose 
counters per core

4 4 Use CPUID to determine # 
of counters. See Section 
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change.

Architectural Performance 
Monitoring version ID

4 4 No change.

Processor Event Based 
Sampling (PEBS) Events

All General-Purpose and Fixed 
counters. Each General-Purpose 
counter supports all events (precise 
and non-precise).

General-Purpose Counter 0 only. 
Supports all events (precise and 
non-precise). Precise events are 
listed in Table 18-61.

Goldmont Plus supports 
PEBS on all counters.

PEBS record format 
encoding

0011b 0011b No change.
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18.5.5.1  Adaptive PEBS
The PEBS record format and configuration interface has changed versus Goldmont Plus, as the Tremont microar-
chitecture includes support for the configurable Adaptive PEBS records; see Section 18.9.2.

18.5.5.2  PEBS output to Intel® Processor Trace
Intel Atom processors based on the Tremont microarchitecture introduce the following Precise Event-Based 
Sampling (PEBS) extensions:
• A mechanism to direct PEBS output into the Intel® Processor Trace (Intel® PT) output stream. In this scenario, 

the PEBS record is written in packetized form, in order to co-exist with other Intel PT trace data. 
• New Performance Monitoring counter reload MSRs, which are used by PEBS in place of the counter reload 

values stored in the DS Management area when PEBS output is directed into the Intel PT output stream.

Processors that indicate support for Intel PT by setting CPUID.07H.0.EBX[25]=1, and set the new 
IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16] bit, support these extensions.

18.5.5.2.1  PEBS Configuration

PEBS output to Intel Processor Trace includes support for two new fields in IA32_PEBS_ENABLE.

Table 18-66.  Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures

Box Tremont Microarchitecture Goldmont Plus Microarchitecture Comment

# of fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
18.2.1.

# of general-purpose 
counters per core

4 4 Use CPUID to determine # 
of counters. See Section 
18.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change. See Section 
18.2.2.

Architectural Performance 
Monitoring version ID

5 4 

PEBS record format 
encoding

0100b 0011b See Section 18.6.2.4.2.

Reduce skid PEBS IA32_PMC0 and IA32_FIXED_CTR0 IA32_PMC0 only

Extended PEBS Yes Yes See Section 18.5.4.1.

Adaptive PEBS Yes No See Section 18.9.2.

PEBS output DS Save Area or Intel® Processor 
Trace

DS Save Area only See Section 18.5.5.2.1.

PEBS record layout See Section 18.9.2.3 for output to 
DS, Section 18.5.5.2.2 for output to 
Intel PT.

Table 18-62; enhanced fields at 
offsets 90H- 98H; and TSC record 
field at C0H.

Off-core Response Event MSR 1A6H and 1A7H, each core 
has its own register, extended 
request and response types.

MSR 1A6H and 1A7H, each core has 
its own register.
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When PEBS_OUTPUT is set to 01B, the DS Management Area is not used and need not be configured. Instead, the 
output mechanism is configured through IA32_RTIT_CTL and other Intel PT MSRs, while counter reload values are 
configured in the MSR_RELOAD_PMCx MSRs. Details on configuring Intel PT can be found in Section 35.2.6.

18.5.5.2.2  PEBS Record Format in Intel® Processor Trace

The format of the PEBS record changes when output to Intel PT, as the PEBS state is packetized. Each PEBS 
grouping is emitted as a Block Begin (BBP) and following Block Item (BIP) packets. A PEBS grouping ends when 
either a new PEBS grouping begins (indicated by a BBP packet) or a Block End (BEP) packet is encountered. See 
Section 35.4.1.1 for details of these Intel PT packets.

Because the packet headers describe the state held in the packet payload, PEBS state ordering is not fixed. PEBS 
state groupings may be emitted in any order, and the PEBS state elements within those groupings may be emitted 
in any order. Further, there is no packet that provides indication of “Record Format” or “Record Size”.

If Intel PT tracing is not enabled (IA32_RTIT_STATUS.TriggerEn=0), any PEBS records triggered will be dropped. 
PEBS packets do not depend on ContextEn or FilterEn in IA32_RTIT_STATUS, any filtering of PEBS must be enabled 
from within the PerfMon configuration. Counter reload will occur in all scenarios where PEBS is triggered, regardless 
of TriggerEn.

Table 18-67.  New Fields in IA32_PEBS_ENABLE

Field Description

PMI_AFTER_EACH_RECORD[60] Pend a PerfMon Interrupt (PMI) after each PEBS event.

PEBS_OUTPUT[62:61] Specifies PEBS output destination. Encodings:

00B: DS Save Area. Matches legacy PEBS behavior, output location defined by IA32_DS_AREA.

01B: Intel PT trace output.

10B: Reserved.

11B: Reserved.

Figure 18-40.  IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor Trace

 m                             1   063  62 61 60

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)

PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

n                         32  31

Reserved RESET Value – 00000000 _00000000 H 

PMI_AFTER_EACH_RECORD (R/W)

PEBS_OUTPUT (R/W)

●  ●  ● ●  ●  ●

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXEDn (R/W)
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The PEBS threshold mechanism for generating PerfMon Interrupts (PMIs) is not available in this mode. However, 
there exist other means to generate PMIs based on PEBS output. When the Intel PT ToPA output mechanism is 
chosen, a PMI can optionally be pended when a ToPA region is filled; see Section 35.2.6.2 for details. Further, soft-
ware can opt to generate a PMI on each PEBS record by setting the new 
IA32_PEBS_ENABLE.PMI_AFTER_EACH_RECORD[60] bit.

The IA32_PERF_GLOBAL_STATUS.OvfDSBuffer bit will not be set in this mode.

18.5.5.2.3  PEBS Counter Reload

When PEBS output is directed into Intel PT (IA32_PEBS_ENABLE.PEBS_OUTPUT = 01B), new MSR_RELOAD_PMCx 
MSRs are used by the PEBS routine to reload PerfMon counters. The value from the associated reload MSR will be 
loaded to the appropriate counter on each PEBS event.

18.5.5.3  Precise Distribution Support on Fixed Counter 0
The Tremont microarchitecture supports the PDIR (Precise Distribution of Retired Instructions) facility, as described 
in Section 18.3.4.4.4, on Fixed Counter 0. Fixed Counter 0 counts the INST_RETIRED.ALL event. PEBS skid for 
Fixed Counter 0 will be precisely one instruction.

This is in addition to the reduced skid PEBS behavior on IA32_PMC0; see Section 18.5.3.1.2.

18.5.5.4  Compatibility Enhancements to Offcore Response MSRs
The Off-core Response facility is similar to that described in Section 18.5.3.2.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as shown below. RequestType bits are 
defined in Table 18-68, ResponseType bits in Table 18-69, and SnoopInfo bits in Table 18-70.

Table 18-68.  MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based 
prefetches for exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to L2 only) code reads.

Reserved 9:7 Reserved.

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch 
requests and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

Reserved 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).
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L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.

Table 18-69.  MSR_OFFCORE_RSPx Response Type Definition

Bit Name Offset Description

ANY_RESPONSE 16 Catch all value for any response types.

L3_HIT_M 18 LLC/L3 Hit - M-state.

L3_HIT_E 19 LLC/L3 Hit - E-state.

L3_HIT_S 20 LLC/L3 Hit - S-state.

L3_HIT_F 21 LLC/L3 Hit - I-state.

LOCAL_DRAM 26 LLC/L3 Miss, DRAM Hit.

OUTSTANDING 63 Average latency of outstanding requests with the other counter counting number 
of occurrences; can also can be used to count occupancy.

Table 18-70.  MSR_OFFCORE_RSPx Snoop Info Definition

Bit Name Offset Description

SNOOP_NONE 31 None of the cores were snooped.

• LLC miss and Dram data returned directly to the core.

SNOOP_NOT_NEEDED 32 No snoop needed to satisfy the request.

• LLC hit and CV bit(s) (core valid) was not set.
• LLC miss and Dram data returned directly to the core.

SNOOP_MISS 33 A snoop was sent but missed.

• LLC hit and CV bit(s) was set but snoop missed (silent data drop in core), data 
returned from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_NO_FWD 34 A snoop was sent but no data forward.

• LLC hit and CV bit(s) was set but no data forward from the core, data returned 
from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_WITH_FWD 35 A snoop was sent and non-modified data was forward.

• LLC hit and CV bit(s) was set, non-modified data was forward from core.

SNOOP_HITM 36 A snoop was sent and modified data was forward.

• LLC hit E or M and the CV bit(s) was set, modified data was forward from core.

NON_DRAM_BIT 37 Target was non-DRAM system address, MMIO access.

• LLC miss and Non-Dram data returned.

Table 18-68.  MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description
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The Off-core Response capability behaves as follows:
• To specify a complete offcore response filter, software must properly program at least one RequestType and one 

ResponseType. A valid request type must have at least one bit set in the non-reserved bits of 15:0 or 49:44. A 
valid response type must be a non-zero value of one the following expressions:

• Read requests: 

Any_Response Bit | (‘OR’ of Supplier Info Bits) ‘AND’ ( ‘OR’ of Snoop Info Bits) | Outstanding Bit

• Write requests: 

Any_Response Bit | (‘OR’ of Supplier Info Bits) | Outstanding Bit
• When the ANY_RESPONSE bit in the ResponseType is set, all other response type bits will be ignored.
• True Demand Cacheable Loads include neither L1 Prefetches nor Software Prefetches.
• Bits 15:0 and Bits 49:44 specifies the request type of a transaction request to the uncore. This is described in 

Table 18-68.
• Bits 30:16 specifies common supplier information.
• “Outstanding Requests” (bit 63) is only available on MSR_OFFCORE_RSP0; a #GP fault will occur if software 

attempts to write a 1 to this bit in MSR_OFFCORE_RSP1. It is mutually exclusive with any ResponseType. 
Software must guarantee that all other ResponseType bits are set to 0 when the “Outstanding Requests” bit is 
set.

• “Outstanding Requests” bit 63 can enable measurement of the average latency of a specific type of off-core 
transaction; two programmable counters must be used simultaneously and the RequestType programming for 
MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 must be the same when using this Average Latency feature. 
See Section 18.5.2.3 for further details.

18.6 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS)

18.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are 
programmed using the same facilities (see Figure 18-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values 
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have 
specificity related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading Support and 
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit 
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information 
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a 
microarchitectural condition and the originating core. This data is shown in Table 18-71. The two-bit encoding for 
core-specificity is only supported for a subset of Umask values (see Chapter 19, “Performance Monitoring Events”) 
and for Intel Core Duo processors. Such events are referred to as core-specific events.

Table 18-71.  Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
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Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some 
bus events belong to this category, providing specificity between the originating physical processor (a bus agent) 
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 18-72.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does 
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware 
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only 
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 18-73.

Some performance events may (a) support none of the three event-specific qualification encodings (b) may 
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware 
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for 
cache coherency state qualification is shown in Table 18-74. If no bits in the MESI qualification sub-field are set for 
an event that requires setting MESI qualification bits, the event count will not increment.

18.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support 
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural 
performance events can be collected using general-purpose performance counters (coupled with two 
IA32_PERFEVTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section 
18.6.2.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 18-1. Starting with Intel 

Table 18-72.  Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 18-73.  HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 18-74.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state
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Core 2 processor T 7700, fixed-function performance counters and associated counter control and status MSR 
becomes part of architectural performance monitoring version 2 facilities (see also Section 18.2.2). 

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values 
that are model-specific. Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-
fields identical to those listed in Table 18-71, Table 18-72, Table 18-73, and Table 18-74. One or more of these 
sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-27 in Chapter 19, 
“Performance Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop 
responses. Bits of the snoop response qualification sub-field are defined in Table 18-75.

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 18-76.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a 
performance event.

NOTE
Software must write known values to the performance counters prior to enabling the counters. The 
content of general-purpose counters and fixed-function counters are undefined after INIT or 
RESET.

18.6.2.1  Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond 
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. See Table 
18-2 for details of the PMC addresses and what these events count.

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and 
does not require specifying any event masks. Instead, the MSR IA32_FIXED_CTR_CTRL provides multiple sets of 
4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See Figures 
18-41. Two sub-fields are defined for each control. See Figure 18-41; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the 

corresponding fixed-function performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 

Table 18-75.  Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-76.  Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops
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When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to 
increment when the target condition associated with the architecture performance event occurs at ring greater 
than 0. 
Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective 
of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception 
through its local APIC on overflow condition of the respective fixed-function counter.

18.6.2.2  Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies 
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and 
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs 

(IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see 
Figure 18-42). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in 
the respective IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL MSRs to start/stop the counting of respective coun-
ters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

Figure 18-41.  Layout of IA32_FIXED_CTR_CTRL MSR
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PMI — Enable PMI on overflow
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ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels
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MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 18-43). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has 
occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-44). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

Figure 18-42.  Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-43.  Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved
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FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
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18.6.2.3  At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A 
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced 
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions 
that arise from speculative execution. The at-retirement events available in processors based on Intel Core micro-
architecture does not require special MSR programming control (see Section 18.6.3.6, “At-Retirement Counting”), 
but is limited to IA32_PMC0. See Table 18-77 for a list of events available to processors based on Intel Core micro-
architecture.

18.6.2.4  Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This 
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state 
information for the processor. The information provides architectural state of the instruction executed after the 
instruction that caused the event (See Section 18.6.2.4.2 and Section 17.4.9). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are 
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in 
Table 18-78. The procedure for detecting availability of PEBS is the same as described in Section 18.6.3.8.1.

Figure 18-44.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

Table 18-77.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
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18.6.2.4.1  Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following 
procedure to set up the processor and IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of 
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of 
64-bit address entries. See Figure 17-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 18-78.

18.6.2.4.2  PEBS Record Format

The PEBS record format may be extended across different processor implementations. The 
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format in 
processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields of 
IA32_PERF_CAPABILITES are defined in Table 2-2 of Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 4. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS 

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS 
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction 
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to 
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are 
recorded. On processors based on Intel Core microarchitecture, this bit is always 1.

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS 
record (See Section 18.6.3.8). 

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency data. 
(See Section 18.3.1.1.1). 

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data, 
and TSX tuning information. (See Section 18.3.6.2). 

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC data, 
and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (See Section 
18.3.8.1.1). 

— 0100B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 18.9.2.3).

Table 18-78.  PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
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18.6.2.4.3  Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the Inter-
rupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 17.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow 
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel 
NetBurst microarchitectures is listed in Table 18-79.

18.6.2.4.4  Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior 
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records 
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

Table 18-79.  Requirements to Program PEBS

For Processors based on Intel Core 
microarchitecture

For Processors based on Intel NetBurst 
microarchitecture

Verify PEBS support of 
processor/OS. 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled. On initial set up or changing event configurations, 
write MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0. 

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ is not 
enabled.

• If IA32_DebugCTL.Freeze is enabled, counters are 
automatically disabled.

Counters MUST be stopped before writing.1

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE MSR 
(3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (38EH) 
handle any overflow conditions.

Check OVF flag of each CCCR for overflow 
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (38EH) 
using IA32_PERF_GLOBAL_OVF_CTRL MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 - 0.
• Event programmed must be PEBS capable. 

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4 

support PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE MSR 
(3F1H).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT and 
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL MSR 
(38FH).

Set each CCCR enable bit 12 - 1.
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18.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is 
different from that provided in the P6 family and Pentium processors. While the general concept of selecting, 
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is 
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor 
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all 
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the 

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters. 

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter. 

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of 

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event 

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count 

specific events.

Table 18-80 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to 
be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19, “Perfor-
mance Monitoring Events.”

Table 18-80.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H
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MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

Table 18-80.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities are divided into two classes: 
non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-33) are events that occur any time during instruction execution (such as 

bus transactions or cache transactions).
• At-retirement events (see Table 19-34) are events that are counted at the retirement stage of instruction 

execution, which allows finer granularity in counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular 
performance event during instruction execution. Tagging allows events to be sorted between those that 
occurred on an execution path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually cancelled and never committed to 
architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models 
described below. The first two models can be used to count both non-retirement and at-retirement events; the 
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the 

counter is counting, software reads the counter at selected intervals to determine the number of events that 
have been counted between the intervals.

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not 

available on later versions.

Table 18-80.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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• Interrupt-based event sampling — A performance counter is configured to count one or more types of 
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a 
modulus value that will cause the counter to overflow after a specific number of events have been counted. 
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt 
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts 
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the 
VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural 
state of the processor to a memory buffer after the counter overflows. The records of architectural state 
provide additional information for use in performance tuning. Processor-based event sampling can be used to 
count only a subset of at-retirement events. PEBS captures more precise processor state information compared 
to interrupt based event sampling, because the latter need to use the interrupt service routine to re-construct 
the architectural states of processor. 

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4 
and Intel Xeon processors.

18.6.3.1  ESCR MSRs
The 45 ESCR MSRs (see Table 18-80) allow software to select specific events to be countered. Each ESCR is usually 
associated with a pair of performance counters (see Table 18-80) and each performance counter has several ESCRs 
associated with it (allowing the events counted to be selected from a variety of events).

Figure 18-45 shows the layout of an ESCR MSR. The functions of the flags and fields are:
• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level 

(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating 
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level 
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events 
are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

Figure 18-45.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved
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When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired 
branches. The event mask field is then used to select one or more of the specific events within the class to be 
counted. For example, when counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and 
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are 
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR 
using the WRMSR instruction. Table 18-80 gives the addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event 
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of 
the CCCR includes selecting the ESCR and enabling the counter.

18.6.3.2  Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for 
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture 
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a partic-
ular subset of events and ESCR’s (see Table 18-80). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the 
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within 
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 18.6.3.5.6, “Cascading Coun-
ters”). The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-46). The RDPMC instruction is intended to allow reading 
of either the full counter-width (40-bits) or, if ECX[31] is set to 1, the low 32-bits of the counter. Reading the low 
32-bits is faster than reading the full counter width and is appropriate in situations where the count is small enough 
to be contained in 32 bits. In such cases, counter bits 31:0 are written to EAX, while 0 is written to EDX.

The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086 
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be 
restricted to only programs and procedures running at privilege level 0.
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The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before 
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a 
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter. 
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a 
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

18.6.3.3  CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 18-80). The CCCRs control 
the filtering and counting of events as well as interrupt generation. Figure 18-47 shows the layout of an CCCR MSR. 
The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 

When set, event counts that are less than or equal to the threshold value result in a single count being delivered 
to the performance counter; when clear, counts greater than the threshold value result in a count being 
delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The complement flag is not 
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

Figure 18-46.  Performance Counter (Pentium 4 and Intel Xeon Processors)
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• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the 
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next 
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and filtered by the following flags and 
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more 
event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it, 
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used 
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next. 
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement 
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge 
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.6.3.5, “Programming the 
Performance Counters for Non-Retirement Events.”

Figure 18-47.  Counter Configuration Control Register (CCCR)
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18.6.3.4  Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to 
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning 
programs. The DS mechanism can be used to collect two types of information: branch records and processor event-
based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS 
feature flag (bit 21) returned by the CPUID instruction. 

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.6.3.8, “Processor Event-Based Sampling (PEBS),” 
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See 
Section 17.4.9, “BTS and DS Save Area.”

18.6.3.5  Programming the Performance Counters for Non-Retirement Events
The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR restrictions row in Table 
19-33, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-33 to a value listed in Table 18-80; select a CCCR and 
performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which they are to be 
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its 
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If 
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler 
for the interrupt must be in place.

8. Enable the counter to begin counting.

18.6.3.5.1  Selecting Events to Count

Table 19-34 in Chapter 19 lists a set of at-retirement events for processors based on Intel NetBurst microarchitec-
ture. For each event listed in Table 19-34, setup information is provided. Table 18-81 gives an example of one of 
the events.

Table 18-81.  Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select 
any combination of branch taken, not-taken, predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per 
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The 
performance counters and corresponding CCCRs can be obtained from 
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]
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For Table 19-33 and Table 19-34 in Chapter 19, the name of the event is listed in the Event Name column and 
parameters that define the event and other information are listed in the Event Parameters column. The Parameter 
Value and Description columns give specific parameters for the event and additional description information. 
Entries in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is 

needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 18-80 

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count 
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to 

be counted. The parameter value column defines the documented bits with relative bit position offset starting 
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are 
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter 
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of 
the ESCR from the Number column in Table 18-80.

• Event specific notes — Gives additional information about the event, such as the name of the same or a 
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events 
listed in Table 19-34.)

• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to 
count the events (only supplied for the at-retirement events listed in Table 19-34.)

NOTE
The performance-monitoring events listed in Chapter 19, “Performance Monitoring Events,” are 
intended to be used as guides for performance tuning. The counter values reported are not 
guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known 
discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set 
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure 
is continued through the following four sections.

Using information in Table 19-33, Chapter 19, an event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR 
addresses of the counter, CCCR, and ESCR from Table 18-80.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate 
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No

Table 18-81.  Event Example  (Contd.)
Event Name Event Parameters  Parameter Value Description
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NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however, 
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the 
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.6.3.5.2, “Filtering Events.”

18.6.3.5.2  Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The counter 
treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value of 4, and 
input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value on each 
clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the 
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold 
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a 
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag 
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared 
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the 
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the 
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value 
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to 
the counter is always 1, not the input value that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge 
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold 
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and 
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-to-
true transition. Figure 18-48 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge filter. 
This procedure is a continuation of the setup procedure introduced in Section 18.6.3.5.1, “Selecting Events to 
Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR 
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.6.3.5.3, “Starting Event Counting.”

Figure 18-48.  Effects of Edge Filtering
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18.6.3.5.3  Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable 
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues 
until it is stopped (see Section 18.6.3.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure 
introduced in Section 18.6.3.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 18.6.3.5.4, “Reading a Performance Counter’s 
Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 18.6.3.5.6, “Cascading Counters”).

18.6.3.5.4  Reading a Performance Counter’s Count

Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the 
RDPMC instruction (including fast read) are described in Section 18.6.3.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 18.6.3.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number 
obtained from Table 18-80 used as an operand.

This setup procedure is continued in the next section, Section 18.6.3.5.5, “Halting Event Counting.”

18.6.3.5.5  Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows 
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps 
around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates 
that the counter has overflowed at least once since the OVF bit was last cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure 
introduced in Section 18.6.3.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance 
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the 
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

18.6.3.5.6  Cascading Counters

As described in Section 18.6.3.2, “Performance Counters,” eighteen performance counters are implemented in 
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ 
(see Table 18-80). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events. 
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in 
the CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter 
located in another pair in the same block (see Figure 18-47 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event 
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set 
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies 
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and 
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14 
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cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter 
17.

Example 18-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count 
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In the 
above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the 
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in 
the basic performance counter setup procedure that begins in Section 18.6.3.5.1, “Selecting Events to Count.” 
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200 
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow. 
This is described in Section 18.6.3.5.8, “Generating an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then 
continues on the second counter after the first counter overflows. This technique doubles the number of event 
counts that can be recorded, since the contents of the two counters can be added together.

18.6.3.5.7  EXTENDED CASCADING 

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID 
DisplayFamily_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the IQ 
block. See Table 18-82. 

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance 
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended 
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel 
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the 
erratum applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement 
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading 
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two 
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other 
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 18-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096 
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined 
below:

Table 18-82.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5
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1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample 
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in 
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished 
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

18.6.3.5.8  Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program 
when overflow occurred. This information can then be used with a tool like the Intel® VTune™ Performance 
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set. 
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local 
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have 
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear 
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will 
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset 
value is to write a negative number into the counter, as described in Section 18.6.3.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100 
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the 
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately 
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the 
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on 
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the 
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on 
every counter increment, which in turn triggers an interrupt after every counter increment.

18.6.3.5.9  Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not 
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the 
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than 
no_event, which generally has a select value of 0). 
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18.6.3.6  At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural 
state and ignoring work that was performed speculatively and later discarded.

One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of 
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter 
was set up to count all executed instructions, the count would include instructions whose results were canceled as 
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in 
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those 
tagged events that represent committed results. This mechanism is called “at-retirement counting.” 

Tables 19-34 through 19-38 list predefined at-retirement events and event metrics that can be used to for tagging 
events when using at retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or 

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired” 
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state 
changes as required by the program being executed. Thus instructions and μops are either bogus or non-bogus, 
but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such as, 
Instruction_Retired and Uops_Retired in Table 19-34) can count instructions or μops that are retired based on 
the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so they 
can be counted at retirement. During the course of execution, the same event can happen more than once per 
μop and a direct count of the event would not provide an indication of how many μops encountered that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at retirement. 
The retired suffix is used for performance metrics that increment a count once per μop, rather than once per 
event. For example, a μop may encounter a cache miss more than once during its life time, but a “Miss Retired” 
metric (that counts the number of retired μops that encountered a cache miss) will increment only once for that 
μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a 
particular instruction sequence. Details of various performance metrics and how these can be constructed using 
the Pentium 4 and Intel Xeon processors performance events are provided in the Intel Pentium 4 Processor 
Optimization Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively 
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In 
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the Pentium 
4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay causes are 
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number 
of replays is common and unavoidable. An excessive number of replays is an indication of a performance 
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes 
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The 
hardware must internally modify the format of the operands in order to perform the computation. Assists clear 
the entire machine of μops before they begin and are costly.

18.6.3.6.1  Using At-Retirement Counting

Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a 
specified event. For a subset of the at-retirement events listed in Table 19-34, a μop may be tagged when it 
encounters that event. The tagging mechanisms can be used in Interrupt-based event sampling, and a subset of 
these mechanisms can be used in PEBS. There are four independent tagging mechanisms, and each mechanism 
uses a different event to count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for 

example, trace cache and instruction counts) and are counted with the Front_end_event event.
• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events (for 

example, instruction types) and are counted with the Execution_Event event.
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• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a 
cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this 
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism 
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the 
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged 
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be counted 
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging 
mechanism should be used at a time. 

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far 
transfers.

Table 19-34 lists the performance monitoring events that support at-retirement counting: specifically the 
Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired events. The following sections 
describe the tagging mechanisms for using these events to tag μop and count tagged μops.

18.6.3.6.2  Tagging Mechanism for Front_end_event

The Front_end_event counts μops that have been tagged as encountering any of the following events:
• μop decode events — Tagging μops for μop decode events requires specifying bits in the ESCR associated with 

the performance-monitoring event, Uop_type. 
• Trace cache events — Tagging μops for trace cache events may require specifying certain bits in the 

MSR_TC_PRECISE_EVENT MSR (see Table 19-36).

Table 19-34 describes the Front_end_event and Table 19-36 describes metrics that are used to set up a 
Front_end_event count.

The MSRs specified in the Table 19-34 that are supported by the front-end tagging mechanism must be set and one 
or both of the NBOGUS and BOGUS bits in the Front_end_event event mask must be set to count events. None of 
the events currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

18.6.3.6.3  Tagging Mechanism For Execution_event

Table 19-34 describes the Execution_event and Table 19-37 describes metrics that are used to set up an 
Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream 
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A 
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate 
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for 
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag 
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the 
mask is set, the related counter is incremented by one. This mechanism is summarized in the Table 19-37 metrics 
that are supported by the execution tagging mechanism. The tag enable and tag value bits are irrelevant for the 
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at 
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted in 
Section 18.6.3.8.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by 
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example, 
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.
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18.6.3.7  Tagging Mechanism for Replay_event
Table 19-34 describes the Replay_event and Table 19-38 describes metrics that are used to set up an Replay_event 
count.

The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay 
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT 
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table 19-38 lists the metrics that are support the replay tagging mechanism and the at-retirement events that 
use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The replay tags 
defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 17.4.9). Each of these replay 
tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_ENABLE_MSR. Each of 
these metrics requires that the Replay_Event (see Table 19-34) be used to count the tagged μops.

18.6.3.8  Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section 
17.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in 
the precise event records buffer, which is part of the DS save area (see Section 17.4.9, “BTS and DS Save Area”). 
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After 
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and 
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the 
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is 
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event 
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4 
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using IA32_PMC0 
and IA32_PERFEVTSEL0 MSRs (See Section 18.6.2.4).

18.6.3.8.1  Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the 

PEBS facilities, including the MSR_PEBS_ENABLE MSR. 
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled 

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

18.6.3.8.2  Setting Up the DS Save Area

Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

18.6.3.8.3  Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the 
processor and this counter for PEBS: 



Vol. 3B 18-115

PERFORMANCE MONITORING

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields 
of the DS buffer management area (see Figure 17-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for PEBS 
as described in Tables 19-34 through 19-38.

18.6.3.8.4  Writing a PEBS Interrupt Service Routine 

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

18.6.3.8.5  Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS 
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and 
INIT. 

The DS mechanism is available in real address mode.

18.6.3.9  Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis. 
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring 
on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records 
need to have an association with the corresponding process. One solution requires the ability for the DS specific 
operating system module to be chained to the context switch. A separate buffer can then be maintained for each 
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context 
switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep 
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation 
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors, 
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the 
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is 
enabled/disabled appropriately in the context switch code.

18.6.4 Performance Monitoring and Intel Hyper-Threading Technology in Processors Based 
on Intel NetBurst® Microarchitecture

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting 
Intel Hyper-Threading Technology is similar to that described in Section 18.6.3. However, the capability is extended 
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor. 

The sections below describe performance counters, event qualification by logical processor ID, and special purpose 
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and 
MSR_TC_PRECISE_EVENT. 



18-116 Vol. 3B

PERFORMANCE MONITORING

18.6.4.1  ESCR MSRs 
Figure 18-49 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a 

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and 
unprotected operating system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of 
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and 
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL 
of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of 
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified 
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 8.4.5, “Identifying 
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor 
basis (see Section 18.6.4.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits) 
are counted or sampled without regard to which logical processor is associated with the detected event. 

18.6.4.2  CCCR MSRs
Figure 18-50 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The 
functions of the flags and fields are as follows:

Figure 18-49.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon Processor 
and Intel Xeon Processor MP Supporting Hyper-Threading Technology
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• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 
reset

• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 
the counter associated with the CCCR.

• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active 
(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical 
processors. The encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive. 

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 
When set, event counts that are less than or equal to the threshold value result in a single count being 
delivered to the performance counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The compare flag is 
not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

Figure 18-50.  Counter Configuration Control Register (CCCR)
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• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0. 
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1. 
Note that the PMI is generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

18.6.4.3  IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture, 
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic 
processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution 
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the 
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address 
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need 
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a 
specific logical processor. This is to prevent these kernel mode components from migrating between different 
logical processors due to OS scheduling.   

18.6.4.4  Performance Monitoring Events
All of the events listed in Table 19-33 and 19-34 are available in an Intel Xeon processor MP. When Intel Hyper-
Threading Technology is active, many performance monitoring events can be can be qualified by the logical 
processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of the 
logical processors. However, not all the events have this logic processor specificity, or thread specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical 

processor. 

Table 19-39 gives logical processor specific information (TS or TI) for each of the events described in Tables 19-33 
and 19-34. If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table 
18-83) depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event 
counter. The T1_USR and T1_OS flags have no effect on the count.
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When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in 
Table 15-6. For events that are marked as TI in Chapter 19, the effect of selectively specifying T0_USR, T0_OS, 
T1_USR, T1_OS bits is shown in Table 18-84. 

18.6.4.5  Counting Clocks on systems with Intel Hyper-Threading Technology in Processors Based on 
Intel NetBurst® Microarchitecture

18.6.4.5.1  Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on 
Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired 
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.6.4.5.2  Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring 
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the 
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other 
than “no_event”; the counter may be disabled if this is not done.

Table 18-83.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or 
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR 
or T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in OS or (c) 
T1 in USR

Counts while (a) T0 in OS 
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or 
USR

Counts while (a) T0 in OS 
or (b) T0 in USR or (c) T1 
in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) or T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in 
USR

Counts while (a)T0 in Os 
or (b) T1 in OS or (c) T1 
in USR

Counts while (a) T0 in OS 
or (b) T1 in OS

Table 18-84.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10 

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS 

T0_OS/T0_USR = 01 Counts while (a) T0 in 
USR or (b) T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 11 Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 0 Counts while (a) T0 in OS 
or (b) T1 in OS

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS



18-120 Vol. 3B

PERFORMANCE MONITORING

3. Turn threshold comparison on in the CCCR by setting the compare bit to “1”.

4. Set the threshold to “15” and the complement to “1” in the CCCR. Since no event can exceed this threshold, the 
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package 
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT 
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can 
support two or more logical processors. Current implementation of Intel HT Technology provides two logical proces-
sors for each physical processor. While both logical processors can execute two threads simultaneously, one logical 
processor may halt to allow the other logical processor to execute without sharing execution resources between 
two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical 
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor 
to enter into a power-saving state by using an OS service that transfers control to an OS's idle loop. The idle loop 
then may place the processor into a power-saving state after an implementation-dependent period if there is no 
work for the processor.

18.6.5 Performance Monitoring and Dual-Core Technology
The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a 
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance 
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but 
two logical processors in the same core share performance monitoring resources (see Section 18.6.4, “Perfor-
mance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitec-
ture”). 

18.6.6 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model [03H 
or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same 
values (see Section 18.1 and Section 18.6.4) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 18-51.
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Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3 
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR 
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18 
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit. 

It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and 
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 18-52.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit. 
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and 
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 18-53.

Figure 18-51.  Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3

Figure 18-52.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
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• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit 
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in 
the upper 32-bits of the MSR. See Figure 18-54.

• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after 
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event. 
See Figure 18-55.

Figure 18-53.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

Figure 18-54.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
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18.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching 
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and 
programming interfaces that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature 
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon 
processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature 
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon 
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations 
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system 
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with 
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through 
additional control logic. See Figure 18-56 for the block configuration of six processor cores and the L3/Caching bus 
controller sub-system in Intel Xeon processor 7400 series. Figure 18-56 shows the block configuration of two 
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor 
7100 series.

Figure 18-55.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count



18-124 Vol. 3B

PERFORMANCE MONITORING

Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures 
(see Section 18.1 and Section 18.6.4) apply to Intel Xeon processor 7100 series. The MSRs used by performance 
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H 
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance 
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400 
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are 
described in this section. 

Figure 18-56.  Block Diagram of Intel Xeon Processor 7400 Series

Figure 18-57.  Block Diagram of Intel Xeon Processor 7100 Series
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18.6.7.1  Overview of Performance Monitoring with L3/Caching Bus Controller 
The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight 
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural 
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition, 
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation 
of any combination of these event select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes 
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and 

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter 

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs 
across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the 
event logic, the matched condition signals the counter logic to increment the associated event count field. The 
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter 
registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC 
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore 
performance counter/control registers. 

18.6.7.2  GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 18-58. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower 
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two 
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the 
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.



18-126 Vol. 3B

PERFORMANCE MONITORING

• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all 

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon 

processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

Figure 18-58.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH
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For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

18.6.7.3  GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 18-59. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical 

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits 
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical 
package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any 
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear, 

Core_Module_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly 
between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical 
package.

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package.
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.



18-128 Vol. 3B

PERFORMANCE MONITORING

18.6.7.4  FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 18-60. Counting 
starts after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration 
event increments at most once per cycle.

18.6.7.4.1  FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package.
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical 

package.
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical 

package.

Figure 18-59.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 18-60.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
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• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical 
package.

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions.
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions.
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions.
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY).
• FSB_DRDY (bit 45): Count DRDY assertions by this processor.
• FSB_BNR (bit 46): Count BNR assertions by this processor.
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty.
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full.
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ.
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY).
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent.
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent.
• FSB_other_BNR (bit 57): Count BNR assertions from another agent.

18.6.7.5  Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB 
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit 
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field. 

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations 

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to 
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 18-58 for example) is 
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it. 

18.6.8 Performance Monitoring (P6 Family Processor)
The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored 
simultaneously. These can either count events or measure duration. When counting events, a counter increments 
each time a specified event takes place or a specified number of events takes place. When measuring duration, it 
counts the number of processor clocks that occur while a specified condition is true. The counters can count events 
or measure durations that occur at any privilege level. 

Table 19-42, Chapter 19, lists the events that can be counted with the P6 family performance monitoring counters.
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NOTE
The performance-monitoring events listed in Chapter 19 are intended to be used as guides for 
performance tuning. Counter values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs 
(PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be 
read from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using these 
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any privilege 
level using the RDPMC (read performance-monitoring counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed in Table 19-42 are 
model-specific for P6 family processors. They are not guaranteed to be available in other IA-32 
processors.

18.6.8.1  PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one 
register used to set up each counter. They specify the events to be counted, how they should be counted, and the 
privilege levels at which counting should take place. Figure 18-61 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural 

conditions (see Table 19-42, for a list of events and their 8-bit codes).
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event 

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is 
used as a MESI-protocol qualifier of cache states (see Table 19-42).

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at 
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is 
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the 
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The 
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism 
allows software to measure not only the fraction of time spent in a particular state, but also the average length 
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 18-61.  PerfEvtSel0 and PerfEvtSel1 MSRs
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• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter 
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its 
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set, 
performance counting is enabled in both performance-monitoring counters; when clear, both counters are 
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to 
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the 
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count 
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock). 
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that 
occurred that cycle.

18.6.8.2  PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected 
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level 
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and 
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits 
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

18.6.8.3  Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or 
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters 
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs. 
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

18.6.8.4  Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an 
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking.
• Initialize and start counters.
• Stop counters.
• Read the event counters.
• Read the time-stamp counter.
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The event monitor feature determination procedure must check whether the current processor supports the perfor-
mance-monitoring counters and time-stamp counter. This procedure compares the family and model of the 
processor returned by the CPUID instruction with those of processors known to support performance monitoring. 
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and 
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction are 
supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be 
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting 
counts. The stop counters procedure stops the performance counters (see Section 18.6.8.3, “Starting and Stopping 
the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter 
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and 
RDPMC instructions that allow application code to read the counters. 

18.6.8.5  Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring 
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the 
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the processor for which performance 
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry 

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and 

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis 
of the performance of the profiled application.

18.6.9 Performance Monitoring (Pentium Processors)
The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure 
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR 
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of the 
counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-43 are model-specific for the 
Pentium processor.

The performance-monitoring events listed in Chapter 19 are intended to be used as guides for 
performance tuning. Counter values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are documented where applicable.
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18.6.9.1  Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0 
and CTR1 and the associated pins (see Figure 18-62). To control each counter, the CESR register contains a 6-bit 
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1). 
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field) 

up to two events to be monitored. See Table 19-43 for a list of available event codes.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter. 
Control codes are as follows:

000 — Count nothing (counter disabled).

001 — Count the selected event while CPL is 0, 1, or 2.

010 — Count the selected event while CPL is 3.

011 — Count the selected event regardless of CPL.

100 — Count nothing (counter disabled).

101 — Count clocks (duration) while CPL is 0, 1, or 2.

110 — Count clocks (duration) while CPL is 3.

111 — Count clocks (duration) regardless of CPL.
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables 
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring 
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its 
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the 
counter has been incremented. These flags permit the pins to be individually programmed to indicate the 
overflow or incremented condition. The external signaling of the event on the pins will lag the internal event by 
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before 
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed, 
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At 
reset, all bits in the CESR register are cleared.

18.6.9.2  Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high) 
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the 

Figure 18-62.  CESR MSR (Pentium Processor Only)
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entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has 
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be 
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event 
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single 
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter. 
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific 
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired, 
the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which 
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and 
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these 
pins to indicate breakpoint matches.

18.6.9.3  Events Counted
Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in 
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins 

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an 
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to 
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.

18.7 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms the basis for measuring how long a program takes to execute. 
Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may stop 
ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save 

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both 
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are 
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock 
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions.
• Enhanced Intel SpeedStep Technology transitions (P-state transitions).

For Intel processors that support TM2, the processor core clocks may operate at a frequency that differs from the 
Processor Base frequency (as indicated by processor frequency information reported by CPUID instruction). See 
Section 18.7.2 for more detail.

Due to the above considerations there are several important clocks referenced in this manual:
• Base Clock — The frequency of this clock is the frequency of the processor when the processor is not in turbo 

mode, and not being throttled via Intel SpeedStep.
• Maximum Clock — This is the maximum frequency of the processor when turbo mode is at the highest point.
• Bus Clock — These clockticks increment at a fixed frequency and help coordinate the bus on some systems. 
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• Core Crystal Clock — This is a clock that runs at fixed frequency; it coordinates the clocks on all packages 
across the system.

• Non-halted Clockticks — Measures clock cycles in which the specified logical processor is not halted and is 
not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a 
per-logical-processor basis. There are also performance events on dual-core processors that measure 
clockticks per logical processor when the processor is not halted.

• Non-sleep Clockticks — Measures clock cycles in which the specified physical processor is not in a sleep 
mode or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp Counter — See Section 17.17, “Time-Stamp Counter”.
• Reference Clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor 

features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus 
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core 
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core 
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by 
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 17.17, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for 
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time 
stamp counter (the timestamp counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was 

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is 
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a 
program, including those periods when the machine halts while waiting for I/O.

18.7.1 Non-Halted Reference Clockticks
Software can use UnHalted Reference Cycles on either a general purpose performance counter using event mask 
0x3C and umask 0x01 or on fixed function performance counter 2 to count at a constant rate. These events count 
at a consistent rate irrespective of P-state, TM2, or frequency transitions that may occur to the processor. The 
UnHalted Reference Cycles event may count differently on the general purpose event and fixed counter.

18.7.2 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power 
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the 
Processor Base frequency. 

The following items are expected to hold true irrespective of when opportunistic processor operation causes state 
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused 

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which is 

equal to the product of scalable bus frequency and maximum non-turbo ratio. 
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18.7.3 Determining the Processor Base Frequency
For Intel processors in which the nominal core crystal clock frequency is enumerated in CPUID.15H.ECX and the 
core crystal clock ratio is encoded in CPUID.15H (see Table 3-8 “Information Returned by CPUID Instruction”), the 
nominal TSC frequency can be determined by using the following equation:

Nominal TSC frequency = ( CPUID.15H.ECX[31:0] * CPUID.15H.EBX[31:0] ) ÷ CPUID.15H.EAX[31:0]

For Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated but CPUID.15H.ECX 
is not enumerated, Table 18-85 can be used to look up the nominal core crystal clock frequency.

18.7.3.1  For Intel® Processors Based on Microarchitecture Code Name Sandy Bridge, Ivy Bridge, 
Haswell and Broadwell

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by a bus speed of 100 MHz.

18.7.3.2  For Intel® Processors Based on Microarchitecture Code Name Nehalem
The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by a bus speed of 133.33 MHz.

18.7.3.3  For Intel® Atom™ Processors Based on the Silvermont Microarchitecture (Including Intel 
Processors Based on Airmont Microarchitecture)

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by the scalable bus frequency. The scalable bus frequency is 
encoded in the bit field MSR_FSB_FREQ[2:0] for Intel Atom processors based on the Silvermont microarchitecture, 
and in bit field MSR_FSB_FREQ[3:0] for processors based on the Airmont microarchitecture; see Chapter 2, 
“Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
4.

Table 18-85.  Nominal Core Crystal Clock Frequency

Processor Families/Processor Number Series1

NOTES:
1. For any processor in which CPUID.15H is enumerated and MSR_PLATFORM_INFO[15:8] (which gives the scalable bus frequency) is 

available, a more accurate frequency can be obtained by using CPUID.15H.

Nominal Core Crystal Clock Frequency

Intel® Xeon® Processor Scalable Family with CPUID signature 06_55H. 25 MHz

6th and 7th generation Intel® Core™ processors and Intel® Xeon® W Processor Family. 24 MHz

Next Generation Intel® Atom™ processors based on Goldmont Microarchitecture with 
CPUID signature 06_5CH (does not include Intel Xeon processors).

19.2 MHz
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18.7.3.4  For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core 
Microarchitecture

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field 
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4. The maximum resolved bus ratio can be read from the 
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It 

corresponds to the Processor Base frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STATUS[44:40], it 

corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If 
MSR_PERF_STATUS[31] is set, XE operation is enabled. The MSR_PERF_STATUS[31] field is read-only.

18.8 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 18-63; it provides enumeration of a variety of 
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section 

17.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist; see Section 

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers; see Section 

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records; see 

Section 18.6.2.4.2.
• IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is 

supported if 1, see Section 18.8.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for 

updating bits 32 and above of IA32_PMCx; see Section 18.2.6.
• IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14]: If set, the following is true:

— The IA32_PEBS_ENABLE MSR (address 3F1H) exists and all architecturally enumerated fixed and general-
purpose counters have corresponding bits in IA32_PEBS_ENABLE that enable generation of PEBS records. 
The general-purpose counter bits start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at bit 
IA32_PEBS_ENABLE[32].

— The format of the PEBS record is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section 
18.6.2.4.2.

— Extended PEBS is supported. All counters support the PEBS facility, and all events (both precise and non-
precise) can generate PEBS records when PEBS is enabled for that counter. Note that not all events may be 
available on all counters.

— Adaptive PEBS is supported. The PEBS_DATA_CFG MSR (address 3F2H) and adaptive record enable bits 
(IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record) are supported. 
The definition of the PEBS_DATA_CFG MSR, including which bits are supported and how they affect the 
record, is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section 18.9.2.3.

• IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[15]: If set, indicates that the architecture provides 
built in support for TMA L1 metrics through the PERF_METRICS MSR, see Section 18.3.9.3.

• IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16]: If set on parts that enumerate support for Intel PT 
(CPUID.0x7.0.EBX[25]=1), setting IA32_PEBS_ENABLE.PEBS_OUTPUT to 01B will result in PEBS output being 
written into the Intel PT trace stream. See Section 18.5.5.2.
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18.8.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 17.5, “Last Branch, Interrupt, 
and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processors)”) are enabled, these facilities 
capture event counts, branch records and branch trace messages occurring in a logical processor. The occurrence 
of interrupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these 
facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system soft-
ware using performance monitoring and/or branch profiling facilities to filter out the effects of servicing system 
management interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor 
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI 
delivery will be restored , after the SMI handler issues RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the 
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM[bit 14] to 1 only supported as indicated 
by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

18.9 PEBS FACILITY

18.9.1 Extended PEBS
• The Extended PEBS feature supports Processor Event Based Sampling (PEBS) on all counters, both fixed 

function and general purpose; and all performance monitoring events, both precise and non-precise. PEBS can 
be enabled for the general purpose counters using PEBS_EN_PMCi bits of IA32_PEBS_ENABLE (i = 0, 1,..n). 
PEBS can be enabled for 'i' fixed function counters using the PEBS_EN_FIXEDi bits of IA32_PEBS_ENABLE (i = 
0, 1, ...m).

Figure 18-63.  Layout of IA32_PERF_CAPABILITIES MSR 
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A PEBS record due to a precise event will be generated after an instruction that causes the event when the counter 
has already overflowed. A PEBS record due to a non-precise event will occur at the next opportunity after the 
counter has overflowed, including immediately after an overflow is set by an MSR write.

Currently, IA32_FIXED_CTR0 counts instructions retired and is a precise event. IA32_FIXED_CTR1, 
IA32_FIXED_CTR2 … IA32_FIXED_CTRm count as non-precise events.

The Applicable Counter field in the Basic Info Group of the PEBS record indicates which counters caused the PEBS 
record to be generated. It is in the same format as the enable bits for each counter in IA32_PEBS_ENABLE. As an 
example, an Applicable Counter field with bits 2 and 32 set would indicate that both general purpose counter 2 and 
fixed function counter 0 generated the PEBS record. 
• To properly use PEBS for the additional counters, software will need to set up the counter reset values in PEBS 

portion of the DS_BUFFER_MANAGEMENT_AREA data structure that is indicated by the IA32_DS_AREA 
register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-65. When a counter 
generates a PEBS records, the appropriate counter reset values will be loaded into that counter. In the above 
example where general purpose counter 2 and fixed function counter 0 generated the PEBS record, general 
purpose counter 2 would be reloaded with the value contained in PEBS GP Counter 2 Reset (offset 50H) and 
fixed function counter 0 would be reloaded with the value contained in PEBS Fixed Counter 0 Reset (offset 
80H).

Figure 18-64.  Layout of IA32_PEBS_ENABLE MSR
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Extended PEBS support debuts on Intel® Atom processors based on the Goldmont Plus microarchitecture and 
future Intel® Core™ processors based on the Ice Lake microarchitecture.

18.9.2 Adaptive PEBS 
The PEBS facility has been enhanced to collect the following CPU state in addition to GPRs, EventingIP, TSC and 
memory access related information collected by legacy PEBS:
• XMM registers
• LBR records (TO/FROM/INFO)

The PEBS record is restructured where fields are grouped into Basic group, Memory group, GPR group, XMM group 
and LBR group. A new register MSR_PEBS_DATA_CFG provides software the capability to select data groups of 
interest and thus reduce the record size in memory and record generation latency. Hence, a PEBS record's size and 
layout vary based on the selected groups. The MSR also allows software to select LBR depth for branch data 
records.

By default, the PEBS record will only contain the Basic group. Optionally, each counter can be configured to 
generate a PEBS records with the groups specified in MSR_PEBS_DATA_CFG.

Figure 18-65.  PEBS Programming Environment
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Details and examples for the Adaptive PEBS capability follow below.

18.9.2.1  Adaptive_Record Counter Control
• IA32_PERFEVTSELx.Adaptive_Record[34]: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_PMCx is set for 

the corresponding GP counter, an overflow of PMCx results in generation of an adaptive PEBS record with state 
information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a basic record is 
generated.

• IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_FIXEDx is 
set for the corresponding Fixed counter, an overflow of FixedCtrx results in generation of an adaptive PEBS 
record with state information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a 
basic record is generated.

18.9.2.2  PEBS Record Format
The data fields in the PEBS record are aggregated into five groups which are described in the sub-sections below. 
Processors that support Adaptive PEBS implement a new MSR called MSR_PEBS_DATA_CFG which allows software 
to select the data groups to be captured. The data groups are not placed at fixed locations in the PEBS record, but 
are positioned immediately after one another, thus making the record format/size variable based on the groups 
selected.

Figure 18-66.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBS
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18.9.2.2.1  Basic Info

The Basic group contains essential information for software to parse a record along with several critical fields. It is 
always collected.

18.9.2.2.2  Memory Access Info

This group contains the legacy PEBS memory-related fields; see Section 18.3.1.1.2. 

18.9.2.2.3  GPRs

This group is captured when the GPR bit is enabled in MSR_PEBS_DATA_CFG. GPRs are always 64 bits wide. If they 
are selected for non 64-bit mode, the upper 32-bit of the legacy RAX - RDI and all contents of R8-15 GPRs will be 
filled with 0s. In 64bit mode, the full 64 bit value of each register is written.

Table 18-86.  Basic Info Group

Field Name Bit Width Description

Record Format [47:0] This field indicates which data groups are included in the record. The field is zero if 
none of the counters that triggered the current PEBS record have their 
Adaptive_Record bit set. Otherwise it contains the value of MSR_PEBS_DATA_CFG.

[63:48] This field provides the size of the current record in bytes. Selected groups are 
packed back-to-back in the record without gaps or padding for unselected groups.

Instruction Pointer [63:0] This field reports the Eventing Instruction Pointer (EventingIP) of the retired 
instruction that triggered the PEBS record generation. Note that this field is 
different than R/EIP which records the instruction pointer of the next instruction 
to be executed after record generation. The legacy R/EIP field has been removed.

Applicable Counters [63:0] The Applicable Counters field indicates which counters triggered the generation of 
the PEBS record, linking the record to specific events. This allows software to 
correlate the PEBS record entry properly with the instruction that caused the 
event, even when multiple counters are configured to generate PEBS records and 
multiple bits are set in the field.

TSC [63:0] This field provides the time stamp counter value when the PEBS record was 
generated.

Table 18-87.  Memory Access Info Group

Field Name Bit Width Description

Memory Access Address [63:0] This field contains the linear address of the source of the load, or linear address of 
the destination (target) of the store. This value is written as a 64-bit address in 
canonical form.

Memory Auxiliary Info [63:0] When MEM_TRANS_RETIRED.* event is configured in a General Purpose counter, 
this field contains an encoded value indicating the memory hierarchy source which 
satisfied the load. These encodings are detailed in Table 18-4 and Table 18-13. If 
the PEBS assist was triggered for a store uop, this field will contain information 
indicating the status of the store, as detailed in Table 18-14.

Memory Access Latency [63:0] When MEM_TRANS_RETIRED.* event is configured in a General Purpose counter, 
this field contains the latency to service the load in core clock cycles.

TSX Auxiliary Info [31:0] This field contains the number of cycles in the last TSX region, regardless of 
whether that region had aborted or committed.

[63:31] This field contains the abort details. Refer to Section 18.3.6.5.1.
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The order differs from legacy. The table below shows the order of the GPRs in Ice Lake microarchitecture.

The machine state reported in the PEBS record is the committed machine state immediately after the instruction 
that triggers PEBS completes.

For instance, consider the following instruction sequence:

MOV eax, [eax]; triggers PEBS record generation

NOP

If the mov instruction triggers PEBS record generation, the EventingIP field in the PEBS record will report the 
address of the mov, and the value of EAX in the PEBS record will show the value read from memory, not the target 
address of the read operation. And the value of RIP will contain the linear address of the nop.

18.9.2.2.4  XMMs

This group is captured when the XMM bit is enabled in MSR_PEBS_DATA_CFG and SSE is enabled. If SSE is not 
enabled, the fields will contain zeroes. XMM8-XMM15 will also contain zeroes if not in 64-bit mode.

Table 18-88.  GPRs in Ice Lake Microarchitecture

Field Name Bit Width

RFLAGS [63:0]

RIP [63:0]

RAX [63:0]

RCX* [63:0]

RDX* [63:0]

RBX* [63:0]

RSP* [63:0]

RBP* [63:0]

RSI* [63:0]

RDI* [63:0]

R8 [63:0]

... ...

R15 [63:0]
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18.9.2.2.5  LBRs

To capture LBR data in the PEBS record, the LBR bit in MSR_PEBS_DATA_CFG must be enabled. The number of LBR 
entries included in the record can be configured in the LBR_entries field of MSR_PEBS_DATA_CFG.

LBR entries are recorded into the record starting at LBR[TOS] and proceeding to LBR[TOS-1] and following. Note 
that LBR index is modulo the number of LBRs supporting on the processor.

18.9.2.3  MSR_PEBS_DATA_CFG
Bits in MSR_PEBS_DATA_CFG can be set to include data field blocks/groups into adaptive records. The Basic Info 
group is always included in the record. Additionally, the number of LBR entries included in the record is configu-
rable.

Table 18-89.  XMMs

Field Name Bit Width

XMM0 [127:0]

... ...

XMM15 [127:0]

Table 18-90.  LBRs

Field Name Bit Width Description

LBR[].FROM [63:0] Branch from address.

LBR[].TO [63:0] Branch to address.

LBR[].INFO [63:0] Other LBR information, like timing. This field is described in more 
detail in Section 17.12.1, “MSR_LBR_INFO_x MSR”.
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Figure 18-67.  MSR_PEBS_DATA_CFG

Table 18-91.  MSR_PEBS_CFG Programming1

NOTES:
1. A write to the MSR will be ignored when IA32_MISC_ENABLE.PERFMON_AVAILABLE is zero (default).

Bit Bit Index Access Description

Memory Info 0 R/W Setting this bit will capture memory information such as the linear address, 
data source and latency of the memory access in the PEBS record.

GPRs 1 R/W Setting this bit will capture the contents of the General Purpose registers 
in the PEBS record.

XMMs 2 R/W Setting this bit will capture the contents of the XMM registers in the PEBS 
record.

LBRs 3 R/W Setting this bit will capture LBR TO, FROM and INFO in the PEBS record.
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18.9.2.4  PEBS Record Examples
The following example shows the layout of the PEBS record when all data groups are selected (all valid bits in 
MSR_PEBS_DATA_CFG are set) and maximum number of LBRs are selected. There are no gaps in the PEBS record 
when a subset of the groups are selected, thus keeping the layout compact. Implementations that do not support 
some features will have to pad zeroes in the corresponding fields.

Table 18-92.  PEBS Record Example 1

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 Memory Info Memory Access Address DLA

0x28 Memory Auxiliary Info DATA_SRC

0x30 Memory Access Latency Load Latency

0x38 TSX Auxiliary Info HLE Information

0x40 GPRs RFLAGS

0x48 RIP

0x50 RAX

... ...

0x88 RDI

0x90 R8

... ...

0xC8 R15

0xD0 XMMs XMM0 New

... ...

0x1C0 XMM15

0x1D0 LBRs LBR[TOS].FROM New

0x1D8 LBR[TOS].TO

0x1E0 LBR[TOS].INFO

... ...

0x4B8 LBR[TOS +1].FROM

0x4C0 LBR[TOS +1].TO

0x4C8 LBR[TOS +1].INFO
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The following example shows the layout of the PEBS record when Basic, GPR, and LBR group with 3 LBR entries are 
selected.

18.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
Precise Distribution of Instructions Retired Facility is available via PEBS on some microarchitectures. Refer to 
Section 18.3.4.4.4. Counters that support PDIR also vary. See the processor specific sections for availability.

18.9.4 Reduced Skid PEBS
Processors based on Goldmont Plus microarchitecture support the Reduced Skid PEBS feature described in Section 
18.5.3.1.2 on the IA32_PMC0 counter. Although Extended PEBS adds support for generating PEBS records for 
precise events on additional general-purpose and fixed-function performance counters, those counters do not 
support the Reduced Skid PEBS feature.

Table 18-93.  PEBS Record Example 2

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 GPRs RFLAGS

0x28 RIP

0x30 RAX

... ...

0x68 RDI

0x70 R8

... ...

0xA8 R15

0xB0 LBRs LBR[TOS].FROM New

0xB8 LBR[TOS].TO

0xC0 LBR[TOS].INFO

... ...

0xE0 LBR[TOS +1].FROM

0xE8 LBR[TOS +1].TO

0xF0 LBR[TOS +1].INFO
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CHAPTER 24
VIRTUAL MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These 
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior 
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD, 
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers 
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the 
processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation 
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one 
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current 
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction, 

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so, 
but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry 
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS 
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current 
VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the 
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on 
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the 
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS 
whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding VMCS 
region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes 

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction, 

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there 

is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.
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Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other 
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because 
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was 
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g., 
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and 
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is 
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 24-1.

Figure 24-1.  States of VMCS X

Table 24-1.  Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 24.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).
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The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.1 Processors that maintain 
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-
ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.2 Bit 31 
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The 
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region 
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS 
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see 
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary 
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor 
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for 
this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not 
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort 
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root 
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed 
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the 
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future 
implementations may allow or require a different memory type3. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on 

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They 

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the 

nature of VM exits. On some processors, these fields are read-only.4

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred 
to collectively as VMX controls.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

2. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

3. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged 
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

4.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. VM entries load processor state from 
these fields and VM exits store processor state into these fields. See Section 26.3.2 and Section 27.3 for details.

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address 
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding 
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits 
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment 
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode. 
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task 
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt 
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

Table 24-2.  Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software
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The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each 
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor 
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the 
segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

On some processors, executions of VMWRITE ignore attempts to write non-zero values to any of bits 11:8 or 
bits 31:17. On such processors, VMREAD always returns 0 for those bits, and VM entry treats those bits as if 
they were all 0 (see Section 26.3.1.2).

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the 
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

— IA32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load IA32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

— IA32_RTIT_CTL (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load IA32_RTIT_CTL” VM-entry control or that of the “clear IA32_RTIT_CTL” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
supported only on processors that support the 1-setting of the “load CET state” VM-entry control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
entry control.

— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load 
PKRS” VM-entry control.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Table 24-2.  Format of Access Rights  (Contd.)

Bit Position(s) Field



24-6 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-entry 
control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that 
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is 

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence 
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute 
instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault2 or some other serious 
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR 
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be 
blocked for a period of time. This field contains information about such blocking. Details and the format of this 
field are given in Table 24-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this 
state. See Section 27.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3.  Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks maskable interrupts on the instruction boundary 
following its execution.1 Setting this bit indicates that this blocking is in effect.

1 Blocking by 
MOV SS

See Section 6.8.3, “Masking Exceptions and Interrupts When Switching Stacks,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks or suppresses certain debug exceptions as well 
as interrupts (maskable and nonmaskable) on the instruction boundary following its execution. 
Setting this bit indicates that this blocking is in effect.2 This document uses the term “blocking 
by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2, “System Management Interrupt (SMI).” System-management interrupts 
(SMIs) are disabled while the processor is in system-management mode (SMM). Setting this bit 
indicates that blocking of SMIs is in effect.
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• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32 
processors may recognize one or more debug exceptions without immediately delivering them.1 This field 
contains information about such exceptions. This field is described in Table 24-4.

3 Blocking by NMI See Section 6.7.1, “Handling Multiple NMIs,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A and Section 34.8, “NMI Handling While in SMM.”

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks 
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of 
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is 
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other 
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the 
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not 
ready for an NMI).

4 Enclave 
interruption

Set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-
management interrupts, INIT signals, and exceptions occurring in enclave mode as well as 
exceptions encountered during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit 
unmodified.

31:5 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

NOTES:
1. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an 

execution of STI.
2. System-management interrupts may also be inhibited on the instruction boundary following such an execution of MOV or POP.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction 
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4.  Format of Pending-Debug-Exceptions

Bit 
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met. 
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled 
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in 
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step 
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

Table 24-3.  Format of Interruptibility State (Contd.)

Bit 
Position(s)

Bit Name Notes
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• VMCS link pointer (64 bits). If the “VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE 
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set 
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting 
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.7.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1, 
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section 
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if 
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the 
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and 
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor 
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value 
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor treats 
this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies that 
there is no such interrupt.)

See Chapter 29 for more information on the use of this field.
• PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML” 

VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the 
page-modification log comprises 512 entries, the PML index is typically a value in the range 0–511. Details of 
the page-modification log and use of the PML index are given in Section 28.2.6.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is 
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the 

host-state area for the LDTR selector.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP) 
occurred inside an RTM region while advanced debugging of RTM transactional regions was 
enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1).1

63:17 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors 
that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this 

field sets the bit to indicate that condition.

Table 24-4.  Format of Pending-Debug-Exceptions (Contd.)

Bit 
Position(s)

Bit Name Notes
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• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support 
Intel 64 architecture).

• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support the 1-setting of the “load 
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support the 1-setting of the “load 
IA32_EFER” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
supported only on processors that support the 1-setting of the “load CET state” VM-exit control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
exit control.

— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load 
PKRS” VM-exit control.

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-exit 
control.

In addition to the state identified here, some processor state components are loaded with fixed values on every 
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for details 
of how state is loaded on VM exits.

24.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described in Section 24.6.1 through 
Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events 
(for example: interrupts).1 Table 24-5 lists the controls. See Chapter 27 for how these controls affect processor 
behavior in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4. The 
VMX capability MSR IA32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchronous 
events, mainly those caused by the execution of specific instructions.1 These are the primary processor-based 
VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these 
controls affect processor behavior in VMX non-root operation.

Table 24-5.  Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt 
exiting

If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally 
through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF 
does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are 
delivered normally using descriptor 2 of the IDT. This control also determines interactions 
between IRET and blocking by NMI (see Section 25.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the 
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also 
interacts with the “NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see 
Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.

7 Process posted 
interrupts

If this control is 1, the processor treats interrupts with the posted-interrupt notification vector 
(see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests 
(see Section 29.6).

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as 
do task switches (see Section 25.2).

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and 
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by 
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how 
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based 
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the 
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of 
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution 
controls.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines 
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See 
Chapter 29.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT, 
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions 
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O 
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR 
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the 
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-based VM-execution controls are 
used. If this control is 0, the logical processor operates as if all the secondary processor-based 
VM-execution controls were also 0.

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how 
these controls affect processor behavior in VMX non-root operation.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD and WBNOINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and 
Section 29.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 25.5.6.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

15 Enable ENCLS 
exiting

If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether 
the instruction causes a VM exit. See Section 24.6.16 and Section 25.1.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an 
entry to the page-modification log. See Section 28.2.6.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 25.5.7.

19 Conceal VMX from 
PT

If this control is 1, Intel Processor Trace suppresses from PIPs an indication that the processor 
was in VMX non-root operation and omits a VMCS packet from any PSB+ produced in VMX non-
root operation (see Chapter 35).

20 Enable 
XSAVES/XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

22 Mode-based 
execute control for 
EPT

If this control is 1, EPT execute permissions are based on whether the linear address being 
accessed is supervisor mode or user mode. See Chapter 28.

23 Sub-page write 
permissions for 
EPT

If this control is 1, EPT write permissions may be specified at the granularity of 128 bytes. See 
Section 28.2.4.

24 Intel PT uses guest 
physical addresses

If this control is 1, all output addresses used by Intel Processor Trace are treated as guest-
physical addresses and translated using EPT. See Section 25.5.4.
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All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear 
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its 
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception 
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap 
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code 
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B (each of which are 
4 KBytes in size). I/O bitmap A contains one bit for each I/O port in the range 0000H through 7FFFH; I/O bitmap B 
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 1. If the bitmaps are used, 
execution of an I/O instruction causes a VM exit if any bit in the I/O bitmaps corresponding to a port it accesses is 
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset and Multiplier
The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use 
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls 
executions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the 
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software 
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field. 
If this control is 1 (and the “RDTSC exiting” control is 0 and the “use TSC offsetting” control is 1), this field also 
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents 
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 25 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4 registers. These 
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW). 
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the 
TSC multiplier field (see Section 24.6.5 and Section 25.3).

26 Enable user wait 
and pause

If this control is 0, any execution of TPAUSE, UMONITOR, or UMWAIT causes a #UD.

28 Enable ENCLV 
exiting

If this control is 1, executions of ENCLV consult the ENCLV-exiting bitmap to determine whether 
the instruction causes a VM exit. See Section 24.6.17 and Section 25.1.3.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits 
in the corresponding read shadow cause VM exits.

• Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads 
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target 
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not. The 
CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one 
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target 
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section 
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability 
MSR IA32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization
There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page 

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and 
Location” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A and Intel® 64 
Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR 
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are 
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page. 

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be 
virtualized by the processor. See Section 29.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page. 
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual 
interrupts; see Chapter 29.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the 
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1 
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating 
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
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If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte 
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow” 
VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see 
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after 
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold. 
See Section 29.1.2.
The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution 
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized 
writes to the APIC’s EOI register cause VM exits:

— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that 
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more 
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the 
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte 
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control 
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This 
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address 

in the range 00000000H to 00001FFFH. The bit determines whether an execution of RDMSR applied to that 
MSR causes a VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of RDMSR 
applied to that MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each 
MSR address in the range 00000000H to 00001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an 
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the 
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See 
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.
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24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts 
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2. 
VM entries that return from SMM use this field as described in Section 34.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section 
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting of 
the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution 
control fields include the following 32-bit fields:

Table 24-8.  Format of Extended-Page-Table Pointer

Bit 
Position(s)

Field

2:0 EPT paging-structure memory type (see Section 28.2.7):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-

ture memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.5)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

7 Setting this control to 1 enables enforcement of access rights for supervisor shadow-stack pages (see Section 
28.2.3.2)3

3. Not all processors enforce access rights for shadow-stack pages. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

11:8 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table4

4. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by 
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved
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• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive 
executions of PAUSE in a loop.

• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to 
execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See 
Section 25.1.3 for more details regarding PAUSE-loop exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root 
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary 
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.6 for more details of how these controls affect processor 
behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC 
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent 
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called 
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises 
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.6.3).

24.6.15 VMCS Shadowing Bitmap Addresses
On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control 
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4 
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these 
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 ENCLS-Exiting Bitmap
The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution of 
ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction 
executes normally. See Section 25.1.3 for more information.

24.6.17 ENCLV-Exiting Bitmap
The ENCLV-exiting bitmap is a 64-bit field. If the “enable ENCLV exiting” VM-execution control is 1, execution of 
ENCLV causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction 
executes normally. See Section 25.1.3 for more information.

Table 24-9.  Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list. 
See Section 25.5.6.3.
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24.6.18 Control Field for Page-Modification Logging
The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the 
page-modification logging are given in Section 28.2.6.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML 
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

24.6.19 Controls for Virtualization Exceptions
On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution 
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the 

virtualization-exception information area. When a logical processor encounters a virtualization exception, 
it saves virtualization-exception information at the virtualization-exception information address; see Section 
25.5.7.2.

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value 
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field 
(see Section 25.5.6.3).

24.6.20 XSS-Exiting Bitmap
On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is 
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

24.6.21 Sub-Page-Permission-Table Pointer (SPPTP)
If the sub-page write-permission feature of EPT is enabled, EPT write permissions may be determined at a 128-
byte granularity (see Section 28.2.4). These permissions are determined using a hierarchy of sub-page-permission 
structures in memory.

The root of this hierarchy is referenced by a VM-execution control field called the sub-page-permission-table 
pointer (SPPTP). The SPPTP contains the address of the base of the root SPP table (see Section 28.2.4.2). The 
format of this field is shown in Table 24-8.

The SPPTP exists only on processors that support the 1-setting of the “sub-page write permissions for EPT” VM-
execution control.

Table 24-10.  Format of Sub-Page-Permission-Table Pointer

Bit 
Position(s)

Field

11:0 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned root SPP table

63:N1

NOTES:
1. N is the processor’s physical-address width. Software can determine this width by executing CPUID with 80000008H in EAX. The 

physical-address width is returned in bits 7:0 of EAX.

Reserved
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24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section 
24.7.2.

24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-11 lists the 
controls supported. See Chapter 27 for complete details of how these controls affect VM exits. 

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11, 
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1. 

Table 24-11.  Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug controls This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-
setting of this control.

9 Host address-space 
size

On processors that support Intel 64 architecture, this control determines whether a logical 
processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

NOTES:
1. Since the Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and 

since CR0.PG is always 1 in VMX root operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX root operation.

12 Load 
IA32_PERF_GLOBAL_
CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge 
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the 
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the VM-exit 
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and the 
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX-
preemption timer 
value

This control determines whether the value of the VMX-preemption timer is saved on 
VM exit.

23 Clear IA32_BNDCFGS This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.

24 Conceal VMX from PT If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) 
on a VM exit or a VMCS packet on an SMM VM exit (see Chapter 35).

25 Clear IA32_RTIT_CTL This control determines whether the IA32_RTIT_CTL MSR is cleared on VM exit.

28 Load CET state This control determines whether CET-related MSRs and SPP are loaded on VM exit.

29 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM exit.
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Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is 
recommended that this count not exceed 512.1 Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-store 
count. The format of each entry is given in Table 24-12. If the VM-exit MSR-store count is not zero, the address 
must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is 

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load 
count (see Table 24-12). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through 
24.8.3.

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-13 lists 
the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12.  Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12. 
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that 
support the 0-settings of any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS 
MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not 
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this 
functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is 

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load 
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry 
MSR-load count. The format of entries is described in Table 24-12. If the VM-entry MSR-load count is not zero, 
the address must be 16-byte aligned.

Table 24-13.  Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of 
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical 
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of 
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM) 
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section 
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

16 Load 
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.

17 Conceal VMX from 
PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on 
a VM entry or a VMCS packet on a VM entry that returns from SMM (see Chapter 35).

18 Load 
IA32_RTIT_CTL

This control determines whether the IA32_RTIT_CTL MSR is loaded on VM entry.

20 Load CET state This control determines whether CET-related MSRs and SPP are loaded on VM entry.

22 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control 
(see Section 27.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have 
been loaded). This process is called event injection and is controlled by the following three VM-entry control 
fields:
• VM-entry interruption-information field (32 bits). This field provides details about the event to be injected. 

Table 24-14 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM 
should use the type hardware exception for all exceptions other than the following:

• breakpoint exceptions (#BP; a VMM should use the type software exception);

• overflow exceptions (#OF a VMM should use the use type software exception); and

• those debug exceptions (#DB) that are generated by INT1 (a VMM should use the use type privileged 
software exception).1

The type other event is used for injection of events that are not delivered through the IDT.2

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on 
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on every 
VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software 
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on 
the stack.

See Section 26.6 for details regarding the mechanics of event injection, including the use of the interruption type 
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

Table 24-14.  Format of the VM-Entry Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception (e.g,. #PF)
4: Software interrupt (INT n)
5: Privileged software exception (INT1)
6: Software exception (INT3 or INTO)
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

1. The type hardware exception should be used for all other debug exceptions.

2. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with values 1 or 3 for n.
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24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).1

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-15.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry 
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 16 is always cleared to 0.

— Bit 27 is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1). See Section 27.2.1 for details.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see 
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can 
happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.8), software 
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains 
additional information about the cause of VM exits due to the following: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT; 
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; control-
register accesses; MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the 
VM exit. See Section 27.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

1.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

Table 24-15.  Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

16 Always cleared to 0

26:17 Not currently defined

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Not currently defined

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
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— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O 
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations. 
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored events: exceptions (including 
those generated by the instructions INT3, INTO, INT1, BOUND, UD0, UD1, and UD2); external interrupts that occur 
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This informa-
tion is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic information associated with the event 

causing the VM exit. Table 24-16 describes this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have 
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This 
information is provided in the following fields:

Table 24-16.  Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Not used
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Not currently defined

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.6.1.2.
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• IDT-vectoring information (32 bits). This field receives basic information associated with the event that was 
being delivered when the VM exit occurred. Table 24-17 describes this field.

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would 
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.4 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution, this field receives the 

length in bytes of the instruction whose execution led to the VM exit.1 See Section 27.2.5 for details of when 
and how this field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS, 
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, 
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section 
27.2.5 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for 
VM exits due to SMIs that arrive immediately after retirement of I/O instructions. They provide information about 
that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that addressed the I/O instruction).

Table 24-17.  Format of the IDT-Vectoring Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

30:12 Not currently defined

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is 
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of 
one of the VMX instructions.

24.10 VMCS TYPES: ORDINARY AND SHADOW
Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS 
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0 
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors 
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when 

the current VMCS is a shadow VMCS fail (see Section 26.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but 

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the 
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may 
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES
This section details guidelines that software should observe when using a VMCS and related structures. It also 
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical 
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that 
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes 
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more 
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is 
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software 
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see 
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary 

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any 
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.
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memory operations, in part because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on 
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data 
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS. 

Results may vary from time to time or from logical processor to logical processor.
• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS. 

Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a 
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see 
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on 
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause 
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any 
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 25 and may 

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor 

to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an 
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given, 
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these 
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields 
and their function in the VMCS. See Table 24-18.

Table 24-18.  Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)
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The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64 
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the 
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high 
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information. 
(The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A 

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field 
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits 
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and 
access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination 
operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source 
operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32 
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are 
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.
• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support 

Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit 
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading 
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two 
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
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use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use 
VMWRITE with the high access type (establishing bits 63:32 of the field).

24.11.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so 
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful 
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to 
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this 
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a 
VMCS region. Because the format of this information is implementation-specific, there is no way for software to 
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this 
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in 
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for 
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that 

VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR 

for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from 
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the 
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS 
from one logical processor to another.

24.11.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are 
referenced by pointers in a VMCS (for example, the I/O bitmaps). While the pointers to these data structures are 
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE 
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current 
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior 
(including behaviors identified in Section 24.11.1). Exceptions are made for the following data structures (subject 
to detailed discussion in the sections indicated): EPT paging structures and the data structures used to locate SPP 
vectors (Section 28.3.3); the virtual-APIC page (Section 29.1); the posted interrupt descriptor (Section 29.6); and 
the virtualization-exception information area (Section 25.5.7.2).

24.11.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical 
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in 
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation 
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.1,2

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON 
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON 
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should 
use a separate region for each logical processor and should not access or modify the VMXON region of a logical 
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.
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CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized 
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to 
root operation). The differences between VMX non-root operation and ordinary processor operation are described 
in the following sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “Other Causes of VM Exits”
• Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.4, “Other Changes in VMX Non-Root Operation” 
• Section 25.5, “Features Specific to VMX Non-Root Operation”
• Section 25.6, “Unrestricted Guests”

Chapter 26, “VM Entries,” describes the data control structures that govern VMX non-root operation. Chapter 26, 
“VM Entries,” describes the operation of VM entries by which the processor transitions from VMX root operation to 
VMX non-root operation. Chapter 25, “VMX Non-Root Operation,” describes the operation of VM exits by which the 
processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in VMX 
non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such 
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state 
is updated by the instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section 
25.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus 
can never be executed in VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits 
depending on the settings of certain VM-execution control fields (see Section 24.6).

25.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on 

privilege level,1 and general-protection exceptions that are based on checking I/O permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception 
and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on 
the contents of those operands (see LMSW in Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional I/O 
exiting” VM-execution control is 1 or because the “use I/O bitmaps control is 1) have priority over the following 
faults: 

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that 
mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.



25-2 Vol. 3C

VMX NON-ROOT OPERATION

— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an 
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a 

non-existent MSR with CPL = 0 generates a VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that may lead to a VM exit, it is 
assumed that the instruction does not incur a fault that takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1 
INVD, and XSETBV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID, 
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:3

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 
the CR0 guest/host mask and the CR0 read shadow.

• ENCLS. The ENCLS instruction causes a VM exit if the “enable ENCLS exiting” VM-execution control is 1 and 
one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLS-exiting bitmap is 1 (see Section 
24.6.16).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLS-exiting bitmap is 1.
• ENCLV. The ENCLV instruction causes a VM exit if the “enable ENCLV exiting” VM-execution control is 1 and 

one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLV-exiting bitmap is 1 (see Section 
24.6.17).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLV-exiting bitmap is 1.
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these instruc-

tions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” VM-execution 
controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution control 
is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX. 
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM. 
See Section 34.15.2.

3. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table 

exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/host mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/host mask and the 
values of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If every 
bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution control 
is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. Only the 
first n CR3-target values are considered, where n is the CR3-target count. If the “CR3-load exiting” VM-
execution control is 1 and the CR3-target count is 0, MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine whether
an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the 
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE. The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).
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• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE that 
was considered to be the first in a loop. If this amount of time exceeds the value of the VM-execution 
control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate as 
the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, where 
n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• TPAUSE. The TPAUSE instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause” 
VM-execution controls are both 1.

• UMWAIT. The UMWAIT instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause” 
VM-execution controls are both 1.

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.
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— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WBNOINVD. The WBNOINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control 

is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the 
XSS-exiting bitmap (see Section 24.6.20).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is 
1 and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-
exiting bitmap (see Section 24.6.20).

25.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see Section 

24.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception bitmap. If 
the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest IDT. This use 
of the exception bitmap applies also to exceptions generated by the instructions INT1, INT3, INTO, BOUND, 
UD0, UD1, and UD2.1

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults 
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault 
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks if 
PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap is 
followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is 
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the 
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page 
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and 
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the 
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This 
applies to the case in which the double-fault exception was generated within VMX non-root operation, the case 
in which the double-fault exception was generated during event injection by VM entry, and to the case in which 
VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution 
control is 1. (See Section 25.6 for an exception.) Otherwise, the interrupt is delivered normally through the 

1. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.
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IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external interrupts are blocked. 
The interrupt is not delivered through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1. 
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs 
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally 
associated with these events. Such exits do not modify register state or clear pending events as they would 
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do 
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state 
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of 
the normal operations associated with those events: they do not modify register state as they would outside of 
VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause 
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch 
in VMX non-root operation causes a VM exit. See Section 25.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of 
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for details 
of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption 
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window 
exiting” VM-execution control and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt. 
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT 
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction 

if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a VM exit 
occurs immediately after VM entry if the above conditions are true (see Section 26.7.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control. 
VM exits caused by this control take priority over external interrupts and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specifi-
cally, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These 
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if 
there is no virtual-NMI blocking and there is no blocking of events by MOV SS and no blocking of events by STI 
(see Table 24-3). Such a VM exit occurs immediately after VM entry if the above conditions are true (see 
Section 26.7.6).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused by 
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 
These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they wake 
a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions. 
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside SMM. 
If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 34.14.1.
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25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined 
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in the 
CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read 
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which 
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does not 
change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a 
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID” 
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD). 
This exception takes priority over any other exception the instruction may incur.

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG 
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI 

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI 
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the 
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case, 
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not clear 

CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit (see 
Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host mask. 
An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 23.8) 
causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read 
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read 
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if 
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not 
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section 
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read 
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4 

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read 
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if 
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to 
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to 
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case, 
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and 
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a 
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section 
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory 
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses the 
result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use the 
guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated 
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a 
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if 
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are true: 
(1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window exiting” VM-
execution control is 0; and (b) the logical processor has not recognized a pending virtual interrupt (see 
Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause 
the processor to enter an implementation-dependent optimized state if either the “interrupt-window 
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt; 
instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an 
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for 
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the 
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the 
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the value returned is determined by the setting of the “use TSC scaling” 
VM-execution control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the 
TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX 
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline 
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the 
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDPID. Behavior of the RDPID instruction is determined first by the setting of the “enable RDTSCP” 
VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDPID causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, RDPID operates normally.
• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC 

offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, the 
value returned is determined by the setting of the “use TSC scaling” VM-execution control:

• If the control is 0, RDTSC loads EAX:EDX with the sum of the value of the IA32_TIME_STAMP_COUNTER 
MSR and the value of the TSC offset.

• If the control is 1, RDTSC first computes the product of the value of the IA32_TIME_STAMP_COUNTER 
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads 
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP” 

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD). This 
exception takes priority over any other exception the instruction may incur.

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC exiting” 
and “use TSC offsetting” VM-execution controls:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the 
TSC offset.

In either case, RDTSCP also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
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• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each 
position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, 
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if every 
bit is cleared in the CR0 guest/host mask, SMSW reads normally from CR0; if every bit is set in the CR0 
guest/host mask, SMSW returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of 
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left 
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the CR0 
read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of the 
CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set 
when reading directly from CR0.

• TPAUSE. Behavior of the TPAUSE instruction is determined first by the setting of the “enable user wait and 
pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, TPAUSE causes an invalid-opcode exception 
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the 
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, the instruction delays for an amount of time called 
here the physical delay. The physical delay is first computed by determining the virtual delay (the 
time to delay relative to the guest’s timestamp counter).

If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value 
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay 
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling” 
VM-execution controls:

— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit 
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical 
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, TPAUSE causes a VM exit.
• UMONITOR. Behavior of the UMONITOR instruction is determined by the setting of the “enable user wait and 

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMONITOR causes an invalid-opcode 
exception (#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, UMONITOR operates normally.
• UMWAIT. Behavior of the UMWAIT instruction is determined first by the setting of the “enable user wait and 

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMWAIT causes an invalid-opcode exception 
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the 
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, and if the instruction causes a delay, the amount of 
time delayed is called here the physical delay. The physical delay is first computed by determining the 
virtual delay (the time to delay relative to the guest’s timestamp counter).

If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value 
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay 
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling” 
VM-execution controls:
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— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit 
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical 
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, UMWAIT causes a VM exit.
• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an 

execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain 
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control 
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root 
operation.

— On processors that support Intel PT but which do not allow it to be used in VMX operation, if ECX contains 
570H (indicating the IA32_RTIT_CTL MSR), the instruction causes a general-protection exception.1

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction 
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable 
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.20):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable 

XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.20):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, the 
IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

25.4 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as described in the following 
sections.

25.4.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control the blocking of 

external interrupts. In this case, an external interrupt that is not blocked for other reasons causes a VM exit 
(even if RFLAGS.IF = 0).

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in 
VMX operation (see Appendix A.6).
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• If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

25.4.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root oper-
ation causes a VM exit. However, the following checks are performed (in the order indicated), possibly resulting in 
a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant 
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, INT1, INT3, INTO, or JMP accesses a task gate in IA-32e mode, a general-protection 
exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, privilege-levels checks are 
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state 
segment (TSS) descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege levels are checked on the 
TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT in 
IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow 
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside IA-32e mode, no 
privilege checks are performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is accessed directly and no 
privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a VM exit 
due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementation-
specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing either 
TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if accessing 
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due 
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed 
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused 
the VM exit is recorded in the VM-exit interruption-information fields. See Section 27.2. The fact that a task gate 
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information 
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since 
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 27.2.
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25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 25.5.1) and the monitor trap flag (Section 25.5.2), translation of guest-physical 
addresses (Section 25.5.3 and Section 25.5.4), APIC virtualization (Section 25.5.5), VM functions (Section 
25.5.6), and virtualization exceptions (Section 25.5.7).

25.5.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption timer” VM-execution control, 
the VMX-preemption timer counts down (from the value loaded by VM entry; see Section 26.7.4) in VMX non-
root operation. When the timer counts down to zero, it stops counting down and a VM exit occurs (see Section 
25.2).

The VMX-preemption timer counts down at rate proportional to that of the timestamp counter (TSC). Specifically, 
the timer counts down by 1 every time bit X in the TSC changes due to a TSC increment. The value of X is in the 
range 0–31 and can be determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates in the shutdown and wait-for-
SIPI states. If the timer counts down to zero in any state other than the wait-for SIPI state, the logical processor 
transitions to the C0 C-state and causes a VM exit; the timer does not cause a VM exit if it counts down to zero in 
the wait-for-SIPI state. The timer is not decremented in C-states deeper than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and system-management mode 
(SMM) depends on whether the treatment of SMIs and SMM:
• If the default treatment of SMIs and SMM (see Section 34.14) is active, the VMX-preemption timer counts 

across an SMI to VMX non-root operation, subsequent execution in SMM, and the return from SMM via the RSM 
instruction. However, the timer can cause a VM exit only from VMX non-root operation. If the timer expires 
during SMI, in SMM, or during RSM, a timer-induced VM exit occurs immediately after RSM with its normal 
priority unless it is blocked based on activity state (Section 25.2).

• If the dual-monitor treatment of SMIs and SMM (see Section 34.15) is active, transitions into and out of SMM 
are VM exits and VM entries, respectively. The treatment of the VMX-preemption timer by those transitions is 
mostly the same as for ordinary VM exits and VM entries; Section 34.15.2 and Section 34.15.4 detail some 
differences.

25.5.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in 
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction 
boundary in VMX non-root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section 

26.6.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the 
VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 26.6.2), an MTF VM exit is pending on the 
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor 
trap flag” VM-execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event 
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending 
on the instruction boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary 
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction 
boundary after that iteration.
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• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the fallback 
instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced debugging 
of RTM transactional regions has been enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery of 
the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following 
execution of that instruction. If the instruction is INT1, INT3, or INTO, this boundary follows delivery of any 
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the 
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF VM exit 
would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes 
precedence or the MTF VM exit is blocked due to the activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF 

VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.
• No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. If 

a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state without 
causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section 
42.2 for details.

25.5.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical 
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used 
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging 
structures to produce physical addresses that are used to access memory.

Details of the EPT mechanism are given in Section 28.2.

25.5.4 Translation of Guest-Physical Addresses Used by Intel Processor Trace
As described in Chapter 35, Intel® Processor Trace (Intel PT) captures information about software execution using 
dedicated hardware facilities.

Intel PT can be configured so that the trace output is written to memory using physical addresses. For example, 
when the ToPA (table of physical addresses) output mechanism is used, the IA32_RTIT_OUTPUT_BASE MSR 
contains the physical address of the base of the current ToPA. Each entry in that table contains the physical address 
of an output region in memory. When an output region becomes full, the ToPA output mechanism directs subse-
quent trace output to the next output region as indicated in the ToPA.

When the “Intel PT uses guest physical addresses” VM-execution control is 1, the logical processor treats the 
addresses used by Intel PT (the output addresses as well as those used to discover the output addresses) as guest-
physical addresses, translating to physical addresses using EPT before trace output is written to memory.

Translating these addresses through EPT implies that the trace-output mechanism may cause EPT violations and 
VM exits; details are provided in Section 25.5.4.1. Section 25.5.4.2 describes a mechanism that ensures that these 
VM exits do not cause loss of trace data.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD0, UD1, and UD2 instructions and a BOUND-
range exceeded exception—#BR—generated by the BOUND instruction.
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25.5.4.1  Guest-Physical Address Translation for Intel PT: Details
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are 
treated as guest-physical addresses and translated using EPT. These addresses include the addresses of the output 
regions as well as the addresses of the ToPA entries that contain the output-region addresses.

Translation of accesses by the trace-output process may result in EPT violations or EPT misconfigurations (Section 
28.2.3), resulting in VM exits. EPT violations resulting for the trace-output process always cause VM exits and are 
never converted to virtualization exceptions (Section 25.5.7.1).

If no EPT violation or EPT misconfiguration occurs and if page-modification logging (Section 28.2.6) is enabled, the 
address of an output region may be added to the page-modification log. If the log is full, a page-modification log-
full event occurs, resulting in a VM exit.

If the “virtualize APIC accesses” VM-execution control is 1, a guest-physical address used by the trace-output 
process may be translated to an address on the APIC-access page. In this case, the access by the trace-output 
process causes an APIC-access VM exit as discussed in Section 29.4.6.1.

25.5.4.2  Trace-Address Pre-Translation (TAPT)
Because it buffers trace data produced by Intel PT before it is written to memory, the processor ensures that buff-
ered data is not lost when a VM exit disables Intel PT. Specifically, the processor ensures that there is sufficient 
space left in the current output page for the buffered data. If this were not done, buffered trace data could be lost 
and the resulting trace corrupted.

To prevent the loss of buffered trace data, the processor uses a mechanism called trace-address pre-translation 
(TAPT). With TAPT, the processor translates using EPT the guest-physical address of the current output region 
before that address would be used to write buffered trace data to memory.

Because of TAPT, no translation (and thus no EPT violation) occurs at the time output is written to memory; the 
writes to memory use translations that were cached as part of TAPT. (The details given in Section 25.5.4.1 apply to 
TAPT.) TAPT ensures that, if a write to the output region would cause an EPT violation, the resulting VM exit is deliv-
ered at the time of TAPT, before the region would be used. This allows software to resolve the EPT violation at that 
time and ensures that, when it is necessary to write buffered trace data to memory, that data will not be lost due 
to an EPT violation.

TAPT (and resulting VM exits) may occur at any of the following times:
• When software in VMX non-root operation enables tracing by loading the IA32_RTIT_CTL MSR to set the 

TraceEn bit, using the WRMSR instruction or the XRSTORS instruction.
Any VM exit resulting from TAPT in this case is trap-like: the WRMSR or XRSTORS completes before the
VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the
next instruction).

• At an instruction boundary when one output region becomes full and Intel PT transitions to the next output 
region.
VM exits resulting from TAPT in this case take priority over any pending debug exceptions. Such a VM exit will
save information about such exceptions in the guest-state area of the VMCS.

• As part of a VM entry that enables Intel PT. See Section 26.5 for details.

TAPT may translate not only the guest-physical address of the current output region but those of subsequent 
output regions as well. (Doing so may provide better protection of trace data.) This implies that any VM exits 
resulting from TAPT may result from the translation of output-region addresses other than that of the current 
output region.

25.5.5 APIC Virtualization
APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the 
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor emulates 
many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in VMX non-
root operation without a VM exit.
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Details of the APIC virtualization are given in Chapter 29.

25.5.6 VM Functions
A VM function is an operation provided by the processor that can be invoked from VMX non-root operation without 
a VM exit. VM functions are enabled and configured by the settings of different fields in the VMCS. Software in VMX 
non-root operation invokes a VM function with the VMFUNC instruction; the value of EAX selects the specific 
VM function being invoked.

Section 25.5.6.1 explains how VM functions are enabled. Section 25.5.6.2 specifies the behavior of the VMFUNC 
instruction. Section 25.5.6.3 describes a specific VM function called EPTP switching.

25.5.6.1  Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-execution control. A specific 
VM function is enabled by setting the corresponding VM-function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0; see Section 24.6.14).To do 
so, it must set the “activate secondary controls” VM-execution control (bit 31 of the primary processor-based VM-
execution controls), the “enable VM functions” VM-execution control (bit 13 of the secondary processor-based VM-
execution controls) and the “EPTP switching” VM-function control (bit 0 of the VM-function controls).

25.5.6.2  General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable VM functions” VM-execution 
controls is 01 or the value of EAX is greater than 63 (only VM functions 0–63 can be enable). Otherwise, the instruc-
tion causes a VM exit if the bit at position EAX is 0 in the VM-function controls (the selected VM function is not 
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”, and the length of 
the VMFUNC instruction is saved into the VM-exit instruction-length field. If the instruction causes neither an 
invalid-opcode exception nor a VM exit due to a disabled VM function, it performs the functionality of the 
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause a general-protection excep-
tion if CPL > 0). In addition, specific VM functions may include checks that might result in a VM exit. If such a 
VM exit occurs, VM-exit information is saved as described in the previous paragraph. The specification of a 
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in VM exits) is given in 
Section 25.5.6.3.

25.5.6.3  EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value 
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for 
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in 
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the 
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a 
VM exit if ECX ≥ 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section 
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.
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tent_EPTP := 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VM exit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
use tent_EPTP as the new EPTP value for address translation;
IF processor supports the 1-setting of the “EPT-violation #VE” VM-execution control

THEN
write ECX[15:0] to EPTP-index field in current VMCS;
use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 25.5.7.2);

FI;
FI;

FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

If the “Intel PT uses guest physical addresses” VM-execution control is 1 and IA32_RTIT_CTL.TraceEn = 1, any 
execution of the EPTP-switching VM function causes a VM exit.1

As noted in Section 25.5.6.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified 
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into the 
VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an 
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical 
processor starts creating and using guest-physical and combined mappings associated with the new value of bits 
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these are 
not changed by VMFUNC).2 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC invalidates 
combined mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the value 
of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of 
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging 
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or 4-level paging3 is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory 

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT 
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the 
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical 
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that 
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting 
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate execu-
tion of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT (because 
bit 6 is clear) and that is identical to the new value on bits 51:12.

1. Such a VM exit ensures the proper recording of trace data that might otherwise be lost during the change of EPT paging-structure 
hierarchy. Software handling the VM exit can change emulate the VM function and then resume the guest.

2. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.

3. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.
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IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching 
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 25.5.7.2);

25.5.7 Virtualization Exceptions
A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with 
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that would 
normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to generate 
virtualization exceptions instead of VM exits. Section 25.5.7.1 provides the details of how the processor determines 
whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 25.5.7.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any 
other exception; see Section 25.5.7.3 for details.

25.5.7.1  Convertible EPT Violations
If the “EPT-violation #VE” VM-execution control is 0 (e.g., on processors that do not support this feature), EPT 
violations always cause VM exits. If instead the control is 1, certain EPT violations may be converted to cause virtu-
alization exceptions instead; such EPT violations are convertible. 

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically, 
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:
• If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present.1 If the processor encounters 

such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is 
convertible if and only if bit 63 of the entry is 0.

• If an EPT paging-structure entry is present, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the 
processor encounters such an entry while translating a guest-physical address, it causes an EPT misconfig-
uration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:

• If bit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such 
an entry to translate a guest-physical address, and if an access to that address causes an EPT violation, 
the EPT violation is convertible if and only if bit 63 of the entry is 0.

• If bit 7 of the entry is 0 and the entry is not an EPT PTE, the entry references another EPT paging 
structure. The processor does not use the value of bit 63 of the entry to determine whether any 
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure 
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry 
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps a 
page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
• CR0.PE = 1;
• the logical processor is not in the process of delivering an event through the IDT; 
• the EPT violation does not result from the output process of Intel Processor Trace (Section 25.5.4); and

1. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or 
bit 10 is 1.
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• the 32 bits at offset 4 in the virtualization-exception information area are all 0.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception informa-
tion area (see Section 25.5.7.2). Thus, once a virtualization exception occurs, another can occur only if software 
clears this field.

25.5.7.2  Virtualization-Exception Information
Virtualization exceptions save data into the virtualization-exception information area (see Section 24.6.19). 
Table 25-1 enumerates the data saved and the format of the area.

A VMM may allow guest software to access the virtualization-exception information area. If it does, the guest soft-
ware may modify that memory (e.g., to clear the 32-bit value at offset 4; see Section 25.5.7.1). (This is an excep-
tion to the general requirement given in Section 24.11.4.)

25.5.7.3  Delivery of Virtualization Exceptions
After saving virtualization-exception information, the processor treats a virtualization exception as it does other 
exceptions:
• If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see 

below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.
• Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on 

the stack.
• With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a 

virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault 
(#DF) is generated. See Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.
It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 25.5.7.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information 
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section 
27.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the 
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is 0 in the exception bitmap and delivery of 
the exception generates an event that causes a VM exit), information about the exception is saved normally in the 

Table 25-1.  Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred 
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit 
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit 
occurred instead of the virtualization exception

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM 
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 24.6.19 and Section 
25.5.6.3)
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IDT-vectoring information field in the VMCS (see Section 27.2.4). Specifically, the event is reported as a hardware 
exception with vector 20 and no error code.

25.6 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in VMX operation (see Section 
23.8). This restriction implies that guest software cannot be run in unpaged protected mode or in real-address 
mode. Later processors support a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and 
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software to run in unpaged protected 
mode or in real-address mode. The following items describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply because it would set either 

CR0.PE and CR0.PG to 0. See Section 25.3 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root operation just as it does outside 

VMX operation. Thus, if CR0.PE = 0, the processor operates as it does normally in real-address mode (for 
example, it uses the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, the processor 
operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root operation and by the settings 
of the VM-execution controls just as it is in protected mode or when paging is enabled. Instructions, interrupts, 
and exceptions that cause VM exits in protected mode or when paging is enabled also do so in real-address 
mode or when paging is disabled. The following examples should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and do not cause VM exits: 
INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 
VMRESUME, VMWRITE, VMXOFF, and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for translation to a physical 
address.2 The guest memory type passed on to the EPT mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unrestricted guest” VM-execution control is 1.
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Software can enter VMX non-root operation using either of the VM-entry instructions VMLAUNCH and VMRESUME. 
VMLAUNCH can be used only with a VMCS whose launch state is clear and VMRESUME can be used only with a 
VMCS whose the launch state is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence 
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper for supporting VMX 
non-root operation and that the VMCS is correctly configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the VM entry completes, the state of the 
logical processor is consistent with IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. If the “Intel PT uses guest physical addresses” VM-execution control is 1, trace-address pre-translation (TAPT) 
may occur (see Section 25.5.4 and Section 26.5).

7. An event may be injected in the guest context (Section 26.6).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur in one of the following three 
ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example, an invalid-opcode exception). 

Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause control to pass to the instruction 

following the VM-entry instruction. The failure is indicated by setting RFLAGS.ZF1 (if there is a current VMCS) 
or RFLAGS.CF (if there is no current VMCS). If there is a current VMCS, an error number indicating the cause of 
the failure is stored in the VM-instruction error field. See Chapter 30 for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded from the host-state area of the 
VMCS (as would be done on a VM exit). Information about the failure is stored in the VM-exit information fields. 
See Section 26.8 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug exception only if failure of one of the 
checks in Section 26.1 and Section 26.2 causes control to pass to the following instruction. A VM-entry does not 
generate a single-step debug exception in any of the following cases: (1) the instruction generates a fault; (2) 
failure of one of the checks in Section 26.3 or in loading MSRs causes processor state to be loaded from the host-
state area of the VMCS; or (3) the instruction passes all checks in Section 26.1, Section 26.2, and Section 26.3 and 
there is no failure in loading MSRs.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, code running in SMM returns using VM entries instead of the RSM 
instruction. A VM entry returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control is 0. 
VM entries that return from SMM differ from ordinary VM entries in ways that are detailed in Section 34.15.4.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP, 
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

4. If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 24.10), RFLAGS.CF is set to 1 
and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not launched
If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number 
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 30 for the error 
numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state areas of the VMCS are 
checked to ensure that they are proper for supporting VMX non-root operation, that the VMCS is correctly config-
ured to support the next VM exit, and that, after the next VM exit, the processor’s state is consistent with the Intel 
64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next instruction, 
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with an error number that 
indicates whether the failure was due to the controls or the host-state area (see Chapter 30).

These checks may be performed in any order. Thus, an indication by error number of one cause (for example, host 
state) does not imply that there are not also other errors. Different processors may thus give different error 
numbers for the same VMCS. Some checks prevent establishment of settings (or combinations of settings) that are 
currently reserved. Future processors may allow such settings (or combinations) and may not perform the corre-
sponding checks. The correctness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The checks on the controls and the host-state area are presented in Section 26.2.1 through Section 26.2.4. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references are to 
fields in the host-state area.

26.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

26.2.1.1  VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX 
capability MSRs to determine the proper settings (see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary pro-
cessor-based VM-execution control were 0.
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• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may 
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the 
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability 
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of 
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither 
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The 
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of VTPR
(see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control
to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from
the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is 
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC 
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR 
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section 
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following 

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.6

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0: 
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.7

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

6. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control 
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution 
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:1

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address 
width.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be 
0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section 
24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see 
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP 
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty 
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.
• If the “enable PML” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.5 In 

addition, the PML address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.
• If either the “unrestricted guest” VM-execution control or the “mode-based execute control for EPT” VM-

execution control is 1, the “enable EPT” VM-execution control must also be 1.6

• If the “sub-page write permissions for EPT” VM-execution control is 1, the “enable EPT” VM-execution control 
must also be 1.7 In addition, the SPPTP VM-execution control field (see Table 24-10 in Section 24.6.21) must 
satisfy the following checks:

— Bits 11:0 of the address must be 0.

1. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

2. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

5. “Enable PML” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary processor-based 
VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

6. All these controls are secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if all these controls were 0. See Section 24.6.2.

7. “Sub-page write permissions for EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based 
VM-execution controls is 0, VM entry functions as if the “sub-page write permissions for EPT” VM-execution control were 0. See Sec-
tion 24.6.2.
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— The address should not set any bits beyond the processor’s physical-address width.
• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function 

controls must be clear.1 Software may consult the VMX capability MSRs to determine which bits are reserved 
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In 
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses 
must each satisfy the following checks:2

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must 

satisfy the following checks:3

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of 

VM entry, the “load IA32_RTIT_CTL” VM-entry control must be 0.
• If the “Intel PT uses guest physical addresses” VM-execution control is 1, the following controls must also be 1: 

the “enable EPT” VM-execution control; the “load IA32_RTIT_CTL” VM-entry control; and the “clear 
IA32_RTIT_CTL” VM-exit control.4

• If the “use TSC scaling” VM-execution control is 1, the TSC-multiplier must not be zero.5

26.2.1.2  VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult the VMX capability MSRs to 

determine the proper settings (see Appendix A.4).
• If the “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-preemption timer value” VM-

exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the VM-exit MSR-store count field is 

non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.6

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

2. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

3. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

4. “Intel PT uses guest physical addresses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-
based VM-execution controls is 0, VM entry functions as if the “Intel PT uses guest physical addresses” VM-execution control were 
0. See Section 24.6.2.

5. “Use TSC scaling” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “use TSC scaling” VM-execution control were 0. See Section 24.6.2.
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— The address of the last byte in the VM-exit MSR-store area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. 
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• The following checks are performed for the VM-exit MSR-load address if the VM-exit MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-load address + (MSR count * 16) – 1. 
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

26.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs to 

determine the proper settings (see Appendix A.5).
• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-

information field (see Table 24-14 in Section 24.8.3), the VM-entry exception error code, and the VM-entry 
instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following must 
hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical 
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the 
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if each of the following holds: (1) the interruption type is 
hardware exception; (2) bit 0 (corresponding to CR0.PE) is set in the CR0 field in the guest-state area; 
(3) IA32_VMX_BASIC[56] is read as 0 (see Appendix A.1); and (4) the vector indicates one of the following 
exceptions: #DF (vector 8), #TS (10), #NP (11), #SS (12), #GP (13), #PF (14), or #AC (17).

— The field's deliver-error-code bit is 0 if any of the following holds: (1) the interruption type is not hardware 
exception; (2) bit 0 is clear in the CR0 field in the guest-state area; or (3) IA32_VMX_BASIC[56] is read as 
0 and the vector is in one of the following ranges: 0–7, 9, 15, 16, or 18–31.

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:16 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the 
VM-entry instruction-length field is in the range 0–15. A VM-entry instruction length of 0 is allowed only if 
IA32_VMX_MISC[30] is read as 1; see Appendix A.6.

• The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.1

6. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) – 
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

26.2.2 Checks on Host Control Registers, MSRs, and SSP
The following checks are performed on fields in the host-state area that correspond to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• On processors that support Intel 64 architecture, the CR3 field must be such that bits 63:52 and bits in the 

range 51:32 beyond the processor’s physical-address width must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP 
field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR must be 0 in the field for that 
register. In addition, the values of the LMA and LME bits in the field must each be that of the “host address-
space size” VM-exit control.

• If the “load CET state” VM-exit control is 1, the IA32_S_CET field must not set any bits reserved in the 
IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) in the field cannot both be 
set.

• If the “load CET state” VM-exit control is 1, bits 1:0 must be 0 in the SSP field.
• If the “load PKRS” VM-exit control is 1, bits 63:32 must be 0 in the IA32_PKRS field.

26.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond to segment and descriptor-
table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the TI flag (bit 2) must 

be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control is 0.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the values of these bits are not changed 
by VM exit; see Section 27.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.
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• On processors that support Intel 64 architecture, the base-address fields for FS, GS, GDTR, IDTR, and TR must 
contain canonical addresses.

26.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to address-space size are performed 
on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time of VM entry, the following 

must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of VM entry, the “host address-

space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field are 0.

— If the “load CET state” VM-exit control is 1, bits 63:32 in the IA32_S_CET field and in the SSP field are 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

— If the “load CET state” VM-exit control is 1, the IA32_S_CET field and the SSP field contain canonical 
addresses.

• If the “load CET state” VM-exit control is 1, the IA32_INTERRUPT_SSP_TABLE_ADDR field contains a canonical 
address.

On processors that do not support Intel 64 architecture, checks are performed to ensure that the “IA-32e mode 
guest” VM-entry control and the “host address-space size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 26.2), the following operations take 
place concurrently: (1) the guest-state area of the VMCS is checked to ensure that, after the VM entry completes, 
the state of the logical processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is loaded 
from the guest-state area or as specified by the VM-entry control fields; and (3) address-range monitoring is 
cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after some state has 
been loaded. For this reason, the logical processor responds to such failures by loading state from the host-state 
area, as it would for a VM exit. See Section 26.8.

26.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These checks may be performed in any 
order. Some checks prevent establishment of settings (or combinations of settings) that are currently reserved. 
Future processors may allow such settings (or combinations) and may not perform the corresponding checks. The 
correctness of software should not rely on VM-entry failures resulting from the checks documented in this section. 

The following subsections reference fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.
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26.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug 
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The following 

are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution 
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are 
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the 

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and 
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE) 
must be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first 
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus 
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.

— If the “load CET state” VM-entry control is 1, the IA32_S_CET field and the 
IA32_INTERRUPT_SSP_TABLE_ADDR field must contain canonical addresses.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the 
IA32_EFER MSR:

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry 
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.6

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.
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• If the “load IA32_BNDCFGS” VM-entry control is 1, the following checks are performed on the field for the 
IA32_BNDCFGS MSR:

— Bits reserved in the IA32_BNDCFGS MSR must be 0.

— The linear address in bits 63:12 must be canonical. 
• If the “load IA32_RTIT_CTL” VM-entry control is 1, bits reserved in the IA32_RTIT_CTL MSR must be 0 in the 

field for that register (see Table 35-6).
• If the “load CET state” VM-entry control is 1, the IA32_S_CET field must not set any bits reserved in the 

IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) of the field cannot both be 
set.

• If the “load PKRS” VM-entry control is 1, bits 63:32 must be 0 in the IA32_PKRS field.

26.3.1.2  Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The following terms are 
used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is possible only on 

processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-rights field for that 

register.

The following are the checks on these fields: 
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-execution control is 0, the RPL 
(bits 1:0) must equal the RPL of the selector field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the selector field shifted left 
4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 architecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.
• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.
• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

6. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit 0 in the CR0 field (corresponding to CR0.PE) is
0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 – 11 (data segment or non-conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode and the L bit (bit 13) in the
access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary processor-based VM-execution 
controls is 0:  (1) bit 0 in the CR0 field must be 1 if the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in 
VMX operation; and (2) the Type in the access-rights field for CS cannot be 3.
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• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit busy TSS) or 11 (32-bit busy
TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

26.3.1.3  Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4  Checks on Guest RIP, RFLAGS, and SSP
The following checks are performed on fields in the guest-state area corresponding to RIP, RFLAGS, and SSP 
(shadow-stack pointer):
• RIP. The following checks are performed on processors that support Intel 64 architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L bit (bit 13) in the access-
rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the “IA-32e mode guest” 
VM-entry control is 1 and the L bit in the access-rights field for CS is 1.1 (No check applies if the processor 
supports 64 linear-address bits.) The guest RIP value is not required to be canonical; the value of bit N-1 
may differ from that of bit N.

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 architecture), bit 15, bit 5 and 
bit 3 must be 0 in the field, and reserved bit 1 must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry control is 1 or if bit 0 in the CR0 
field (corresponding to CR0.PE) is 0.2

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) is external interrupt.

• SSP. The following checks are performed if the “load CET state” VM-entry control is 1

— Bits 1:0 must be 0.

— If the processor supports the Intel 64 architecture, bits 63:N must be identical, where N is the CPU’s 
maximum linear-address width. (This check does not apply if the processor supports 64 linear-address 
bits.) The guest SSP value is not required to be canonical; the value of bit N-1 may differ from that of bit N.

26.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by the 
implementation (see Section 24.4.2). Future processors may include support for other activity states. 
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what 
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS 
is not 0.1

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by 
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered 
(as defined by interruption type and vector) must not be one that would normally be blocked while a logical 
processor is in the activity state corresponding to the contents of the activity-state field. The following 
items enumerate the interruptions (as specified in the VM-entry interruption-information field) whose 
injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-14 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 1.
• Interruptibility state.

— The reserved bits (bits 31:5) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the 
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0, 
indicating external interrupt, or value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in the 
VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has value 2 
(indicating NMI).

— If bit 4 (enclave interruption) is 1, bit 1 (blocking by MOV-SS) must be 0 and the processor must support 
for SGX by enumerating CPUID.(EAX=07H,ECX=0):EBX.SGX[bit 2] as 1.

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid bit 
in the VM-entry interruption-information field is 1 and the interruption type in that field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 architecture) 
must be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field indicates 
blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by MOV SS 
(bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 1.

— The following checks are performed if bit 16 (RTM) is 1:

• Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

• The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[bit 11] as 1.

• The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).
• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the 
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the 
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the 
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the 
executive-VMCS pointer.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.
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26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, the logical processor uses PAE paging (see Section 4.4 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).1 When PAE paging is in use, the 
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) is set in the CR0 field in the 
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest” 
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the CR3 

field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value of CR3 
is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-
state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use.3 If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents (see Section 
26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These sections reference VMCS fields 
that correspond to processor state. Unless otherwise stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the VM-entry MSR-load 
area (see Section 26.4). This loading occurs only after the state loading described in this section and the checking 
of VMCS contents described in Section 26.3.1.

26.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on VM entry: 

ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).4 The values of these bits in the CR0 
field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one of the PDPTEs, bits 63:1 of that 
PDPTE are ignored.

4. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of 
CR0 are always 0 and CR0.ET is always 1.
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• If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that 
bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

• The following describes how certain MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the IA32_DEBUGCTL MSR is loaded from the 
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32 bits, 
bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture, 
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.

— If the “load IA32_BNDCFGS” VM-entry control is 1, the IA32_BNDCFGS MSR is loaded from the 
IA32_BNDCFGS field.

— If the “load IA32_RTIT_CTL” VM-entry control is 1, the IA32_RTIT_CTL MSR is loaded from the 
IA32_RTIT_CTL field.

— If the “load CET” VM-entry control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs 
are loaded from the IA32_S_CET field and the IA32_INTERRUPT_SSP_TABLE_ADDR field, respectively. On 
processors that do not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the MSRs 
are cleared to 0.

— If the “load PKRS” VM-entry control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field.
With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so 
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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26.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for TR (see Section 26.3.1.2). 
If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-protection exception or 
stack-fault exception) outside 64-bit mode, just as they would had the segment been loaded using a null 
selector. This bit does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all modes, just as they would 
had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value does not cause a fault
(general-protection exception or stack-fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and (from the access-rights field) the 
L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined after VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
• If the unusable bit is 1, the base address, the segment limit, and the remainder of the access rights are 

undefined after VM entry with the following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be the current privilege level
(CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corresponding fields in the VMCS. On
processors that support Intel 64 architecture, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address for LDTR is set to an undefined
but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the base addresses for SS, DS, and
ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3  Loading Guest RIP, RSP, RFLAGS, and SSP
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field, respectively.

If the “load CET” VM-entry control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

The following items regard the upper 32 bits of these fields on VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor may ignore the contents of 

bits 63:32 of the RSP field on VM entries that are not to 64-bit mode.
• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 on VM entries that are not to 

64-bit mode. (The same is true for SSP for VM entries that are not to 64-bit mode when the “load CET” VM-
entry control is 1.)
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26.3.2.4  Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural 
registers based on the setting of the “enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical 

address in the value of CR3 being loaded by the VM entry (see Section 26.3.2.1). The values loaded are treated 
as physical addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section 
24.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

26.3.2.5  Updating Non-Register State
Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the 
guest interrupt-status field in the VMCS (see Section 24.4.2). After doing so, the logical processor first causes PPR 
virtualization (Section 29.1.3) and then evaluates pending virtual interrupts (Section 29.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry 
(including any specified event injection) completes; see Section 26.7.5. See Section 29.2.2 for details regarding 
the delivery of virtual interrupts.

26.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM entries clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2). Specifically each entry in that 
area (up to the number specified in the VM-entry MSR-load count) is processed in order by loading the MSR indexed 
by bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.1 

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM entry did not commence in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-specific reasons. A 

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4.

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to modify it using the VM-entry MSR-
load area are also ignored.



Vol. 3C 26-19

VM ENTRIES

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to such failures by loading state 
from the host-state area, as it would for a VM exit. See Section 26.8.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM entry, the logical processor will not use any translations that were cached before the transition.

26.5 TRACE-ADDRESS PRE-TRANSLATION (TAPT)
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are 
treated as guest-physical addresses, and these are translated to physical addresses using EPT.

VM entry uses trace-address pre-translation (TAPT) to prevent buffered trace data from being lost due to an 
EPT violation; see Section 25.5.4.2. VM entry uses TAPT only if Intel PT will be enabled following VM entry 
(IA32_RTIT_CTL.TraceEn = 1) and only if the “Intel PT uses guest physical addresses” VM-execution control is 1

As noted in Section 25.5.4, TAPT may cause a VM exit due to an EPT violation, EPT misconfiguration, page-modifi-
cation log-full event, or APIC access. If such a VM exit occurs as a result of TAPT during VM entry, the VM exit oper-
ates as if it had occurred in VMX non-root operation after the VM entry completed (in the guest context).

If TAPT during VM entry causes a VM exit, the VM entry does not perform event injection (Section 26.6), even if the 
valid bit in the VM-entry interruption-information field is 1. Such VM exits save the contents of VM-entry interrup-
tion-information and VM-entry exception error code fields into the IDT-vectoring information and IDT-vectoring 
error code fields, respectively.

26.6 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is 1, VM entry causes an event to 
be delivered (or made pending) after all components of guest state have been loaded (including MSRs) and after 
the VM-execution control fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable interrupt); 3 (hardware 

exception), 4 (software interrupt), 5 (privileged software exception), or 6 (software exception), the event is 
delivered as described in Section 26.6.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an MTF VM exit is pending after 
VM entry. See Section 26.6.2.

26.6.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by VM entry. This means that 
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution 
control fields have been established.2 The event is delivered using the vector in that field to select a descriptor in 
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 26.6.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had 
been generated normally.

1. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. If VM entry has 
established CR0.PG = 1, the IA32_EFER MSR should not be included in the VM-entry MSR-load area for the purpose of modifying the 
LME bit.

2. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control fields 
(such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, a 
nested exception encountered during event delivery may cause a VM exit; see Section 26.6.1.1.
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If event delivery encounters a nested exception (for example, a general-protection exception because the vector 
indicates a descriptor beyond the IDT limit), the exception bitmap is consulted using the vector of that exception:
• If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is 

benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated, 
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 6, 
“Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.1

• If the bit for the nested exception is 1, a VM exit occurs. Section 26.6.1.2 details cases in which event injection 
causes a VM exit.

26.6.1.1  Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption information field (format 
given in Table 24-14), the VM-entry exception error-code field, and the VM-entry instruction-length field. The 
following items provide details of the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded from the guest-state area. The 

value pushed for the RF flag is not modified based on the type of event being delivered. However, the pushed 
value of RFLAGS may be modified if a software interrupt is being injected into a guest that will be in virtual-
8086 mode (see below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is modified as 
is done normally when delivering an event through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event and whether nested exceptions 
occur during its delivery. The term current guest RIP refers to the value to be loaded from the guest-state 
area. The value pushed is determined as follows:2

— If VM entry successfully injects (with no nested exception) an event with interruption type external 
interrupt, NMI, or hardware exception, the current guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption type software 
interrupt, privileged software exception, or software exception, the current guest RIP is incremented by the 
VM-entry instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does not cause a VM exit, 
the current guest RIP is pushed on the stack regardless of event type or VM-entry instruction length. If the 
encountered exception does cause a VM exit that saves RIP, the saved RIP is current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field, the contents of the 
VM-entry exception error-code field is pushed on the stack as an error code would be pushed during delivery of 
an exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if the event has vector 1 
(normal deliveries of debug exceptions, which have vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode (RFLAGS.VM = 1), no 
general-protection exception can occur due to RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL 
before injecting such an event and, if desired, inject a general-protection exception instead of a software 
interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode with virtual-8086 mode 
extensions (RFLAGS.VM = CR4.VME = 1), event delivery is subject to VME-based interrupt redirection based 
on the software interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the interrupt is directed to 
an 8086 program interrupt handler: the processor uses a 16-bit interrupt-vector table (IVT) located at 
linear address zero. If the value of RFLAGS.IOPL is less than 3, the following modifications are made to the 
value of RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

1. Hardware exceptions with the following unused vectors are considered benign: 15 and 21–31. A hardware exception with vector 20 
is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control; in that case, it 
has the same severity as page faults.

2. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined normally.
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— If bit n in the bitmap is set (where n is the number of the software interrupt), the interrupt is directed to a 
protected-mode interrupt handler. (In other words, the injection is treated as described in the next item.) 
In this case, the software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a general-
protection exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an injected 
software interrupt to cause such a exception. Thus, in this case, the injection invokes a protected-mode 
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege 

checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3, 
or INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest 
will be in virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with 
interruption type external interrupt, NMI, hardware exception, and privileged software exception, or with inter-
ruption type software interrupt and being redirected as described above, do not perform these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” VM-execution control is 1, 
virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the IA32_DEBUGCTL MSR. This is 
true even for events such as debug exceptions, which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of the LBR bit in the 
IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally clear the LBR bit before they are 
delivered, and therefore do not normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception, the value of the EXT bit (bit 0) in any error code for that 
nested exception is determined as follows:

— If event being injected has interruption type external interrupt, NMI, hardware exception, or privileged 
software exception and encounters a nested exception (but does not produce a double fault), the error code 
for that exception sets the EXT bit.

— If event being injected is a software interrupt or a software exception and encounters a nested exception, 
the error code for that exception clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that exception encounters another 
exception (but does not produce a double fault), the error code for that exception sets the EXT bit.

— If a double fault is produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.6.1.2  VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls. For 
example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task 

switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX 
non-root operation (see Section 25.4.2).

• If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the 
exception bitmap (see Section 25.2).

• If event delivery generates a double-fault exception (due to a nested exception); the logical processor 
encounters another nested exception while attempting to call the double-fault handler; and that exception does 
not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section 25.2).

• If event delivery injects a double-fault exception and encounters a nested exception that does not cause a 
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 25.2).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the APIC-
access page, that access is treated as described in Section 29.4 and may cause a VM exit.1

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.
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If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it 
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected event 
directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a VM exit, 
information about the injected event is saved in the IDT-vectoring information field (see Section 27.2.4).

26.6.1.3  Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as would normally be done in real-
address mode.1 Specifically, VM entry uses the vector provided in the VM-entry interruption-information field to 
select a 4-byte entry from an interrupt-vector table at the linear address in IDTR.base. Further details are provided 
in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must be 0 if CR0.PE will be 0 after 
VM entry (see Section 26.2.1.3), vectored events injected with CR0.PE = 0 do not push an error code on the stack. 
This is consistent with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the fault is treated as if it had 
occurred during event delivery in VMX non-root operation. Such a fault may lead to a VM exit as discussed in 
Section 26.6.1.2.

26.6.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other event) and the vector field is 0, 
VM entry causes an MTF VM exit to be pending on the instruction boundary following VM entry. This is the case 
even if the “monitor trap flag” VM-execution control is 0. See Section 25.5.2 for the treatment of pending MTF 
VM exits.

26.7 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following terminology: a VM entry is vectoring if 
the valid bit (bit 31) of the VM-entry interruption information field is 1 and the interruption type in the field is 0 
(external interrupt), 2 (non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged 
software exception), or 6 (software exception).

26.7.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 24-3) contains bits that control blocking by STI, 
blocking by MOV SS, and blocking by NMI. This field impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the VM entry, regardless of the 

contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1. This blocking is cleared 
after the guest executes one instruction or incurs an exception (including a debug exception made pending 
by VM entry; see Section 26.7.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is 1. This may affect the 
treatment of pending debug exceptions; see Section 26.7.3. This blocking is cleared after the guest 
executes one instruction or incurs an exception (including a debug exception made pending by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, VM entry must be loading CR0.PE 
with 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.
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— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if bit 3 (blocking by NMI) in the 
interruptibility-state field is 1. If the “NMI exiting” VM-execution control is 0, execution of the IRET 
instruction removes this blocking (even if the instruction generates a fault). If the “NMI exiting” control is 
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interruptibility-state field if the 
“virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs are not blocked in VMX non-
root operation (except for ordinary blocking for other reasons, such as by the MOV SS instruction, the 
wait-for-SIPI state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after VM entry. If the bit is 1, virtual-
NMI blocking is in effect after VM entry. If the bit is 0, there is no virtual-NMI blocking after VM entry 
unless the VM entry is injecting an NMI (see Section 26.6.1.1). Execution of IRET removes virtual-NMI 
blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.
• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI blocking is unchanged by 
VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only if the bit 2 in the inter-
ruptibility-state field is 1.

26.7.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the logical processor is active or in 
one of the inactive states identified in Section 24.4.2. The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after VM entry. While the consistency 

checks described in Section 26.3.1.5 on the activity-state field do apply in this case, the contents of the 
activity-state field do not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the activity state specified in the guest-
state area. If VM entry ends with the logical processor in an inactive activity state, the VM entry generates any 
special bus cycle that is normally generated when that activity state is entered from the active state. If 
VM entry would end with the logical processor in the shutdown state and the logical processor is in SMX 
operation,1 an Intel® TXT shutdown condition occurs. The error code used is 0000H, indicating “legacy 
shutdown.” See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking is in effect after any VM entry 
that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the active state 
and in VMX non-root operation are discarded and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the HLT state and 
in VMX non-root operation are discarded and do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive while a logical 
processor is in the shutdown state and in VMX non-root operation do not cause VM exits even if the 
“external-interrupt exiting” VM-execution control is 1. SIPIs that arrive while a logical processor is in the 
shutdown state and in VMX non-root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs), INIT signals, and 
system-management interrupts (SMIs). Such events do not cause VM exits if they arrive while a logical 
processor is in the wait-for-SIPI state and in VMX non-root operation.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. See 
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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26.7.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that have 
not yet been delivered (see Section 24.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:
• The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable 

interrupt (NMI), hardware exception, or privileged software exception.
• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either of 

the following interruption type: software interrupt or software exception.
• The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for 
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit 
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been 

encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking 
by MOV SS), a debug exception is delivered after VM entry (see below). 

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug 
exceptions are held pending or lost as would normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking 
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#OF) — or 
a privileged software exception with vector 1 (#DB) — the pending debug exceptions are treated as they 
would had they been encountered normally in guest execution if the corresponding instruction (INT1, INT3, 
or INTO) were executed after a MOV SS that encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may 
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered after 
VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction” 
(see Section 6.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT 
signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by 
the TPR threshold (see Section 26.7.7) and pending MTF VM exits (see Section 26.7.8. The exception takes priority 
over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-settings 
of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception 
bitmap. If it does not cause a VM exit, it updates DR6 normally.

26.7.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the VMX-preemption timer with 
the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value in the VMX-preemption 
timer-value field is zero). If this happens (and if the VM entry was not to the wait-for-SIPI state), a VM exit occurs 
with its normal priority after any event injection and before execution of any instruction following VM entry. For 
example, any pending debug exceptions established by VM entry (see Section 26.7.3) take priority over a timer-
induced VM exit. (The timer-induced VM exit will occur after delivery of the debug exception, unless that exception 
or its delivery causes a different VM exit.)

See Section 25.5.1 for details of the operation of the VMX-preemption timer in VMX non-root operation, including 
the blocking and priority of the VM exits that it causes.
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26.7.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery
If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 25.2 for details). If the “interrupt-window exiting” VM-execution control is 0 but 
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after 
VM entry (see Section 26.3.2.5 and Section 29.2.1).

The following items detail the treatment of these events:
• These events occur after any event injection specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take 

priority over external interrupts and lower priority events. 
• These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.7.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur immediately after VM entry (see 
Section 25.2 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 26.7.3) and higher priority events take priority over VM exits caused by 

this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 

• VM exits caused by this control wake the logical processor if it just entered either the HLT state or the shutdown 
state because of a VM entry (see Section 26.7.2). They do not occur if the logical processor just entered the 
wait-for-SIPI state.

26.7.7 VM Exits Induced by the TPR Threshold
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-interrupt 
delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR 
threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 29.1.1).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in guest-

state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and 

lower priority events. They thus have priority over the VM exits described in Section 26.7.5, Section 26.7.6, 
and Section 26.7.8, as well as any interrupts or debug exceptions that may be pending at the time of VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section 
26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

• The basic exit reason is “TPR below threshold.”

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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26.7.8 Pending MTF VM Exits
As noted in Section 26.6.2, VM entry may cause an MTF VM exit to be pending immediately after VM entry. The 
following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these 

VM exits. These VM exits take priority over debug-trap exceptions and lower priority events. 
• These VM exits wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

26.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.7.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

26.8 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE
VM-entry failures due to the checks identified in Section 26.3.1 and failures during the MSR loading identified in 
Section 26.4 are treated differently from those that occur earlier in VM entry. In these cases, the following steps 
take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general 
cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 
26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs (see Section 
26.4).

41. VM-entry failure due to machine-check event. A machine-check event occurred during VM entry 
(see Section 26.9).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is cleared to 0. The 
following non-zero values are used in the cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 26.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a guest that is blocking 
events through the STI blocking bit in the interruptibility-state field.

4. Failure was due to an invalid VMCS link pointer (see Section 26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order. Thus, an indication by exit
qualification of one cause does not imply that there are not also other errors. Different processors
may give different exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate which entry in the 
VM-entry MSR-load area caused the problem (1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If this results in 
[CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-pointer-table entries (PDPTEs) may be checked 
and loaded (see Section 27.5.4).
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3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur for these 
VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.9 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the IDT.
• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.8. The basic exit reason is 41, for “VM-entry failure due to 

machine-check event.”

The first option is not used if the machine-check event occurs after any guest state has been loaded. The second 
option is used only if VM entry is able to load all guest state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.
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23.Updates to Chapter 27, Volume 3C
Change bars and green text show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

Changes to this chapter: Addition of WBNOINVD details and updates to section 27.2.1, “Basic VM-Exit 
Information”, update to Table 27-6, “Exit Qualification for APIC-Access VM Exits from Linear Accesses and 
Guest-Physical Accesses”, and typo corrections as necessary.
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CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 25.1 
through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control 
fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM exits 
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not 
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section 
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM 
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are 
detailed in Section 27.2 through Section 27.6. 

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in 
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events 
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap. 

A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An 
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly. 
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so 
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section 
29.4), EPT violation, EPT misconfiguration, page-modification log-full event (see Section 28.2.6), or SPP-
related event (see Section 28.2.4) that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not 

caused the VM exit:

— A debug exception does not update DR6, DR7, or IA32_DEBUGCTL. (Information about the nature of the 
debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)
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— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending, 
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is 
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state 
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from 
being updated. These are updated by the machine-check event itself and not the resulting machine-check 
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some 
events may be blocked but others may return the logical processor to the active state. Unblocked events 
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs 
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated 
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.7.8) are not blocked in the HLT activity state. If an MTF 
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the 
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are considered 
pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit 
commences, generates any special bus cycle that is normally generated when the active state is entered 
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is 
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the IDT 
(before it can encounter a nested exception). Such processors perform this update even if the event 
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead 
to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event 
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the 
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value 
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have 
become active before the VM exit.



Vol. 3C 27-3

VM EXITS

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a 
nested exception, double fault, task switch, EPT violation, EPT misconfiguration, page-modification log-full 
event, or SPP-related event, or APIC access that causes a VM exit, virtual-NMI blocking is in effect before the 
VM exit commences.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any 
blocking by NMI is cleared before the VM exit commences. However, the previous state of blocking by NMI may 
be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 27.2.3.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, 
virtual-NMI blocking is cleared before the VM exit commences. However, the previous state of blocking by NMI 
may be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 27.2.3.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following 
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT 
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no 
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an 
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state 
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the 
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, page-
modification log-full event, or SPP-related event that is encountered while executing an instruction, data 
breakpoints due to that instruction may have been recognized and information about them may be saved in the 
pending debug exceptions field (unless the VM exit clears that field; see Section 27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions (data breakpoints) whose recognition was delayed by blocking by 
MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0 
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only from 
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the 
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for low 
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of 
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs. 
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had 
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-state 
field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 39, “Enclave 
Exiting Events”). An AEX modifies architectural state (Section 39.3). In particular, the processor establishes the 
following architectural state as indicated:
• The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.
• FS and GS are restored to the values they had prior to the most recent enclave entry.
• RIP is loaded with the AEP of interrupted enclave thread.
• RSP is loaded from the URSP field in the enclave’s state-save area (SSA).
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27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL 
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information 
fields. Section 27.2.1 to Section 27.2.5 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the IA32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of 
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause 
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits include those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 26:16) is cleared to 0 (certain SMM VM exits may set some 
of these bits; see Section 34.15.2.3).2

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the 
execution of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; WBINVD; 
WBNOINVD; XRSTORS; XSAVES; control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the 
APIC-access page (see Section 29.4); EPT violations (see Section 28.2.3.2); EOI virtualization (see Section 
29.1.4); APIC-write emulation (see Section 29.4.3.3); page-modification log full (see Section 28.2.6); and 
SPP-related events (see Section 28.2.4). For all other VM exits, this field is cleared. The following items provide 
details:

— For a debug exception, the exit qualification contains information about the debug exception. The 
information has the format given in Table 27-1.

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.

2. Bit 31 of this field is set on certain VM-entry failures; see Section 26.8.

Table 27-1.  Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of 
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Not currently defined.

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single 
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).
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— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On 
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during 
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of 
the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in 
Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not 
in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit 
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This 
address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD, 
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of 
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors 
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a 
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used 
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the 

15 Not currently defined.

16 RTM. When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP) occurred 
inside an RTM region while advanced debugging of RTM transactional regions was enabled (see Section 
16.3.7, “RTM-Enabled Debugger Support,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1).1

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this 

field sets the bit to indicate that condition.

Table 27-2.  Exit Qualification for Task Switches

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Not currently defined

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

Table 27-1.  Exit Qualification for Debug Exceptions (Contd.)

Bit Position(s) Contents
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displacement field and the value of RIP that references the following instruction. In this case, the exit 
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose 
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section 
27.2.5) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64 
architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the 
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in 
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format 
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring 
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not 
armed) or to 1 (if address-range monitoring hardware is armed).

— WBINVD and WBNOINVD use the same basic exit reason (see Appendix C). For WBINVD, the exit qualifi-
cation is 0, while for WBNOINVD it is 1.

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access 
page (see Section 29.4), the exit qualification contains information about the access and has the format 
given in Table 27-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and not 
during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution) 
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data 
write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access 
caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is 
“data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during 
instruction execution.”

1. The exit qualification is undefined if the access was part of the logging of a branch record or a processor-event-based-sampling 
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS 
save area translates to an address on the APIC-access page.

Table 27-3.  Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64 
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0
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• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the 
access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during 
instruction execution.”

• For an APIC-access VM exit caused directly by an access to a linear address in the DS save area (BTS or 
PEBS), the access type is “linear access for monitoring.”

• For an APIC-access VM exit caused by a guest-physical access performed for an access to the DS save 
area (e.g., to access a paging structure to translate a linear address), the access type is “guest-physical 
access for monitoring or trace.”

• For an APIC-access VM exit caused by trace-address pre-translation (TAPT) when the “Intel PT uses 
guest physical addresses” VM-execution control is 1, the access type is “guest-physical access for 
monitoring or trace.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.4) if and only if it 
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6), 
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation 
and has the format given in Table 27-7.

As noted in that table, the format and meaning of the exit qualification depends on the setting of the 
“mode-based execute control for EPT” VM-execution control and whether the processor supports advanced 
VM-exit information for EPT violations.1

7 Not currently defined

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Not currently defined

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

1. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability 
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

Table 27-3.  Exit Qualification for Control-Register Accesses  (Contd.)

Bit Positions Contents
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An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data 
write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implementation, 
may differ for different kinds of read-modify-write operations.

Bit 12 reports “NMI unblocking due to IRET”; see Section 27.2.3.

Bit 16 is set if the VM exit occurs during trace-address pre-translation (TAPT); see Section 25.5.4.

Table 27-4.  Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Not currently defined

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Not currently defined

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

Table 27-5.  Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Not currently defined

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.
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— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set 
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of 
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

— For a VM exit due to a page-modification log-full event (Section 28.2.6), bit 12 of the exit qualification 
reports “NMI unblocking due to IRET.” Bit 16 is set if the VM exit occurs during TAPT. All other bits of the exit 
qualification are undefined.

— For a VM exit due to an SPP-related event (Section 28.2.4), bit 11 of the exit qualification indicates the type 
of event: 0 indicates an SPP misconfiguration and 1 indicates an SPP miss. Bit 12 of the exit qualification 
reports “NMI unblocking due to IRET.” Bit 16 is set if the VM exit occurs during TAPT. All other bits of the 
exit qualification are undefined.

• Guest linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The 
field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the 
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant 
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address 
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor 
was not in 64-bit mode before the VM exit.

Table 27-6.  Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
4 = linear access for monitoring
10 = guest-physical access during event delivery
11 = guest-physical access for monitoring or trace
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

16 If the APIC-access VM exit is due to a guest-physical access, this bit is set if the access was asynchronous to 
instruction execution and not part of event delivery. (The bit is set if the access is related to trace output by 
Intel PT; see Section 25.5.4.) Otherwise, this bit is cleared.

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write 
VM exit is 3F0H.

Table 27-7.  Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1
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2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates whether the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates whether the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation.

If the “mode-based execute control for EPT” VM-execution control is 0, this indicates whether the guest-physical 
address was executable. If that control is 1, this indicates whether the guest-physical address was executable 
for supervisor-mode linear addresses.

6 If the “mode-based execute control” VM-execution control is 0, the value of this bit is undefined. If that control is 
1, this bit is the logical-AND of bit 10 in the EPT paging-structure entries used to translate the guest-physical 
address of the access causing the EPT violation. In this case, it indicates whether the guest-physical address was 
executable for user-mode linear addresses.

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the 
guest PDPTEs as part of the execution of the MOV CR instruction and those due to trace-address pre-translation 
(TAPT; Section 25.5.4).

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear 
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the 
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

9 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0 
if the linear address is a supervisor-mode linear address and 1 if it is a user-mode linear address. (If CR0.PG = 0, 
the translation of every linear address is a user-mode linear address and thus this bit will be 1.) Otherwise, this 
bit is undefined.

10 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0 
if paging translates the linear address to a read-only page and 1 if it translates to a read/write page. (If CR0.PG = 
0, every linear address is read/write and thus this bit will be 1.) Otherwise, this bit is undefined.

11 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0 
if paging translates the linear address to an executable page and 1 if it translates to an execute-disable page. (If 
CR0.PG = 0, CR4.PAE = 0, or IA32_EFER.NXE = 0, every linear address is executable and thus this bit will be 0.) 
Otherwise, this bit is undefined.

12 NMI unblocking due to IRET (see Section 27.2.3).

13 Set if the access causing the EPT violation was a shadow-stack access.

14 If supervisor shadow-stack control is enabled (by setting bit 7 of EPTP), this bit is the same as bit 60 in the EPT 
paging-structure entry that maps the page of the guest-physical address of the access causing the EPT violation. 
Otherwise (or if translation of the guest-physical address terminates before reaching an EPT paging-structure 
entry that maps a page), this bit is undefined.

15 Not currently defined.

16 This bit is set if the access was asynchronous to instruction execution not the result of event delivery. (The bit is 
set if the access is related to trace output by Intel PT; see Section 25.5.4.) Otherwise, this bit is cleared.

Table 27-7.  Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
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— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT 
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR 
instruction and those due to TAPT). The linear address may translate to the guest-physical address whose 
access caused the EPT violation. Alternatively, translation of the linear address may reference a paging-
structure entry whose access caused the EPT violation. Bits 63:32 are cleared if the logical processor was 
not in 64-bit mode before the VM exit.

If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery of 
an event incident to enclave mode), bits 11:0 of this field are cleared.

— VM exits due to SPP-related events.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation, an EPT misconfiguration, or an SPP-related 

event, this field receives the guest-physical address that caused the EPT violation or EPT misconfiguration. For 
all other VM exits, the field is undefined.
If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and 
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions (including 
those generated by the instructions INT1, INT3, INTO, BOUND, UD0, UD1, and UD2); external interrupts that occur 
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs).1 Such 
VM exits include those that occur on an attempt at a task switch that causes an exception before generating the 
VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-16). The following items detail how this field is 

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For 
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 5 
(privileged software exception), or 6 (software exception). Hardware exceptions comprise all exceptions 
except the following:

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions. 
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of 
INT1 in enclave mode.)

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with 

regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of 
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the 
EPT violation is not present (see Section 28.2.2).

3. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability 
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

1. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.

Table 27-7.  Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
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• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO); 
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware 
exception.)

BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) 
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code 
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address 
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see 
below).

— Bit 12 reports “NMI unblocking due to IRET”; see Section 27.2.3. The value of this bit is undefined if the 
VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit 
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information 
field, this field receives the error code that would have been pushed on the stack had the event causing the 
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set 
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field 
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an 
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit 
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information About NMI Unblocking Due to IRET
A VM exit may occur during execution of the IRET instruction for reasons including the following: faults, EPT viola-
tions, page-modification log-full events, or SPP-related events.

An execution of IRET that commences while non-maskable interrupts (NMIs) are blocked will unblock NMIs even if 
a fault or VM exit occurs; the state saved by such a VM exit will indicate that NMIs were not blocked.

VM exits for the reasons enumerated above provide more information to software by saving a bit called “NMI 
unblocking due to IRET.” This bit is defined if (1) either the “NMI exiting” VM-execution control is 0 or the “virtual 
NMIs” VM-execution control is 1; (2) the VM exit does not set the valid bit in the IDT-vectoring information field 
(see Section 27.2.4); and (3) the VM exit is not due to a double fault. In these cases, the bit is defined as follows:
• The bit is 1 if the VM exit resulted from a memory access as part of execution of the IRET instruction and one 

of the following holds:

— The “virtual NMIs” VM-execution control is 0 and blocking by NMI (see Table 24-3) was in effect before 
execution of IRET.

— The “virtual NMIs” VM-execution control is 1 and virtual-NMI blocking was in effect before execution of 
IRET.

• The bit is 0 for all other relevant VM exits.

For VM exits due to faults, NMI unblocking due to IRET is saved in bit 12 of the VM-exit interruption-information 
field (Section 27.2.2). For VM exits due to EPT violations, page-modification log-full events, and SPP-related 
events, NMI unblocking due to IRET is saved in bit 12 of the exit qualification (Section 27.2.1).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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(Executions of IRET may also incur VM exits due to APIC accesses and EPT misconfigurations. These VM exits do 
not report information about NMI unblocking due to IRET.)

27.2.4 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the 
IDT and as a result of any of the following cases:1

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1 
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the 
initial checks of the task switch pass (see Section 25.4.2).

• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-related event that occurs 

during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section 
26.6.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable 

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-17). The following items detail how this field is established 

for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31). 
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during 
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0 
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5 
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except the following:2

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions. 
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of 
INT1 in enclave mode.)

• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO); 
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware 
exception.)

BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) 
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered 
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in 
real-address mode (CR0.PE=0).3 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error 
code (see below).

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).

2. In the following items, INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 
3 for n.
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— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field, 
this field receives the error code that would have been pushed on the stack by the event that was being 
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set 
normally.

— For other VM exits, the value of this field is undefined.

27.2.5 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software 
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits 
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section 
25.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, 
LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, 
RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, TPAUSE, UMWAIT, VMCALL, VMCLEAR, 
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, 
WBNOINVD, WRMSR, XRSTORS, XSETBV, and XSAVES.1

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO) or privileged 
software exceptions (those generated by executions of INT1).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that 
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating 
that the task gate was encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For APIC-access VM exits and for VM exits caused by EPT violations, page-modification log-full events, and 
SPP-related events encountered during delivery of a software interrupt, privileged software exception, or 
software exception.2

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function controls; 
see Section 25.5.6.2).

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the 
“virtualize x2APIC mode” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section 
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.
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• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section 
25.5.6.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any instruction 
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or 
software exception include those encountered during delivery of events injected as part of VM entry (see 
Section 26.6.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID, 
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, 
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that 
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in 
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in 
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in 
Table 27-11.

— For VM exits due to attempts to execute RDRAND, RDSEED, TPAUSE, or UMWAIT, the field has the format 
is given in Table 27-12.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES, 
the field has the format is given in Table 27-13.

Table 27-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC 
(see Appendix A.1).
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— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in 
Table 27-14.

For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the 
field is cleared.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section 
34.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

Table 27-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)
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Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT
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31:30 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)
Bit Position(s) Content
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27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12.  Format of the VM-Exit Instruction-Information Field as Used for RDRAND, RDSEED, TPAUSE, and 
UMWAIT

Bit Position(s) Content

2:0 Undefined.

6:3 Operand register (destination for RDRAND and RDSEED; source for TPAUSE and UMWAIT):

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)
Bit Position(s) Content
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9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s) Content
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27.3 SAVING GUEST STATE
VM exits save certain components of processor state into corresponding fields in the guest-state area of the VMCS 
(see Section 24.4). On processors that support Intel 64 architecture, the full value of each natural-width field (see 
Section 24.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See 
Section 27.1 for a discussion of which architectural updates occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how various components of processor state are saved. 
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)
Bit Position(s) Content
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27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP 

MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On 
processors that do not support Intel 64 architecture, bits 63:32 of the IA32_SYSENTER_ESP and 
IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved 
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the 
1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding 
field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the 
“clear IA32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_RTIT_CTL” VM-entry control or that of the “clear 
IA32_RTIT_CTL” VM-exit control, the contents of the IA32_RTIT_CTL MSR are saved into the corresponding 
field.

• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the IA32_S_CET and 
IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are saved into the corresponding fields. On processors that do not 
support Intel 64 architecture, bits 63:32 of these MSRs are not saved.

• If the processor supports the 1-setting of the “load PKRS” VM-entry control, the contents of the IA32_PKRS 
MSR are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are undefined: (1) base address; 

(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are 
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base 
addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are those which were in the register 

before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.
• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is 

unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.
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27.3.3 Saving RIP, RSP, RFLAGS, and SSP
The contents of the RIP, RSP, RFLAGS, and SSP (shadow-stack pointer) registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the 
remaining items do not apply).

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or 
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that 
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management 
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or 
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had 
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as 
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the 
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment had 
the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved 
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state 
segment had the event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO) or a privileged software 
exception (due to an execution of INT1), the value saved references the INT3, INTO, or INT1 instruction 
that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by 
execution of a software interrupt (INT n), software exception (due to execution of INT3 or INTO), or 
privileged software exception (due to execution of INT1) that encountered a task gate in the IDT. The value 
saved references the instruction that caused the task switch (CALL, IRET, JMP, INT n, INT3, INTO, INT1).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was 
encountered for any reason except the direct access by a software interrupt or software exception. The 
value saved is that which would have been saved in the old task-state segment had the task switch 
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR 
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the value 
saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC access 
as part of instruction execution, the value saved references the instruction following the one whose 
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the 

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit occurred in enclave mode, the value saved is 0 (the remaining items do not apply).

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value 
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the 
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment had 

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16 
bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or 
16 bits.
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the event been delivered through a task gate) had the event been delivered through the IDT. See below for 
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in 
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved 
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task 
switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one 
that was configured to do with a VM-execution control, the value saved is 0.1

— For APIC-access VM exits and for VM exits caused by EPT violations, EPT misconfigurations, page-modifi-
cation log-full events, or SPP-related events, the value saved depends on whether the VM exit occurred 
during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur 
during delivery of an event through the IDT; see Section 27.2.4), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur 
during delivery of an event through the IDT), the value saved is the value that would have appeared in 
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.
• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the SSP register are 

saved into the SSP field.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.2 See Section 27.1 

for details of how events leading to a VM exit may affect the activity state.
• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.

— See Section 27.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless 
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the 
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave 
mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

1. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters 
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused 
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.

2. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP 
by that VM exit will reference the following instruction.
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— A VM exit with basic exit reason “TPR below threshold”,1 “virtualized EOI”, “APIC write”, or “monitor trap 
flag.”

— A VM exit due to trace-address pre-translation (TAPT; see Section 25.5.4). Such VM exits can have basic 
exit reason “APIC access,” “EPT violation,” “EPT misconfiguration,” “page-modification log full,” or “SPP-
related event.” When due to TAPT, these VM exits (with the exception of those due to EPT misconfigura-
tions) set bit 16 of the exit qualification, indicating that they are asynchronous to instruction execution and 
not part of event delivery.

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug 
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit 
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits 
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on 
VM entry (see Section 26.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:

— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section 
26.7.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging of 
RTM transactional regions had been enabled (see Section 16.3.7, “RTM-Enabled Debugger 
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). (This does 
not apply to VM exits with basic exit reason “monitor trap flag.”)

In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a single 
instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

• Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM 
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply 
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any 
debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after 
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that 
which was loaded on VM entry (see Section 26.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was 
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug 
exceptions (see Section 26.7.3) and the VM exit occurred before those exceptions were either delivered 
or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or 
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented 
(see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value 

1. This item includes VM exits that occur as a result of certain VM entries (Section 26.7.7).
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0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit 
does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into 
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of 
the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that 
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any 
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the 
field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time 
of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store 
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store 
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A 

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if 
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 2, “Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via 

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 
of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control were 0. 
See Section 24.6.2.
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On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base 
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These sections reference VMCS fields that 
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If 
the logical processor was in IA-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section 
27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 27.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see 
Section 27.6). This loading occurs only after the state loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the 

following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and 
15:6; and any bits that are fixed in VMX operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they 
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32 
bits, bits 63:32 of the MSR are cleared to 0. 

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP and 
IA32_SYSENTER_EIP fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set 
to the value of bit N–1.3

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are 
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their 
reserved values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that 
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits 
that are reserved in that MSR are maintained with their reserved values.

— If the “clear IA32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to 
00000000_00000000H; otherwise, it is not modified.

— If the “clear IA32_RTIT_CTL” VM-exit control is 1, the IA32_RTIT_CTL MSR is cleared to 
00000000_00000000H; otherwise, it is not modified.

— If the “load CET” VM-exit control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are 
loaded from the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set 
to the value of bit N–1.

— If the “load PKRS” VM-exit control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field. Bits 63:32 
of that MSR are maintained with zeroes.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the 
VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The 

checks specified Section 26.3.1.2 limit the selector values that may be loaded. In particular, CS and TR are 
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that 
support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments 
marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is 
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits, 
each of bits 63:N is set to the value of bit N–1.1 The values loaded for base addresses for FS and GS are 
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.

— TR. Set to 00000067H.
• The type field and S bit are set as follows:

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3 and S set to 1 
(read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.
• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
• On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space 

size” VM-exit control. Because the value of this control is also loaded into IA32_EFER.LMA (see Section 27.5.1), 
no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if 
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the 
selector is cleared to 0000H, the segment is marked unusable and is otherwise undefined (although the base 
address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address 
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N–1 of that base address. The GDTR 
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, RFLAGS, and SSP
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is 
always set.

If the “load CET” VM-exit control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 4.4 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use, 
the physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor 
(into internal, non-architectural registers).

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the host-
state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check the 
validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must check 
their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing as a 
result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a 
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would 
MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 24-3). Other 
VM exits do not affect blocking by NMI. (See Section 27.1 for the case in which an NMI causes a VM exit 
indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1. 

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). Specifically each entry in that area 
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by 
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H (the IA32_GS_BASE 

MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A 

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
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specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data 
are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS 
region of the VMCS whose misconfiguration caused the failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that 
the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host address-space size” VM-exit control 
was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the 
loading of such state may be done in any order (see Section 27.5) a VM exit that might lead to a VMX abort for 
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly 
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the 
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the 
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on 
whether the logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is 
000DH, indicating “VMX abort.” See Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters 
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort 
shutdown state. The following events do not affect a logical processor in this state: machine-check events; 

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not 
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.
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INIT signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-
management interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.
• A VMX abort is generated (see Section 27.7). The logical processor blocks events as done normally in 

VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second 
option is used only if VM entry is able to load all host state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.
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CHAPTER 32
VIRTUALIZATION OF SYSTEM RESOURCES

32.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential interactions between soft-
ware components using the same system resources. These interactions can require the virtualization of resources. 
This chapter describes the virtualization of system resources. These include: debugging facilities, address transla-
tion, physical memory, and microcode update facilities.

32.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES
The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint instructions, exception conditions, 
register flags, debug registers, control registers and storage buffers for functions related to debugging system and 
application software. In VMX operation, a VMM can support debugging system and application software from within 
virtual machines if the VMM properly virtualizes debugging facilities. The following list describes features relevant 
to virtualizing these facilities. 
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it gets control on debug functions 

(like breakpoint exceptions occurring while executing guest code such as INT3 instructions). Normally, debug 
exceptions modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug exceptions cause 
VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section 26.6 to inject debug or 
breakpoint exceptions to the guest. See Section 32.2.1 for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field (see Section 24.6.2) can be 
enabled by the VMM to cause VM exits on explicit guest access of various processor debug registers (for 
example, MOV to/from DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers 
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches cause VM exits, a VMM can 
control any indirect guest access or modification of debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as IA32_DEBUGCTL MSR) can be 
trapped by the VMM through MSR access control features (such as the MSR-bitmaps that are part of processor-
based VM-execution controls). See Section 31.10 for details on MSR virtualization.

• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly modified by the guest (through 
MOV-DR or WRMSR instructions) or modified implicitly by the processor as part of generating debug 
exceptions. The current values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of VMCS on 
every VM exit. Pending debug exceptions are debug exceptions that are recognized by the processor but not yet 
delivered. See Section 26.7.3 for details on pending debug exceptions. 

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area of the VMCS on every VM 
entry. This allows the VMM to properly virtualize debug registers when injecting debug exceptions to guest. 
Similarly, the RFLAGS1 register is loaded on every VM entry (or pushed to stack if injecting a virtual event) from 
guest-state area of the VMCS. Pending debug exceptions are also loaded from guest-state area of VMCS so that 
they may be delivered after VM entry is completed.

32.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step or data or I/O breakpoint), it 
should cause that trap to be delivered. The VMM should not inject the debug exception using VM-entry event injec-
tion, but should set the appropriate bits in the pending debug exceptions field. This method will give the trap the 

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).
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right priority with respect to other events. (If the exception bitmap was programmed to cause VM exits on debug 
exceptions, the debug trap will cause a VM exit. At this point, the trap can be injected during VM entry with the 
proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regardless of the values of RFLAGS.TF 
or IA32_DEBUGCTL.BTF. The values of these bits do not impact the delivery of pending debug exceptions. 

VMMs should exercise care when emulating a guest write (attempted using WRMSR) to IA32_DEBUGCTL to modify 
BTF if this is occurring with RFLAGS.TF = 1 and after a MOV SS or POP SS instruction (for example: while debug 
exceptions are blocked). Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions blocked, a single-step trap will 

occur after WRMSR. A VMM emulating such an instruction should set the BS bit (see Table 24-4) in the pending 
debug exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions blocked, neither a single-step 
trap nor a taken-branch trap can occur after WRMSR. A VMM emulating such an instruction should clear the BS 
bit (see Table 24-4) in the pending debug exceptions field before VM entry.

32.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest physical addresses in host physical 
address space for virtualization. Memory virtualization allows the VMM to enforce control of physical memory and 
yet support guest OSs’ expectation to manage memory address translation.

32.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor operating modes. This includes: 
protected mode with paging, protected mode with no paging, real-mode and any other transient execution modes. 
VMX allows guest operation in protected-mode with paging enabled and in virtual-8086 mode (with paging 
enabled) to support guest real-mode execution. Guest execution in transient operating modes (such as in real 
mode with one or more segment limits greater than 64-KByte) must be emulated by the VMM. 

Since VMX operation requires processor execution in protected mode with paging (through CR0 and CR4 fixed bits), 
the VMM may utilize paging structures to support memory virtualization. To support guest real-mode execution, 
the VMM may establish a simple flat page table for guest linear to host physical address mapping. Memory virtual-
ization algorithms may also need to capture other guest operating conditions (such as guest performing A20M# 
address masking) to map the resulting 20-bit effective guest physical addresses. 

32.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical address space starting zero and 
extending to the maximum address supported by the guest virtual processor’s physical address width. The VMM 
utilizes guest physical to host physical address mapping to locate all or portions of the guest physical address space 
in host memory. The VMM is responsible for the policies and algorithms for this mapping which may take into 
account the host system physical memory map and the virtualized physical memory map exposed to a guest by the 
VMM. The memory virtualization algorithm needs to accommodate various guest memory uses (such as: accessing 
DRAM, accessing memory-mapped registers of virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest physical addresses to host-DRAM 

regions. The VMM also requires the guest to host memory mapping to be at page granularity.
• Virtual devices (I/O devices or platform core logic) emulated by the VMM may claim specific regions in the guest 

physical address space to locate memory-mapped registers. Guest access to these virtual registers may be 
configured to cause page-fault induced VM-exits by marking these regions as always not present. The VMM 
may handle these VM exits by invoking appropriate virtual device emulation code.
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32.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory accesses. VMX allows the 
VMM to trap guest accesses to the PAT (Page Attribute Table) MSR and the MTRR (Memory Type Range Registers). 
This control allows the VMM to virtualize the specific memory type of a guest memory. The VMM may control 
caching by controlling the guest CR0.CD and CR0.NW bits, as well as by trapping guest execution of the INVD 
instruction. The VMM can trap guest CR3 loads and stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control over the processor’s address-
translation mechanisms. Specifically, this means that only the VMM can access CR3 (which contains the base of the 
page directory) and can execute INVLPG (the only other instruction that directly manipulates the TLB). 

At the same time that the VMM controls address translation, a guest operating system will also expect to perform 
normal memory management functions. It will access CR3, execute INVLPG, and modify (what it believes to be) 
page directories and page tables. Virtualization of address translation must tolerate and support guest attempts to 
control address translation. 

A simple-minded way to do this would be to ensure that all guest attempts to access address-translation hardware 
trap to the VMM where such operations can be properly emulated. It must ensure that accesses to page directories 
and page tables also get trapped. This may be done by protecting these in-memory structures with conventional 
page-based protection. The VMM can do this because it can locate the page directory because its base address is 
in CR3 and the VMM receives control on any change to CR3; it can locate the page tables because their base 
addresses are in the page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-memory translation structures 
may be cumbersome. The VMM may maintain these structures with different values (e.g., different page base 
addresses) than guest software. This means that there must be traps on guest attempt to read these structures 
and that the VMM must maintain, in auxiliary data structures, the values to return to these reads. There must also 
be traps on modifications to these structures even if the translations they effect are never used. All this implies 
considerable overhead that should be avoided.

32.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without causing traps to the VMM. 
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any 
potential problems arising from inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB.

This section describes an alternative approach that allows guest software to freely access page directories and 
page tables. Traps occur on CR3 accesses and executions of INVLPG. They also occur when necessary to ensure 
that guest modifications to the translation structures actually take effect. The software mechanisms to support this 
approach are collectively called virtual TLB. This is because they emulate the functionality of the processor’s phys-
ical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. While the page-table hierarchy 
defines the relationship between physical to linear address, it does not directly control the address translation of 
each memory access. Instead, translation is controlled by the TLB, which is occasionally filled by the processor with 
translations derived from the page-table hierarchy. With a virtual TLB, the page-table hierarchy established by 
guest software (specifically, the guest operating system) does not control translation, either directly or indirectly. 
Instead, translation is controlled by the processor (through its TLB) and by the VMM (through a page-table hier-
archy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively caches translations derived 
from the hierarchy maintained by guest software. The remainder of this document refers to the former as the 
active page-table hierarchy (because it is referenced by CR3 and may be used by the processor to load its TLB) and 
the latter as the guest page-table hierarchy (because it is maintained by guest software). The entries in the active 
hierarchy may resemble the corresponding entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without causing VM exits to the VMM. 
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any 
potential problems arising from any inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB. Note the following:
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• Suppose the guest page-table hierarchy allows more access than active hierarchy (for example: there is a 
translation for a linear address in the guest hierarchy but not in the active hierarchy); this is analogous to a 
situation in which the TLB allows less access than the page-table hierarchy. If an access occurs that would be 
allowed by the guest hierarchy but not the active one, a page fault occurs; this is analogous to a TLB miss. The 
VMM gains control (as it handles all page faults) and can update the active page-table hierarchy appropriately; 
this corresponds to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active hierarchy; this is analogous to a 
situation in which the TLB allows more access than the page-table hierarchy. This situation can occur only if the 
guest operating system has modified a page-table entry to reduce access (for example: by marking it not-
present). Because the older, more permissive translation may have been cached in the TLB, the processor is 
architecturally permitted to use the older translation and allow more access. Thus, the VMM may (through the 
active page-table hierarchy) also allow greater access. For the new, less permissive translation to take effect, 
guest software should flush any older translations from the TLB either by executing INVLPG or by loading CR3. 
Because both these operations will cause a trap to the VMM, the VMM will gain control and can remove from the 
active page-table hierarchy the translations indicated by guest software (the translation of a specific linear 
address for INVLPG or all translations for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache translations in the TLB. It also writes to 
the hierarchy to main the accessed (A) and dirty (D) bits in the PDEs and PTEs. The virtual TLB emulates this 
behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE (or PDE for a 4-MByte page) in 

the active page-table hierarchy will be set by the processor (the same is true for PDEs when active page tables 
are accessed by the processor). For guest software to operate properly, the VMM should update the A bit in the 
guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) marked not-present until it has 
set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or PDE for a 4-MByte page) in 
the active page-table hierarchy will be set by the processor. For guest software to operate properly, the VMM 
should update the D bit in the guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) 
marked read-only until it has set the D bit in the guest entry. This solution is valid for guest software running at 
privilege level 3; support for more privileged guest software is described in Section 32.3.5.

32.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It explains how an active page-table 
hierarchy is initialized and how it is maintained in response to page faults, uses of INVLPG, and accesses to CR3. 
The mechanisms described here are the minimum necessary. They may not result in the best performance.
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As noted above, the VMM maintains an active page-table hierarchy for each virtual machine that it supports. It also 
maintains, for each machine, values that the machine expects for control registers CR0, CR2, CR3, and CR4 (they 
control address translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest software. The term guest address 
refers to an address installed by guest software in the guest CR3, in a guest PDE (as a page table base address or 
a page base address), or in a guest PTE (as a page base address). While guest software considers these to be 
specific physical addresses, the VMM may map them differently.

32.3.5.1  Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in CR0 and CR4 (using the CR0 

and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

When guest software first enables paging, the VMM creates an aligned 4-KByte active page directory that is invalid 
(all entries marked not-present). This invalid directory is analogous to an empty TLB. 

32.3.5.2  Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the VMM to an inconsistency 
between the active and guest page-table hierarchy. In such cases, the VMM can update the former and re-execute 
the faulting instruction. In other cases, the hierarchies are already consistent and the fault should be handled by 
the guest operating system. The VMM can detect this and use an established mechanism for raising a page fault to 
guest software. 

The VMM can handle a page fault by following these steps (The steps below assume the guest is operating in a 
paging mode without PAE. Analogous steps to handle address translation using PAE or four-level paging mecha-

Figure 32-1.  Virtual TLB Scheme
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nisms can be derived by VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the faulting address and the current 
value of CR3. The active PDE is the source of the fault if it is marked not present or if its R/W bit and U/S bits 
are inconsistent with the attempted guest access (the guest privilege level and the values of CR0.WP and 
CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE using the same 10 bits from the 
faulting address and the physical address that corresponds to the guest address in the guest CR3. If the guest 
PDE would cause a page fault (for example: it is marked not present), then raise a page fault to the guest 
operating system. 
The following steps assume that the guest PDE would not have caused a page fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-table base address (if PS = 0) 
or page base address (PS = 1), a guest address that the VMM has chosen not to support; then raise a machine 
check (or some other abort) to the guest operating system. 
The following steps assume that the guest address in the guest PDE is supported for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then allocate an aligned 4-KByte active 
page table marked completely invalid and set the page-table base address in the active PDE to be the 
physical address of the newly allocated page table.

b. If the active PDE contains a page base address (if PS = 1), then set the page base address in the active PDE 
to be the physical page base address that corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page table), then set the R/W bit in 
the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted access is a write; then set 
R/W in the active PDE as in the guest PDE and set D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; then set R/W = 0 in the active 
PDE.

i. After modifying the active PDE, re-execute the faulting instruction. 
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte page (PS = 1), the attempted 
access is a write; D = 0 in the guest PDE, and the active PDE has caused a fault solely because it has R/W = 0; 
then set R/W in the active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the faulting 
instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, then raise a page fault of the 
guest operating system. 
The remaining steps assume that the source of the original page fault is not the active PDE.

NOTE
It is possible that the active PDE might be causing a fault even though the guest PDE would not. 
However, this can happen only if the guest operating system increased access in the guest PDE and 
did not take action to ensure that older translations were flushed from the TLB. Such translations 
might have caused a page fault if the guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the fault, then the fault resulted 
from an inconsistency between the active page-table hierarchy and the processor’s TLB. Since the transition to 
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the VMM caused an address-space change and flushed the processor’s TLB, the VMM can simply re-execute the 
faulting instruction. 
The remaining steps assume that PS = 0 in the active and guest PDEs.

8. Consult the active PTE, which can be located using the next 10 bits of the faulting address (bits 21–12) and the 
physical page-table base address in the active PDE. The active PTE is the source of the fault if it is marked not-
present or if its R/W bit and U/S bits are inconsistent with the attempted guest access (the guest privilege level 
and the values of CR0.WP and CR4.SMEP should also be taken into account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an inconsistency between the 
active page-table hierarchy and the processor’s TLB. Since the transition to the VMM caused an address-space 
change and flushed the processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting address and the physical address 
that correspond to the guest page-table base address in the guest PDE. If the guest PTE would cause a page 
fault (it is marked not-present), the raise a page fault to the guest operating system. 
The following steps assume that the guest PTE would not have caused a page fault.

11. If the guest PTE contains, as page base address, a physical address that is not valid for the virtual machine 
being supported; then raise a machine check (or some other abort) to the guest operating system. 
The following steps assume that the address in the guest PTE is valid for the virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to guest PTE:

a. Set the page base address in the active PTE to be the physical address that corresponds to the guest page 
base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in the active PTE as in the guest 
PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction. 
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the active PTE has caused a fault 
solely because it has R/W = 0 (read-only); then set R/W in the active PTE as in the guest PTE, set D = 1 in the 
guest PTE and re-execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating system.

32.3.5.3  Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction takes a linear address as an 
operand and software expects any cached translations for the address to be flushed. A VMM should set the 
processor-based VM-execution control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute 
INVLPG will trap to the VMM. The VMM can then modify the active page-table hierarchy to emulate the desired 
effect of the INVLPG. 

The following steps are performed. Note that these steps are performed only if the guest invocation of INVLPG 
would not fault and only if the guest software is running at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address and the current value of CR3. If 
the PDE refers to a 4-MByte page (PS = 1), then set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the relevant active PTE using the next 
10 bits of the operand address (bits 21–12) and the page-table base address in the PDE. Set P = 0 in the PTE. 
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Examine all PTEs in the page table; if they are now all marked not-present, de-allocate the page table and set 
P = 0 in the PDE (this step may be optional).

32.3.5.4  Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a TLB flush and a possible page 
table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance reasons.

32.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the operation of a platform. Typically, 
the BIOS invokes the facility on all processors during the BIOS boot process. This is sufficient to boot the BIOS and 
operating system. As a microcode update more current than the system BIOS may be available, system software 
should provide another mechanism for invoking the microcode update facility. The implications of the microcode 
update mechanism on the design of the VMM are described in this section.

NOTE
Microcode updates must not be performed during VMX non-root operation. Updates performed in 
VMX non-root operation may result in unpredictable system behavior.

32.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot process. Loading the microcode 
update early provides the opportunity to correct errata affecting the boot process but the technique generally 
requires a reboot of the software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such image loaders do not run on 
every logical processor, so this method effects only one logical processor. Later in the VMM or OS boot process, 
after bringing all application processors on-line, the VMM or OS needs to invoke the microcode update facility for all 
application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update facility may be invoked by the 
VMM or the guest OS. For example, if the guest OS boots first and then loads the VMM, the guest OS may invoke 
the microcode update facility on all the logical processors. If a VMM boots before its guests, then the VMM may 
invoke the microcode update facility during its boot process. In both cases, the VMM or OS should invoke the micro-
code update facilities soon after performing the multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS image or, the VMM or OS may 
manage a separate database or file of microcode updates. Maintaining a separate microcode update image data-
base has the advantage of reducing the number of required VMM or OS releases as a result of microcode update 
releases.

32.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows system software to activate the 
microcode update at anytime without requiring a system reboot. This scenario does not allow the microcode update 
to correct errata which affect the processor’s boot process but does allow high-availability systems to activate 
microcode updates without interrupting the availability of the system. In this late load scenario, either the VMM or 
a designated guest may load the microcode update. If the guest is loading the microcode update, the VMM must 
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make sure that the entire guest memory buffer (which contains the microcode update image) will not cause a page 
fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the current set of microcode updates. 
These updates could be part of the VMM image or could be contained in a separate microcode update image data-
base (for example: a database file on disk or in memory). Again, maintaining a separate microcode update image 
database has the advantage of reducing the number of required VMM or OS releases as a result of microcode 
update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish to support the microcode 
update requested by a guest using emulation (without actually loading the microcode update). To prevent micro-
code update loading, the VMM may return a microcode update signature value greater than the value of 
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older microcode update. The VMM may 
also drop the guest attempts to write to IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any 
microcode updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could emulate the micro-
code update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of features that may be enhanced 
by a microcode update.
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CHAPTER 34
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system 
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was 
introduced into the IA-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386 
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486 
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors). 

34.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide functions like power management, 
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by 
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and 
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications. 

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the 
processor (the processor’s context), then switches to a separate operating environment defined by a new address 
space. The system management software executive (SMI handler) starts execution in that environment, and the 
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space. 
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk 
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI 
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor 
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the 
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other 

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI handler 
can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 34.5 describes in 
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI 
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES
Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e 
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of 
an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of SMIs 
and SMM is active; see Section 34.15.)
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34.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 34.2 through Section 34.13). 

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine 
can support its own software stack of executive and application software. On processors that support VMX, virtual-
machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one 
of two ways:
• Default treatment. System firmware handles SMIs. The processor saves architectural states and critical 

states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMIs, it uses 
RSM to resume VMX operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates 
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while 
in VMX operation) to support system-management functions. The former is referred to as executive monitor, 
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 34.14, “Default Treatment of SMIs and SMM with VMX Operation and 
SMX Operation”. Dual-monitor treatment of SMM is described in Section 34.15, “Dual-Monitor Treatment of SMIs 
and SMM”.

34.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI 
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently 
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence 
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in 
SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an 
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), it is in 
a mode where SMIs are masked. However if a SMI is received while an application processor is in 
the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by 
immediately servicing the pended SMI and going into SMM before handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

34.3 SWITCHING BETWEEN SMM AND THE OTHER 
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected, 
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086 
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always 
returns to the mode it was in when the SMI occurred. 

34.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” point in program execution 
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits 
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 34.4), enters SMM, and begins to execute the SMI handler.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
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Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-
ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated 
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware 
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled. 
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that 
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched 
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while 
in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI 
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the 
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program 
control back to the interrupted program.

NOTE
On processors that support the shadow-stack feature, RSM loads the SSP register from the state 
save image in SMRAM (see Table 34-3). The value is made canonical by sign-extension before 
loading it into SSP.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been 
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the 
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the 
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates 
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI 

handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the 
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW 
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM 

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family 
processors.

• CR4.CET would be set to 1 and CR0.WP to 0.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted. 
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors 
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response 
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR 
and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action is 
taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly 
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section 
34.11).
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34.4 SMRAM
Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering 
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address 
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM 
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM 
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information. 

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE 
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the 
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state 
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE + 
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32 
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted 
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap 
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor 
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and 
Intel486 processors) when the processor receives an SMI (see Section 34.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to 
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for 
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space 
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space 
(that is, load the SMI handler) before executing the SMI handler during SMM.

34.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the 
state save area of the SMRAM.   The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to 
[SMBASE + 8000H + 7E00H]. Table 34-1 shows the state save map. The offset in column 1 is relative to the 
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the 
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register 
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior). 
An SMI handler should not rely on any values stored in an area that is marked as reserved.

 

Figure 34-1.  SMRAM Usage

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
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The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in 
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:

Table 34-1.  SMRAM State Save Map

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 34.7 No

7FA0H I/O Memory Address Field, see Section 34.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.
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• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for 

the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which 
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should 
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage. 
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of 
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore 
them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring 
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based 
power-down and restoration should only be performed with operating systems that do not use or 
rely on the values of these registers. 
Operating system developers should be aware of this fact and ensure that their operating-system 
assisted power-down and restoration software is immune to unexpected changes in these register 
values.

34.4.1.1  SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area 
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7C00H]. 

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save 
map is shown in Table 34-3. 

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID 
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2.   Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo 
processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme, 
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel® Atom™ processors
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Table 34-3.  SMRAM State Save Map for Intel 64 Architecture

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes
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34.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before entering SMM or before 
exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and 
in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and 
protected mode operation. Any of the following three methods of locating the SMRAM in system memory will guar-
antee cache coherency.
• Place the SMRAM in a dedicated section of system memory that the operating system and applications are 

prevented from accessing. Here, the SMRAM can be designated as cacheable (WB, WT, or WC) for optimum 
processor performance, without risking cache incoherence when entering or exiting SMM.

• Place the SMRAM in a section of memory that overlaps an area used by the operating system (such as the video 
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to 
maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

• Place the SMRAM in a section of system memory that overlaps an area used by the operating system and/or 
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM 
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM 
is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon 
entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This 
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is 

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7ECC0H Reserved No

7EC8H SSP Yes

7EC7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 34-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 8000H)

Register Writable?
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located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for 
optimum processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush 
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced 
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH# 
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times 
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the 
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced 
first. 

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior 
to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate 
cache contents before entering SMM, the processor will prefetch at least one cache line in between 
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion 
of SMIACT#. 
It is the obligation of the system to ensure that these lines are not cached by returning KEN# 
inactive to the Pentium processor.

34.4.2.1  System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel 
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface 
can be configured only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

34.5 SMI HANDLER EXECUTION ENVIRONMENT
Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its 
execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI 
handler can make to its execution environment. Section 34.5.3 discusses Control-flow Enforcement Technology 
(CET) interactions in the environment.

34.5.1 Initial SMM Execution Environment
After saving the current context of the processor, the processor initializes its core registers to the values shown in 
Table 34-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the processor 
in an environment similar to real-address mode. The differences between the SMM execution environment and the 
real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes). 
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space 

to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and 
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 34-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)
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• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override 
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer 
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in 
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit 
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override 
prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a 
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the 
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the 
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 GBytes. 
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment 
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base 
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps, 
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts, 
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment 
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 34.6).

34.5.2 SMI Handler Operating Mode Switching
Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit 
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit 
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and 
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code 
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see 
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI 
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond 
that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see 
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to 
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI 
handler to change modes explicitly prior to executing RSM.

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Table 34-4.  Processor Register Initialization in SMM
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34.5.3 Control-flow Enforcement Technology Interactions
On processors that support CET shadow stacks, when the processor enters SMM, the processor saves the SSP 
register to the SMRAM state save area (see Table 34-3) and clears CR4.CET to 0. Thus, the initial execution envi-
ronment of the SMI handler has CET disabled and all of the CET state of the interrupted program is still in the 
machine. An SMM that uses CET is required to save the interrupted program’s CET state and restore the CET state 
prior to exiting SMM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being 

generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-

tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or 
data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information 
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by 
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts 
(with the INT n, INTO, INT1, INT3, or BOUND instructions) or generate exceptions. 

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception 
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt 

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control 

to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed 

onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the 
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler 
to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception 
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but 
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is 
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must ensure that an SMM accessible debug 
handler is available and save the current contents of debug registers DR0 through DR3 (for later restoration). 
Debug registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must ensure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated 
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the 
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to 
SMM, so they do not need to be enabled.
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34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an 
SMI handler to distinguish between a synchronous SMI (triggered during an I/O instruction) and an asynchronous 
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM 
state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described 
below.

34.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI is either taken 
immediately after a successful I/O instruction or is taken after a successful iteration of a REP I/O instruction (the 
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function). 
When set, the IO_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case, 
the SMM State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O Port 
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was 
indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an 
asynchronous SMI might coincidentally be taken after an I/O instruction. In such a case, the IO_SMI bit would still 
be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map (Table 34-5). 
The IO_SMI bit also serves as a valid bit for the rest of the I/O information fields. The contents of these I/O infor-
mation fields are not defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 34-6)

Table 34-5.  I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or higher) Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 34-6.  I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
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34.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is 
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler. 
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If 
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by 
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy 
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed, 
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside 
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 architec-
ture.

34.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported 
by the processor (see Figure 34-2). The SMM revision identifier is written during SMM entry and can be examined 
in SMRAM space at offset 7EFCH. The lower word of the SMM revision identifier refers to the version of the base 
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If the I/O instruction restart flag 
(bit 16) is set, the processor supports the I/O instruction restart (see Section 34.12); if the SMBASE relocation flag 
(bit 17) is set, SMRAM base address relocation is supported (see Section 34.11).

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Figure 34-2.  SMM Revision Identifier

Table 34-6.  I/O Instruction Type Encodings (Contd.)
Instruction Encoding

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15
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34.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the 
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag is 
located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the 
processor was in the HALT state), the SMI handler has two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the 

HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI. 
(This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the 
instruction following the HLT instruction. 

These options are summarized in Table 34-7. If the processor was not in a HALT state when the SMI was received 
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is 
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions 
for the same HLT instruction.

34.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag 
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this 
state is a maskable hardware interrupt or a hardware reset.

34.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called 
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in the 
saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal 
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use 
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state 

 

Figure 34-3.  Auto HALT Restart Field

Table 34-7.  Auto HALT Restart Flag Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1
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save area (from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE 
register to 30000H on a RESET, but does not change it on an INIT.) 

In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the 
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE 
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of 
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the 
SMBASE (see Section 34.9).

34.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the I/O instruction 
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/O 
device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action 
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart 
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 34-5) controls I/O instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the I/O instruction that received the SMI request. The processor will then automatically re-execute 
the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to ensure that re-
execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is executed, then the processor 
begins program execution with the instruction following the I/O instruction. (When a repeat prefix is being used, 
the next instruction may be the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O 
instruction is the default behavior; the processor automatically initializes the I/O instruction restart field to 00H 
upon entering SMM. Table 34-8 summarizes the states of the I/O instruction restart field.

 

Figure 34-4.  SMBASE Relocation Field

 

Figure 34-5.  I/O Instruction Restart Field

031

SMM Base Register Offset
7EF8H

015

I/O Instruction Restart Field Register Offset
7F00H
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The I/O instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI 
handler to examine the state of the processor to determine the cause of the SMI and to determine if an I/O instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O instruc-
tion boundary, setting the I/O instruction restart field to FFH prior to executing the RSM instruction will likely result 
in a program error.

34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used
If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an I/O instruction 
boundary, the processor will service the new SMI request before restarting the originally interrupted I/O instruc-
tion. If the I/O instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point 
to an address different from the originally interrupted I/O instruction, which will likely lead to a program error. To 
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when 
I/O instruction restart is being used and ensure that the handler sets the I/O instruction restart field to 00H prior 
to returning from the second invocation of the SMI handler.

34.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that 

each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium 
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data 
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family 
processors because they do not require that the SMBASE address be on a 32-KByte boundary. 

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface. 

The APIC interface can distribute SMIs to different processors.
• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM 

processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor 
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to 
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM 
spaces. This can be done by using the SMBASE Relocation feature (see Section 34.11).

34.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND 
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details 
those interactions. It also explains how this treatment affects SMX operation.

Table 34-8.  I/O Instruction Restart Field Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.
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34.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions. 
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE := 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H 
are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following: 
(1) SS.DPL (the current privilege level); (2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see 
Table 24-3 in Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending 
(see Section 25.5.2). These data may be saved internal to the processor or in the VMCS region of the current 
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save 
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor 
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit 0 of the 32-bit field 
at offset SMBASE + 8000H + 7EE0H (SMBASE + FEE0H; see Table 34-3).3 If the logical processor was not in VMX 
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it 
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT 
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 34.14 and Section 34.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that 
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation 
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, SMI functions as the “enable EPT” VM-execution control were 0. See Section 24.6.2.
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34.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that 
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated 

for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);
IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as 

saved)
THEN unlock the TXT private space;

FI;
CR4.VMXE := value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of 

NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMIs are not 

blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the 
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM 
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such 
VM exits occur with their normal priority. See Section 25.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction 
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be 
pending following RSM:

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the values that were loaded from SMRAM regardless of what is 
reported in the capability MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF 
VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events. 

• These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see 
Section 34.10). They do not occur if the logical processor just entered the shutdown state.

34.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any 
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software 
cannot use VMX instructions or enter VMX operation while in SMM.

34.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 34.15.1) and only outside 
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.15.5 for details regarding this MSR).1 Section 34.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC 
(see Appendix A.6) to determine whether this is allowed.

34.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates 
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates 
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM 
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability 
MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

34.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the 
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 34.15.2. SMM 
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive 
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its 
own guests. This is done all inside SMM (see Section 34.15.3). The STM returns from SMM, not by using the RSM 
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 34.15.4.

Initially, there is no STM and the default treatment (Section 34.14) is used. The dual-monitor treatment is not used 
until it is enabled and activated. The steps to do this are described in Section 34.15.5 and Section 34.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that 
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 34.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which 
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses 
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical 
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS 
pointer is established when the dual-monitor treatment is activated.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s valid 
bit (bit 0).
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34.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an 
SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX 
root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section 
34.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM 
VM exit activates the dual-monitor treatment (see Section 34.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 34.15.2.1 through 34.15.2.5. 
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described 
in Section 34.15.6.

34.15.2.1  Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to 
SMRAM as they do under the default treatment.

34.15.2.2  Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that 
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS. 
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

34.15.2.3  Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences 
follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit: 
I/O SMI (an SMI arrived immediately after retirement of an I/O instruction), other SMI, or VMCALL. See 
Appendix C, “VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer 
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this 
information is stored in bit 29 of the exit-reason field (see Table 24-15 in Section 24.9.1). The bit is set by 
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an I/O 

instruction, the exit qualification contains information about the I/O instruction that retired immediately before 
the SMI. It has the format given in Table 34-9.

• Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement 
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by 
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for 
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override 
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prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On 
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit 
mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI that arrives immediately after 
the retirement of an I/O instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O instruction.

34.15.2.4  Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save 
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM 
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

34.15.2.5  Updating State
If an SMM VM exit is from VMX non-root operation and the “Intel PT uses guest physical addresses” VM-execution 
control is 1, the IA32_RTIT_CTL MSR is cleared to 00000000_00000000H.1 This is done even if the “clear 
IA32_RTIT_CTL” VM-exit control is 0.

SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution 

of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of 
the “virtual NMIs” VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see 
Section 34.15.4).

Table 34-9.  Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors 
that support Intel 64 architecture.

1. In this situation, the value of this MSR was saved earlier into the guest-state area. All VM exits save this MSR if the 1-setting of the 
“load IA32_RTIT_CTL” VM-entry control is supported (see Section 27.3.1), which must be the case if the “Intel PT uses guest physi-
cal addresses” VM-execution control is 1 (see Section 26.2.1.1).
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SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs. 
Combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; 
see Section 28.3). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-execu-
tion control is 1; see Section 27.5.5.)

34.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure 
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 34.15.1, the 
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 25.1.3, it causes a 
VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 34.15.4).

34.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control 
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 34.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical 
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 34.15.4.1 through 
34.15.4.10.

34.15.4.1  Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current 
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s 
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following 
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does not 

contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 24.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must 
contain the VMXON pointer (see Section 34.15.7).3

34.15.4.2  Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 26.2.1.1. They do not apply the checks to the current VMCS. Instead, 
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
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• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 
the checks are not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 
operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS 
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after 
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

34.15.4.3  Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry 
control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root 
operation), the VM-entry interruption-information field must not indicate injection of a pending MTF VM exit (see 
Section 26.6.2). Specifically, the following cannot all be true for that field:
• the valid bit (bit 31) is 1
• the interruption type (bits 10:8) is 7 (other event); and
• the vector (bits 7:0) is 0 (pending MTF VM exit).

34.15.4.4  Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are 
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”). 
VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains 
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be 
performed at all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS 
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

34.15.4.5  Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs. 
Combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 
28.3). (Ordinary VM entries are required to perform such invalidation only for VPID 0000H and are not required to 
do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

34.15.4.6  VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field 
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer 
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value 
field in the current VMCS.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
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34.15.4.7  Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer. 
Following this, they load the current-VMCS pointer from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 

the current-VMCS pointer is loaded from the VMCS-link pointer field.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 

operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry 
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the 
VM-entry control fields in the VMCS that was current when the VM entry commenced.

34.15.4.8  VM Exits Induced by VM Entry
Section 26.6.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit. 
Section 26.7.3 to Section 26.7.7 describe other situations that may cause a VM exit to occur immediately after a 
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries 
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer 
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the 
VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry 
(see Section 34.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a 
VM entry returning from SMM are to the executive monitor and not to the STM.

34.15.4.9  SMI Blocking
VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if 

the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the 

logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMIs blocked. 
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMIs.

34.15.4.10  Failures of VM Entries That Return from SMM
Section 26.8 describes the treatment of VM entries that fail during or after loading guest state. Such failures record 
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS 
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the 
logical processor remains in SMM.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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34.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment 
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also 
responsible for enabling the dual-monitor treatment. 

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the 
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is 

used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be 
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM. 

Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 34.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6, “Safer Mode Extensions 
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted left 12 bits, is the physical address of MSEG (the MSEG base 

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.1 

On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault 
(#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if 
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the 
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The 
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is 
given in Table 34-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.

Table 34-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset
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To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable 
memory. Future implementations may allow or require a different memory type.1 Software should consult the VMX 
capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR) 
only after establishing the content of the MSEG header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-

fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a 
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses 
by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be 
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will be 
in IA-32e mode after the STM is activated (see Section 34.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section 
34.15.6.5). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization 
code. 

34.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 34.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM 
VM exit and other SMM VM exits are discussed in Sections 34.15.6.1 through 34.15.6.6. See also “VMCALL—Call to 
VM Monitor” in Chapter 30.

34.15.6.1  Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;2 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and 
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and 
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

Such an execution of VMCALL begins with some initial checks. These checks are performed before updating the 
current-VMCS pointer and the executive-VMCS pointer field (see Section 34.15.2.2).

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive 
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX 
capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical 
processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks 
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG 
revision identifier.

1. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is 
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures 
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

2. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.
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2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be 
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode 
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

34.15.6.2  Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 34.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by 
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

34.15.6.3  Saving Guest State
As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field 
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the 
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR 
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to 

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed 

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does not 
end in SMM.

34.15.6.4  Saving MSRs
The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
saved into that area.

34.15.6.5  Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the 
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this 
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed 
values or loaded based on the content of the MSEG header (see Table 34-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that support IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG 
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are 
ignored).
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— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE, PGE, CET, and PCIDE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set, 
PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with 
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS 
selector was FFF8H), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, ES, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode SMM 
feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, ES, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although the 

base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header 

(bits 63:32 are always cleared on processors that support IA-32e mode). GDTR.limit is set to the corresponding 
field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
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• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain 
the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after 
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if 
IA32_EFER.LMA was 1 before and after the transition).

34.15.6.6  Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
loaded from that area.

34.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 34.14). It does this by executing a VM entry with the “deactivate dual-monitor 
treatment” VM-entry control set to 1.

As noted in Section 26.2.1.3 and Section 34.15.4.1, an attempt to deactivate the dual-monitor treatment fails in 
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the 
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 34.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the 
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends 
on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by 
the VMXOFF instruction (see Section 34.14.4) or by certain leaf functions of the GETSEC instruction (see 
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2D).

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT
On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State 
Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), 
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler 
code to properly preserve the state information (including CR4.OSXSAVE, XCR0, and possibly processor extended 
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13, 
“Managing State Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

34.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT
This section describes enhancement of system management features that apply only to the 4th generation Intel 
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate 
DisplayFamily_DisplayModel signature when programming with these interfaces.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.
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34.17.1 SMM Handler Code Access Control
The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code 
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see 
Section 34.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE). 

The interface to enable SMM handler code access check resides in a per-package scope model-specific register 
MSR_SMM_FEATURE_CONTROL at address 4E0H. An attempt to access MSR_SMM_FEATURE_CONTROL outside of 
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of 
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 2-29 in 
Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4.

34.17.2 SMI Delivery Delay Reporting 
Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is 
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will 
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in 
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope 
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause 
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at 
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 2-29 in Chapter 2, 
“Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
4.

34.17.3 Blocked SMI Reporting 
A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI). 
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope 
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM will 
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 2-29 in Chapter 2, “Model-Specific Registers 
(MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.
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26.Updates to Chapter 35, Volume 3C
Change bars and green text show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

Changes to chapter: Typo corrections throughout the chapter.
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CHAPTER 35
INTEL® PROCESSOR TRACE

35.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software 
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software 
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control 
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include 
timing, program flow information (e.g. branch targets, branch taken/not taken indications) and program-induced 
mode related information (e.g. Intel TSX state transitions, CR3 changes). These packets may be buffered internally 
before being sent to the memory subsystem or other output mechanism available in the platform. Debug software 
can process the trace data and reconstruct the program flow.
Intel Processor Trace was first introduced in Intel® processors based on Broadwell microarchitecture and Intel 
Atom® processors based on Goldmont microarchitecture. Later generations include additional trace sources, 
including software trace instrumentation using PTWRITE, and Power Event tracing.

35.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by 
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such 
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code 
regions (basic blocks).
Intel PT can also be configured to log software-generated packets using PTWRITE, and packets describing 
processor power management events. Further, Precise Event-Based Sampling (PEBS) can be configured to log 
PEBS records in the Intel PT trace; see Section 18.5.5.2.
In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional 
and performance debugging of applications. Intel PT has several control and filtering capabilities available to 
customize the tracing information collected and to append other processor state and timing information to enable 
debugging. For example, there are modes that allow packets to be filtered based on the current privilege level 
(CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs 
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are 
enumerated by CPUID, see Section 35.3. Details of the MSRs for configuring Intel PT are described in Section 
35.2.7.

35.1.1.1  Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace 
information in the following categories of packets (for more details on the packets, see Section 35.4):
• Packets about basic information on program execution; these include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular 
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet 
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for 
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information, 
along with information from the operating system on the CR3 value of each process, allows the debugger 
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion 
of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.
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— Mini Time Counter (MTC) packets: MTC packets provide periodic indication of the passing of wall-clock time.

— Cycle Count (CYC) packets: CYC packets provide indication of the number of processor core clock cycles 
that pass between packets.

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow, 
resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to 
respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or 
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and 
other branches or events. These packets can contain the IP, although that IP value may be compressed by 
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in 
more detail in Section 35.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and 
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so that 
it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of formats 
that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

• Packets inserted by software:

— PTWRITE (PTW) packets: includes the value of the operand passed to the PTWRITE instruction (see 
“PTWRITE - Write Data to a Processor Trace Packet” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

• Packets about processor power management events:

— MWAIT packets: Indicate successful completion of an MWAIT operation to a C-state deeper than C0.0.

— Power State Entry (PWRE) packets: Indicate entry to a C-state deeper than C0.0.

— Power State Exit (PWRX) packets: Indicate exit from a C-state deeper than C0.0, returning to C0.

— Execution Stopped (EXSTOP) packets: Indicate that software execution has stopped, due to events such as 
P-state change, C-state change, or thermal throttling.

• Packets containing groups of processor state values:

— Block Begin Packets (BBP): Indicate the type of state held in the following group.

— Block Item Packets (BIP): Indicate the state values held in the group.

— Block End Packets (BEP): Indicate the end of the current group.

35.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it 
operates.

35.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this 
block of code need not be traced, as the processor will execute them from start to end without redirecting code 
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow. 
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are 
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.
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The following subsections describe the COFI events that result in trace packet generation. Table 35-1 lists branch 
instruction by COFI types. For detailed description of specific instructions, see Intel® 64 and IA-32 Architectures 
Software Developer’s Manual.

35.2.1.1  Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is 
embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output 
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the 
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the 
program flow after the instruction. 

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor 
will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative) 
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a 
TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct 
jumps that toggle Intel PT enables (see Section 35.2.5).

35.2.1.2  Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or 
memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer 
until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the 
target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for 
debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address 
(see Section 35.3.1.1).
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch. 
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory
location. Therefore, the processor must generate a packet that includes this target address to allow the
decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of
the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software

Table 35-1. COFI Type for Branch Instructions 

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, 
JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2), RET (C3, C2 xx)

Far Transfers INT1, INT3, INT n, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx), 
SYSCALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME
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can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the 
CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding” defined 
as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET 
target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a Target 
IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that 
correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical 
processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 35.4.2.2.

35.2.1.3  Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far 
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the 
event was taken. Table 35-24 indicates exactly which IP will be included in the FUP generated by a far transfer.

35.2.2 Software Trace Instrumentation with PTWRITE
PTWRITE provides a mechanism by which software can instrument the Intel PT trace. PTWRITE is a ring3-acces-
sible instruction that can be passed to a register or memory variable, see “PTWRITE - Write Data to a Processor 
Trace Packet” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B for details. The 
contents of that variable will be used as the payload for the PTW packet (see Table 35-41 “PTW Packet Definition”), 
inserted at the time of PTWRITE retirement, assuming PTWRITE is enabled and all other filtering conditions are 
met. Decode and analysis software will then be able to determine the meaning of the PTWRITE packet based on the 
IP of the associated PTWRITE instruction.
PTWRITE is enabled via IA32_RTIT_CTL.PTWEn[12] (see Table 35-6). Optionally, the user can use 
IA32_RTIT_CTL.FUPonPTW[5] to enable PTW packets to be followed by FUP packets containing the IP of the asso-
ciated PTWRITE instruction. Support for PTWRITE is introduced in Intel® Atom™ processors based on the Goldmont 
Plus microarchitecture.

35.2.3 Power Event Tracing
Power Event Trace is a capability that exposes core- and thread-level sleep state and power down transition infor-
mation. When this capability is enabled, the trace will expose information about:

— Scenarios where software execution stops.

• Due to sleep state entry, frequency change, or other powerdown.

• Includes the IP, when in the tracing context.

— The requested and resolved hardware thread C-state.

• Including indication of hardware autonomous C-state entry.

— The last and deepest core C-state achieved during a sleep session.

— The reason for C-state wake.
This information is in addition to the bus ratio (CBR) information provided by default after any powerdown, and the 
timing information (TSC, TMA, MTC, CYC) provided during or after a powerdown state.
Power Event Trace is enabled via IA32_RTIT_CTL.PwrEvtEn[4]. Support for Power Event Tracing is introduced in 
Intel® Atom™ processors based on the Goldmont Plus microarchitecture.
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35.2.4 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced. 

35.2.4.1  Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when 
CPL > 0, or regardless of CPL. 
CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be 
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes 
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet 
(see the discussion of TIP.PGD in Section 35.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To 
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 35.2.5.1 for details.

35.2.4.2  Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can 
be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single applica-
tion without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with 
multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating 
system does not provide context-switch support) to separate the output for the different threads (see Section 
35.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set 
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter 
is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other 
packets can be generated when ContextEn is 0; see Section 35.2.5.3 for details. When CR3 does match 
IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0 
(although it could be 0 due to other filters or modes).
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging 
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value 
of CR0.PG. 
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when 
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

35.2.4.3  Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1. 
Intel PT can be configured to enable the generation of packets containing architectural states only when the 
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some 
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 35.2.7.2), where the digit 
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures 
the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 35.2.7.5). 
IA32_RTIT_ADDRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is 
enabled. Thus each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A, 
IA32_RTIT_ADDRn_B]. There can be multiple such ranges, software can query CPUID (Section 35.3.1) for the 
number of ranges supported on a processor. 
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at 
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to 
enable IP filtering (see Section 35.3.1), tracing will commence when a taken branch or event is seen whose target 
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken 
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the 
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next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section 
35.2.5.5 for more details on FilterEn. 
Note that these address range base and limit values are inclusive, such that the range includes the first and last 
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause 
different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 35.3.1.1 for 
details. Software can query CPUID to determine filters are based on linear or effective address (Section 35.3.1).
Note that some packets, such as MTC (Section 35.3.7) and other timing packets, do not depend on FilterEn. For 
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 35.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is 
intended for cases where unexpected code is executed, and the user wishes to immediately stop generating 
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison 
logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but 
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when 
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon 
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby 
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP 
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate 
that the condition was hit. 
If a TraceStop condition is encountered during buffer overflow (Section 35.3.8), it will not be dropped, but will 
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal 
buffers. To ensure that this has occurred, the user should clear TraceEn.
To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn 
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing 
resumed.
Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 35.2.6.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of Range-
Base, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable 
ADDRn range as a FilterEn range).

Table 35-2. IP Filtering Packet Example 

Code Flow Packets

Bar:

jmp RangeBase // jump into filter range

RangeBase:

jcc Foo // not taken

add eax, 1

Foo:

jmp RangeLimit+1 // jump out of filter range

RangeLimit:

nop

jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)
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IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code 
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code 
executing in the overlapping range will get TraceStop behavior.

35.2.5 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most 
packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hardware in 
response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of 
PacketEn to the software-visible controls in the configuration MSRs is described in this section.

35.2.5.1  Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring. PacketEn is composed of other 
states according to this relationship:

PacketEn := TriggerEn AND ContextEn AND FilterEn AND BranchEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are 
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 35.2.6 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0), FilterEn 
is treated as always set.

35.2.5.2  Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when 
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software. 
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set.
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 35.3.9).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

35.2.5.3  Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured 
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then 
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is 
defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is gener-
ated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation 
Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction 
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 35.4.2.16 and Section 

1. Trace packets generation is disabled in a production enclave, see Section 35.2.8.5. See Intel® Software Guard 
Extensions Programming Reference about differences between a production enclave and a debug enclave.
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35.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when 
ContextEn is set, see Section 35.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

35.2.5.4  Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI 
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well 
as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of 
what software is running.

35.2.5.5  Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch. 
Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration 
and use of IP filtering, see Section 35.2.4.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but 
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for 
indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will 
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long 
as they are within context. 
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP, 
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section 
35.4.1.
After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software 
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e., 
CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and ContextEn=1, and when 
at least one range is configured for IP filtering.

35.2.6 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available 
for trace output can vary across processor generations and platforms. 
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit 
fields of IA32_RTIT_CTL (see Section 35.2.7.2):
• A single, contiguous region of physical address space. 
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of 

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass 
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the 
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that 
they don't consume precious cache space, but they do not have the serializing aspects associated with un-cache-
able (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as 
this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe perfor-
mance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of 
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have 
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so 
ensures that all buffered packets are flushed out of the processor. 
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35.2.6.1  Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single, 
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in 
IA32_RTIT_OUTPUT_BASE (Section 35.2.7.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section 
35.2.7.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output 
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base 
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM. 
• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint 

(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept 
these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each 
other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer. 

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] := IA32_RTIT_OUTPUT_BASE[63:0]

OutputMask[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])

OutputOffset[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])

trace_store_phys_addr := (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 35.3.9) will 
be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS[31:0] > 0. 

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value 
IA32_RTIT_OUTPUT_MASK_PTRS[31:0].

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section 
35.2.6.4.

35.2.6.2  Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The 
ToPA mechanism uses a linked list of tables; see Figure 35-1 for an illustrative example. Each entry in the table 
contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table 
may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array) 
or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that 
a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads 
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the 
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be 
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the 
latest value of proc_trace_table_base.
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• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the 
current output region.) When tracing is enabled, the processor loads the value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS into bits 27:3 of proc_trace_table_offset. While tracing is 
enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to 
proc_trace_table_offset, but these updates may not be synchronous to software execution. When tracing is 
disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is 
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the 
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates 
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates 
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR 
contains the latest value of proc_trace_output_offset.

Figure 35-1 provides an illustration (not to scale) of the table and associated pointers.

With the ToPA mechanism, the processor writes packets to the current output region (identified by 
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will 
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus 
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry, 
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by 
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr := Base address from current ToPA table entry + 
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is 
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END 
attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA 

Figure 35-1.  ToPA Memory Illustration
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proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset
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ToPA Table B
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END=1 TableBaseB
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 IA32_RTIT_OUTPUT_MASK_PRS.MaskOrTableOffset<<3
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table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Table 
35-3 and the section that follows for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END 
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is 
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum 
table size will be reached (proc_trace_table_offset = 0FFFFFF8H). In this case, the proc_trace_table_offset and 
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output 
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and 
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs 
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not 
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This 
ensures that the output MSR values account for all packets generated to that point, after which the processor will 
cease updating the output MSR values until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references 
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these 
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear 
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry 
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors 
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit 
0] = 1. 
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be 
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be 
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described 
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 35-2. The size of the address field is determined by the 
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 35-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself 
cause these writes to be globally observed.

Figure 35-2.  Layout of ToPA Table Entry
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9:6 Size
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2 : INT
0 : END

Output Region Base Physical Address

4 13 2
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ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when 
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See 
Section 35.2.7.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the 
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean 
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered. 
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry 
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the 
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region. 
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that 
would produce an operational error if the configuration remained when tracing is re-enabled with 
IA32_RTIT_STATUS.Stopped cleared. 

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI) 
when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to 
the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in 
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more 
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by 
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

Table 35-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region 
Base Physical 
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions 
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly 
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single 
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE 
MSR.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K, 
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be 
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt. 
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before 
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output 
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The 
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table 
entry.
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3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus, 
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH). 
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H 
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The 
Freeze_Perfmon_on_PMI and Freeze_LBRs_on_PMI settings in IA32_DEBUGCTL will be applied on ToPA PMI just as 
on other PMIs, and hence Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, or wishes to modify any Intel 
PT MSRs, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets 
are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to deter-
mine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-
enabled before the IRET if continued tracing is desired.
In rare cases, it may be possible to trigger a second ToPA PMI before the first is handled. This can happen if another 
ToPA region with INT=1 is filled before, or shortly after, the first PMI is taken, perhaps due to EFLAGS.IF being 
cleared for an extended period of time. This can manifest in two ways: either the second PMI is triggered before the 
first is taken, and hence only one PMI is taken, or the second is triggered after the first is taken, and thus will be 
taken when the handler for the first completes. Software can minimize the likelihood of the second case by clearing 
TraceEn at the beginning of the PMI handler. Further, it can detect such cases by then checking the Interrupt 
Request Register (IRR) for PMI pending, and checking the ToPA table base and off-set pointers (in 
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) to see if multiple entries with INT=1 have been 
filled.

PMI Preservation

In some cases a ToPA PMI may be taken after completion of an XSAVES instruction that saves Intel PT state, and 
in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT 
context is later restored with XRSTORS. To account for such a scenario, the PMI Preservation feature has been 
added. Support for this feature is indicated by CPUID.(EAX=14H, ECX=0):EBX[bit 6].
When IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, PMI preservation is enabled. When a ToPA region with 
INT=1 is filled, a PMI is pended and the new IA32_RTIT_STATUS.PendToPAPMI[7] is set to 1. If this bit is set when 
Intel PT is enabled, such that IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a ToPA PMI is pended. This 
behavior ensures that any ToPA PMI that is pended during XSAVES, and hence can't be properly handled, will be re-
pended when the saved PT state is restored.
When this feature is enabled, the PMI handler should take the following actions:

1. Ignore ToPA PMIs that are taken when TraceEn = 0. This indicates that the PMI was pended during Intel PT 
disable, and the PendToPAPMI flag will ensure that the PMI is re-pended once Intel PT is re-enabled in the same 
context. For this reason, the PendToPAPMI bit should be left set to 1.

2. If TraceEn=1 and the PMI can be properly handled, clear the new PendTopaPMI bit. This will ensure that 
additional, spurious ToPA PMIs are not taken. It is required that PendToPAPMI is cleared before the PMI LVT 
mask is cleared in the APIC, and before any clearing of either LBRS_FROZEN or COUNTERS_FROZEN in 
IA32_PERF_GLOBAL_STATUS. 

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is 
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top 
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible that, in rare cases, the wrap will have occurred before the PMI is delivered. Software 
can avoid this by setting the STOP bit in the ToPA entry (see Table 35-3); this will disable tracing once the region is 
filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the 
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill 
and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before 
tracing can resume.
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ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state, 
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT 
context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT output 
configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs. On proces-
sors that support PMI preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsb-
PmiOnEnable[56] = 1 will ensure that a PMI that is pending at the time PT is disabled will be recorded by setting 
IA32_RTIT_STATUS.PendTopaPMI[7] = 1. A PMI will then be pended when the saved PT context is later restored.
Table 35-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling 
ToPA PMIs that may arrive between XSAVES and XRSTORS, if PMI preservation is not in use. This algorithm is flex-
ible to allow software to choose between adding entries to the current ToPA table, adding a new ToPA table, or using 
the current ToPA table as a circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry 
in the table, which is the recommended treatment.

ToPA Errors

When a malformed ToPA entry is found, an operational error results (see Section 35.3.9). A malformed entry can 
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 35.2.6.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to 
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12] 
not equal to 0), for ToPA entries with END=0.

c. ToPA entry base address sets upper physical address bits not supported by the processor.

Table 35-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS 

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)

    Save IA32_RTIT_CTL value;

    IF ( IA32_RTIT_CTL.TraceEN )

        Disable Intel PT by clearing TraceEn; 

    FI;

    IF ( there is space available to grow the current ToPA table )

        Add one or more ToPA entries after the last entry in the ToPA table; 

        Point new ToPA entry address field(s) to new output region base(s);

    ELSE 

        Modify an upcoming ToPA entry in the current table to have END=1;

        IF (output should transition to a new ToPA table )

            Point the address of the “END=1” entry of the current table to the new table base; 

        ELSE 

            /* Continue to use the current ToPA table, make a circular. */ 

            Point the address of the “END=1”l entry to the base of the current table; 

            Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;

            /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */ 

        FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;
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3. Illegal ToPA Output Offset.
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output 
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with 
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.
In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet 
bytes that are internally buffered when the error is detected may be lost. 
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section 
35.2.6.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application 
buffers, see Section 35.4.2.26.

35.2.6.3  Trace Transport Subsystem 
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the 
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration 
options should refer to the specific platform documentation. The FabricEn bit is available to be set if 
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

35.2.6.4  Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all 
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with 
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 35-5 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the 
IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the 
SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries inter-
nally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again, 
meaning one could potentially route packet output to a newly restricted region. Software can ensure that any 
cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

Table 35-5. Behavior on Restricted Memory Access

Scenario Description

ToPA output region 
overlaps with 
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read 
from that restricted region will return all 1s. The processor also may signal an error (Section 35.3.9) and disable 
tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then 
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output 
region is larger than the restricted memory region).

ToPA table overlaps 
with SMRR

The processor will signal an error (Section 35.3.9) and disable tracing when the ToPA write pointer 
(IA32_RTIT_OUTPUT_BASE + proc_trace_table_offset) enters the restricted region.



35-16 Vol. 3C

INTEL® PROCESSOR TRACE

35.2.7 Enabling and Configuration MSRs

35.2.7.1  General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are 
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 35.3.1), RDMSR or WRMSR of the 

IA32_RTIT_* MSRs will cause #GP. 
• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP 

fault. Packet generation must be disabled before the configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings 

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a warm or cold RESET. 

— If CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1, only the TraceEn bit is cleared on warm RESET; though this 
may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the trace configu-
ration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to 
these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit 
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to 
IA32_RTIT_CTL.TraceEn by XSAVES (Section 35.3.5.2).

35.2.7.2  IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions 
are listed in Table 35-6.

Table 35-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers. 
A further store, fence, or architecturally serializing instruction may be required to ensure that 
packet data can be observed at the trace endpoint. See Section 35.2.7.3 for details of 
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section 35.2.8.3) and warm reset. Other 
MSR bits of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these 
events.

1 CYCEn 0 0: Disables CYC Packet (see Section 35.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

4 PwrEvtEn 0 0: Power Event Trace packets are disabled.

1: Power Event Trace packets are enabled (see Section 35.2.3, “Power Event Tracing”).
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5 FUPonPTW 0 0: PTW packets are not followed by FUPs.

1: PTW packets are followed by FUPs.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on 
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored. 
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 0] (“CR3 Filtering Support”) is 0.

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] 
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 35.2.6.2) if CPUID.(EAX=14H, 
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would 
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H, 
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 35.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 35.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 35.2.1.2).

12 PTWEn 0 0: PTWRITE packet generation disabled.

1: PTWRITE packet generation enabled (see Table 35-41 “PTW Packet Definition”).

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

See Section 35.2.5.4 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running 
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings 
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7), 
8: ART(8),  9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15: 

ART(15)
Software must use CPUID to query the supported encodings in the processor, see Section 
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

18 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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22:19 CycThresh 0 CYC packet threshold, see Section 35.3.6 for details. CYC packets will be sent with the first 
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then 
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section 
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

23 Reserved 0 Must be 0.

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel 
PT packet bytes output, so this field allows the user to determine the increment of 
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that 
PSB insertion is not precise, but the average output bytes per PSB should approximate the 
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K, 
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section 
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

31:28 Reserved 0 Must be 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following 
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 1.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following 
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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35.2.7.3  Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated. 
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that 
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A 
full PSB+ (see Section 35.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section 
35.4.1.1). 
In addition to the packets discussed above, if and when PacketEn (Section 35.2.5.1) transitions from 0 to 1 (which 
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 35.4.2.3) will be generated. 
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason, 
software should disable packet generation before making modifications to the ToPA tables (or changing the config-
uration of restricted memory regions). See Section 35.7 for more details of packets that may be generated with 
modifications to TraceEn.

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following 
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following 
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

55:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables. 
Must be 0.

56 InjectPsbPmi
OnEnable

0 1: Enables use of IA32_RTIT_STATUS bits PendPSB[6] and PendTopaPMI[7], see Section 
35.2.7.4, “IA32_RTIT_STATUS MSR” for behavior of these bits.

0: IA32_RTIT_STATUS bits 6 and 7 are ignored.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

59:57 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables. 
Must be 0.

63:60 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the 
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When 
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure 
that the packet data is globally observed. No special packets are generated by disabling packet generation, though 
a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the 
same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a #GP, 
even if TraceEn remains set.

35.2.7.4  IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, though some fields cannot be modified by soft-
ware. See Table 35-7 for details. The WRMSR instruction ignores these bits in the source operand (attempts to 
modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection 
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with 
WRMSR).

Table 35-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP, 
see Section 35.2.5.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See 
Section 35.2.5.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 35.2.5.2. Writes are 
ignored.

3 Reserved 0 Must be 0. 

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When 
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see 
“ToPA Errors” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. 
It is not recommended that software ever set this bit, except in cases where it is restoring a 
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered. 
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, 
see “ToPA STOP” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. 
It is not recommended that software ever set this bit, except in cases where it is restoring a 
prior saved state.

6 PendPSB 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the 
threshold for a PSB+ to be inserted has been reached. The processor will clear this bit when 
the PSB+ has been inserted into the trace. If PendPSB = 1 and InjectPsbPmiOnEnable = 1 
when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PSB+ will be inserted into the 
trace.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.
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35.2.7.5  IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG 
fields in IA32_RTIT_CTL (see Section 35.2.7.2). The number of these register pairs is enumerated by 
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

• Processors that enumerate support for 3 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B

• Processors that enumerate support for 4 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B

Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is in 
canonical form, otherwise a general-protection fault (#GP) fault will result.
Each MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection 
fault (#GP).

35.2.7.6  IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold 
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of 
this register, see Section 35.2.4.2.
This MSR is accessible if CPUID.(EAX=14H, ECX=0):EBX[bit 0], “CR3 Filtering Support”, is 1. This MSR can be 
written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP). 

7 PendTopaPMI 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the 
threshold for a ToPA PMI to be inserted has been reached. Software should clear this bit once 
the ToPA PMI has been handled, see “ToPA PMI” for details. If PendTopaPMI = 1 and 
InjectPsbPmiOnEnable = 1 when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PMI will 
be pended.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

31:8 Reserved 0 Must be 0. 

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent 
out. The processor also uses this field to determine when the next PSB packet should be 
inserted. Note that the processor may clear or modify this field at any time while 
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 35.4.2.17 for details.

This field is reserved when CPUID.(EAX=14H,ECX=0):EBX[bit 1] (“Configurable PSB and 
CycleAccurate Mode Supported”) is 0.

63:49 Reserved 0 Must be 0.

Table 35-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description
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IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR causes a 
#GP.

35.2.7.7  IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory 
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width 
(MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and 
those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered 
unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either 
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or 
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when 
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

35.2.7.8  IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be 
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See 
Section 35.2.6.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to 
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation 
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either 
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or 
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when 
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 35-8. IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of 
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region. 
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of 
the 1s in the mask value(Section 35.2.7.8) overlap with 1s in the base address. If 
the base is not aligned, an operational error will result (see Section 35.3.9).

1: The base physical address of the current ToPA table. The address must be 4K 
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but 
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in 
Section 35.2.6.2 as well as Section 35.3.9.

63:MAXPHYADDR Reserved 0 Must be 0.
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35.2.8 Interaction of Intel® Processor Trace and Other Processor Features

35.2.8.1  Intel® Transactional Synchronization Extensions (Intel® TSX) 
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock 
elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace 
output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region 
that is later aborted. For this reason, debugging software will need indication of the beginning and end of a trans-
actional region; this will allow software to understand when instructions are part of a transactional region and 
whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 35-10 for 
details.

Table 35-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored. 

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output 
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value 
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the 
OutputOffset field to determine the next write address. All 1s in this field should be 
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an 
operational error (Section 35.3.9) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can 
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA 
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7 
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region. 
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address 
at which the next byte of packet output data will be written. This value must be less than or 
equal to the MaskOrTableOffset field, otherwise an operational error (Section 35.3.9) will be 
signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This 
value will be added to the output region base field, found in the current ToPA table entry, to 
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section 
35.3.9) will be signaled when TraceEn is set. 

Table 35-10. TSX Packet Scenarios

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed 
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP)

Transaction 
Commit

Either XEND or XRELEASE lock, if transactional execution 
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)
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The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to be 
executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

35.2.8.2  TSX and IP Filtering
A complication with tracking transactions is handling transactions that start or end outside of the tracing region. 
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts. 
But a transaction can start within the IP filter region and end outside it. 
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will 
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and 
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indi-
cate the current transaction status. 

35.2.8.3  System Management Mode (SMM) 
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM 
code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection. 
Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either 
protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of IA32_RTIT_CTL.TraceEn 
into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 35.2.7.2). 

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not 
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is 
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-evalu-
ated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By 
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was 
disabled or re-enabled. See Table 35.7 for more information about packets entering and leaving SMM. 
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled 
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that 
restrict use of Intel PT with LBRs (see Section 35.3.1.2), any RSM that results in enabling of both will cause a shut-
down.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 35.6.

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP), 
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction 

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these 
cases.

Table 35-10. TSX Packet Scenarios

TSX Event Instruction Packets
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35.2.8.4  Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate 
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears 
IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL in VMX operation causes a general-protection 
exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of 
tracing in VMX operation are described in Section 35.4.2.26.

35.2.8.5  Intel® Software Guard Extensions (Intel® SGX)
Intel SGX provides an application with the ability to instantiate a protective container (an enclave) with confidenti-
ality and integrity (see the Intel® Software Guard Extensions Programming Reference). On a processor with both 
Intel PT and Intel SGX enabled, when executing code within a production enclave, no control flow packets are 
produced by Intel PT. An enclave entry will clear ContextEn, thereby blocking control flow packet generation. A 
TIP.PGD packet will be generated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be 
generated to indicate that tracing is resumed.
During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or 
CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 35.7.

Debug Enclaves

Intel SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see the 
Intel® Software Guard Extensions Programming Reference. In a debug enclave, Intel PT continues to function 
normally. Specifically, ContextEn is not impacted by an enclave entry or exit. Hence, the generation of ContextEn-
dependent packets within a debug enclave is allowed.

35.2.8.6  SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and 
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush 
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup. 
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will 
be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

35.2.8.7  Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets 
that indicate the source and destination IPs.

35.3 CONFIGURATION AND PROGRAMMING GUIDELINE

35.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID 
function 14H is dedicated to enumerate the resource and capability of processors that report 
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined 
variation in capabilities. Table 35-11 describes details of the enumerable capabilities that software must use across 
generations of processors that support Intel Processor Trace.
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Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf.

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that 
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 35.2.7.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any 
access to IA32_RTIT_CR3_MATCH, will #GP fault.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to 
select the preferred PSB frequency (see below for allowed values). (b) 
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and 
will be incremented by the processor when tracing to indicate progress 
towards the next PSB. If trace packet generation is enabled by setting 
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c) 
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode. 
See Section 35.2.7.

0: (a) Any attempt to write a non-zero value to IA32_RTIT_CTL.PSBFreq 
or IA32_RTIT_STATUS.PacketByteCnt will #GP fault. (b) If trace packet 
generation is enabled by setting TraceEn, a PSB is always generated. (c) 
Any attempt to write a non-zero value to IA32_RTIT_CTL.CYCEn or 
IA32_RTIT_CTL.CycThresh will #GP fault.

2 IP Filtering and TraceStop 
supported, and Preserve Intel 
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to 
configure the corresponding address range MSRs for IP Filtering or IP 
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2 
inclusive. The number of ADDRn_CFG fields is reported by 
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register 
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to 
configure address ranges for IP filtering or IP TraceStop. (c) On warm 
reset, all Intel PT MSRs will retain their pre-reset values, though 
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in 
Section 35.2.7.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero 
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A 
and IA32_RTIT_ADDRn_B, will #GP fault. (c) On warm reset, all Intel PT 
MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be 
generated. See Section 35.2.7.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq 
to a non-zero value will #GP fault.

4 PTWRITE Supported 1: Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5] 
(FUPonPTW), and PTWRITE can generate packets.

0: Writes that set IA32_RTIT_CTL[12] or IA32_RTIT_CTL[5] will #GP, 
and PTWRITE will #UD fault.

5 Power Event Trace Supported 1: Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event 
Trace packet generation.

0: Writes that set IA32_RTIT_CTL[4] will #GP.
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If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are 
described in the sub-leaves of CPUID leaf 14H.

6 PSB and PMI Preservation 
Supported

1: Writes can set IA32_RTIT_CTL[56] (InjectPsbPmiOnEnable), enabling 
the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or 
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or 
PSBs otherwise lost due to Intel PT disable. Writes can also set 
PendToPAPMI and PendPSB.

0: Writes that set IA32_RTIT_CTL[56], IA32_RTIT_STATUS[7], or 
IA32_RTIT_STATUS[6] will #GP.

31:7 Reserved

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing 
the ToPA output scheme (Section 35.2.6.2) IA32_RTIT_OUTPUT_BASE 
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes 
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. 
MSRs will #GP fault.

1 ToPA Tables Allow Multiple 
Output Entries

1: ToPA tables can hold any number of output entries, up to the 
maximum allowed by the MaskOrTableOffset field of 
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed 
by an END=1 entry which points back to the base of the table. 

Further, ToPA PMIs will be delivered before the region is filled. See ToPA 
PMI in Section 35.2.6.2.

If there is more than one output entry before the END entry, or if the 
END entry has the wrong base address, an operational error will be 
signaled (see “ToPA Errors” in Section 35.2.6.2).

2 Single-Range Output 
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is 
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to 
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs 
will #GP fault. 

3 Output to Trace Transport 
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to 
IA32_RTIT_CTL.FabricEn will #GP fault. 

30:4 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which 
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which 
are the offset from CS base. 

EDX 31:0 Reserved

Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities (Contd.)

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits
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Table 35-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in 
IA32_RTIT_CTL and the number of register pair 
IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering 
and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

31:16 Bitmap of supported MTC 
Period Encodings

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.MTCFreq field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 1 (MTC Packet generation is 
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit 
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A 
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause 
#GP fault.

EBX 15:0 Bitmap of supported Cycle 
Threshold values

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.CycThresh field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Cycle-Accurate Mode is 
Supported), otherwise the CycThresh field is reserved to 0. See Section 
35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit 
CycThresh field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A 
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported 
Configurable PSB Frequency 
encoding

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.PSBFreq field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Configurable PSB is 
supported), otherwise the PSBFreq field is reserved to 0. See Section 
35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit 
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A 
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved
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35.3.1.1  Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the 
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset 
and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected 
mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type 
is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 35-11).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the 
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the 
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause 
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as 
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on 
those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing 
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e. 
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

35.3.1.2  Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has 
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM, 
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if 
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume. 
Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_LIP, MSR_LER_TO_LIP
• MSR_LBR_SELECT
For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H 
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

35.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID 
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the 
capabilities described in Section 35.3.1. 
Based on the capability queried from Section 35.3.1, software must configure a number of model-specific regis-
ters. This section describes programming considerations related to those MSRs.

35.3.2.1  Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel 
PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if 
TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear 
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any 
values that may have persisted from prior trace packet collection contexts. See Section 35.2.7.2 for details of 
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 35.3.9), there may be a delay after the WRMSR 
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and 
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet genera-
tion is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.
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35.3.2.2  Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR 
(Section 35.2.7.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software 

should check the source of the error (by examining the output MSR values), correct the source of the problem, 
and then attempt to gather the trace again. For details on operational errors, see Section 35.3.9. Software 
should clear IA32_RTIT_STATUS.Error before re-enabling packet generation. 

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 35.2.4.3) or the ToPA 
Stop condition (see “ToPA STOP” in Section 35.2.6.2) before packet generation was disabled.

35.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software 
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Genera-
tion” in Section 35.2.7.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues 
an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or 
serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a 
read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on 
the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While 
TraceEn is set, these MSRs may hold stale values. Further, if a ToPA region with INT=1 is filled, meaning a ToPA PMI 
has been triggered, IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI[55] will be set by the time the flush completes.

35.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On 
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception 
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in 
IA32_RTIT_STATUS). 

35.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context, 
software can save and restore the states of the trace configuration MSRs across the process or thread context 
switch boundary. The principle is the same as saving and restoring the typical architectural processor states across 
context switches. 

35.3.5.1  Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR 
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must 
clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for 
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory 

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed 
values to memory
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When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with 
WRMSR 

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

35.3.5.2  Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be 
saved using XSAVES and restored by XRSTORS, in conjunction with the bit field associated with supervisory state 
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1.
The layout of the trace configuration component state in the XSAVE area is shown in Table 35-13.1

The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 8] is set, system software operating at CPL= 
0 can use XSAVES/XRSTORS with the appropriate requested-feature bitmap (RFBM) to manage supervisor state 
components in the XSAVE map. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

35.3.6 Cycle-Accurate Mode 
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 35.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to 
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets 
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC 
packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be 
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The 
CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC, PTWRITE, EXSTOP
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing 
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this 
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those 
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount 
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on 
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the 
number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except 
that they will be sent before the wrap occurs. An illustration is given below.

1. Table 35-13 documents support for the MSRs defining address ranges 0 and 1. Processors that provide XSAVE support for Intel Processor 
Trace support only those address ranges.

Table 35-13. Memory Layout of the Trace Configuration State Component

Offset within 
Component Area

Field Offset within 
Component Area

Field

0H IA32_RTIT_CTL 08H IA32_RTIT_OUTPUT_BASE

10H IA32_RTIT_OUTPUT_MASK_PTRS 18H IA32_RTIT_STATUS

20H IA32_RTIT_CR3_MATCH 28H IA32_RTIT_ADDR0_A

30H IA32_RTIT_ADDR0_B 38H IA32_RTIT_ADDR1_A

40H IA32_RTIT_ADDR1_B 48H–End Reserved



35-32 Vol. 3C

INTEL® PROCESSOR TRACE

35.3.6.1  Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring 
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter is 
implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle 
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It 
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point 
where clocks are disabled, and resume counting once they are re-enabled.

35.3.6.2  Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time. 
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or 

after, the CYC time. 
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took 

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream. 
Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those packets 
represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional branches 
and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides the 
retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle as 
that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be 
generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC 
and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After 
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 35.8.3.2 to understand how to 
interpret the payload values

Multi-packet Instructions or Events

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC 
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a 
task switch on a software interrupt, is shown below.

Example 35-1.  An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet
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35.3.6.3  Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the 
expense of precision. This is done by utilizing a cycle threshold (see Section 35.2.7.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the 
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in 
which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated 
number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold 
options for CycThresh, see Section 35.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the 
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16 
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be gener-
ated before a CYC will be inserted. Table 35-14 illustrates the threshold behavior.

35.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 35.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in 
the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can 
result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log 
properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some 
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack, 
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any 
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 35.4.2.18). One or more packets may 
be generated in between those two packets, and these inform the decoder of the current state of the processor. 
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any 
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the 

Example 35-2.  An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?), 

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

Table 35-14. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP
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normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets 
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1. 
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Information Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the 

logical processor is in VMX non-root operation and the “conceal VMX from PT” VM-execution control is 0.
• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation 

and the “conceal VMX from PT” VM-execution control is 0.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1. 
• MODE.Exec, if PacketEn=1. 
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within 
PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their 
meanings are the same as outside PSB+.
A PSB+ can be lost in some scenarios. If IA32_RTIT_STATUS.TriggerEn is cleared just as the PSB threshold is 
reached, e.g., due to TraceEn being cleared, the PSB+ may not be generated. On processors that support PSB pres-
ervation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will 
ensure that a PSB+ that is pending at the time PT is disabled will be recorded by setting 
IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will be inserted, and PendPSB cleared, when PT is later re-enabled 
while PendPSB = 1.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason, 
the OVF packet should also be viewed as terminating PSB+. If IA32_RTIT_STATUS.TriggerEn is cleared just as the 
PSB threshold is reached, the PSB+ may not be generated. TriggerEn can be cleared by a WRMSR that clears 
IA32_RTIT_CTL.TraceEn, a VM-exit that clears IA32_RTIT_CTL.TraceEn, an #SMI, or any time that either 
IA32_RTIT_STATUS.Stopped is set (e.g., by a TraceStop or ToPA stop condition) or IA32_RTIT_STATUS.Error is set 
(e.g., by an Intel PT output error). On processors that support PSB preservation (CPUID.(EAX=14H, 
ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will ensure that a PSB+ that is 
pending at the time PT is disabled will be recorded by setting IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will then 
be pended when the saved PT context is later restored.

35.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers 
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would 
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation 
resumes.
When the buffer overflow is cleared, an OVF packet (Section 35.4.2.16) is generated, and the processor ensures 
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that 
were lost. 
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon 
which tracing resumes after the overflow is cleared. If the overflow resolves while PacketEn=1, only timing packets 
may come between the OVF and the FUP. If the overflow resolves while PacketEn=0, any other packets that are not 
dependent on PacketEn may come between the OVF and the TIP.PGE. 

35.3.8.1  Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 35.2.4.3), continue during a 
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets, 



Vol. 3C 35-35

INTEL® PROCESSOR TRACE

however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further, 
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will 
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be 
dropped.

35.3.8.2  Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are 
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the 
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are 
lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly understand 
the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter 
wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter 
counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the 
cycle counter wrapped during the overflow, which could render this CYC misleading.

35.3.9 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment issues, 
ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in Section 
35.2.6.2 for details on ToPA errors, and Section 35.2.6.4 for details on restricted memory errors. Operational 
errors are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically, 
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable genera-
tion of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the 
processor encounters the problematic configuration. This could be as soon as packet generation is enabled but 
could also be later when the problematic entry or field needs to be used. 
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the error 
condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

35.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the 
interpretation code that will decode the data packets and apply it to the traced source code.

35.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly 
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP, 
TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions) 
to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between 
packets, and to use this packet context to determine how to bind the packet.
Section 35.4.1.1 below provides detailed descriptions of the packets, including how packets bind to IPs in the 
disassembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are gener-
ated in only a few scenarios. Those that require more consideration are typically part of “compound packet events”, 
such as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation 
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address 
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination 
address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
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Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or 
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3 
or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes 
indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound 
packet events is provided in Table 35-15; see Section 35.4.1.1 for more per-packet details and Section 35.7 for 
more detailed packet generation examples.

35.4.1.1  Packet Blocks
Packet blocks are a means to dump one or more groups of state values. Packet blocks begin with a Block Begin 
Packet (BBP), which indicates what type of state is held within the block. Following each BBP there may be one or 
more Block Item Packets (BIPs), which contain the state values. The block is terminated by either a Block End 
Packet (BEP) or another BBP indicating the start of a new block.
The BIP packet includes an ID value that, when combined with the Type field from the BBP that preceded it, 
uniquely identifies the state value held in the BIP payload. The size of each BIP packet payload is provided by the 
Size field in the preceding BBP packet.
Each block type can have up to 32 items defined for it. There is no guarantee, however, that each block of that type 
will hold all 32 items. For more details on which items to expect, see documentation on the specific block type of 
interest.
See the BBP packet description (Section 35.4.2.26) for details on packet block generation scenarios.
Packet blocks are entirely generated within an instruction or between instructions, which dictates the types of 
packets (aside from BIPs) that may be seen within a packet block. Packets that indicate control flow changes, or 
other indication of instruction completion, cannot be generated within a block. These are listed in the following 
table. Other packets, including timing packets, may occur between BBP and BEP.

It is possible to encounter an internal buffer overflow in the middle of a block. In such a case, it is guaranteed that 
packet generation will not resume in the middle of a block, and hence the OVF packet terminates the current block. 
Depending on the duration of the overflow, subsequent blocks may also be lost.

Table 35-15. Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional, 
uncompressed 

control-flow 
transfer

FUP or none Any combination 
of PIP, VMCS, 
MODE.Exec, or 
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets 
may vary. 

PIP/VMCS/MODE only if the operation modifies the state 
tracked by these respective packets.

TSX Update MODE.TSX, and 
(FUP or none)

None TIP, TIP.PGD, or 
none

FUP

TIP/TIP.PGD only for TSX abort cases.

Overflow OVF  PSB, PSBEND, or 
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Table 35-16. Packets Forbidden Between BBP and BEP

TNT

TIP, TIP.PGE, TIP.PGD

MODE.Exec, MODE.TSX

PIP, VMCS

TraceStop

PSB, PSBEND

PTW

MWAIT
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Decoder Implications

When a Block Begin Packet (BBP) is encountered, the decoder will need to decode some packets within the block 
differently from those outside a block. The Block Item Packet (BIP) header byte has the same encoding as a TNT 
packet outside of a block, but must be treated as a BIP header (with following payload) within one.
When an OVF packet is encountered, the decoder should treat that as a block ending condition. Packet generation 
will not resume within a block.

35.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 35-3 explains how to interpret them. 
Packet bits listed as “RSVD” are not guaranteed to be 0.

Figure 35-3.  Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other 
bits (Section 35.2.5).

Generation Scenario Which instructions, events, or other 
scenarios can cause this packet to be 
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to 
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number
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35.4.2.1  Taken/Not-taken (TNT) Packet

Table 35-17. TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 35.4.2.2) results, such that B1 is oldest 
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain from 
1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as 
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for 
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below. An implementation may choose to use long TNTs, short TNTs, or both.

Dependencies PacketEn Generation 
Scenario

On a conditional branch or compressed RET, if it fills the TNT. 
Also, partial TNTs may be generated at any time, as a result of 
other packets being generated, or certain micro-architectural 
conditions occurring, before the TNT is full.

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0
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35.4.2.2  Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the 
use of IP compression. IP compression is an optional compression technique the processor may choose to employ 
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP 
sent out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address 
bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state 
of the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the “Last IP” state in 

Description Provides the taken/not-taken results for the last 1..6 (Short TNT) or 1..47 (Long TNT) conditional branches (Jcc, 
J*CXZ, or LOOP) or compressed RETs (Section 35.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch
TNT payload bits are stored internal to the processor in a TNT buffer, until either the buffer is filled or another 
packet is to be generated. In either case a TNT packet holding the buffered bits will be emitted, and the TNT buffer 
will be marked as empty.

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should 
be applied to (and hence provide the destination for) the next N conditional branches or RETs.

Table 35-18. IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt, 
exception, INIT, SIPI, VM exit, VM entry, TSX abort, EENTER, EEXIT, ERE-
SUME, AEX1.

NOTES:

1. EENTER, EEXIT, ERESUME, AEX would be possible only for a debug enclave.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets 
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will 
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that 
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort 
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which 
will bind to the TIP packet. See the packet application descriptions for other packets for details.

Table 35-17. TNT Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero, hence if the first IP 
in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are 
provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a 
TIP/FUP packet is shown in the table below.

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the 
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 35-19), or compressed against 
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the full 
address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that 
applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code. 
In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0. 
When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet 
with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits 
(IPBytes <= 010b).

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET 
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can 
deduce the target IP by maintaining a CALL/RET stack of its own.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because the RET generates no TIP 
packet, it also does not update the internal Last IP value, and thus the decoder should treat it the same way. If the 
RET is not compressed, it will generate a TIP packet (just like when RET compression is disabled, via 
IA32_RTIT_CTL.DisRETC). 
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets. 

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry off 
the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length 
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have 
matching RETs. 

3. For near RETs, pop the top (youngest) entry off the stack. This will be the expected target of the RET.
In cases where a RET is compressed, the RET target is guaranteed to match the expected target from 3) above. If 
the target is not compressed, a TIP packet will be generated with the RET target, which may differ from the 
expected target in some cases.

Table 35-19. FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved
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The hardware ensures that packets read by the decoder will always have seen the CALL that corresponds to any 
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where Pack-
etEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last PSB, etc., 
will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a 
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP 
packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack, and 
a later RET uses this target.
For processors that employ deferred TIPs (Section 35.4.2.3), an uncompressed RET will not be deferred, and hence 
will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and make clear to the decoder whether 
the near RET was compressed, and hence a bit in the in-progress TNT should be consumed, or uncompressed, in 
which case there will be no in-progress TNT and thus a TIP should be consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the 
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode, 
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then 
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the CALL’s 
Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should match 
this behavior.

35.4.2.3  Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial 
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number 
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g., 
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other 
packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out 
the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth 
consumption, and hence the performance impact, incurred by tracing.

Table 35-20. TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c), 
TIP(0xcc00)

TNT(0b00100), TIP(0x1308), 
TIP(0x1100), FUP(0x110c), 
TIP(0xcc00)
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35.4.2.4  Packet Generation Enable (TIP.PGE) Packet

Table 35-21. TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE) Packet

Packet Format

Dependencies PacketEn transitions to 1 Generation 
Scenario

Any branch instruction, control flow transfer, or MOV 
CR3 that sets PacketEn, a WRMSR that enables 
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others 
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in 

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in 

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3. The 
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload 
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of 
the branch.

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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35.4.2.5  Packet Generation Disable (TIP.PGD) Packet

Table 35-22. TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD) Packet

Packet Format

Dependencies PacketEn transitions to 
0

Generation 
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears 
PacketEn, a WRMSR that disables packet generation and clears PacketEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or 
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when 

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the 
“IPBytes” field will have the value 0.

• FilterEn: This is cleared when software jumps out of the tracing region. This region is defined by enabling IP 
filtering in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3. 
The IP payload will depend on the type of the branch. For conditional branches, the payload is suppressed 
(IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other type of branch, 
the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See 
Section 35.2.4.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes” 
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or 
TNT bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result 
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case 
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced 
instead by the TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn. 
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce. 
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e., 
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a 
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether 
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload, 
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or 
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should 
apply to the next branch or MOV CR3 instruction.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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35.4.2.6  Flow Update (FUP) Packet

Table 35-23. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn & ContextEn.
(Typically depends on 
BranchEn and FilterEn as well, 
see Section 35.2.4 for details.)

Generation 
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit, 
#MC), PSB+, XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, EENTER, 
EEXIT, ERESUME, EEE, AEX,1, INTO, INT1, INT3, INT n, a WRMSR that 
disables packet generation.

NOTES:

1. EENTER, EEXIT, ERESUME, EEE, AEX apply only if Intel Software Guard Extensions is supported.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent 
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other 
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in 
the case of TSX aborts, see Section 35.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 35.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) packet will provide the destination 
IP. Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]
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FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do 
not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the 
source address cannot be inferred from the source, and hence a FUP will be sent. Table 35-24 illustrates cases 
where FUPs are sent, and which IP can be expected in those cases.

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to 
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is 
consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch 
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the 
stack or VMCS.

Table 35-24. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps, 
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that 
would have been executed

Functionally, this matches the LBR FROM field 
value and also the EIP value which is saved onto 
the stack.

Exceptions/Faults, Machine check 
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR 
FROM field value and also the EIP value which is 
saved onto the stack.

Software Interrupt Address of the software interrupt instruction 
(Current IP)

This matches the similar functionality of LBR 
FROM field value, but does not match the EIP 
value which is saved onto the stack (Next 
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave 
Exiting Event (EEE), AEX1 

NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3D.

Current IP of the instruction This matches the LBR FROM field value and also 
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND, 
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn, PSB+ Current IP
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35.4.2.7  Paging Information (PIP) Packet

Table 35-25. PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn && 
IA32_RTIT_CTL.OS

Generation 
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+, VM exit, 
VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus 
included. For other paging modes (32-bit and 4-level paging1), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit, if “conceal VMX from PT” VM-exit control is 0 (see Section 35.5.1)
• VM entry, if “conceal VMX from PT” VM-entry control is 0
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section 35.2.8.3 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP 
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper 
binaries to the linear addresses that are being traced. 
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX from PT” VM-execution control is 0 (see Section 35.5.1). All other PIPs clear the NR bit. 

NOTES:

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, 
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section 
35.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the 
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]
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35.4.2.8  MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to 
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a 
header and a mode byte, as shown below.

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 35-26. General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 35-27. MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

Dependencies PacketEn Generation 
Scenario

Far branch, interrupt, exception, VM exit, and VM entry, if the mode changes. 
PSB+, and any scenario that can generate a TIP.PGE, such that the mode may have 
changed since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values. 
Essential for the decoder to properly disassemble the associated binary.

MODE.Exec is sent at the time of a mode change, if PacketEn=1 at the time, or when tracing resumes, if necessary. 
In the former case, the MODE.Exec packet is generated along with other packets that result from the far transfer 
operation that changes the mode. In cases where the mode changes while PacketEn=0, the processor will send out 
a MODE.Exec along with the TIP.PGE when tracing resumes. The processor may opt to suppress the MODE.Exec 
when tracing resumes if the mode matches that from the last MODE.Exec packet, if there was no PSB in between.

Application MODE.Exec always immediately precedes a TIP or TIP.PGE. The mode change applies to the IP address in the payload 
of the next TIP or TIP.PGE.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode
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MODE.TSX Packet

Table 35-28. MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn and ContextEn Generation 
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if InTX 
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change 
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the 
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX 
generated before TIP.PGE need be applied.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally



Vol. 3C 35-49

INTEL® PROCESSOR TRACE

35.4.2.9  TraceStop Packet

35.4.2.10  Core:Bus Ratio (CBR) Packet

Table 35-29. TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation 
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region. 
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered 
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn 
before examining output. See Section 35.2.4.3 for more details.

Application If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared 
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop 
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 35-30. CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

After any frequency change, on C-state wake up, PSB+, and after 
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application The CBR packet indicates the point in the trace when a frequency transition has occurred. On some implementa-
tions, software execution will continue during transitions to a new frequency, while on others software execution 
ceases during frequency transitions. There is not a precise IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved
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35.4.2.11  Timestamp Counter (TSC) Packet

Table 35-31. TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn && 
TriggerEn

Generation 
Scenario

Sent after any event that causes the processor clocks or Intel PT timing 
packets (such as MTC or CYC) to stop, This may include P-state changes, 
wake from C-state, or clock modulation. Also on transition of TraceEn 
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the 
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with 
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake, 
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets 
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]
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35.4.2.12  Mini Time Counter (MTC) Packet

Table 35-32. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn && 
TriggerEn

Generation 
Scenario

Periodic, based on the core crystal clock, or Always Running Timer 
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common 
Timestamp Copy) payload value is set to (ART >> N) & FFH. The frequency of the ART is related to the Maximum 
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 35.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq 
field (see Section 35.2.7.2) to a supported value using the lookup enumerated by CPUID (see Section 35.3.1). 
See Section 35.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet. 
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit 
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was 
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the 
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The 
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be 
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]
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35.4.2.13  TSC/MTC Alignment (TMA) Packet

Table 35-33. TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn && 
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC 
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp 
counter ticks have passed since the last TSC or MTC packet. See Section 35.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload 
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]
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35.4.2.14  Cycle Count (CYC) Packet

Table 35-34. Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn && 
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is 
sent per core clock cycle. See Section 35.3.6 for CYC-eligible packets.

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length. 
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and 
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0. And so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be 
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 35.2.7.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see 
Section 35.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any 
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides 
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets 
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the 
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not 
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any 
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last 
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next 
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC 
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the 
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC 
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next 
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first 
branch in the TNT packet.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)
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35.4.2.15  VMCS Packet

Table 35-35. VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on PSB+, SMM 
VM exits, and VM entries that return from SMM (see Section 35-
51).

Description The VMCS packet provides a VMCS pointer for a decoder to determine the transition of code contexts:

• On a successful VMPTRLD (i.e., a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the 
logical processor’s VMCS pointer established by VMPTRLD (for subsequent execution of a VM guest context). 

• An SMM VM exit loads the logical processor’s VMCS pointer with the SMM-transfer VMCS pointer. If the “conceal 
VMX from PT” VM-exit control is 0 (see Section 35.5.1), a VMCS packet provides this pointer. See Section 35.6 on 
tracing inside and outside STM.

• A VM entry that returns from SMM loads the logical processor’s VMCS pointer from a field in the SMM-transfer 
VMCS. If the “conceal VMX from PT” VM-entry control is 0, a VMCS packet provides this pointer. Whether the 
VM entry is to VMX root operation or VMX non-root operation is indicated by the PIP.NR bit.

A VMCS packet generated before a VMCS pointer has been loaded, or after the VMCS pointer has been cleared will 
set all 64 bits in the VMCS pointer field.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow 
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context 
in situations that CR3 may not be unique. 
When a VMCS packet is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and 

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section 
35.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP. 

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS 
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS pointer [19:12]

3 VMCS pointer [27:20]

4 VMCS pointer [35:28]

5 VMCS pointer [43:36]

6 VMCS pointer [51:44]
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35.4.2.16  Overflow (OVF) Packet

35.4.2.17  Packet Stream Boundary (PSB) Packet

Table 35-36. OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If 
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See 
Section 35.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The 
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP 
packet that preceded the overflow.

Table 35-37. PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0
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35.4.2.18  PSBEND Packet

Dependencies TriggerEn Generation 
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent 
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software 
selected threshold after that. May be sent for other micro-architectural conditions 
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern 
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the 
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via 
IA32_RTIT_CTL.PSBFreq (see Section 35.2.7.2). Note, however, that the PSB period is not precise, it simply reflects 
the average number of output bytes that should pass between PSBs. The processor will make a best effort to 
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 35.3.7). 

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or 
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is 
included.

Table 35-38. PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 35.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

Table 35-37. PSB Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1
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35.4.2.19  Maintenance (MNT) Packet

35.4.2.20  PAD Packet

Table 35-39. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies  TriggerEn Generation Sce-
nario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this 
packet should simply be ignored. It does not bind to any IP.

Table 35-40. PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0
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35.4.2.21  PTWRITE (PTW) Packet

Table 35-41. PTW Packet Definition

Name PTW Packet

Packet Format

The PayloadBytes field indicates the number of bytes of payload that follow the header bytes. Encodings are as fol-
lows:

IP bit indicates if a FUP, whose payload will be the IP of the PTWRITE instruction, will follow.

Dependencies TriggerEn & ContextEn & FilterEn 
& PTWEn

Generation 
Scenario

PTWRITE Instruction

Description Contains the value held in the PTWRITE operand.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application Binds to the associated PTWRITE instruction. The IP of the PTWRITE will be provided by a following FUP, when 
PTW.IP=1.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP PayloadBytes 1 0 0 1 0

2 Payload[7:0]

3 Payload[15:8]

4 Payload[23:16]

5 Payload[31:24]

6 Payload[39:32]

7 Payload[47:40]

8 Payload[55:48]

9 Payload[63:56]

PayloadBytes Bytes of Payload

‘00 4

‘01 8

‘10 Reserved

‘11 Reserved
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35.4.2.22  Execution Stop (EXSTOP) Packet

Table 35-42. EXSTOP Packet Definition

Name EXSTOP Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation 
Scenario

C-state entry, P-state change, or other processor clock power-
down. Includes :
• Entry to C-state deeper than C0.0
• TM1/2
• STPCLK#
• Frequency change due to IA32_CLOCK_MODULATION, Turbo

Description This packet indicates that software execution has stopped due to processor clock powerdown. Later packets will 
indicate when execution resumes. 
If EXSTOP is generated while ContextEn is set, the IP bit will be set, and EXSTOP will be followed by a FUP packet 
containing the IP at which execution stopped. More precisely, this will be the IP of the oldest instruction that has 
not yet completed.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application If a FUP follows EXSTOP (hence IP bit set), the EXSTOP can be bound to the FUP IP. Otherwise the IP is not known. 
Time of powerdown can be inferred from the preceding CYC, if CYCEn=1. Combined with the TSC at the time of 
wake (if TSCEn=1), this can be used to determine the duration of the powerdown.

IP bit indicates if a FUP will follow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 1 1 0 0 0 1 0



35-60 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.23  MWAIT Packet

Table 35-43. MWAIT Packet Definition

Name MWAIT Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn & Contex-
tEn

Generation 
Scenario

MWAIT, UMWAIT, or TPAUSE instructions, or I/O redirection to 
MWAIT, that complete without fault or VMexit.

Description Indicates that an MWAIT operation to C-state deeper than C0.0 completed. The MWAIT hints and extensions passed 
in by software are exposed in the payload. For UMWAIT and TPAUSE, the EXT field holds the input register value 
that determines the optimized state requested.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no MWAIT packet is generated.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application The binding for the upcoming EXSTOP packet also applies to the MWAIT packet. See Section 35.4.2.22.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0

2 MWAIT Hints[7:0]

3 Reserved

4 Reserved

5 Reserved

6 Reserved EXT[1:0]

7 Reserved

8 Reserved

9 Reserved
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35.4.2.24  Power Entry (PWRE) Packet

Table 35-44. PWRE Packet Definition

Name PWRE Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation 
Scenario

Transition to a C-state deeper than C0.0.

Description Indicates processor entry to the resolved thread C-state and sub C-state indicated. The processor will remain in this 
C-state until either another PWRE indicates the processor has moved to a C-state deeper than C0.0, or a PWRX 
packet indicates a return to C0.0.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no PWRE packet is generated.
Note that some CPUs may allow MWAIT to request a deeper C-state than is supported by the core. These deeper C-
states may have platform-level implications that differentiate them. However, the PWRE packet will provide only 
the resolved thread C-state, which will not exceed that supported by the core.
If the C-state entry was initiated by hardware, rather than a direct software request (such as MWAIT, UMWAIT, 
TPAUSE, HLT, or shutdown), the HW bit will be set to indicate this. Hardware Duty Cycling (see Section 14.5, “Hard-
ware Duty Cycling (HDC)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B) is an 
example of such a case.

Application When transitioning from C0.0 to a deeper C-state, the PWRE packet will be followed by an EXSTOP. If that EXSTOP 
packet has the IP bit set, then the following FUP will provide the IP at which the C-state entry occurred. Subsequent 
PWRE packets generated before the next PWRX should bind to the same IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0

2 HW Reserved

3 Resolved Thread C-State Resolved Thread Sub C-State
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35.4.2.25  Power Exit (PWRX) Packet

Table 35-45. PWRX Packet Definition

Name PWRX Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation 
Scenario

Transition from a C-state deeper than C0.0 to C0.

Description Indicates processor return to thread C0 from a C-state deeper than C0.0.
For return from some highly optimized C0 sub-C-states, such as C0.1, no PWRX packet is generated.
The Last Core C-State field provides the MWAIT encoding for the core C-state at the time of the wake. The Deepest 
Core C-State provides the MWAIT encoding for the deepest core C-state achieved during the sleep session, or since 
leaving thread C0. MWAIT encodings for C-states can be found in Table 4-11 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B. Note that these values reflect only the core C-state, and hence will 
not exceed the maximum supported core C-state, even if deeper C-states can be requested.
The Wake Reason field is one-hot, encoded as follows:

Application PWRX will always apply to the same IP as the PWRE. The time of wake can be discerned from (optional) timing pack-
ets that precede PWRX.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0

2 Last Core C-State Deepest Core C-State

3 Reserved Wake Reason

4 Reserved

5 Reserved

6 Reserved

Bit Field Meaning

0 Interrupt Wake due to external interrupt received.

1 Timer Deadline Wake due to timer expiration, such as 
UMWAIT/TPAUSE TSC-quanta.

2 Store to Monitored Address Wake due to store to monitored address.

3 HW Wake Wake due to hardware autonomous condition, 
such as HDC.
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35.4.2.26  Block Begin Packet (BBP)

Table 35-46. Block Begin Packet Definition

Name BBP

Packet Format

Dependencies TriggerEn Generation 
Scenario

PEBS event, if IA32_PEBS_ENABLE.OUTPUT=1.

Description This packet indicates the beginning of a block of packets which are collectively tied to a single event or instruction. 
The size of the block item payloads within this block is provided by the Size (SZ) bit:
SZ=0: 8-byte block items
SZ=1: 4-byte block items
The meaning of the BIP payloads is provided by the Type field:

Application A BBP will always be followed by a Block End Packet (BEP), and when the block is generated while ContextEn=1 
that BEP will have IP=1 and be followed by a FUP that provides the IP to which the block should be bound. Note 
that, in addition to BEP, a block can be terminated by a BBP (indicating the start of a new block) or an OVF packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 1

2 SZ Reserved Type[4:0]

BBP.Type Block name

0x00 Reserved

0x01 General-Purpose Registers

0x02..0x03 Reserved

0x04 PEBS Basic

0x05 PEBS Memory

0x06..0x07 Reserved

0x08 LBR Block 0

0x09 LBR Block 1

0x0A LBR Block 2

0x0B..0x0F Reserved

0x10 XMM Registers

0x11..0x1F Reserved
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35.4.2.27  Block Item Packet (BIP)

BIP State Value Encodings

The table below provides the encoding values for all defined block items. State items that are larger than 8 bytes, 
such as XMM register values, are broken into multiple 8-byte components. BIP packets with Size=1 (4 byte 
payload) will provide only the lower 4 bytes of the associated state value.

Table 35-47. Block Item Packet Definition

Name BIP

Packet Format If the preceding BBP.SZ=0:

If the preceding BBP.SZ=1:

Dependencies TriggerEn Generation 
Scenario

See BBP.

Description The size of the BIP payload is determined by the Size field in the preceding BBP packet.
The BIP header provides the ID value that, when combined with the Type field from the preceding BBP, uniquely 
identifies the state value held in the BIP payload. See Table 35-48 below for the complete list.

Application See BBP.

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

General-Purpose Registers

0x01 0x00 R/EFLAGS

0x01 0x01 R/EIP

0x01 0x02 R/EAX

0x01 0x03 R/ECX

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

5 Payload[39:32]

6 Payload[47:40]

7 Payload[55:48]

8 Payload[63:56]

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]
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0x01 0x04 R/EDX

0x01 0x05 R/EBX

0x01 0x06 R/ESP

0x01 0x07 R/EBP

0x01 0x08 R/ESI

0x01 0x09 R/EDI

0x01 0x0A R8

0x01 0x0B R9

0x01 0x0C R10

0x01 0x0D R11

0x01 0x0E R12

0x01 0x0F R13

0x01 0x10 R14

0x01 0x11 R15

PEBS Basic Info (Section 18.9.2.2.1)

0x04 0x00 Instruction Pointer

0x04 0x01 Applicable Counters 

0x04 0x02 Timestamp 

PEBS Memory Info (Section 18.9.2.2.2)

0x05 0x00 MemAccessAddress

0x05 0x01 MemAuxInfo

0x05 0x02 MemAccessLatency

0x05 0x03 TSXAuxInfo

LBR_0

0x08 0x00 LBR[TOS-0]_FROM_IP

0x08 0x01 LBR[TOS-0]_TO_IP

0x08 0x02 LBR[TOS-0]_INFO

0x08 0x03 LBR[TOS-1]_FROM_IP

0x08 0x04 LBR[TOS-1]_TO_IP

0x08 0x05 LBR[TOS-1]_INFO

0x08 0x06 LBR[TOS-2]_FROM_IP

0x08 0x07 LBR[TOS-2]_TO_IP

0x08 0x08 LBR[TOS-2]_INFO

0x08 0x09 LBR[TOS-3]_FROM_IP

0x08 0x0A LBR[TOS-3]_TO_IP

0x08 0x0B LBR[TOS-3]_INFO

0x08 0x0C LBR[TOS-4]_FROM_IP

0x08 0x0D LBR[TOS-4]_TO_IP

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value
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0x08 0x0E LBR[TOS-4]_INFO

0x08 0x0F LBR[TOS-5]_FROM_IP

0x08 0x10 LBR[TOS-5]_TO_IP

0x08 0x11 LBR[TOS-5]_INFO

0x08 0x12 LBR[TOS-6]_FROM_IP

0x08 0x13 LBR[TOS-6]_TO_IP

0x08 0x14 LBR[TOS-6]_INFO

0x08 0x15 LBR[TOS-7]_FROM_IP

0x08 0x16 LBR[TOS-7]_TO_IP

0x08 0x17 LBR[TOS-7]_INFO

0x08 0x18 LBR[TOS-8]_FROM_IP

0x08 0x19 LBR[TOS-8]_TO_IP

0x08 0x1A LBR[TOS-8]_INFO

0x08 0x1B LBR[TOS-9]_FROM_IP

0x08 0x1C LBR[TOS-9]_TO_IP

0x08 0x1D LBR[TOS-9]_INFO

0x08 0x1E LBR[TOS-10]_FROM_IP

0x08 0x1F LBR[TOS-10]_TO_IP

LBR_1

0x09 0x00 LBR[TOS-10]_INFO

0x09 0x01 LBR[TOS-11]_FROM_IP

0x09 0x02 LBR[TOS-11]_TO_IP

0x09 0x03 LBR[TOS-11]_INFO

0x09 0x04 LBR[TOS-12]_FROM_IP

0x09 0x05 LBR[TOS-12]_TO_IP

0x09 0x06 LBR[TOS-12]_INFO

0x09 0x07 LBR[TOS-13]_FROM_IP

0x09 0x08 LBR[TOS-13]_TO_IP

0x09 0x09 LBR[TOS-13]_INFO

0x09 0x0A LBR[TOS-14]_FROM_IP

0x09 0x0B LBR[TOS-14]_TO_IP

0x09 0x0C LBR[TOS-14]_INFO

0x09 0x0D LBR[TOS-15]_FROM_IP

0x09 0x0E LBR[TOS-15]_TO_IP

0x09 0x0F LBR[TOS-15]_INFO

0x09 0x10 LBR[TOS-16]_FROM_IP

0x09 0x11 LBR[TOS-16]_TO_IP

0x09 0x12 LBR[TOS-16]_INFO

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value
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0x09 0x13 LBR[TOS-17]_FROM_IP

0x09 0x14 LBR[TOS-17]_TO_IP

0x09 0x15 LBR[TOS-17]_INFO

0x09 0x16 LBR[TOS-18]_FROM_IP

0x09 0x17 LBR[TOS-18]_TO_IP

0x09 0x18 LBR[TOS-18]_INFO

0x09 0x19 LBR[TOS-19]_FROM_IP

0x09 0x1A LBR[TOS-19]_TO_IP

0x09 0x1B LBR[TOS-19]_INFO

0x09 0x1C LBR[TOS-20]_FROM_IP

0x09 0x1D LBR[TOS-20]_TO_IP

0x09 0x1E LBR[TOS-20]_INFO

0x09 0x1F LBR[TOS-21]_FROM_IP

LBR_2

0x0A 0x00 LBR[TOS-21]_TO_IP

0x0A 0x01 LBR[TOS-21]_INFO

0x0A 0x02 LBR[TOS-22]_FROM_IP

0x0A 0x03 LBR[TOS-22]_TO_IP

0x0A 0x04 LBR[TOS-22]_INFO

0x0A 0x05 LBR[TOS-23]_FROM_IP

0x0A 0x06 LBR[TOS-23]_TO_IP

0x0A 0x07 LBR[TOS-23]_INFO

0x0A 0x08 LBR[TOS-24]_FROM_IP

0x0A 0x09 LBR[TOS-24]_TO_IP

0x0A 0x0A LBR[TOS-24]_INFO

0x0A 0x0B LBR[TOS-25]_FROM_IP

0x0A 0x0C LBR[TOS-25]_TO_IP

0x0A 0x0D LBR[TOS-25]_INFO

0x0A 0x0E LBR[TOS-26]_FROM_IP

0x0A 0x0F LBR[TOS-26]_TO_IP

0x0A 0x10 LBR[TOS-26]_INFO

0x0A 0x11 LBR[TOS-27]_FROM_IP

0x0A 0x12 LBR[TOS-27]_TO_IP

0x0A 0x13 LBR[TOS-27]_INFO

0x0A 0x14 LBR[TOS-28]_FROM_IP

0x0A 0x15 LBR[TOS-28]_TO_IP

0x0A 0x16 LBR[TOS-28]_INFO

0x0A 0x17 LBR[TOS-29]_FROM_IP

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value
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0x0A 0x18 LBR[TOS-29]_TO_IP

0x0A 0x19 LBR[TOS-29]_INFO

0x0A 0x1A LBR[TOS-30]_FROM_IP

0x0A 0x1B LBR[TOS-30]_TO_IP

0x0A 0x1C LBR[TOS-30]_INFO

0x0A 0x1D LBR[TOS-31]_FROM_IP

0x0A 0x1E LBR[TOS-31]_TO_IP

0x0A 0x1F LBR[TOS-31]_INFO

XMM Registers

0x10 0x00 XMM0_Q0

0x10 0x01 XMM0_Q1

0x10 0x02 XMM1_Q0

0x10 0x03 XMM1_Q1

0x10 0x04 XMM2_Q0

0x10 0x05 XMM2_Q1

0x10 0x06 XMM3_Q0

0x10 0x07 XMM3_Q1

0x10 0x08 XMM4_Q0

0x10 0x09 XMM4_Q1

0x10 0x0A XMM5_Q0

0x10 0x0B XMM5_Q1

0x10 0x0C XMM6_Q0

0x10 0x0D XMM6_Q1

0x10 0x0E XMM7_Q0

0x10 0x0F XMM7_Q1

0x10 0x10 XMM8_Q0

0x10 0x11 XMM8_Q1

0x10 0x12 XMM9_Q0

0x10 0x13 XMM9_Q1

0x10 0x14 XMM10_Q0

0x10 0x15 XMM10_Q1

0x10 0x16 XMM11_Q0

0x10 0x17 XMM11_Q1

0x10 0x18 XMM12_Q0

0x10 0x19 XMM12_Q1

0x10 0x1A XMM13_Q0

0x10 0x1B XMM13_Q1

0x10 0x1C XMM14_Q0

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value
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35.4.2.28  Block End Packet (BEP)

35.5 TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. The VMM can 
configure specific VMX controls to control what virtualization-specific data is included within the trace packets (see 
Section 35.5.1 for details). The VMM can also configure the VMCS to limit tracing to non-root operation, or to trace 
across both root and non-root operation. The VMCS controls exist to simplify virtualization of Intel PT for guest use, 
including the “Clear IA32_RTIT_CTL” exit control (See Section 24.7.1), “Load IA32_RTIT_CTL” entry control (See 
Section 24.8.1), and “Intel PT uses guest physical addresses” execution control (See Section 25.5.3).
For older processors that do not support these VMCS controls, the MSR-load areas used by VMX transitions can be 
employed by the VMM to restrict tracing to the desired context. See Section 35.5.2 for details. Tracing with SMM 
Transfer Monitor is described in Section 35.6.

35.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, a decoder in the host or VMM context can identify the occurrences of VMX 
transitions with the aid of VMX-specific packets. There are two kinds of packets relevant to VMX:
• VMCS packet. The VMX transitions of individual VMs can be distinguished by a decoder using the VMCS-

pointer field in a VMCS packet. A VMCS packet is sent on a successful execution of VMPTRLD, and its VMCS-
pointer field stores the VMCS pointer loaded by that execution. See Section 35.4.2.15 for details.

• The NR (non-root) bit in a PIP packet. Normally, the NR bit is set in any PIP packet generated in VMX non-
root operation. In addition, PIP packets are generated with each VM entry and VM exit. Thus a transition of the 
NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of 
a VM exit.

There are VMX controls that a VMM can set to conceal some of this VMX-specific information (by suppressing its 
recording) and thereby prevent it from leaking across virtualization boundaries. There is one of these controls 
(each of which is called “conceal VMX from PT”) of each type of VMX control.

0x10 0x1D XMM14_Q1

0x10 0x1E XMM15_Q0

0x10 0x1F XMM15_Q1

Table 35-49. Block End Packet Definition

Name BEP

Packet Format

Dependencies TriggerEn Generation 
Scenario

See BBP.

Description Indicates the end of a packet block. The IP bit indicates if a FUP will follow, and will be set if ContextEn=1.

Application The block, from initial BBP to the BEP, binds to the FUP IP, if IP=1, and consumes the FUP.

Table 35-48. BIP Encodings

BBP.Type BIP.ID State Value

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 0 1 1 0 0 1 1
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The 0-settings of these VMX controls enable all VMX-specific packet information. The scenarios that would use 
these default settings also do not require the VMM to use VMX MSR-load areas to enable and disable trace-packet 
generation across VMX transitions.
If IA32_VMX_MISC[bit 14] reports 0, the 1-settings of the VMX controls in Table 35-50 are not supported, and 
VM entry will fail on any attempt to set them.

35.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host executive 
can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be modi-
fied across VMX transitions.
For tracing scenarios that collect packets only within VMX root operation or only within VMX non-root operation, the 
VMM can toggle IA32_RTIT_CTL.TraceEn on VMX transitions.

35.5.2.1  System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the relevant VMX 
controls clear to allow VMX-specific packets to provide information across VMX transitions.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are 
shown in Table 35-51.

Table 35-50. VMX Controls For Intel Processor Trace

Type of VMX 
Control

Bit 
Position1

NOTES:

1. These are the positions of the control bits in the relevant VMX control fields.

Value Behavior

Secondary 
processor-based 
VM-execution 
control

19 0 Each PIP generated in VM non-root operation will set the NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure that the decoder 
knows which guest is currently in use.

1 Each PIP generated in VMX non-root operation will clear the NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

VM-exit control 24 0 Each VM exit generates a PIP in which the NR bit is clear.

In addition, SMM VM exits generate VMCS packets.

1 VM exits do not generate PIPs, and no VMCS packets are generated on SMM VM exits.

VM-entry control 17 0 Each VM entry generates a PIP in which the NR bit is set (except VM entries that return 
from SMM to VMX root operation).

In addition, VM entries that return from SMM generate VMCS packets.

1 VM entries do not generate PIPs, and no VMCS packets are generated on VM entries that 
return from SMM.
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Since the VMX controls that suppress packet generation are cleared, a VMCS packet will be included in all PSB+ for 
this usage scenario. Additionally, VMPTRLD will generate such a packet. Thus the decoder can distinguish the 
execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report 
CPUID.(EAX=07H, ECX=0):EBX[bit 26] as 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a 
VMM’s use of the TSC offsetting or TSC scaling VMX controls (see Chapter 25, “VMX Non-Root Operation”). In this 
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC 
packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in 
VMX root operation. The VMM can supply this information to the decoder.

35.5.2.2  Guest-Only Tracing
A VMM can configure trace-packet generation while in VMX non-root operation for guests executing normally. This 
is accomplished by utilizing VMCS controls to manipulate the guest IA32_RTIT_CTL value on VMX transitions. For 
older processors that do not support these VMCS controls, a VMM can use the VMX MSR-load areas on VM exits 
(see Section 24.7.2, “VM-Exit Controls for MSRs”) and VM entries (see Section 24.8.2, “VM-Entry Controls for 
MSRs”) to limit trace-packet generation to the guest environment. 
For this usage, VM-entry is programmed to enable trace packet generation, while VM-exit is programmed to clear 
IA32_RTIT_CTL.TraceEn so as to disable trace-packet generation in the host. Further, if it is preferred that the 
guest packet stream contain no indication that execution was in VMX non-root operation, the VMM should set to 
1 all the VMX controls enumerated in Table 35-50.

35.5.2.3  Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state, 
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert 
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet 
normally generated on the CR3 write will be missing.

Table 35-51. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the guest flow the VM exit occurred. This is important, 
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that the logical processor 
is entering VMX root operation. This allows the decoder to identify the change of executing 
context from guest to host and load the appropriate set of binaries to continue decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX root 
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is 
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new guest CR3 value, as well as indication that the logical 
processor is entering VMX non-root operation. This allows the decoder to identify the change 
of executing context from host to guest and load the appropriate set of binaries to continue 
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX non-
root operation. This should match the RIP loaded from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is 
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.
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To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it 
into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the 
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace 
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned 
with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet 
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

35.5.2.4  TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in CPUID 
leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will allow the 
decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose frequency is 
indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency to the Max 
Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be unable to prop-
erly track time in the trace. See Section 35.8.3 for details on tracking time within an Intel PT trace.

35.5.2.5  Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of 
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be 
generated, depending on implementation choice, and the point of failure.

35.5.2.6  VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some packets 
(FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

35.6 TRACING AND SMM TRANSFER MONITOR (STM)
The SMM-transfer monitor (STM) is a VMM that operates inside SMM while in VMX root operation. An STM operates 
in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions 
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a 
VM entry to the VM in VMX non-root operation or the executive monitor in VMX root operation. 
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 35.5. 
As a result, on a SMM VM exit resulting from #SMI, TraceEn is neither saved nor cleared by default. Software can 
save the state of the trace configuration MSRs and clear TraceEn using the MSR load/save lists. 

Table 35-52. Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall 
through to next IP)

Late Failure (VM-exit like)

System-Wide No use of “Load 
IA32_RTIT_CTL” entry 
control or VM-entry 
MSR-load area

TIP (NextIP) PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section 
35.2.7.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only “Load IA32_RTIT_CTL” 
entry control or VM-
entry MSR-load area 
used to clear TraceEn

TIP (NextIP) TraceEn 0->1 Packets (See Section 35.2.7.3), TIP(HostIP)

VM Only “Load IA32_RTIT_CTL” 
entry control or VM-
entry MSR-load area 
used to set TraceEn

None None
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35.7 PACKET GENERATION SCENARIOS
Table 35-53 and Table 35-55 illustrate the packets generated in various scenarios. In the heading row, PacketEn is 
abbreviated as PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while Trig-
gerEn=1 and Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet 
generation are marked “D.C.” Packets followed by a “?” imply that these packets depend on additional factors, 
which are listed in the “Other Dependencies” column.
There are additional scenarios, not covered below, where PSB+ packets (Section 35.3.7) may be generated. These 
include periodic PSB+ as well as use of IA32_RTIT_CTL.InjectPsbPmiOnEnable[56]=1 to preserve PSBs.
The following acronyms are used in the packet examples below:
• CLIP - Current LIP
• NLIP - Next Sequential LIP
• BLIP - Branch Target LIP
In Table 35-53, PktEn is evaluated based on TriggerEn & ContextEn & FilterEn & BranchEn.

Table 35-53. Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output

1a Normal non-jump operation 0 0 D.C. None

1b Normal non-jump operation 1 1 1 None

2a WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt >0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

2b WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt =0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

PSB, PSBEND (see Sec-
tion 35.4.2.17)

2d WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt >0

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
MODE.Exec, TIP.PGE(NLIP)

2e WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt =0

0 1 1 MODE.Exec, 
TIP.PGE(NLIP), PSB, 
PSBEND (see Section 
35.4.2.8, 35.4.2.7, 
35.4.2.13,35.4.2.15, 
35.4.2.17)

3a WRMSR that changes TraceEn 1 -> 0 0 0 D.C. None

3b WRMSR that changes TraceEn 1 -> 0 1 0 D.C. FUP(CLIP), TIP.PGD()

5a MOV to CR3 0 0 0 None

5b MOV to CR3 0 1 1 *PIP.NR=1 if not in root 
operation and the “conceal 
VMX from PT” VM-execu-
tion control is 0
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?), 
MODE.Exec?, 
TIP.PGE(NLIP)

5c MOV to CR3 1 0 0 TIP.PGD()

5d MOV to CR3 1 1 1 *PIP.NR=1 if not in root 
operation and the “conceal 
VMX from PT” VM-execu-
tion control is 0

PIP(NewCR3, NR?)
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5e MOV to CR3 1 0 1 *PIP.NR=1 if not in root 
operation and the “conceal 
VMX from PT” VM-execu-
tion control is 0
*TraceStop if executed in a
TraceStop region

PIP(NewCR3, NR?), 
TIP.PGD(NLIP), TraceStop?

5f MOV to CR3 0 0 1 TraceStop if executed in a
TraceStop region

PIP(NewCR3,NR?), Trace-
Stop?

6a Unconditional direct near branch 0 0 D.C. None

6b Unconditional direct near branch 1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(BLIP), TraceStop?

6c Unconditional direct near branch 0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

6d Unconditional direct near branch 1 1 1 None

7a Conditional taken jump or compressed 
RET that does not fill up the internal 
TNT buffer

0 0 D.C. None

7b Conditional taken jump or compressed 
RET

0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

7d Conditional taken jump or compressed 
RET that fills up the internal TNT buf-
fer

1 1 1 TNT

7e Conditional taken jump or compressed 
RET, with empty TNT buffer

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(), TraceStop?

7f Conditional taken jump or compressed 
RET, with non-empty TNT buffer

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TNT, TIP.PGD(), TraceS-
top?

8a Conditional non-taken jump 0 0 D.C. None

8d Conditional not-taken jump that fills up 
the internal TNT buffer

1 1 1 TNT

9a Near indirect jump (JMP, CALL, or 
uncompressed RET)

0 0 D.C. None

9b Near indirect jump (JMP, CALL, or 
uncompressed RET)

0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

9c Near indirect jump (JMP, CALL, or 
uncompressed RET)

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(BLIP), TraceStop?

9d Near indirect jump (JMP, CALL, or 
uncompressed RET)

1 1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET/SYS*/IRET) 0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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10b Far Branch (CALL/JMP/RET/SYS*/IRET) 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(new CR3, NR?), 
MODE.Exec?, 
TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET/SYS*/IRET) 1 0 0 TIP.PGD()

10d Far Branch (CALL/JMP/RET/SYS*/IRET) 1 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), 
TIP.PGD(BLIP), TraceStop?

10e Far Branch (CALL/JMP/RET/SYS*/IRET) 1 1 1 *PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

PIP(NewCR3, NR?)?, 
MODE.Exec?, TIP(BLIP)

10f Far Branch (CALL/JMP/RET/SYS*/IRET) 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

11a HW Interrupt 0 0 0 None

11b HW Interrupt 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(new CR3, NR?), 
MODE.Exec?, 
TIP.PGE(BLIP)

11c HW Interrupt 1 0 0 FUP(NLIP), TIP.PGD()

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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11d HW Interrupt 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(NLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop?

11e HW Interrupt 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(NLIP), PIP(NewCR3, 
NR?)?, MODE.Exec?, 
TIP(BLIP)

11f HW Interrupt 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

12a SW Interrupt 0 0 0 None

12b SW Interrupt 0 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?)?, 
MODE.Exec?, 
TIP.PGE(BLIP)

12c SW Interrupt 1 0 0 FUP(CLIP), TIP.PGD()

12d SW Interrupt 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop?

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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12e SW Interrupt 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(CLIP), PIP(NewCR3, 
NR?)?, MODE.Exec?, 
TIP(BLIP)

12f SW Interrupt 0 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(NewCR3, NR?)?, 
TraceStop?

13a Exception/Fault 0 0 0 None

13b Exception/Fault 0 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?)?, 
MODE.Exec?, 
TIP.PGE(BLIP)

13c Exception/Fault 1 0 0 FUP(CLIP), TIP.PGD()

13d Exception/Fault 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop?

13e Exception/Fault 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(CLIP), PIP(NewCR3, 
NR?)?, MODE.Exec?, 
TIP(BLIP)

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
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CntxEn 
After

Other Dependencies Packets Output
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13f Exception/Fault 0 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation and the 
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(NewCR3, NR?)?, 
TraceStop?

14a SMI (TraceEn cleared) 0 0 D.C. None

14b SMI (TraceEn cleared) 1 0 0 FUP(SMRAM.LIP), 
TIP.PGD()

14c SMI (TraceEn cleared) 1 1 1 NA 

14f SMI (TraceEn cleared) 1 0 1 NA 

15a RSM, TraceEn restored to 0 0 0 0 None

15b RSM, TraceEn restored to 1 0 0 D.C. See WRMSR cases for 
packets on enable

15c RSM, TraceEn restored to 1 0 1 1 See WRMSR cases for 
packets on enable. 
FUP/TIP.PGE IP is 
SMRAM.LIP

15d RSM (TraceEn=1, goes to shutdown) 1 1 1 None

15e RSM (TraceEn=1, goes to shutdown) 1 0 0 None

15f RSM (TraceEn=1, goes to shutdown) 1 0 1 None

16a VM exit 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit 
control is 0;
*TraceStop if VMCSh.LIP is 
in a TraceStop region

PIP(HostCR3, NR=0)?, 
TraceStop?

16b VM exit, MSR list sets TraceEn=1 0 0 0 See WRMSR cases for 
packets on enable. FUP IP 
is VMCSh.LIP

16c VM exit, MSR list sets TraceEn=1 0 1 1 See WRMSR cases for 
packets on enable. 
FUP/TIP.PGE IP is 
VMCSh.LIP

16e VM exit 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit 
control is 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(HostCR3, NR=0)?, 
MODE.Exec?, 
TIP.PGE(VMCSh.LIP)

16f VM exit, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit 
control is 0;

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
TIP.PGD

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)
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16g VM exit 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit 
control is 0;
*TraceStop if VMCSh.LIP is 
in a TraceStop region

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
TIP.PGD(VMCSh.LIP), 
TraceStop?

16h VM exit 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit 
control is 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
MODE.Exec, 
TIP(VMCSh.LIP)

16i VM exit 0 0 0 None

16j VM exit, ContextEN 1->0 1 0 0 FUP(VMCSg.LIP), TIP.PGD

17a VM entry 0 0 0 None

17b VM entry 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is 
in a TraceStop region

PIP(GuestCR3, NR=1)?, 
TraceStop?

17c VM entry, MSR load list sets 
TraceEn=1

0 0 1 See WRMSR cases for 
packets on enable. FUP IP 
is VMCSg.LIP

17d VM entry, MSR load list sets 
TraceEn=1

0 1 1 See WRMSR cases for 
packets on enable. 
FUP/TIP.PGE IP is 
VMCSg.LIP

17f VM entry, FilterEN 0->1 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(GuestCR3, NR=1)?, 
MODE.Exec?, 
TIP.PGE(VMCSg.LIP)

17g VM entry, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;

PIP(GuestCR3, NR=1)?, 
TIP.PGD

17h VM entry 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is 
in a TraceStop region

PIP(GuestCR3, NR=1)?, 
TIP.PGD(VMCSg.LIP), 
TraceStop?

17i VM entry 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(GuestCR3, NR=1)?, 
MODE.Exec, 
TIP(VMCSg.LIP)

17j VM entry, ContextEN 0->1 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec, 
TIP.PGE(VMCSg.LIP)

20a EENTER/ERESUME to non-debug 
enclave

0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)
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20c EENTER/ERESUME to non-debug 
enclave

1 0 0 FUP(CLIP), TIP.PGD()

21a EEXIT from non-debug enclave 0 0 D.C. None

21b EEXIT from non-debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)

22a AEX/EEE from non-debug enclave 0 0 D.C. None

22b AEX/EEE from non-debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(AEP.LIP)

23a EENTER/ERESUME to debug enclave 0 0 D.C. None

23b EENTER/ERESUME to debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)

23c EENTER/ERESUME to debug enclave 1 0 0 FUP(CLIP), TIP.PGD()

23d EENTER/ERESUME to debug enclave 0 0 1 *TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), TIP.PGD(BLIP), 
TraceStop?

23e EENTER/ERESUME to debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24b EEXIT from debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)

24d EEXIT from debug enclave 1 0 1 *TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), TIP.PGD(BLIP), 
TraceStop?

24e EEXIT from debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24f EEXIT from debug enclave 0 0 D.C. None

25a AEX/EEE from debug enclave 0 0 D.C. None

25b AEX/EEE from debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

 MODE.Exec?, 
TIP.PGE(AEP.LIP)

25d AEX/EEE from debug enclave 1 0 1 *For AEX, FUP IP could be 
NLIP, for trap-like events

FUP(CLIP), 
TIP.PGD(AEP.LIP)

25e AEX/EEE from debug enclave 1 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 
*For AEX, FUP IP could be 
NLIP, for trap-like events

FUP(CLIP), MODE.Exec?, 
TIP(AEP.LIP)

26a XBEGIN/XACQUIRE 0 0 D.C. None

26d XBEGIN/XACQUIRE that does not set 
InTX

1 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 1 MODE.TSX(InTX=1, 
TXAbort=0), FUP(CLIP)

27a XEND/XRELEASE 0 0 D.C. None

27d XEND/XRELEASE that does not clear 
InTX

1 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 1 MODE.TSX(InTX=0, 
TXAbort=0), FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 0 None

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
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Other Dependencies Packets Output
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In Table 35-54, PktEn is evaluated based on (TriggerEn & ContextEn & PwrEvtEn).

28b XABORT(Async XAbort, or other) 0 1 1 MODE.TSX(InTX=0, 
TXAbort=1), 
TIP.PGE(BLIP)

28c XABORT(Async XAbort, or other) 1 0 1 *TraceStop if BLIP is in a 
TraceStop region

MODE.TSX(InTX=0, 
TXAbort=1), TIP.PGD 
(BLIP), TraceStop?

28d XABORT(Async XAbort, or other) 1 1 1 MODE.TSX(InTX=0, 
TXAbort=1), FUP(CLIP), 
TIP(BLIP)

28e XABORT(Async XAbort, or other) 0 0 1 *TraceStop if BLIP is in a 
TraceStop region

MODE.TSX(InTX=0, 
TXAbort=1), TraceStop?

30a INIT (BSP) 0 0 0 None

30b INIT (BSP) 0 0 1 *TraceStop if RESET.LIP is in 
a TraceStop region

PIP(0), TraceStop?

30c INIT (BSP) 0 1 1 * MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, PIP(0), 
TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 0 FUP(NLIP), TIP.PGD()

30e INIT (BSP) 1 0 1 * PIP if OS=1
*TraceStop if RESET.LIP is in 
a TraceStop region

FUP(NLIP), PIP(0), 
TIP.PGD, TraceStop?

30f INIT (BSP) 1 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB
* PIP if OS=1

FUP(NLIP), PIP(0)?, 
MODE.Exec?, 
TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. D.C. None

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. D.C. * PIP if OS=1 FUP(NLIP), PIP(0)

32a SIPI 0 0 0 None

32c SIPI 0 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?, TIP.PGE(SIPI-
LIP)

32d SIPI 1 0 0 TIP.PGD

32e SIPI 1 0 1 *TraceStop if SIPI LIP is in a 
TraceStop region

TIP.PGD(SIPILIP); TraceS-
top?

32f SIPI 1 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?, TIP(SIPILIP)

33a MWAIT (to C0) D.C. D.C. D.C. None

33b MWAIT (to higher-numbered C-State, 
packet sent on wake)

D.C. D.C. D.C. *TSC if TSCEn=1
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

Table 35-53. Packet Generation under Different Enable Conditions (Contd.)
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Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
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Other Dependencies Packets Output

16.1 MWAIT or I/O redir to MWAIT, gets 
#UD or #GP fault

D.C. D.C. D.C. None

16.2 MWAIT or I/O redir to MWAIT, 
VM exits

D.C. D.C. D.C. See VM exit examples 
(16[a-z] in Table 35-53) 
for BranchEn packets.

16.3 MWAIT or I/O redir to MWAIT, 
requests C0, or monitor not armed, 
or VMX virtual-interrupt delivery

D.C. D.C. D.C. None

16.4a MWAIT(X) or I/O redir to MWAIT, 
goes to C-state Y (Y>0)

D.C. 0 0 PWRE(Cx), EXSTOP

16.4b MWAIT(X) or I/O redir to MWAIT, 
goes to C-state Y (Y>0)

D.C. D.C. 1 MWAIT(Cy), PWRE(Cx), 
EXSTOP(IP), FUP(CLIP)

16.5a MWAIT(X) or I/O redir to MWAIT, 
Pending event after resolving to go 
to C-state Y (Y>0)

D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP, TSC?, 
TMA?, CBR, PWRX(LCC, 
DCC, 0)

16.5b MWAIT(X) or I/O redir to MWAIT, 
Pending event after resolving to go 
to C-state Y (Y>0)

D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP(IP), 
FUP(CLIP), TSC?, TMA?, 
CBR, PWRX(LCC, DCC, 0)

16.6a MWAIT(5) or I/O redir to MWAIT, 
other thread(s) in core in C0/C1

D.C. 0 0 PWRE(C1), EXSTOP

16.6b MWAIT(5) or I/O redir to MWAIT, 
other thread(s) in core in C0/C1

D.C. D.C. 1 MWAIT(5), PWRE(C1), 
EXSTOP(IP), FUP(CLIP)

16.9a HLT, Triple-fault shutdown, #MC 
with CR4.MCE=0, RSM to Cx (x>0)

D.C. 0 0 PWRE(C1), EXSTOP

16.9b HLT, Triple-fault shutdown, #MC 
with CR4.MCE=1, RSM to Cx (x>0)

D.C. D.C. PWRE(C1), EXSTOP(IP), 
FUP(CLIP)

16.10a VMX abort D.C. 0 0 See “VMX Abort” (cases 
16* and 18* in Table 35-
53) for BranchEn packets 
that precede

PWRE(C1), EXSTOP

16.10b VMX abort D.C. D.C. 1 See “VMX Abort” (cases 
16* and 18* in Table 35-
53) for BranchEn packets 
that precede

PWRE(C1), EXSTOP(IP), 
FUP(CLIP)

16.11a RSM to Shutdown D.C. 0 0 See “RSM to Shutdown” 
(cases 15[def] in Table 
35-53) for BranchEn 
packets that precede

PWRE(C1), EXSTOP
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16.11b RSM to Shutdown D.C. D.C. 1 See “RSM to Shutdown” 
(cases 15[def] in Table 
35-53) for BranchEn 
packets that precede

PWRE(C1), EXSTOP(IP), 
FUP(CLIP)

16.12a INIT (BSP) D.C. 0 0 See “INIT (BSP)” (cases 
30[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP

16.12b INIT (BSP) D.C. D.C. 1 See “INIT (BSP)” (cases 
30[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP(IP), 
FUP(NLIP)

16.13a INIT (AP, goes to Wait-for-SIPI) D.C. 0 0 See “INIT (AP, goes to 
Wait-for-SIPI)” (cases 
31[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP

16.13b INIT (AP, goes to Wait-for-SIPI) D.C. D.C. 1 See “INIT (AP, goes to 
Wait-for-SIPI)” (cases 
31[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP(IP), 
FUP(NLIP)

16.14a Hardware Duty Cycling (HDC) D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXSTOP, 
TSC?, TMA?, CBR, 
PWRX(CC6, CC6, 0x8)

16.14b Hardware Duty Cycling (HDC) D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXS-
TOP(IP), FUP(NLIP), TSC?, 
TMA?, CBR, PWRX(CC6, 
CC6, 0x8)

16.15a VM entry to HLT or Shutdown D.C. 0 0 See “VM entry” (cases 
17[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP

Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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In Table 35-55, PktEn is evaluated based on (TriggerEn & ContextEn & FilterEn & PTWEn).

16.15b VM entry to HLT or Shutdown D.C. D.C. 1 See “VM entry” (cases 
17[a-z] in Table 35-53) 
for BranchEn packets that 
precede

PWRE(C1), EXSTOP(IP), 
FUP(CLIP)

16.16a EIST in C0, S1/TM1/TM2, or STP-
CLK#

D.C. 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP, TSC?, TMA?, CBR

16.16b EIST in C0, S1/TM1/TM2, or STP-
CLK#

D.C. D.C. 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP(IP), FUP(NLIP), 
TSC?, TMA?, CBR

16.17 EIST in Cx (x>0) D.C. D.C. D.C. None

16.18 INTR during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
PWRX(LCC, DCC, 0x1)

See “HW Interrupt” (cases 
11[a-z] in Table 35-53) 
for BranchEn packets that 
follow.

16.18 SMI during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases 
14[a-z] in Table 35-53) 
for BranchEn packets that 
follow.

16.19 NMI during Cx (x>0) D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases 
11[a-z] in Table 35-53) 
for BranchEn packets that 
follow.

16.20 Store to monitored address during 
Cx (x>0)

D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
PWRX(LCC, DCC, 0x4)

16.22 #MC, IERR, TSC deadline timer 
expiration,  or APIC counter under-
flow during Cx (x>0)

D.C. D.C. D.C. * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
PWRX(LCC, DCC, 0)

Table 35-55. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
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CntxEn 
After
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16.24a PTWRITE rm32/64, no fault D.C. D.C. D.C. None

16.24b PTWRITE rm32/64, no fault D.C. 0 0 None

Table 35-54. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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35.8 SOFTWARE CONSIDERATIONS

35.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in 
Section Section 35.2.8.3, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to 
enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follow:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM. 

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible 
LIP vs RIP confusion. 

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM. 

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had 
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any 
other configuration MSRs that were modified. 

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and 
the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 35.3.1.2), any RSM 
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

35.8.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor 
that supports Intel PT but may run under any operating system. 
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transition 
of single-use hardware resources, similar to how performance monitoring tools handle performance monitoring 
hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see architec-

tural MSRs with the prefix “IA32_RTIT_” in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 4, where “in-use” can be determined by reading the 
“enable bits” in the configuration MSRs.

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration 
MSRs.

16.24d PTWRITE rm32, no fault D.C. 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 4B, 
rm32_value), FUP(CLIP)?

16.24e PTWRITE rm64, no fault D.C. 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 8B, 
rm64_value), FUP(CLIP)?

16.25a PTWRITE mem32/64, fault D.C. D.C. D.C. See “Exception/fault” 
(cases 13[a-z] in Table 
35-53) for BranchEn 
packets.

Table 35-55. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn 
Before
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CntxEn 
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35.8.3 Tracking Time 
This section describes the relationships of several clock counters whose update frequencies reside in different 
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregu-
larity of the occurrences of various timing packets that store those clock counters. 
Intel PT provides time information for three different but related domains:
• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp
counter will continue to increment when the processor is in deep C-States, with the exception of processors
reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock 

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can be calculated as 
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower than 
that of the timestamp counter. The periodic MTC packet is generated based on software-selected multiples of 
the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides 
elapsed time as measured in processor core clock cycles relative to the last CYC packet. 

A decoder can use all or some combination of these packets to track time at different resolutions throughout the 
trace packets.

35.8.3.1  Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset; 

The CoreCrystalClockValue, also known as the Always Running Timer (ART) value, can provide the coarse-grained 
component of the TSC value. P, or the TSC/ART ratio, can be derived from CPUID leaf 15H, as described in Section 
35.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core 
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal 
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum 
Non-Turbo (or P1) frequency. 
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as 
IA32_TSC_ADJUST. 

35.8.3.2  Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula 
provided in Section 35.8.3.1 above provides the framework for how such an estimate can be calculated from the 
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate 
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC 
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf 
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means 
to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles 
passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B. 
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the 
TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the Adjust-
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edProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core 
crystal clock value of the TSC packet. 
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can 
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by 
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
The TMA.FastCounter field provides the number of AdjustedProcessorCycles since the last crystal clock rising edge, 
from which it can be determined the percentage of the next crystal clock cycle that had passed at the time of the 
TSC packet. 
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by 
providing an indication of the time passed between other timing packets (MTCs or TSCs). 
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor 
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC 
values can be used to estimate the AdjustedProcessorCycles component of the timestamp value. The accumulated 
CPU cycles will have to be adjusted to account for the difference in frequency between the processor core clock and 
the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the CBR 
packet, by multiplying the accumulated cycle count value by P1/CBRpayload. 
Note that stand-alone TSC packets (that is, TSC packets that are not a part of a PSB+) are typically generated only 
when generation of other timing packets (MTCs and CYCs) has ceased for a period of time. Example scenarios 
include when Intel PT is re-enabled, or on wake after a sleep state. Thus any calculated estimate of the timestamp 
value leading up to a TSC packet will likely result in a discrepancy, which the TSC packet serves to correct.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 35.8.3.4 below for 
a method to do so using Intel PT packets. 
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in 
estimated TSC precision.

35.8.3.3  VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC 
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 25, “VMX Non-
Root Operation” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as 
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC 
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 35.5.2.4 for details.

35.8.3.4  Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the 
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC 
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the 
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it 
can be applied to determine the CPU frequency. See Section 35.8.3.1 above for details on the relationship between 
TSC, MTC, and CYC.
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27.Updates to Chapter 40, Volume 3D
Change bars show changes to Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
Changes to this chapter: Typo correction in the EDBGWR instruction.
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CHAPTER 40
SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions 
(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor), ENCLU 
(user), and the ENCLV (virtualization operation) instruction mnemonics. Different leaf functions are encoded by 
specifying an input value in the EAX register of the respective instruction mnemonic.

40.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS, ENCLU and ENCLV instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some 
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one 
or more of the general purpose registers.

40.1.1 ENCLS Register Usage Summary
Table 40-1 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 40-1.  Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

ERDINFO 010H (In) RDINFO (In, EA*) EPCPAGE (In, EA)

ETRACKC 011H (In) EPCPAGE (In, EA)

ELDBC 012H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

ELDUC 013H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

EA: Effective Address
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40.1.2 ENCLU Register Usage Summary
Table 40-2 summarizes the implicit register usage of user mode enclave instructions.

40.1.3 ENCLV Register Usage Summary
Table 40-3 summarizes the implicit register usage of virtualization operation enclave instructions.

40.1.4 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of 
the instruction or provide information which may be useful to the developer. Table 40-4 shows the various codes 
and the instruction which generated the code. Details of the meaning of the code is provided in the individual 
instruction.

Table 40-2.  Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 40-3.  Register Usage of Virtualization Operation Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EDECVIRTCHILD 00H (In) EPCPAGE (In, EA) SECS (In, EA)

EINCVIRTCHILD 01H (In) EPCPAGE (In, EA) SECS (In, EA)

ESETCONTEXT 02H (In) EPCPAGE (In, EA) Context Value (In, EA)

EA: Effective Address

Table 40-4.  Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLKSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK, ERDINFO, ETRACKC

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, ERDINFO , EDECVIRTCHILD, EINCVIRTCHILD, ELDBC, 
ELDUC, ESETCONTEXT, ETRACKC
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40.1.5 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by 
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction. 
These registers are not software visible and are implementation specific. The values in Table 40-5 appear at various 
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU, ELDBC, ELDUC

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK, ETRACKC

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INVALID_COUNTER 25 EDECVIRTCHILD

SGX_PG_NONEPC 26 ERDINFO

SGX_TRACK_NOT_REQUIRED 27 ETRACKC

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 40-5.  List of Internal CREG 
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

Table 40-4.  Error or Information Codes for Intel® SGX Instructions
Name Value Returned By
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40.1.6 Concurrent Operation Restrictions
Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are 
some examples of concurrency that are not allowed. 
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with 
themselves. 

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being 

removed. 
When disallowed operation is detected, a leaf function may do one of the following:
• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.
• Cause a #GP(0) exception.
To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing 
the same EPC page. 

40.1.6.1  Concurrency Tables of Intel® SGX Instructions
The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the 
table has a separate line for each of the EPC pages the leaf function accesses.
For each such EPC page, the base concurrency requirements are detailed as follows:
• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the 

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target 
page it accesses.

• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page may 
be executed concurrently. Other leaf functions that require shared access may run concurrently. For example, 
EADD requires a shared access to the SECS page it accesses.

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

CR_CET_SAVE_AREA_PA 64 LP

CR_ENCLAVE_SS_TOKEN_PA 64 LP

CR_SAVE_IA32_U_CET 64 LP

CR_SAVE_SSP 64 LP

Table 40-5.  List of Internal CREG 
Name Size (Bits) Scope
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• Concurrent Access means that any other leaf function that requires any access to the same EPC page may be 
executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST page.

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply 
only to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EXTEND 
and EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.
The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not 
met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause an 
exception. In addition, the tables detail those conflicts where a VM Exit may be triggered, and list the Exit Qualifi-
cation code that is provided in such cases.

Table 40-6.  Base Concurrency Restrictions

Leaf Parameter 
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EENTERTCS SECS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP
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EDLBC/ELDUC Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RBX]PAGEINFO.
SECS

Shared SGX_EPC_PAGE
_CONFLICT

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ETRACK SECS [DS:RCX] Shared #GP

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

SECS Implicit Concurrent

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict Access
On 

Conflict Access
On 

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Table 40-6.  Base Concurrency Restrictions

Leaf Parameter 
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification
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EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EENTERTCS SECS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EDLBC/ELDUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EMODT Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

Table 40-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict
Access

On 
Conflict

Access
On 

Conflict
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40.2 INTEL® SGX INSTRUCTION REFERENCE

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS Implicit Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

NOTES:

1. SGX_CONFLICT VM Exit Qualification =TRACKING_RESOURCE_CONFLICT.

Table 40-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict
Access

On 
Conflict

Access
On 

Conflict
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ENCLS—Execute an Enclave System Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging 
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The 
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 0 
results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is 
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution 
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap 
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).
Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root 
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the 
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is 
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF (CPL > 0) 
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN 

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 CF 
ENCLS

ZO V/V NA This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.3
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IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
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ENCLU—Execute an Enclave User Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf 
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper 
32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 3 
results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, or 
if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not available 
exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment 
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE := 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

(* If enclosing app has CET indirect branch tracking enabled then if it is not ERESUME leaf cause a #CP fault *) 
(* If the ERESUME is not successful it will leave tracker in WAIT_FOR_ENDBRANCH *)
TRACKER = (CPL == 3) ? IA32_U_CET.TRACKER : IA32_S_CET.TRACKER 
IF EndbranchEnabledAndNotSuppressed(CPL) and TRACKER = WAIT_FOR_ENDBRANCH and 
 (EAX != ERESUME or CR0.TS or (in SMM) or (CPUID.SGX_LEAF.0:EAX.SE1 = 0) or (CPL < 3)) 

THEN
Handle CET State machine violation (* see Section 18.3.6, “Legacy Compatibility Treatment” in the

 Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. *)
FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 D7 
ENCLU

ZO V/V NA This instruction is used to execute non-privileged Intel SGX leaf 
functions.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.4
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IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE := IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and (CS.D = 0 or DS.B = 0) 

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, or EACCEPTCOPY *)

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.
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ENCLV—Execute an Enclave VMM Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLV instruction invokes the virtualization SGX leaf functions for managing enclaves in a virtualized environ-
ment. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The regis-
ters RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In non 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLV instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, if it is 
executed in system-management mode (SMM), or not in VMX operation. Additionally, any attempt to execute the 
instruction when CPL > 0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG 
= 0 or if an attempt is made to invoke an undefined leaf function.
Software in VMX root mode of operation can enable execution of the ENCLV instruction in VMX non-root mode by 
setting enable ENCLV execution control in the VMCS. If enable ENCLV execution control in the VMCS is clear, execu-
tion of the ENCLV instruction in VMX non-root mode results in #UD. 
When execution of ENCLV instruction in VMX non-root mode is enabled, software in VMX root operation can inter-
cept the invocation of various ENCLV leaf functions in VMX non-root operation by setting the corresponding bits in 
the ENCLV-exiting bitmap.
Addresses and operands are 32 bits in 32-bit mode (IA32_EFER.LMA == 0 || CS.L == 0) and are 64 bits in 64-bit 
mode (IA32_EFER.LMA == 1 && CS.L == 1). CS.D value has no impact on address calculation.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.OSS = 0
THEN #UD; FI;

IF not in VMX Operation or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD; FI;

IF (CPL > 0) 
THEN #UD; FI;

IF in VMX non-root operation 
    IF “enable ENCLV exiting“ VM-execution control is 1
        THEN
            IF EAX < 63 and ENCLV_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLV_exiting_bitmap[63] = 1
                  THEN VM exit;
            FI;
     ELSE
        #UD; FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 C0 
ENCLV

ZO V/V NA This instruction is used to execute privileged SGX leaf functions 
that are reserved for VMM use. They are used for managing the 
enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.3
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FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions.

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLV is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLV is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
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40.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific 
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside 
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
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EADD—Add a Page to an Uninitialized Enclave  

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an 
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This 
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following: 

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted 
by Non Enclave 

Read/Write access permit-
ted by Enclave 

Read access permitted 
by Non Enclave 

Read access permitted 
by Non Enclave 

Write access permitted 
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported 
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 40-8.  Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
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Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO := DS:TMP_SECINFO;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or 

Table 40-9.  Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Exclusive #GP Concurrent

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)) ) 
THEN #GP(0); FI;

(* If PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ( (SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST OR

SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST) AND CR4.CET == 0)
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is not available for EADD) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT) 

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and 

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH) )) #GP(0); FI;
(* Ensure TCS.PREVSSP is zero *)
IF (CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1) and (DS:RCX.PREVSSP != 0) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

PT_SS_FIRST:
PT_SS_REST:
(* SS pages cannot created on first or last page of ELRANGE *)
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IF ( TMP_LINADDR = DS:TMP_SECS.BASEADDR or TMP_LINADDR = (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000) )
THEN #GP(0); FI;

IF ( DS:RCX[4087:0] != 0 ) #GP(0); FI;
IF (SCRATCH_SECINFO.FLAGS.PT == PT_SS_FIRST)

THEN
(* Check that valid RSTORSSP token exists *)
IF ( DS:RCX[4095:4088] != ((TMP_LINADDR + 0x1000) | DS:TMP_SECS.ATTRIBUTES.MODE64BIT) ) #GP(0); FI;
(* Check the 8 bytes are zero *)
IF ( DS:RCX[4095:4088] != 0 ) #GP(0); FI;

FI;
IF (SCRATCH_SECINFO.FLAGS.W = 0 OR SCRATCH_SECINFO.FLAGS.R = 0 OR
 SCRATCH_SECINFO.FLAGS.X = 1) #GP(0); FI;

BREAK;
ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) 

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated) 

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized) 

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
SCRATCH_SECINFO.FLAGS.R := 0;
SCRATCH_SECINFO.FLAGS.W := 0;
SCRATCH_SECINFO.FLAGS.X := 0;
(DS:RCX).FLAGS.DBGOPTIN := 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA := 0;
DS:RCX.AEP := 0;
DS:RCX.STATE := 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET := TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] := 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
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(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.
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EAUG—Add a Page to an Initialized Enclave  

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC, 
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes 
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when 
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following: 

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0DH
ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave 

Read/Write access permit-
ted by Enclave 

Must be zero
Read access permitted by 

Non Enclave 
Write access permitted by 

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 40-10.  Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
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Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
IF (DS:RBX.SECINFO is not 0)

THEN
IF (DS:TMP_SECINFO is not 64B aligned)

THEN #GP(0); FI;
FI;

TMP_LINADDR := DS:RBX.LINADDR;

IF ( DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned )
THEN #GP(0); FI;

IF DS:RBX.SRCPAGE is not 0
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)

Table 40-11.  Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.
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IF (EPC page in use) 
THEN

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
FI:

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* copy SECINFO contents into a scratch SECINFO *)
IF (DS:RBX.SECINFO is 0)

THEN
(* allocate and initialize a new scratch secinfo structure *)
SCRATCH_SECINFO.PT := PT_REG;
SCRATCH_SECINFO.R := 1;
SCRATCH_SECINFO.W := 1;
SCRATCH_SECINFO.X := 0;
<< zero out remaining fields of SCRATCH_SECINFO >>

ELSE
(* copy SECINFO contents into scratch secinfo *)
SCRATCH_SECINFO := DS:TMP_SECINFO;
(* check SECINFO flags for misconfiguration *)
(* reserved flags must be zero *)
(* SECINFO.FLAGS.PT must either be PT_SS_FIRST, or PT_SS_REST *)
IF ( (SCRATCH_SECINFO reserved fields are not 0) OR
 (SCRATCH_SECINFO.PT is not PT_SS_FIRST, or PT_SS_REST) OR
 ( (SCRATCH_SECINFO.FLAGS.R is 0) OR (SCRATCH_SECINFO.FLAGS.W is 0) OR (SCRATCH_SECINFO.FLAGS.X is 1) ) )

THEN #GP(0); FI;
FI;
(* Check if PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ( (SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) AND CR4.CET == 0 )

THEN #GP(0); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized) 

THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
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IF ( (TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) )
THEN #GP(0); FI;

IF ( (SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) )
THEN

(* SS pages cannot created on first or last page of ELRANGE *)
IF ( TMP_LINADDR == DS:TMP_SECS.BASEADDR OR
 TMP_LINADDR == (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000) )

THEN
#GP(0); FI;

FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] := 0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 1;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
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EBLOCK—Mark a page in EPC as Blocked  

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when 
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 09H
ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-12.  EBLOCK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in 
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is 
eventually reloaded (using ELDB). 

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently 
executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-13.  Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT
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Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Check the EPC page for concurrency*)
IF (EPC page in use)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PG_INVLD;
GOTO DONE;

FI;

IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM) 
and EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN 
RFLAGS.CF := 1;
IF (EPCM(DS:RCX).PT = PT_SECS) 

THEN RAX := SGX_PG_IS_SECS;
ELSE RAX := SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE := EPCM(DS:RCX).BLOCKED;

Table 40-14.  Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.
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(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1) 

THEN 
RFLAGS.CF := 1;
RAX := SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED := 1

FI;
DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise 
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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ECREATE—Create an SECS page in the Enclave Page Cache 

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure 
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or 
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES, 
CONFIGID and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE 
must be at least 2 pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective 
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The 
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page. 

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are 
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on 
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 41.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS 
page in EPC.

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by 
Non Enclave 

Read access permitted by 
Non Enclave 

Read access permitted by Non 
Enclave 

Write access permitted by 
Enclave

Table 40-15.  Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION
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Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECINFO := DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS) 

THEN #GP(0); FI;

TMP_SECS := RCX;

IF (EPC entry in use) 
THEN 

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;

Table 40-16.  Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := 

<< translation of DS:TMP_SECS produced by paging >>;
VMCS.Guest-linear_address := DS:TMP_SECS;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPC entry in use) 
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1) 
THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ( ( DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H) 

THEN #GP(0); FI;

IF (XFRM is illegal) 
THEN #GP(0); FI;

(* Check legality of CET_ATTRIBUTES *)
IF ((DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_ATTRIBUTES ≠ 0) ||

(DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[5:2] ≠ 0) ||
(CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[1:0] ≠ 0) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) not canonical) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) & 0xFFFFFFFF00000000) ||
(DS:TMP_SECS.CET_ATTRIBUTES.reserved fields not 0) or
 (DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) is not page aligned))
THEN

#GP(0);
FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF ( !(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]) )

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

( * Compute size of MISC area *)
TMP_MISC_SIZE := compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 41.7.2.2*)
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TMP_XSIZE := compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ( DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE) 

THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0]) ) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8]) ) )
THEN #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1) 

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ( ( DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1) ) )

THEN #GP(0); FI;

(* Ensure the SECS does not have any unsupported attributes*)
IF ( DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK) )

THEN #GP(0); FI;

IF ( DS:TMP_SECS reserved fields are not zero) 
THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)
IF ( ((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0 ))

THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE := SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN := 0;
DS:TMP_SECS.ISVPRODID := 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] := DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] := DS:TMP_SECS.SIZE;
IF (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 1)

THEN
TMPUPDATEFIELD[223:160] := DS:TMP_SECS.CET_LEG_BITMAP_OFFSET;

ELSE
TMPUPDATEFIELD[223:160] := 0;
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FI;
TMPUPDATEFIELD[511:160] := 0; 
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID := LockedXAdd(CR_NEXT_EID, 1);

(* Initialize the virtual child count to zero *)
DS:TMP_SECS.VIRTCHILDCNT := 0;

(* Load ENCLAVECONTEXT with Address out of paging of SECS *)
<< store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT := PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS := 0;
EPCM(DS:TMP_SECS).R := 0;
EPCM(DS:TMP_SECS).W := 0;
EPCM(DS:TMP_SECS).X := 0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.
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EDBGRD—Read From a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX 
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot 
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are: 

The instruction faults if any of the following: 

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 04H
ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.

Op/En EAX RBX RCX

IR EDBGRD (In)
Return error 
code (Out)

Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave 

Table 40-17.  EDBGRD Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the 
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.
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Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )

THEN
RFLAGS.ZF := 1;

Table 40-18.  Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGRD Target [DS:RCX] Shared #GP

Table 40-19.  Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.
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RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT) )

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF ( (EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS) )

THEN 
TMP_SECS := GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;
IF ( (TMP_MODE64 = 1) )

THEN RBX[63:0] := (DS:RCX)[63:0]; 
ELSE EBX[31:0] := (DS:RCX)[31:0]; 

FI;
ELSE

TMP_64BIT_VAL[63:0] := (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1) 

THEN
IF (TMP_64BIT_VAL ≠ 0H) 

THEN RBX[63:0] := 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] := 0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H) 
THEN EBX[31:0] := 0FFFFFFFFH;
ELSE EBX[31:0] := 0H;

FI;
FI;

(* clear EAX and ZF to indicate successful completion *) 
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set 
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EDBGWR—Write to a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are 
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the target location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following: 

EDBGWR Faulting Conditions

The error codes are: 

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 05H
ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Op/En EAX RBX RCX

IR EDBGWR (In)
Return error 
code (Out)

Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave 

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

Table 40-20.  EDBGWR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.
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Concurrency Restrictions

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) 

and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ( (EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0) )

THEN
RFLAGS.ZF := 1;

Table 40-21.  Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGWR Target [DS:RCX] Shared #GP

Table 40-22.  Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.
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RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H) )

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *) 
TMP_SECS := GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;

IF ( (TMP_MODE64 = 1) )
THEN (DS:RCX)[63:0] := RBX[63:0]; 
ELSE (DS:RCX)[31:0] := EBX[31:0]; 

FI;

(* clear EAX and ZF to indicate successful completion *) 
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set 
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes 

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND 
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized. 
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the 
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used 
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following: 

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 06H
ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave 
page.

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the 

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave 

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 40-23.  Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent
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Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does resolve to an EPC page) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) 
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *) 
IF ( (Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS)) 

Table 40-24.  Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

Name Type Size (Bits) Description

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.



Vol. 3D 40-45

SGX INSTRUCTION REFERENCES

THEN #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET := EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET := TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := 0; // 48 bytes
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *) 
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536] );
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EINIT—Initialize an Enclave for Execution 

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE 
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave 
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key. 
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below: 
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in 
debug mode as well. 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to 
execute enclave code.

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 40-1.  Relationships Between SECS, SIGSTRUCT and EINITTOKEN
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EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 40-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0. 
Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of 
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH. 
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with 
SECS.ATTRIBUTES. 
If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals 
IA32_SGX_LEPUBKEYHASH. 
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN. 
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE. 
If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1. 
Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on 
SIGSTRUCT. 
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure 
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These 
events includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks, 
INIT signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external 
interrupts could be inhibited due to blocking by MOV SS blocking or by STI). 
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error, 
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and 
RAX is set to 0.
The error codes are: 

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave  Access by non-Enclave 

Table 40-25.  EINIT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.
If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.
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Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ( (DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned) 

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC) 

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0] := DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] := DS:RDX[2423:0]; // 304 bytes

Table 40-26.  Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EINIT SECS [DS:RCX] Shared #GP

Table 40-27.  Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Name Type Size Description

TMP_SIG  SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN  EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE  32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER  32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized 
enclaves.

TMP_KEYDEPENDENCIE
S 

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY  16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding 
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3 
modulo MRSIGNER.
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(* Verify SIGSTRUCT Header. *)
IF ( (TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h) ) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT   ≠ 00000003h) or (Reserved space is not 0’s) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the 
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) THEN

RFLAGS.ZF := 1;
RAX := SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS) 

THEN #GP(0); FI;

IF ( (EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS) )
THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)
IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

THEN 
        RFLAGS.ZF := 1;
        RAX := SGX_INVALID_SIG_STRUCT;
        GOTO EXIT;
FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *) 
IF ( (Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state)) 

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE := SHA256FINAL( (DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;
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TMP_MRSIGNER := SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES := 0000000000000020H;
IF ( ( (DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ( (DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

( *Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ( (DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK) )

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
IF ( DS:RCX.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIBUTES_MASK ≠ TMP_SIG.CET_ATTRIBUTES & 
 TMP_SIG.CET_ATTRIB-UTES_MASK )

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT

FI;
FI;

(* If EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ( (DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
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(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must not have been created by a configuration beyond the current CPU configuration *)
IF (TMP_TOKEN.CPUSVN must not be a configuration beyond CR_CPUSVN)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN := TMP_TOKEN.ISVSVNLE;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID := TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := TMP_TOKEN.CPUSVNLE;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1))

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_TOKEN.CET_MASKED_ATTRIBUTES_ LE;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;

(* Calculate the derived key*) 
TMP_EINITTOKENKEY := derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch 
Enclave. Only 192 bytes of EINITTOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0] ) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
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(* Verify EINITTOKEN (RDX) is for this enclave *)
IF ( (TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *) 
DS:RCX.MRENCLAVE := TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *) 
DS:RCX.MRSIGNER := TMP_MRSIGNER;
DS:RCX.ISVEXTPRODID := TMP_SIG.ISVEXTPRODID;
DS:RCX.ISVPRODID := TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN := TMP_SIG.ISVSVN;
DS:RCX.ISVFAMILYID := TMP_SIG.ISVFAMILYID;
DS:RCX.PADDING := TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*) 
RFLAGS.ZF := 0;
RAX := 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.
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#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.
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ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark its State 

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is 
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level 
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The 
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination 
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The ELDBC/ELDUC leafs are very similar to ELDB and ELDU. They provide an error code on the concurrency conflict 
for any of the pages which need to acquire a lock. These include the destination, SECS, and VA slot.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU/ELDBC/ELBUC Memory Parameter Semantics

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 07H
ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as blocked.

EAX = 08H
ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as unblocked.

EAX = 12H
ENCLS[ELDBC]

IR V/V EAX[6] This leaf function behaves lie ELDB but with improved conflict 
handling for oversubscription.

EAX = 13H
ENCLS[ELDUC]

IR V/V EAX[6] This leaf function behaves like ELDU but with improved conflict 
handling for oversubscription.

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU 

(In)
Return error 
code (Out)

Address of the PAGEINFO 
(In)

Address of the EPC page 
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave 
read access

Non-enclave read 
access

Non-enclave read 
access

Enclave read/write 
access

Read/Write access 
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 40-28.  ELDB/ELDU/ELDBC/ELBUC Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.
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Concurrency Restrictions

Operation

Temp Variables in ELDB/ELDU/ELDBC/ELBUC Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

Table 40-29.  Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

ELDBC/ELBUC Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RBX]PAGEINFO.SECS Shared SGX_EPC_PAGE_
CONFLICT

Table 40-30.  Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, EMODPE, 

EMODPR, EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

ELDBC/ELBUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes
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IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_PCMD := DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ( (DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned) )

THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)
IF (other instructions accessing EPC)

THEN
    IF ((EAX==07h) OR (EAX==08h))   (* ELDB/ELDU *)
    THEN
        IF (<<VMX non-root operation>> AND  

    <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN 

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := 

                              << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

        IF (<<VMX non-root operation>> AND  
    <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN 
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_ERROR;
VMCS.Exit_qualification.error := SGX_EPC_PAGE_CONFLICT;
VMCS.Guest-physical_address := 

                              << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
            RFLAGS.ZF := 1;

            RFLAGS.CF := 0; 
            RAX := SGX_EPC_PAGE_CONFLICT;
            GOTO ERROR_EXIT;

FI;
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FI;
FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF (Other instructions modifying VA slot) 

THEN
IF ((EAX==07h) OR (EAX==08h))   (* ELDB/ELDU *)

        #GP(0);
FI;

    ELSE (* ELDBC/ELDUC *)
        RFLAGS.ZF := 1;
        RFLAGS.CF := 0; 
        RAX := SGX_EPC_PAGE_CONFLICT;
        GOTO ERROR_EXIT;
FI; 

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA) )
THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] := DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] := 0;

TMP_HEADER.SECINFO := SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD := SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR := DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or 

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1))
THEN 

IF ( DS:TMP_SECS is not 4KByte aligned) 
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC) 
THEN #PF(DS:TMP_SECS) FI;

IF ( Other instructions modifying SECS) 
THEN 

IF ((EAX==07h) OR (EAX==08h))   (* ELDB/ELDU *)
        #GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

RFLAGS.ZF := 1;
        RFLAGS.CF := 0; 
        RAX := SGX_EPC_PAGE_CONFLICT;
        GOTO ERROR_EXIT;

FI;
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FI;

IF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or 
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1))
THEN 

TMP_HEADER.EID := DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID := 0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] := DS:TMP_SRCPGE[32767: 0];
TMP_VER := DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} := AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ( (TMP_MAC ≠ DS:TMP_PCMD.MAC) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_MAC_COMPARE_FAIL;
GOTO ERROR_EXIT;

FI;

(* Check version before committing *)
IF (DS:RDX ≠ 0)

THEN #GP(0); 
ELSE

DS:RDX := TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT := TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX := TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING := TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED := TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR := TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_HEADER.LINADDR;

IF ( ((EAX = 07H) or (EAX = 12H)) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN 

EPCM(DS:RCX).BLOCKED := 1;
ELSE

EPCM(DS:RCX).BLOCKED := 0;
FI;

IF (TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS)
   << store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>
FI;
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EPCM(DS:RCX). VALID := 1;

RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.
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EMODPR—Restrict the Permissions of an EPC Page  

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of 
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page 
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPR Faulting Conditions

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0EH
ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a 
EPC page in an initialized enclave.

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-31.  EMODPR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-32.  Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPR Target [DS:RCX] Shared #GP
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Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

(SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN 
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;

Table 40-33.  Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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GOTO DONE;
FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
  THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR := 1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears 
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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EMODT—Change the Type of an EPC Page  

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the 
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This 
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following: 

EMODT Faulting Conditions

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0FH
ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-34.  EMODT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Table 40-35.  Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR
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Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

Table 40-36.  Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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FI;

IF (!(EPCM(DS:RCX).PT is PT_REG or
((EPCM(DS:RCX).PT is PT_TCS or PT_SS_FIRST or PT_SS_REST) and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
THEN #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).MODIFIED := 1;
EPCM(DS:RCX).R := 0;
EPCM(DS:RCX).W := 0;
EPCM(DS:RCX).X := 0;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears 
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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EPA—Add Version Array 

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and 
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to 
PT_VA.
The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0AH
ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 40-37.  Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-38.  Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent
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THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] := 0;

EPCM(DS:RCX).PT := PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS := 0;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).RWX := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.
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ERDINFO—Read Type and Status Information About an EPC Page 

Instruction Operand Encoding

Description

This instruction reads type and status information about an EPC page and returns it in a RDINFO structure. The 
STATUS field of the structure describes the status of the page and determines the validity of the remaining fields. 
The FLAGS field returns the EPCM permissions of the page; the page type; and the BLOCKED, PENDING, MODI-
FIED, and PR status of the page. For enclave pages, the ENCLAVECONTEXT field of the structure returns the value 
of SECS.ENCLAVECONTEXT. For non-enclave pages (e.g., VA) ENCLAVECONTEXT returns 0.
For invalid or non-EPC pages, the instruction returns an information code indicating the page's status, in addition 
to populating the STATUS field.
ERDINFO returns an error code if the destination EPC page is being modified by a concurrent SGX instruction. 
RBX contains the effective address of a RDINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of ERDINFO leaf function.

ERDINFO Memory Parameter Semantics

The instruction faults if any of the following: 

ERDINFO Faulting Conditions

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 10H
ENCLS[ERDINFO]

IR V/V EAX[6] This leaf function returns type and status information about an 
EPC page.

Op/En EAX RBX RCX

IR ERDINFO (In)
Return error code 

(Out)
Address of a RDINFO structure (In)

Address of the destination EPC page 
(In)

RDINFO EPCPAGE

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS 
segment limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-39.  ERDINFO Return Value in RAX
 Error Code Value Description

No Error 0 ERDINFO successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD Target page is not a valid EPC page.

SGX_PG_NONEPC Page is not an EPC page.
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Concurrency Restrictions

Operation

Temp Variables in ERDINFO Operational Flow

(* check alignment of RDINFO structure (RBX) *)
IF (DS:RBX is not 32Byte Aligned) THEN
    #GP(0); FI;

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
    #GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within EPC) THEN
    RFLAGS.CF := 1;
    RFLAGS.ZF := 0;
    RAX := SGX_PG_NONEPC;
    goto DONE;
FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF = 1;
    RFLAGS.CF = 0;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    RFLAGS.CF = 1;

Table 40-40.  Base Concurrency Restrictions of ERDINFO

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Table 40-41.  Additional Concurrency Restrictions of ERDINFO

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_RDINFO Linear Address 64 Address of the RDINFO structure.
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    RFLAGS.ZF = 0;
    RAX = SGX_PG_INVLD;
    goto DONE;
FI;

(* clear the fields of the RDINFO structure *)
TMP_RDINFO := DS:RBX;
TMP_RDINFO.STATUS := 0;
TMP_RDINFO.FLAGS := 0;
TMP_RDINFO.ENCLAVECONTEXT := 0;

(* store page info in RDINFO structure *)
TMP_RDINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_RDINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_RDINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_RDINFO.FLAGS.PR := EPCM(DS:RCX).PR;
TMP_RDINFO.FLAGS.PAGE_TYPE := EPCM(DS:RCX).PAGE_TYPE;
TMP_RDINFO.FLAGS.BLOCKED := EPCM(DS:RCX).BLOCKED;

(* read SECS.ENCLAVECONTEXT for enclave child pages *)
IF ((EPCM(DS:RCX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RCX).PAGE_TYPE = PT_TCS) or
    (EPCM(DS:RCX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RCX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RCX).PAGE_TYPE = PT_SS_REST)

   ) THEN
    TMP_SECS := Address of SECS for (DS:RCX);
    TMP_RDINFO.ENCLAVECONTEXT := SECS(TMP_SECS).ENCLAVECONTEXT;
FI;

(* populate enclave information for SECS pages *)
IF (EPCM(DS:RCX).PAGE_TYPE = PT_SECS) THEN
    IF ((VMX non-root mode) and
        (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)
       ) THEN
        TMP_RDINFO.STATUS.CHILDPRESENT := 
                            ((SECS(DS:RCX).CHLDCNT ≠ 0) or
                              SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
    ELSE
        TMP_RDINFO.STATUS.CHILDPRESENT := (SECS(DS:RCX).CHLDCNT ≠ 0);
        TMP_RDINFO.STATUS.VIRTCHILDPRESENT := 
                            (SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
        TMP_RDINFO.ENCLAVECONTEXT := SECS(DS_RCX).ENCLAVECONTEXT;
    FI;
FI;

RAX := 0;
RFLAGS.ZF := 0;
RFLAGS.CF := 0;

DONE:
(* clear flags *)
RFLAGS.PF := 0;
RFLAGS.AF := 0;
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RFLAGS.OF := 0;
RFLAGS.SF := ? 0;

Flags Affected

ZF is set if ERDINFO fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF is set if page is not a valid EPC page or not an EPC page; otherwise cleared.
PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.
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EREMOVE—Remove a page from the EPC 

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction 
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by 
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction 
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following: 

EREMOVE Faulting Conditions

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 03H
ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Op/En EAX RCX

IR EREMOVE (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 40-42.  EREMOVE Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.
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Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* if DS:RCX is already unused, nothing to do*)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE; 
FI;

Table 40-43.  Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-44.  Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.
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IF ( (EPCM(DS:RCX).PT = PT_VA) OR
((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)) )
THEN 

EPCM(DS:RCX).VALID := 0;
GOTO DONE; 

FI;

IF (EPCM(DS:RCX).PT = PT_SECS) 
THEN 

IF (DS:RCX has an EPC page associated with it) 
THEN 

RFLAGS.ZF := 1;
RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND 

             <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND 
             (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

   RAX := SGX_CHILD_PRESENT
GOTO ERROR_EXIT

FI;
EPCM(DS:RCX).VALID := 0;
GOTO DONE; 

FI;

IF (Other threads active using SECS) 
THEN 

RFLAGS.ZF := 1;
RAX := SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

FI;

IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

DONE:
RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.
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ETRACK—Activates EBLOCK Checks 

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB 
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0CH
ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-45.  ETRACK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

Table 40-46.  Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACK SECS [DS:RCX] Shared #GP

Table 40-47.  Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT
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Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS) 
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ( (DS:RCX).TRACKING ≠ 0) ) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

        Deliver VMEXIT;
FI;

RFLAGS.ZF := 1;
RAX := SGX_PREV_TRK_INCMPL;
GOTO DONE;

ELSE
RAX := 0;
RFLAGS.ZF := 0;

FI;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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ETRACKC—Activates EBLOCK Checks 

Instruction Operand Encoding

Description

The ETRACKC instruction is thread safe variant of ETRACK leaf and can be executed concurrently with other CPU 
threads operating on the same SECS. 
This leaf function provides the mechanism for hardware to track that software has completed the required TLB 
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACKC Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 11H
ENCLS[ETRACKC]

IR V/V EAX[6] This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR
ETRACK 

(In)
Return error code (Out)

Address of the destination EPC page 
(In, EA)

Address of the SECS page (In, EA)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-48.  ETRACKC Return Value in RAX
 Error Code Value Description

No Error 0 ETRACKC successful.

SGX_EPC_PAGE_CONFLICT 7 Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD 6 Target page is not a VALID EPC page.

SGX_PREV_TRK_INCMPL 17 All processors did not complete the previous tracking sequence.

SGX_TRACK_NOT_REQUIRED 27 Target page type does not require tracking.

Table 40-49.  Base Concurrency Restrictions of ETRACKC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

SECS implicit Concurrent
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Operation

Temp Variables in ETRACKC Operational Flow

(* check alignment of EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
#GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
#PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    goto DONE_POST_LOCK_RELEASE;
FI;

(* check to make sure the page is valid *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_PG_INVLD;
    GOTO DONE;
FI;

(* find out the target SECS page *)
IF (EPCM(DS:RCX).PT is PT_REG or PT_TCS or PT_TRIM or PT_SS_FIRST or PT_SS_REST) THEN 
    TMP_SECS := Obtain SECS through EPCM(DS:RCX).ENCLAVESECS;
ELSE IF (EPCM(DS:RCX).PT is PT_SECS) THEN
    TMP_SECS := Obtain SECS through (DS:RCX);
ELSE 
    RFLAGS.ZF := 0;
    RFLAGS.CF := 1;
    RAX := SGX_TRACK_NOT_REQUIRED;
    GOTO DONE;
FI;

Table 40-50.  Additional Concurrency Restrictions of ETRACKC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS implicit Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.
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(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

        VMCS.Exit_reason := SGX_CONFLICT;
        VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
        VMCS.Exit_qualification.error := 0;
        VMCS.Guest-physical_address := 

SECS(TMP_SECS).ENCLAVECONTEXT;
        VMCS.Guest-linear_address := 0;
        Deliver VMEXIT;
    FI;

    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    GOTO DONE;
FI;
(* All processors must have completed the previous tracking cycle*) 
IF ( (TMP_SECS).TRACKING ≠ 0) )
THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

        VMCS.Exit_reason := SGX_CONFLICT;
        VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
        VMCS.Exit_qualification.error := 0;
        VMCS.Guest-physical_address :=  

SECS(TMP_SECS).ENCLAVECONTEXT;
        VMCS.Guest-linear_address := 0;
        Deliver VMEXIT;
    FI;

    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_PREV_TRK_INCMPL;
    GOTO DONE;
FI; 

RFLAGS.ZF := 0;
RFLAGS.CF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ETRACKC fails due to concurrent operations with another SGX instructions or target page is an invalid 
EPC page or tracking is not completed on SECS page; otherwise cleared.
CF is set if target page is not of a type that requires tracking; otherwise cleared.
PF, AF, OF and SF are cleared.
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Protected Mode Exceptions

#GP(0) If the memory operand violates access-control policies of DS segment.
If DS segment is unusable.
If the memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.



Vol. 3D 40-83

SGX INSTRUCTION REFERENCES

EWB—Invalidate an EPC Page and Write out to Main Memory 

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is 
cryptographically protected. This instruction can only be executed when current privilege level is 0.
The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0BH
ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to 
main memory.

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access 

Table 40-51.  EWB Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

Table 40-52.  Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-53.  Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive
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Operation

Temp Variables in EWB Operational Flow

IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD := DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0) 
THEN #GP(0); FI;

IF ( (DS:TMP_PCMD is not 128Byte Aligned) or (DS:TMP_SRCPGE is not 4KByte Aligned) )
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16
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VMCS.Guest-linear_address := DS:RCX;
     Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA) )
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM ) or
(EPCM(DS:RCX).PT is PT_SS_FIRST ) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Zero out TMP_HEADER*)
TMP_HEADER[ sizeof(TMP_HEADER) - 1 : 0] := 0; 

(* Perform page-type-specific checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM )or
(EPCM(DS:RCX).PT is PT_SS_FIRST ) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0) 

THEN
RAX := SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX := SGX_NOT_TRACKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
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TMP_HEADER.EID := TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX := SGX_CHILD_PRESENT;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI:
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND 

        <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND 
        (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

   RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
TMP_HEADER.EID := 0; 
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID := 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID := 0;

FI;

TMP_HEADER.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} := AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32), 

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO 
DS:TMP_PCMD.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED := 0;
DS:TMP_PCMD.ENCLAVEID := TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
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IF ([DS.RDX]) 
THEN

RAX := SGX_VA_SLOT_OCCUPIED
RFLAGS.CF := 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] := TMP_VER; 

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID := 0;
ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared. 
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.
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40.4 INTEL® SGX USER LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input 
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and 
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside 
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.



Vol. 3D 40-89

SGX INSTRUCTION REFERENCES

EACCEPT—Accept Changes to an EPC Page  

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be 
executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 05H
ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to 
an EPC page in the running enclave.

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make 
the page inaccessible.

Table 40-54.  EACCEPT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.
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Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or 
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)) )
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX; 

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero )

THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

Table 40-55.  Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 40-56.  Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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IF (DS:RCX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 0 )

THEN
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and
 ((SCRATCH_SECINFO.FLAGS.PR is 1) or 
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and
 (SCRATCH_SECINFO.FLAGS.PR is 0) and
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) and 
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) )))

THEN #GP(0); FI
ELSE

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) AND
 ((SCRATCH_SECINFO.FLAGS.PR is 1) OR
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS OR PT_TRIM) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST or PT_SS_REST) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 1) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0))))

THEN #GP(0); FI;
FI;

(* Check security attributes of the destination EPC page *)
If ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or
 ((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)
 and (EPCM(DS:RCX).PT is not PT_SS_FIRST) and (EPCM(DS:RCX).PT is not PT_SS_REST)) or
 (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF ( EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ( (EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) )
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THEN
RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF := 1;
RAX := SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
(* check that TCS.PREVSSP is 0 *)
IF ( ((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) or
((CPUID.(EAX=12H, ECX=1):EAX[6] = 1) AND ((DS:RCX).PREVSSP != 0)))

THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ( (TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)) )

THEN #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
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#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
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EACCEPTCOPY—Initialize a Pending Page  

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG). 
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This 
instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address 
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY 
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 07H
ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page 
from another page in the EPC.

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code 

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the 
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running 
enclave.

Table 40-57.  EACCEPTCOPY Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.
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Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ( (DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or 
(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX) )
THEN #PF(DS:RBX); FI;

Table 40-58.  Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-59.  Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.



40-96 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or (SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0 ) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG) ) 
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ( (EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or 

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH; 
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or 
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH; 
GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] := DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING := 0;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;
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Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
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EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical 
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address 
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs: 

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or 

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF 
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 42.2.2). 

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all 
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see 
Section 42.2.3):

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA 

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following 
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or 
locked.

Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS 
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
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— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60] 
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ( ( DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1) ) ) 

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

Table 40-60.  Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EENTER TCS [DS:RBX] Shared #GP

Table 40-61.  Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.
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FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical) )

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS) )
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned) )

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
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IF (TMP_GSLIMIT < TMP_GSBASE)
THEN 

IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
FI;

ELSE
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ( (TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT) )

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)
IF ( (DS:RBX).CSSA ≥ (DS:RBX).NSSA) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 
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THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN 
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE) 

THEN #GP(0); FI;

IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1
THEN

IF ( CR4.CET = 0 )
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF ( TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0 ) #GP(0); FI;

FI;
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(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)
IF ( TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1 )

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;
TMP_IA32_U_CET := 0; 
TMP_SSP := 0;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN) 
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *) 
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES; 
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1 ) 

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *) 
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16 
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF; 

Check the TMP_CET_SAVE_PAGE page is read/write accessible 
If fault occurs release locks, abort and deliver fault

(* Read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

IF TMP_IA32_U_CET.SH_STK_EN = 1
THEN

TMP_SSP = TCS.PREVSSP;
FI;

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
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CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1) 

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX := RIP;
RIP := TMP_TARGET;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP; 
DS:TMP_SSA.U_RBP := RBP; 

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;



Vol. 3D 40-105

SGX INSTRUCTION REFERENCES

GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Save enclosing application CET state into save registers *) 
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *) 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1 

THEN
CR_SAVE_SSP := SSP 
SSP := TMP_SSP;

FI; 
IA32_U_CET := TMP_IA32_U_CET;

FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
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#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX. 
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0) 
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next 
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This fetch returns a 
fixed data pattern.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or 
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER. 
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 04H
ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (Out)

Target Address

 Non-Enclave read and execute access

Table 40-62.  Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXIT Concurrent

Table 40-63.  Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent
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Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN 

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP := CRIP;
RIP := RBX;

(* Return current AEP in RCX *)
RCX := CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1) 

XCR0 := CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF := CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.
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IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Record PREVSSP *) 
IF (IA32_U_CET.SH_STK_EN == 1)

THEN CR_TCS_PA.PREVSSP = SSP; FI; 

(* Restore enclosing apps CET state from the save registers *) 
IA32_U_CET := CR_SAVE_IA32_U_CET; 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN SSP := CR_SAVE_SSP; FI; 

(* Update enclosing apps TRACKER if enclosing app has indirect branch tracking enabled *) 
IF (CR4.CET = 1 AND IA32_U_CET.ENDBR_EN = 1) 

THEN 
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH; 
IA32_U_CET.SUPPRESS := 0 

FI;
FI;

CR_ENCLAVE_MODE := 0;
CR_TCS_PA.STATE := INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.
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EGETKEY—Retrieves a Cryptographic Key 

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The 
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be 
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in 
RBX & RCX should be locations inside the enclave. 
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible inputs. 
This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following 
actions:
• The instruction assembles the derivation data for the key based on the Table 40-64.
• Computes derived key using the derivation data and package specific value.
• Outputs the calculated key to the address in RCX.
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction 
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key 
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key 
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware. 
These checks may be performed in any order. Thus, an indication by error number of one cause (for example, 
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different 
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the 
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit 
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the 
address specified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 37.18.1) identifies the key to be provided. The Keyrequest.KeyName field 
identifies which type of key is requested. 
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 40-64) and a processor key. 
Depending on the key being requested a field may either be included by definition or the value may be included 
from the KeyRequest. A “yes” in Table 40-64 indicates the value for the field is included from its default location, 
identified in the source row, and a “request” indicates the values for the field is included from its corresponding 
KeyRequest field. 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Op/En EAX RBX RCX

IR EGETKEY (In) Return error code (Out) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access  Enclave write access
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Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional require-
ments. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's SVN, 
respectively. 
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the enclave's 
ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set and 
SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string): 
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

The error codes are: 

Concurrency Restrictions

Table 40-64.  Key Derivation

Key Name Attributes 
Owner 
Epoch

CPU 
SVN ISV SVN

ISV 
PRODID

ISVEXT
PRODID

ISVFAM
ILYID MRENCLAVE MRSIGNER 

CONFIG
ID

CONFIGS
VN RAND 

Source

Key 
Dependent 
Constant

Y := 
SECS.ATTRIBUTES 
and 
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

CR_SGX
OWNER
EPOCH

Y := 
CPUSVN 
Register;

R := 
Req.ISV
SVN;

SECS. 
ISVID

SECS.IS
VEXTPR
ODID

SECS.IS
VFAMIL
YID

SECS. 
MRENCLAVE

SECS. 
MRSIGNER

SECS.CO
NFIGID

SECS.CO
NFIGSVN

Req. 
KEYID

R := AttribMask & 
SECS.ATTRIBUTES 
and 
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

R := 
Req.CPU
SVN;

EINITTOKEN Yes Request Yes Request Request Yes No No No Yes No No Request

Report Yes Yes Yes Yes No No No No Yes No Yes Yes Request

Seal Yes Request Yes Request Request Request Request Request Request Request Request Request Request

Provisioning Yes Request No Request Request Yes No No No Yes No No Yes

Provisioning 
Seal

Yes Request No Request Request Request Request Request No Yes Request Request Yes

Table 40-65.  EGETKEY Return Value in RAX
 Error Code (see Table 40-4) Value Description

No Error 0 EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST software SVN (ISVSVN or CONFIGSVN) is greater than the 
enclave's corresponding SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Table 40-66.  Base Concurrency Restrictions of EGETKEY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent
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Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ( (DS:RBX is not 512Byte aligned) or (DS:RBX is within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ( (DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0) ) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 
THEN #PF(DS:RBX); 

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ( (DS:RCX is not 16Byte aligned) or (DS:RCX is not within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ( (DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0) ) 

Table 40-67.  Additional Concurrency Restrictions of EGETKEY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EGETKEY KEYREQUEST 
[DS:RBX]

Concurrent Concurrent Concurrent

OUTPUTDATA 
[DS:RCX]

Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_ISVEXTPRODID 16 bytes Temp Space for ISVEXTPRODID.

TMP_ISVPRODID 2 bytes Temp Space for ISVPRODID.

TMP_ISVFAMILYID 16 bytes Temp Space for ISVFAMILYID.

TMP_CONFIGID 64 bytes Temp Space for CONFIGID.

TMP_CONFIGSVN 2 bytes Temp Space for CONFIGSVN.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.
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THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).W = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ( (DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0) ) 

THEN #GP(0); FI;

TMP_CURRENTSECS := CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)
IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

THEN #GP(0); FI;
(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] := 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES := (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT := DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

(* Compute CET_ATTRIBUTES fields to be included *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES_ MASK & TMP_CURRENTSECS.CET_ATTRIBUTES; FI;
TMP_KEYDEPENDENCIES := 0;

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

(*Include enclave identity?*)
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TMP_MRENCLAVE := 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
FI;
(*Include enclave author?*)
TMP_MRSIGNER := 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
FI;

(* Include enclave product family ID? *)
    TMP_ISVFAMILYID := 0;
    IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
        THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

    (* Include enclave product ID? *)
    TMP_ISVPRODID := 0;
    IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
        TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

    (* Include enclave Config ID? *)
    TMP_CONFIGID := 0;
    TMP_CONFIGSVN := 0;
    IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
        TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
        TMP_CONFIGSVN := DS:RBX.CONFIGSVN; 

FI;

    (* Include enclave extended product ID? *)
    TMP_ISVEXTPRODID := 0;
    IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1 )
        TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
    FI;

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
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TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := DS:RBX.CET_ATTRIBUTES _MASK;

FI;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has EINITTOKEN Key capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.EINITTOKEN_KEY = 0)

THEN 
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN 
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
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(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID; 
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_KEY: 
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
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TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := 0;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Include enclave product family ID? *)
    TMP_ISVFAMILYID := 0;
    IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
        THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

    (* Include enclave product ID? *)
    TMP_ISVPRODID := 0;
    IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
        TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

    (* Include enclave Config ID? *)
    TMP_CONFIGID := 0;
    TMP_CONFIGSVN := 0;
    IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
        TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
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        TMP_CONFIGSVN := DS:RBX.CONFIGSVN; 
FI;

    (* Include enclave extended product ID? *)
    TMP_ISVEXTPRODID := 0;
    IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
        TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
    FI;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY := derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] := TMP_OUTPUTKEY;
RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;
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Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.
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EMODPE—Extend an EPC Page Permissions  

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX 
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page 
permissions will have no effect. This instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 06H
ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC 
page.

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 40-68.  Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-69.  Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent
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Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) )
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)) )
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero ) 

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for misconfigured SECINFO flags*)
IF ( (EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0) ) 

THEN #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
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EREPORT—Create a Cryptographic Report of the Enclave 

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf 
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT 
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address 
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave 
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following: 

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX 
(REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA). 
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot 
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following: 

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO 

(In)
Address of REPORTDATA 

(In)
Address where the REPORT is 

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave 

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.
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Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ( (DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).VALID = 0)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 

Table 40-70.  Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Table 40-71.  Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA 
[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA 
[DS:RDX]

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_ATTRIBUTES  32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY  128 REPORTKEY generated by the instruction.

TMP_REPORT  3712
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THEN #PF(DS:RBX); 
FI;

(* Verify RESERVED spaces in TARGETINFO are valid *)
IF (DS:RBX.RESERVED != 0)

THEN #GP(0); FI;

(* Address verification for REPORTDATA (RCX) *)
IF ( (DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).R = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ( (DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1) 
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH) ) or (EPCM(DS:RDX).W = 0) ) 
THEN #PF(DS:RDX); 

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN := CR_CPUSVN;
TMP_REPORT.ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;
TMP_REPORT.ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
TMP_REPORT.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN := TMP_CURRENTSECS.ISVSVN;
TMP_REPORT.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA := DS:RCX[511:0];
TMP_REPORT.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
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TMP_REPORT.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED := 0;
TMP_REPORT.KEYID[255:0] := CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_REPORT.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_REPORT.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_REPORT.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := DS:RBX.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := DS:RBX.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;

(* Calculate the derived key*)
TMP_REPORTKEY := derivekey(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC := cmac(TMP_REPORTKEY, TMP_REPORT[3071:0] );
DS:RDX[3455: 0] := TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
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64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
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ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or 
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following: 

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an 

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF 
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 42.2.3). 

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all 
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 03H
ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or 
locked.

Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS 
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of 
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.
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• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed 
(see Section 42.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60] 
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ( ( DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1) ) ) )

THEN #GP(0); FI;

Table 40-72.  Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERESUME TCS [DS:RBX] Shared #GP

Table 40-73.  Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.
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(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical) )

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS) )
THEN #PF(DS:RBX); FI;

IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned) )

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 

THEN #GP(0); FI;
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(* make sure the logical processor’s operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT) )

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ( (DS:RBX).CSSA = 0) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ( (DS:RBX).CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page) 

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0) 

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 

THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;
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IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

TMP_TARGET := (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

THEN 
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE := DS:TMP_GPR.FSBASE;
TMP_GSBASE := DS:TMP_GPR.GSBASE;
IF ( (TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN
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IF ( CR4.CET = 0 ) 
THEN 

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *) 
IF ( TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0 ) #GP(0); FI; 

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *) 
IF ( TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1 ) 

THEN 
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI; 

FI;

TMP_IA32_U_CET := 0; 
TMP_SSP := 0;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN) 
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *) 
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES; 
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1 ) 

THEN 
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE; 

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *) 
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16 
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF; 

Check the TMP_CET_SAVE_PAGE page is read/write accessible 
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN 
#PF(DS:TMP_CET_SAVE_PAGE); 

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

TMP_SSP = CR_CET_SAVE_AREA_PA.SSP 
TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER; 
TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;

IF ( (TMP_MODE64 = 1 AND TMP_SSP is not canonical) OR
 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR
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 (TMP_SSP is not 4 byte aligned) OR
 (TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR
 (CR_CET_SAVE_AREA_PA.Reserved ≠ 0) ) #GP(0); FI;
FI;

FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP) 
THEN

DS:RBX.STATE := INACTIVE;
#GP(0);

FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

RIP := TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF := DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF := DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF := DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF := DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF := DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF := DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF := DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT := DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC := DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID := DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF := DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM := 0;
IF (RFLAGS.IOPL = 3) 

THEN RFLAGS.IF := DS:TMP_GPR.RFLAGS.IF; FI;
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IF (TCS.FLAGS.OPTIN = 0) 
THEN RFLAGS.TF := 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1) 

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA := (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
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Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Save enclosing application CET state into save registers *) 
CR_SAVE_IA32_U_CET := IA32_U_CET 
(* Setup enclave CET state *) 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP 
SSP := TMP_SSP;

FI; 
IA32_U_CET := TMP_IA32_U_CET;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
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If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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40.5 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLV instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific 
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside 
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
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EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS 

Instruction Operand Encoding

Description

This instruction decrements the SECS VIRTCHILDCNT field. This instruction can only be executed when current 
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.

EDECVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following: 

EDECVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLV[EDECVIRTCHILD]

IR V/V EAX[5] This leaf function decrements the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EDECVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS 
referenced in RCX.

Table 40-74.  Base Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent
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Operation

Temp Variables in EDECVIRTCHILD Operational Flow

EDECVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
    #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
    #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
    RFLAGS.ZF = 1;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

Table 40-75.  Additional Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

Error Value Description

No Error 0 EDECVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to decrement counter that is already zero.
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    (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))
THEN

    (* get the SECS of DS:RBX *)
    TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
    (* get the physical address of DS:RBX *)
    TMP_SECS := Physical_Address(DS:RBX);
ELSE 
    (* EDECVIRTCHILD called on page of incorrect type *)
    #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
    #GP(0); FI;

(* Atomically decrement virtchild counter and check for underflow *)
Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);
IF (There was an underflow) THEN
    Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);
    RFLAGS.ZF := 1;
    RAX := SGX_INVALID_COUNTER;
    goto DONE;
FI;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EDECVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a VIRT-
CHILDCNT underflow. Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS 

Instruction Operand Encoding

Description

This instruction increments the SECS VIRTCHILDCNT field. This instruction can only be executed when the current 
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create a linear address. 
Segment override is not supported.

EINCVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following: 

EINCVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLV[EINCVIRTCHILD]

IR V/V EAX[5] This leaf function increments the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EINCVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS 
referenced in RCX.

Table 40-76.  Base Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent
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Operation

Temp Variables in EINCVIRTCHILD Operational Flow

EINCVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
    #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
    #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
    RFLAGS.ZF = 1;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))

Table 40-77.  Additional Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

Error Value Description

No Error 0 EINCVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.
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THEN
    (* get the SECS of DS:RBX *)
    TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
    (* get the physical address of DS:RBX *)
    TMP_SECS := Physical_Address(DS:RBX);
ELSE 
    (* EINCVIRTCHILD called on page of incorrect type *)
    #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
    #GP(0); FI;

(* Atomically increment virtchild counter *)
Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EINCVIRTCHILD fails due to concurrent operation with another SGX instruction; otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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ESETCONTEXT—Set the ENCLAVECONTEXT Field in SECS 

Instruction Operand Encoding

Description

The ESETCONTEXT leaf overwrites the ENCLAVECONTEXT field in the SECS. ECREATE and ELD of an SECS set the 
ENCLAVECONTEXT field in the SECS to the address of the SECS (for access later in ERDINFO). The ESETCONTEXT 
instruction allows a VMM to overwrite the default context value if necessary, for example, if the VMM is emulating 
ECREATE or ELD on behalf of the guest. 
The content of RCX is an effective address of the SECS page to be updated, RDX contains the address pointing to 
the value to be stored in the SECS. The DS segment is used to create linear address. Segment override is not 
supported.
The instruction fails if: 
• The operand is not properly aligned.
• RCX does not refer to an SECS page.

ESETCONTEXT Memory Parameter Semantics

The instruction faults if any of the following: 

ESETCONTEXT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLV[ESETCONTEXT]

IR V/V EAX[5] This leaf function sets the ENCLAVECONTEXT field in SECS.

Op/En EAX RCX RDX

IR ESETCONTEXT (In) Return error code (Out)
Address of the destination EPC page 

(In, EA)
Context Value (In, EA)

EPCPAGE CONTEXT

Read access permitted by Enclave Read/Write access permitted by Non Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-78.  Base Concurrency Restrictions of ESETCONTEXT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit 
Qualification

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT
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Operation

Temp Variables in ESETCONTEXT Operational Flow

ESETCONTEXT Return Value in RAX

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
    #GP(0); FI;

 (* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC)THEN 
    #PF(DS:RCX, PFEC.SGX); FI;

(* check alignment of the CONTEXT field (RDX) *)
IF (DS:RDX is not 8Byte Aligned) THEN
    #GP(0); FI;

 (* Load CONTEXT into local variable *)
TMP_CONTEXT := DS:RDX

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    #PF(DS:RCX, PFEC.SGX);
FI;

(* check EPC page is an SECS page *)

Table 40-79.  Additional Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

TMP_CONTEXT CONTEXT 64 Data Value of CONTEXT.

Error Value Description

No Error 0 ESETCONTEXT Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.
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IF (EPCM(DS:RCX).PT is not PT_SECS) THEN
    #PF(DS:RCX, PFEC.SGX);
FI;

(* load the context value into SECS(DS:RCX).ENCLAVECONTEXT *)
SECS(DS:RCX).ENCLAVECONTEXT := TMP_CONTEXT;

RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ESETCONTEXT fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF, PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.
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28.Updates to Chapter 42, Volume 3D
Change bars show changes to Chapter 42 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
Changes to chapter: Update to Section 42.6.6, “Exception-Handling on PEBS/BTS Loads/Stores after AEX”.
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CHAPTER 42
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use 
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a 
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave 
instructions.

42.1 CONFIGURATION AND CONTROLS

42.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug 
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use 
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require an alternate SIGSTRUCT to be generated to debug the enclave.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation. 
Enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave will 
not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be 
required for a debug enclave to run in a meaningful way. 
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section 
40.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

42.1.2 Tool-Chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including 
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, Intel Processor Trace, and performance 
monitoring. This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR 
to the TCS of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, an 
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

42.2 SINGLE STEP DEBUG

42.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending as a trap-class 
exception on the instruction boundary immediately after the ENCLS instruction. Additionally, if the instruction is 
executed in VMX non-root operation and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is 
pending on the instruction boundary immediately after the instruction if the instruction does not fault.

42.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may mask the RFLAGS.TF bit, 
and mask the setting of the “monitor trap flag” VM-execution control. In such situations, an exit from the enclave, 
either via the EEXIT leaf function or via an AEX unmasks the RFLAGS.TF bit and the “monitor trap flag” VM-execu-
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tion control. The details of this masking/unmasking and the pending of single stepping events across 
EENTER/ERESUME/EEXIT/AEX are covered in detail in Section 42.2.3.
If the EFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, and if the EFLAGS.TF is not masked by 
the preceding enclave entry, then a single-step debug exception is pending on the instruction boundary immedi-
ately after the ENCLU instruction. Additionally, if the instruction is executed in VMX non-root operation and the 
“monitor trap flag” VM-execution control is 1, and if the monitor trap flag is not masked by the preceding enclave 
entry, then an MTF VM exit is pending on the instruction boundary immediately after the instruction.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no 
single-step debug exception is asserted. In such a situation, if the instruction is executed in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending after the delivery of the fault 
(or any nested exception). No MTF VM exit occurs if another VM exit occurs before reaching that boundary on which 
an MTF VM exit would be pending.

42.2.3 Single-Stepping Enclave Entry with Opt-out Entry

42.2.3.1  Single Stepping without AEX
Figure 42-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is 
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in VMX non-root operation 
and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending on the instruction boundary after 
EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is the same as the value of RFLAGS.TF at the time of the enclave 
entry.

42.2.3.2  Single Step Preempted by AEX Due to Non-SMI Event
Figure 42-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

Figure 42-1.  Single Stepping with Opt-out Entry - No AEX
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In this scenario, if the enclave is executing in VMX non-root operation and the “monitor trap flag” VM-execution 
control is 1, an MTF VM exit is pending on the instruction boundary after the AEX. No MTF VM exit occurs if another 
VM exit happens before reaching that instruction boundary. 
The value of the RFLAGS.TF bit at the end of AEX is the same as the value of RFLAGS.TF at the time of the enclave 
entry.

42.2.4 RFLAGS.TF Treatment on AEX
The value of EFLAGS.TF at the end of AEX from an opt-out enclave is same as the value of EFLAGS.TF at the time 
of the enclave entry. The value of EFLAGS.TF at the end of AEX from an opt-in enclave is unmodified. The 
EFLAGS.TF saved in GPR portion of the SSA on an AEX is 0. For more detail see EENTER and ERESUME in Chapter 5.

42.2.5 Restriction on Setting of TF after an Opt-Out Entry
Enclave entered through an opt-out entry is not allowed to set EFLAGS.TF. The POPF instruction forces RFLAGS.TF 
to 0 if the enclave was entered through opt-out entry.

42.2.6 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB 
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

42.3 CODE AND DATA BREAKPOINTS

42.3.1 Breakpoint Suppression
Following an opt-out entry:
• Instruction breakpoints are suppressed during execution in an enclave. 
• Data breakpoints are not triggered on accesses to the address range defined by ELRANGE.
• Data breakpoints are triggered on accesses to addresses outside the ELRANGE

Figure 42-2.  Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary
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Following an opt-in entry instruction and data breakpoints are not suppressed.
The processor does not report any matches on debug breakpoints that are suppressed on enclave entry. However, 
the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

42.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
A debug exception caused by the single-step execution mode or when a data breakpoint condition was met causes 
the processor to perform an AEX. Following such an AEX, the processor reports in the debug status register (DR6) 
matches of the new instruction pointer (the AEP address) in a breakpoint address register setup to detect instruc-
tion execution.

42.3.3 RF Treatment on AEX
RF flag value saved in SSA is the same as what would have been pushed on stack if the exception or event causing 
the AEX occurred when executing outside an enclave (see Section 17.3.1.1). Following an AEX, the RF flag is 0 in 
the synthetic state. 

42.3.4 Breakpoint Matching in Intel® SGX Instruction Flows
Implicit accesses made by Intel SGX instructions to EPC regions do not trigger data breakpoints. Explicit accesses 
made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE], 
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR], 
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC operands do not trigger data breakpoints.
Explicit accesses made by the Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]) executed by an 
enclave following an opt-in entry, trigger data breakpoints on accesses to their EPC operands. All Intel SGX instruc-
tions trigger data breakpoints on accesses to their non-EPC operands. 

42.4 CONSIDERATION OF THE INT1 AND INT3 INSTRUCTIONS
This section considers the operation of the INT1 and INT3 instructions when executed inside an enclave. These are 
the instructions with opcodes F1 and CC, respectively, and not INT n (with opcode CD) with value 1 or 3 for n.

42.4.1 Behavior of INT1 and INT3 Inside an Enclave
An execution of either INT1 or INT3 inside an enclave results in a fault-class exception. Following an opt-out entry, 
execution of either instruction results in an invalid-opcode exception (#UD). Following opt-in entry, INT1 results in 
a debug exception (#DB) and INT3 delivers a breakpoint exception (#BP). The normal requirement for INT3 (that 
the CPL not be greater than the DPL of descriptor 3 in the IDT) is not enforced.
Because execution of INT1 or INT3 inside an enclave results in a fault, the RIP saved in the SSA on AEX references 
the INT1 or INT3 instruction (and not the following instruction). The RIP value saved on the stack (or in the TSS or 
VMCS) is that of the AEP.
If execution of INT1 or INT3 inside an enclave causes a VM exit, the event type in the VM-exit interruption informa-
tion field indicates a hardware exception (type 3),1 and the VM-exit instruction length field is saved as zero.

42.4.2 Debugger Considerations
A debugger using INT3 inside an enclave should account for the modified behavior described in Section 42.4.1. 
Because INT3 is fault-like inside an enclave, the RIP saved in the SSA on AEX is that of the INT3 instruction. Conse-

1. INT1 would normally indicate a privileged software exception (type 5), and INT3 would normally indicate a software exception (type 6).
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quently, the debugger must not decrement SSA.RIP for #BP coming from an enclave to re-execute the instruction 
at the RIP of the INT3 instruction on a subsequent enclave entry. 

42.4.3 VMM Considerations
As described in Section 42.4.1, execution of INT3 inside an enclave delivers #BP with “interruption type” of 3. A 
VMM that re-injects #BP into the guest should establish the VM-entry interruption information field using data 
saved into the appropriate VMCS fields by the VM exit incident to the #BP (as recommended in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C).
VMMs that create the VM-entry interruption information based solely on the exception vector should take care to 
use event type 3 (instead of 6) when they detect a VM exit incident to enclave mode that is due to an exception 
with vector 3.

42.5 BRANCH TRACING

42.5.1 BTF Treatment
When software enables single-stepping on branches then:
• Following an opt-in entry using EENTER the processor generates a single step debug exception. 
• Following an EEXIT the processor generates a single-step debug exception
Enclave entry using ERESUME (opt-in or opt-out) and an AEX from the enclave do not cause generation of the 
single-step debug exception.

42.5.2 LBR Treatment

42.5.2.1  LBR Stack on Opt-in Entry
Following an opt-in entry into an enclave, last branch recording facilities if enabled continued to store branch 
records in the LBR stack MSRs as follows:
• On enclave entry using EENTER/ERESUME, the processor push the address of EENTER/ERESUME instruction 

into MSR_LASTBRANCH_n_FROM_IP, and the destination address of the EENTER/ERESUME into 
MSR_LASTBRANCH_n_TO_IP. 

• On EEXIT, the processor pushes the address of EEXIT instruction into MSR_LASTBRANCH_n_FROM_IP, and the 
address of EEXIT destination into MSR_LASTBRANCH_n_TO_IP. 

• On AEX, the processor pushes RIP saved in the SSA into MSR_LASTBRANCH_n_FROM_IP, and the address of 
AEP into MSR_LASTBRANCH_n_TO_IP. 

• For every branch inside the enclave, a branch record is pushed on the LBR stack.

Figure 42-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates 
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the 
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the 
instruction at the end of the arrow. 
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42.5.2.2  LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses last branch recording facilities, and enclave exit after an opt-out entry 
un-suppresses last branch recording facilities.
Opt-out entry into an enclave does not push any record on LBR stack.
If last branch recording facilities were enabled at the time of enclave entry, then EEXIT following such an enclave 
entry pushes one record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address 
of the instruction (EENTER or ERESUME) that was used to enter the enclave, while the 
MSR_LASTBRANCH_n_TO_IP of such record holds linear address of the destination of EEXIT. 
Additionally, if last branch recording facilities were enabled at the time of enclave entry, then an AEX after such an 
entry pushes one record on LBR stack, before pushing record for the event causing the AEX if the event pushes a 
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction 
(EENTER or ERESUME) that was used to enter the enclave, while MSR_LASTBRANCH_n_TO_IP of the new record 
holds linear address of the AEP. If the event causing AEX pushes a record on LBR stack, then the 
MSR_LASTBRANCH_n_FROM_IP for that record holds linear address of the AEP.
Figure 42-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of 
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address 
of the instruction at the end of the arrow.

Figure 42-3.  LBR Stack Interaction with Opt-in Entry
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42.5.2.3  Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX 
operations are always non-HLE/non-RTM records. 
EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in MSR_LBR_SELECT 
controls filtering of the new records introduced by Intel SGX.

42.6 INTERACTION WITH PERFORMANCE MONITORING 

42.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti 
Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in various 
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions. If the ASCI bit is set, the contents in various performance monitoring counters can be affected by 
the direct or indirect consequence of Intel SGX protection of enclave code executing in the processor. 

42.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring logic to observe the contribution of enclave code executing 
in the processor. Thus the contents of performance monitoring counters does not distinguish between contribution 
originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work as defined 
in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is not 
set.

Figure 42-4.  LBR Stack Interaction with Opt-out Entry
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42.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all 
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter, 
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx will 
stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record 
generation will also be suppressed. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is set.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx 
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count 
only MyThread while an opt-out enclave is executing on the other thread.

42.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity 
(including PEBS) on that logical processor that was suppressed is unsuppressed. 
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to 
AnyThread.

42.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU 
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction 
execution.
If the EENTER and ERESUME leaf functions are performing an opt-in entry report “Eventing RIP” of the ENCLU 
instruction if a PEBS record is generated at the end of the instruction execution. On the other hand, if these leaf 
functions are performing an opt-out entry, then these leaf functions result in PEBS being suppressed, and no PEBS 
record is generated at the end of these instructions.
A PEBS record is generated if there is a PEBS event pending at the end of EEXIT (due to a counter overflowing 
during enclave execution or during EEXIT execution). This PEBS record contains the architectural state of the 
logical processor at the end of EEXIT. If the enclave was entered via an opt-in entry, then this record reports the 
“Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction. If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry. 
A PEBS record is generated after the AEX if there is a PEBS event pending at the end of AEX (due to a counter over-
flowing during enclave execution or during AEX execution). This PEBS record contains the synthetic state of the 
logical processor that is established at the end of AEX. For opt-in entry, this record has the EVENTING_RIP set to 
the RIP saved in the SSA. For opt-out entry, the record has the EVENTING_RIP set to the linear address of 
EENTER/ERESUME used for the last enclave entry.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in 
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS event is taken at the end 
of delivery of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the AEP.

42.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
As noted in Section 17.4.9.2, recording in the BTS buffer or in the PEBS buffer may not operate properly if accesses 
to any of the DS save area sections cause page faults or VM exits. Such page faults or VM exits, if they occur, are 
delivered immediately to the OS or VMM, and generation of a BTS or PEBS record is skipped and may leave the 
buffers in a state where they have a partial BTS or PEBS records. 
However, any events that are detected during PEBS/BTS record generation at the end of AEX and before delivering 
the Enclave Exiting Event (EEE) cannot be reported immediately to the OS/VMM, as an event window is not open at 
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the end of AEX. Consequently, fault-like events such as page faults, EPT faults, EPT mis-configuration, and 
accesses to APIC-access page detected on stores to the PEBS/BTS buffer are not reported, and generation of the 
PEBS and/or BTS record at the end of AEX is aborted (this may leave the buffers in a state where they have partial 
PEBS or BTS records). Trap-like events detected on stores to the PEBS/BTS buffer (such as debug traps) are 
pended until the next instruction boundary, where they are handled according to the architecturally defined 
priority. The processor continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery, 
VM exit, etc.) after aborting the PEBS/BTS record generation. 

42.6.6.1  Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted far branches, and any counters 
that are counting such branches are incremented by 1 as a part of retirement of these instructions. Retirement of 
these instructions is also counted in any counters configured to count instructions retired.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting 
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a 
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores. 



42-10 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

29.Updates to Appendix C, Volume 3D
Change bars and green text show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
Changes to chapter: Addition of WBNOINVD details.
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Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this 
(see Section 26.8). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise 
noted.

Table C-1.  Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 
1. This case includes executions of BOUND that cause #BR, executions of INT1 (they cause #DB), executions of 
INT3 (they cause #BP), executions of INTO that cause #OF, and executions of UD0, UD1, and UD2 (they cause 
#UD).

2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1.

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and 
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and 
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of 
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV 
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV 
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor 
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.
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23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or 
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This 
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use 
TPR shadow” VM-execution control is 1. Such VM exits instead use basic exit reason 43.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution 
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports 

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where 

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM exit occurred due to the 1-setting of the “monitor trap flag” VM-execution control (see 
Section 25.5.2) or VM entry injected a pending MTF VM exit as part of VM entry (see Section 26.6.2).

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or 
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution 
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 
26.9).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the 
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.7.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the 
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table 
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table 
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of 
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured 
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution 
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD or WBNOINVD. Guest software attempted to execute WBINVD or WBNOINVD and the “WBINVD exiting” 
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software 
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting” 
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not 
enabled or generated a function-specific condition causing a VM exit.

60 ENCLS. Guest software attempted to execute ENCLS and “enable ENCLS exiting” VM-execution control was 1 and 
either (1) EAX < 63 and the corresponding bit in the ENCLS-exiting bitmap is 1; or (2) EAX ≥ 63 and bit 63 in the 
ENCLS-exiting bitmap is 1.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the 
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in 
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set 
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

66 SPP-related event. The processor attempted to determine an access’s sub-page write permission and encountered 
an SPP miss or an SPP misconfiguration. See Section 28.2.4.2.

67 UMWAIT. Guest software attempted to execute UMWAIT and the “enable user wait and pause” and “RDTSC exiting” 
VM-execution controls were both 1.

68 TPAUSE. Guest software attempted to execute TPAUSE and the “enable user wait and pause” and “RDTSC exiting” 
VM-execution controls were both 1.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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30.Updates to Chapter 1, Volume 4
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 4: Model-Specific Registers.

------------------------------------------------------------------------------------------
Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers (order 
number 335592) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-
32 architecture processors. Other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018 and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019 and 332831).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming 
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
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• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes.
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series 
• Intel® Xeon® Processor Scalable Family
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Processor Scalable Family
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• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem 
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel® 
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the 
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and 
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support 
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and 
support Intel 64 architecture. 

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.
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The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64 
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J 
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and 
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron® 
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and 
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports 
Intel 64 architecture.

The 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture and support Intel 64 
architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64 
architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all eight volumes of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel 
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Model-Specific Registers (MSRs). Lists the MSRs available in Intel processors, and describes their 
functions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
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though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, 

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

Figure 1-1.  Bit and Byte Order
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1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.
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1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate 
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field 
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name 
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at: 
https://software.intel.com/en-us/articles/intel-sdm

See also: 
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

https://software.intel.com/sites/default/files/22/30/25602
http://developer.intel.com/products/processor/manuals/index.htm
https://www.intel.com/content/www/us/en/security-center/default.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
https://software.intel.com/en-us/intel-sdp-home
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/security-software-guidance/
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
http://software.intel.com/en-us/articles/intel-compilers/
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31.Updates to Chapter 2, Volume 4
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 4: Model-Specific Registers.

------------------------------------------------------------------------------------------
Changes to this chapter: Updated Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel”, added 
MSRs for 11th generation Intel® Core™ processors based on the Tiger Lake microarchitecture, and typo correc-
tions as necessary.
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CHAPTER 2
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with 
the WRMSR instructions. The scope of an MSR defines the set of processors that access the same MSR with RDMSR 
and WRMSR. Thread-scope MSRs are unique to every logical processor. Core-scope MSRs are shared by the threads 
in the same core; similarly for module-scope, die-scope, and package-scope.

When a processor package contains a single die, die-scope and package-scope are synonymous. When a package 
contains multiple die, they are distinct. 

NOTE
For information on hierarchical level types supported, refer to the CPUID Leaf 1FH definition for the 
actual level type numbers: “V2 Extended Topology Enumeration Leaf” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. Also see Section 8.9.1, “Hierarchical 
Mapping of Shared Resources” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name 
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distin-
guish between different processor family and/or models, software must use CPUID.01H leaf function to query the 
combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID 
instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 2-1 lists the signature values of DisplayFamily and DisplayModel for various 
processor families or processor number series.

Table 2-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_85H Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on Knights Mill microarchitecture

06_57H Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

06_8CH, 06_8DH 11th generation Intel® Core™ processors based on Tiger Lake microarchitecture

06_7DH, 06_7EH 10th generation Intel® Core™ processors based on Ice Lake microarchitecture

06_A5H, 06_A6H 10th generation Intel® Core™ processors based on Comet Lake microarchitecture

06_66H Intel® Core™ processors based on Cannon Lake microarchitecture

06_8EH, 06_9EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture, 8th and 9th generation 
Intel® Core™ processors based on Coffee Lake microarchitecture, Intel® Xeon® E processors based on 
Coffee Lake microarchitecture

06_6AH, 06_6CH Future Intel® Xeon® processors based on Ice Lake microarchitecture

06_55H Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture, 2nd generation Intel® 
Xeon® Processor Scalable Family based on Cascade Lake product, and future Cooper Lake product

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor E7 v4 
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on 
Broadwell microarchitecture
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06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell 
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product 
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on 
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E 
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy 
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx 
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_86H Intel® Atom™ processors based on Tremont Microarchitecture

06_7AH Intel Atom processors based on Goldmont Plus Microarchitecture

06_5FH Intel Atom processors based on Goldmont Microarchitecture (code name Denverton)

06_5CH Intel Atom processors based on Goldmont Microarchitecture

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H, 
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

Table 2-1.  CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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2.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered 
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs” 
were given the prefix “IA32_”. Table 2-2 lists the architectural MSRs, their addresses, their current names, their 
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table 
2-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific. 
Code that accesses a model-specific MSR and that is executed on a processor that does not support that MSR will 
generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 2-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 2-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed 
as “MAXPHYADDR” in Table 2-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor 

06_01H Intel Pentium Pro processor 

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and 
SteppingID = 0

Table 2-2.  IA-32 Architectural MSRs

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 2.23, “MSRs in Pentium 
Processors.”

Pentium Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 2.23, “MSRs in Pentium 
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait 
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_COUNTER 

(TSC)

See Section 17.17, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID (RO) 
The operating system can use this MSR to 
determine “slot” information for the 
processor and the proper microcode update 
to load.

06_01H

Table 2-1.  CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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49:0 Reserved

52:50 Platform Id (RO) 

Contains information concerning the 
intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved

1BH 27 IA32_APIC_BASE 

(APIC_BASE)

This register holds the APIC base address, 
permitting the relocation of the APIC 
memory map. See Section 10.4.4, “Local 
APIC Status and Location” and Section 
10.4.5, “Relocating the Local APIC 
Registers”.

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode. 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor (R/W) If any one enumeration 
condition for defined bit 
field holds.

0 Lock bit (R/WO): (1 = locked). When set, 
locks this MSR from being written; writes to 
this bit will result in GP(0).

Note: Once the Lock bit is set, the contents 
of this register cannot be modified. 
Therefore the lock bit must be set after 
configuring support for Intel Virtualization 
Technology and prior to transferring control 
to an option ROM or the OS. Hence, once 
the Lock bit is set, the entire 
IA32_FEATURE_CONTROL contents are 
preserved across RESET when PWRGOOD is 
not deasserted.

If any one enumeration 
condition for defined bit 
field position greater than 
bit 0 holds.

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal
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1 Enable VMX inside SMX operation (R/WL): 
This bit enables a system executive to use 
VMX in conjunction with SMX to support 
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag and 
SMX feature flag set (ECX bits 5 and 6 
respectively).

If CPUID.01H:ECX[5] = 1 
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL): 
This bit enables VMX for a system 
executive that does not require SMX.

BIOS must set this bit only when the CPUID 
function 1 returns the VMX feature flag set 
(ECX bit 5).

If CPUID.01H:ECX[5] = 1 

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL): 
When set, each bit in the field represents 
an enable control for a corresponding 
SENTER function. This field is supported 
only if CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must 
be set to enable SENTER leaf functions. 
This bit is supported only if 
CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

16 Reserved

17 SGX Launch Control Enable (R/WL): This bit 
must be set to enable runtime re-
configuration of SGX Launch Control via the 
IA32_SGXLEPUBKEYHASHn MSR. 

If CPUID.(EAX=07H, 
ECX=0H): ECX[30] = 1

18 SGX Global Enable (R/WL): This bit must be 
set to enable SGX leaf functions. 

If CPUID.(EAX=07H, 
ECX=0H): EBX[2] = 1

19 Reserved

20 LMCE On (R/WL): When set, system 
software can program the MSRs associated 
with LMCE to configure delivery of some 
machine check exceptions to a single logical 
processor. 

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write 
to clear)

If CPUID.(EAX=07H, 
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST: 

Local offset value of the IA32_TSC for a 
logical processor. Reset value is zero. A 
write to IA32_TSC will modify the local 
offset in IA32_TSC_ADJUST and the 
content of IA32_TSC, but does not affect 
the internal invariant TSC hardware. 

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal
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48H 72 IA32_SPEC_CTRL Speculation Control (R/W)

The MSR bits are defined as logical 
processor scope. On some core 
implementations, the bits may impact 
sibling logical processors on the same core.

This MSR has a value of 0 after reset and is 
unaffected by INIT# or SIPI#.

If any one of the 
enumeration conditions for 
defined bit field positions 
holds.

0 Indirect Branch Restricted Speculation 
(IBRS). Restricts speculation of indirect 
branch.

If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1

1 Single Thread Indirect Branch Predictors 
(STIBP). Prevents indirect branch 
predictions on all logical processors on the 
core from being controlled by any sibling 
logical processor in the same core.

If CPUID.(EAX=07H, 
ECX=0):EDX[27]=1

2 Speculative Store Bypass Disable (SSBD) 
delays speculative execution of a load until 
the addresses for all older stores are 
known.

If CPUID.(EAX=07H, 
ECX=0):EDX[31]=1

63:3 Reserved

49H 73 IA32_PRED_CMD Prediction Command (WO)

Gives software a way to issue commands 
that affect the state of predictors.

If any one of the 
enumeration conditions for 
defined bit field positions 
holds.

0 Indirect Branch Prediction Barrier (IBPB). If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1

63:1 Reserved

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR 
causes a microcode update to be loaded 
into the processor. See Section 9.11.6, 
“Microcode Update Loader.”

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID 
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature 
following the execution of CPUID.01H.

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

31:0 Reserved
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63:32 It is recommended that this field be pre-
loaded with zero prior to executing CPUID. 

If the field remains zero following the 
execution of CPUID, this indicates that no 
microcode update is loaded. Any non-zero 
value is the microcode update signature.

8CH 140 IA32_SGXLEPUBKEYHASH0 IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

Read permitted If 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
CPUID.(EAX=07H, 
ECX=0H):ECX[30]=1.

Write permitted if 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
IA32_FEATURE_CONTROL[
17] = 1 && 
IA32_FEATURE_CONTROL[
0] = 1.

8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

8EH 142 IA32_SGXLEPUBKEYHASH2 IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 || 
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see 
Section 34.14.4).

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s 
SMRAM image (RO, SMM only).

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0 

(PERFCTR0)

General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

C2H 194 IA32_PMC1 

(PERFCTR1)

General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2
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C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 
7

CFH 207 IA32_CORE_CAPABILITIES IA32 Core Capabilities Register If CPUID.(EAX=07H, 
ECX=0):EDX[30] = 1 

63:0 Reserved. No architecturally defined 
bits.

E1H 225 IA32_UMWAIT_CONTROL UMWAIT Control (R/W)

0 C0.2 is not allowed by the OS. Value of “1” 
means all C0.2 requests revert to C0.1.

1 Reserved

31:2 Determines the maximum time in TSC-
quanta that the processor can reside in 
either C0.1 or C0.2. A zero value indicates 
no maximum time. The maximum time 
value is a 32-bit value where the upper 30 
bits come from this field and the lower two 
bits are zero.

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to 
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC 
freq.) when the logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write 
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock Count

Accumulates core clock counts at the 
coordinated clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_MPERF.

FEH 254 IA32_MTRRCAP 

(MTRRcap)

MTRR Capability (RO)

See Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory type 
ranges in the processor.
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8 Fixed range MTRRs are supported when 
set.

9 Reserved

10 WC Supported when set.

11 SMRR Supported when set.

12 PRMRR supported when set.

63:13 Reserved

10AH 266 IA32_ARCH_CAPABILITIES Enumeration of Architectural Features (RO) If CPUID.(EAX=07H, 
ECX=0):EDX[29]=1

0 RDCL_NO: The processor is not susceptible 
to Rogue Data Cache Load (RDCL).

1 IBRS_ALL: The processor supports 
enhanced IBRS.

2 RSBA: The processor supports RSB 
Alternate. Alternative branch predictors 
may be used by RET instructions when the 
RSB is empty. SW using retpoline may be 
affected by this behavior.

3 SKIP_L1DFL_VMENTRY: A value of 1 
indicates the hypervisor need not flush the 
L1D on VM entry.

4 SSB_NO: Processor is not susceptible to 
Speculative Store Bypass.

5 MDS_NO: Processor is not susceptible to 
Microarchitectural Data Sampling (MDS).

6 IF_PSCHANGE_MC_NO: The processor is not 
susceptible to a machine check error due to 
modifying the size of a code page without 
TLB invalidation.

7 TSX_CTRL: If 1, indicates presence of 
IA32_TSX_CTRL MSR.

8 TAA_NO: If 1, processor is not affected by 
TAA.

63:9 Reserved

10BH 267 IA32_FLUSH_CMD Flush Command (WO)

Gives software a way to invalidate 
structures with finer granularity than other 
architectural methods.

If any one of the 
enumeration conditions for 
defined bit field positions 
holds.

0 L1D_FLUSH: Writeback and invalidate the 
L1 data cache. 

If CPUID.(EAX=07H, 
ECX=0):EDX[28]=1

63:1 Reserved
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122H 290 IA32_TSX_CTRL IA32_TSX_CTRL Thread scope. Not 
architecturally serializing.

Available when 
CPUID.ARCH_CAP(EAX=7H, 
ECX = 0):EDX[29] = 1 and 
IA32_ARCH_CAPABILITIES.
bit 7 = 1.

0 RTM_DISABLE: When set to 1, XBEGIN will 
always abort with EAX code 0.

1 TSX_CPUID_CLEAR: When set to 1, 
CPUID.07H.EBX.RTM [bit 11] and 
CPUID.07H.EBX.HLE [bit 4] report 0.

When set to 0 and the SKU supports TSX, 
these bits will return 1.

63:2 Reserved

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector.

31:16 Not used. Can be read and written.

63:32 Not used. Writes ignored; reads

return zero.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if 
this bit is set.

9 MCG_EXT_P: Extended machine check state 
registers are present if this bit is set.

10 MCP_CMCI_P: Support for corrected MC 
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status 
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended 
machine check state registers present.

24 MCG_SER_P: The processor supports 
software error recovery if this bit is set.

25 Reserved
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26 MCG_ELOG_P: Indicates that the processor 
allows platform firmware to be invoked 
when an error is detected so that it may 
provide additional platform specific 
information in an ACPI format “Generic 
Error Data Entry” that augments the data 
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor 
supports extended state in 
IA32_MCG_STATUS and associated MSR 
necessary to configure Local Machine Check 
Exception (LMCE).

06_3EH

63:28 Reserved

17AH 378 IA32_MCG_STATUS 

(MCG_STATUS)

Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid. 06_01H

1 EIPV. Error IP valid. 06_01H

2 MCIP. Machine check in progress. 06_01H

3 LMCE_S If 
IA32_MCG_CAP.LMCE_P[27
] =1

63:4 Reserved

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8] 
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 

(PERFEVTSEL0)

Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

7:0 Event Select: Selects a performance event 
logic unit.

15:8 UMask: Qualifies the microarchitectural 
condition to detect on the selected event 
logic.

16 USR: Counts while in privilege level is not 
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: Enables pin control.

20 INT: Enables interrupt on counter overflow.
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21 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

22 EN: Enables the corresponding performance 
counter to commence counting when this 
bit is set.

23 INV: Invert the CMASK.

31:24 CMASK: When CMASK is not zero, the 
corresponding performance counter 
increments each cycle if the event count is 
greater than or equal to the CMASK.

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 

(PERFEVTSEL1)

Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS Current Performance Status (RO)

See Section 14.1.1, “Software Interface For 
Initiating Performance State Transitions”.

0F_03H

15:0 Current performance State Value.

63:16 Reserved

199H 409 IA32_PERF_CTL Performance Control MSR (R/W)

Software makes a request for a new 
Performance state (P-State) by writing this 
MSR. See Section 14.1.1, “Software 
Interface For Initiating Performance State 
Transitions”.

0F_03H

15:0 Target performance State Value.

31:16 Reserved

32 IDA Engage (R/W)

When set to 1: disengages IDA.

06_0FH (Mobile only)

63:33 Reserved

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.8.3, “Software Controlled 
Clock Modulation.”

If CPUID.01H:EDX[22] = 1
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0 Extended On-Demand Clock Modulation 
Duty Cycle.

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle: 
Specific encoded values for target duty 
cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1 
to enable modulation.

If CPUID.01H:EDX[22] = 1

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the processor’s thermal 
sensors and thermal monitor. 

See Section 14.8.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1

22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the 
processor’s thermal sensor and automatic 
thermal monitoring facilities. 

See Section 14.8.2, “Thermal Monitor”.

If CPUID.01H:EDX[22] = 1

0 Thermal Status (RO) If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W) If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (RO) If CPUID.01H:EDX[22] = 1

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (RO) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1
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8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to 
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP 
MOVS and REP STORS) is enabled (default). 
When clear, fast-strings are disabled.

0F_0H

2:1 Reserved

3 Automatic Thermal Control Circuit Enable 
(R/W) 

1 = Setting this bit enables the thermal 
control circuit (TCC) portion of the 
Intel Thermal Monitor feature. This 
allows the processor to automatically 
reduce power consumption in 
response to TCC activation.

0 = Disabled.
Note: In some products clearing this bit 
might be ignored in critical thermal 
conditions, and TM1, TM2 and adaptive 
thermal throttling will still be activated.

The default value of this field varies with 
product . See respective tables where 
default value is listed. 

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.

0F_0H

10:8 Reserved
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11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch 
trace storage (BTS).

0 = BTS is supported.

0F_0H

12 Processor Event Based Sampling (PEBS) 
Unavailable (RO) 

1 = PEBS is not supported.
0 = PEBS is supported. 

06_0FH

15:13 Reserved

16 Enhanced Intel SpeedStep Technology 
Enable (R/W)

0= Enhanced Intel SpeedStep Technology 
disabled.

1 = Enhanced Intel SpeedStep Technology 
enabled.

If CPUID.01H: ECX[7] =1

17 Reserved

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR 
feature flag is not set (CPUID.01H:ECX[bit 
3] = 0). This indicates that 
MONITOR/MWAIT are not supported. 

Software attempts to execute 
MONITOR/MWAIT will cause #UD when this 
bit is 0.

When this bit is set to 1 (default), 
MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), the OS must 
not attempt to alter this bit. BIOS must 
leave it in the default state. Writing this bit 
when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved
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22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns 
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that 
allows users to specify when the installed 
OS does not support CPUID functions 
greater than 2.

Before setting this bit, BIOS must execute 
the CPUID.0H and examine the maximum 
value returned in EAX[7:0]. If the maximum 
value is greater than 2, this bit is 
supported.

Otherwise, this bit is not supported. Setting 
this bit when the maximum value is not 
greater than 2 may generate a #GP 
exception.

Setting this bit may cause unexpected 
behavior in software that depends on the 
availability of CPUID leaves greater than 2.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are 
disabled. xTPR messages are optional 
messages that allow the processor to 
inform the chipset of its priority.

If CPUID.01H:ECX[14] = 1

33:24 Reserved

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit 
feature (XD Bit) is disabled and the XD Bit 
extended feature flag will be clear 
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute 
Disable Bit feature (if available) allows the 
OS to enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the contents of this bit 
location, if XD bit is not supported. Writing 
this bit to 1 when the XD Bit extended 
feature flag is set to 0 may generate a #GP 
exception.

If 
CPUID.80000001H:EDX[20
] = 1

63:35 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) If CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest 
performance.

15 indicates preference to maximize 
energy saving.

63:4 Reserved
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1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the 
package’s thermal sensor. 

See Section 14.9, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO)

1 Pkg Thermal Status Log (R/W)

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status Log 
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 Log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 Log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation Log (R/WC0)

15:12 Reserved

22:16 Pkg Digital Readout (RO)

25:23 Reserved

26 Hardware Feedback Interface Structure 
Change Status

If CPUID.06H:EAX.[19] = 1

63:27 Reserved

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the package’s thermal 
sensor. 

See Section 14.9, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved

4 Pkg Overheat Interrupt Enable

7:5 Reserved

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value
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23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

25 Hardware Feedback Interrupt Enable If CPUID.06H:EAX.[19] = 1

63:26 Reserved

1D9H 473 IA32_DEBUGCTL 

(MSR_DEBUGCTLA, MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the 
processor to record a running trace of the 
most recent branches taken by the 
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the 
processor to treat EFLAGS.TF as single-step 
on branches instead of single-step on 
instructions.

06_01H

5:2 Reserved

6 TR: Setting this bit to 1 enables branch 
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace 
messages (BTMs) to be logged in a BTS 
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a 
BTS buffer in circular fashion. When this bit 
is set, an interrupt is generated by the BTS 
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is 
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is 
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR 
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1 
&& CPUID.0AH: EAX[7:0] > 
1

12 FREEZE_PERFMON_ON_PMI: When set, 
each ENABLE bit of the global counter 
control MSR are frozen (address 38FH) on a 
PMI request.

If CPUID.01H: ECX[15] = 1 
&& CPUID.0AH: EAX[7:0] > 
1

13 ENABLE_UNCORE_PMI: When set, enables 
the logical processor to receive and 
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes 
perfmon and trace messages while in SMM.

If  
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug 
bit on XBEGIN.

If (CPUID.(EAX=07H, 
ECX=0):EBX[11] = 1)

63:16 Reserved
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1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in 
SMM) 

Base address of SMM memory range.

If 
IA32_MTRRCAP.SMRR[11] 
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved

31:12 PhysBase

SMRR physical Base Address.

63:32 Reserved

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask (Writeable only in SMM) 

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR] = 
1

10:0 Reserved

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1 

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1 

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved

16:13 DCA_DELAY: Writes will update the register 
but have no HW side-effect.

23:17 Reserved

24 SW_BLOCK: SW can request DCA block by 
setting this bit.

25 Reserved

26 HW_BLOCK: Set when DCA is blocked by HW 
(e.g. CR0.CD = 1).

31:27 Reserved

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range 
MTRRs.”

If IA32_MTRRCAP[7:0] > 0

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If IA32_MTRRCAP[7:0] > 0

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 If IA32_MTRRCAP[7:0] > 1

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 If IA32_MTRRCAP[7:0] > 1

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal



2-20 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 If IA32_MTRRCAP[7:0] > 2

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 If IA32_MTRRCAP[7:0] > 2

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If IA32_MTRRCAP[7:0] > 3

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If IA32_MTRRCAP[7:0] > 3

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If IA32_MTRRCAP[7:0] > 4

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If IA32_MTRRCAP[7:0] > 4

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If IA32_MTRRCAP[7:0] > 5

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If IA32_MTRRCAP[7:0] > 5

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If IA32_MTRRCAP[7:0] > 6

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If IA32_MTRRCAP[7:0] > 6

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If IA32_MTRRCAP[7:0] > 7

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If IA32_MTRRCAP[7:0] > 7

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 If IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 If IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 If IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 If IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H: 
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H: 
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H: 
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000 
(MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed Range 
MTRRs.”

If CPUID.01H: 
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H: 
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H: 
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H: 
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H: 
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H: 
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H: 
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H: 
EDX.MTRR[12] =1

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H: 
EDX.MTRR[16] =1

2:0 PA0
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7:3 Reserved

10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 MSR to enable/disable CMCI capability for 
bank 0. (R/W)

See Section 15.3.2.5, “IA32_MCi_CTL2 
MSRs”. 

If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
0 

14:0 Corrected error count threshold.

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
1

282H 642 IA32_MC2_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
2

283H 643 IA32_MC3_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
3

284H 644 IA32_MC4_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
4

285H 645 IA32_MC5_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
5

286H 646 IA32_MC6_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
6
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287H 647 IA32_MC7_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
7

288H 648 IA32_MC8_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
8

289H 649 IA32_MC9_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
9

28AH 650 IA32_MC10_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
10

28BH 651 IA32_MC11_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
11

28CH 652 IA32_MC12_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
12

28DH 653 IA32_MC13_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
13

28EH 654 IA32_MC14_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
14

28FH 655 IA32_MC15_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
15

290H 656 IA32_MC16_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
16

291H 657 IA32_MC17_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
17

292H 658 IA32_MC18_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
18

293H 659 IA32_MC19_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
19

294H 660 IA32_MC20_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
20

295H 661 IA32_MC21_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
21

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal



Vol. 4 2-23

MODEL-SPECIFIC REGISTERS (MSRS)

296H 662 IA32_MC22_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
22

297H 663 IA32_MC23_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
23

298H 664 IA32_MC24_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
24

299H 665 IA32_MC25_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
25

29AH 666 IA32_MC26_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
26

29BH 667 IA32_MC27_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
27

29CH 668 IA32_MC28_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
28

29DH 669 IA32_MC29_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
29

29EH 670 IA32_MC30_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
30

29FH 671 IA32_MC31_CTL2 (R/W) Same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H: 
EDX.MTRR[12] =1

2:0 Default Memory Type

9:3 Reserved

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved

309H 777 IA32_FIXED_CTR0 Fixed-Function Performance Counter 0 
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 Fixed-Function Performance Counter 1 
(R/W): Counts CPU_CLK_Unhalted.Core.

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 Fixed-Function Performance Counter 2 
(R/W): Counts CPU_CLK_Unhalted.Ref.

If CPUID.0AH: EDX[4:0] > 2
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345H 837 IA32_PERF_CAPABILITIES Read Only MSR that enumerates the 
existence of performance monitoring 
features. (RO)

If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via 
IA32_A_PMCx.

14 Reserved

15 1: Performance metrics available.

16 1: PEBS output will be written into the Intel 
PT trace stream.

If CPUID.0x7.0.EBX[25]=1

63:17 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter 
Control (R/W)

Counter increments while the results of 
ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the 
corresponding OS or USR bits in this MSR is 
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count 
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count 
while CPL > 0.

2 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0 
overflows.

4 EN1_OS: Enable Fixed Counter 1to count 
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count 
while CPL > 0.
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6 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1 
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count 
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count 
while CPL > 0.

10 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2 
overflows.

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] > 
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] > 
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] > 
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] > 
3

31:4 Reserved

32 Ovf_FixedCtr0: Overflow status of 
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of 
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of 
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

47:35 Reserved
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48 OVF_PERF_METRICS: If this bit is set, it 
indicates that PERF_METRIC counter has 
overflowed and a PMI is triggered; however, 
an overflow of fixed counter 3 should 
normally happen first. If this bit is clear no 
overflow occurred.

54:49 Reserved

55 Trace_ToPA_PMI: A PMI occurred due to a 
ToPA entry memory buffer that was 
completely filled.

If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved

58 LBR_Frz. LBRs are frozen due to:

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1.
• The LBR stack overflowed.

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz. Performance counters in the core 
PMU are frozen due to:

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1.

• One or more core PMU counters 
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in 
the core PMU may include contributions 
from the direct or indirect operation Intel 
SGX to protect an enclave.

If CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow 
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow 
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: Status bits of this register have 
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of 
ANDing the respective enable bit in this 
MSR with the corresponding OS or USR bits 
in the general-purpose or fixed counter 
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] > 
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] > 
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] > 
2

n EN_PMCn If CPUID.0AH: EAX[15:8] > 
n

31:n+1 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0
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33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

47:35 Reserved

48 EN_PERF_METRICS: If this bit is set and 
fixed counter 3 is effectively enabled, built-
in performance metrics are enabled.

63:49 Reserved

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0 
&& CPUID.0AH: EAX[7:0] 
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] > 
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf bit. If CPUID.0AH: EAX[7:0] > 0

63 Set 1 to clear CondChgd bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow 
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] > 
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved
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32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

47:35 Reserved

48 RESET_OVF_PERF_METRICS: If this bit is 
set, it will clear the status bit in the 
IA32_PERF_GLOBAL_STATUS register for 
the PERF_METRICS counters.

54:49 Reserved

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA[8] = 
1

57:56 Reserved

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf bit. If CPUID.0AH: EAX[7:0] > 0

63 Set 1 to clear CondChgd bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1. If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to cause Ovf_PMC2 = 1. If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to cause Ovf_PMCn = 1. If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

47:35 Reserved

48 SET_OVF_PERF_METRICS: If this bit is set, 
it will set the status bit in the 
IA32_PERF_GLOBAL_STATUS register for 
the PERF_METRICS counters.

54:49 Reserved

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved
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58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator that core perfmon interface is in 
use. (RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use.

1 IA32_PERFEVTSEL1 in use. If CPUID.0AH: EAX[15:8] > 
1

2 IA32_PERFEVTSEL2 in use. If CPUID.0AH: EAX[15:8] > 
2

n IA32_PERFEVTSELn in use. If CPUID.0AH: EAX[15:8] > 
n

31:n+1 Reserved

32 IA32_FIXED_CTR0 in use.

33 IA32_FIXED_CTR1 in use.

34 IA32_FIXED_CTR2 in use.

62:35 Reserved or model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or model specific.

31:4 Reserved

35:32 Reserved or model specific.

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2
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40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11
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430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal



2-32 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H 1112 IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H 1113 IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH 1114 IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH 1115 IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH 1116 IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH 1117 IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH 1118 IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH 1119 IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H 1120 IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H 1121 IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H 1122 IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H 1123 IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H 1124 IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H 1125 IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H 1126 IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H 1127 IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H 1128 IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H 1129 IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH 1130 IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH 1131 IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH 1132 IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH 1133 IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH 1134 IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH 1135 IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H 1136 IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H 1137 IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H 1138 IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

473H 1139 IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX 
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-Based 
VM-Execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1
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482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-Based VM-Execution Controls 
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-Exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-Entry 
Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous VMX 
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits 
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits 
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits 
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits 
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of Secondary 
Processor-Based VM-Execution Controls 
(R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and 
VPID (R/O)

See Appendix A.10, “VPID and EPT 
Capabilities.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_C
TLS[63] && ( 
IA32_VMX_PROCBASED_C
TLS2[33] || 
IA32_VMX_PROCBASED_C
TLS2[37]) )

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-Based 
VM-Execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If ( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )
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48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-Based VM-Execution Flex 
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-Exit 
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-Entry 
Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
Function Controls (R/O)

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
6) &&

IA32_PERF_CAPABILITIES[
13] = 1
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4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL Allows software to signal some MCEs to 
only a single logical processor in the 
system. (R/W)

See Section 15.3.1.4, “IA32_MCG_EXT_CTL 
MSR”. 

If IA32_MCG_CAP.LMCE_P 
=1

0 LMCE_EN

63:1 Reserved

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support 
for ACM (RO).

If CPUID.(EAX=07H, 
ECX=0H): EBX[2] = 1

0 Lock See Section 41.11.3, 
“Interactions with 
Authenticated Code 
Modules (ACMs)”.

15:1 Reserved

23:16 SGX_SVN_SINIT See Section 41.11.3, 
“Interactions with 
Authenticated Code 
Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):E
CX[0] = 1) || 
(CPUID.(EAX=14H,ECX=0):E
CX[2] = 1) ) )

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address.

63:MAXPHYADDR Reserved

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):E
CX[0] = 1) || 
(CPUID.(EAX=14H,ECX=0):E
CX[2] = 1) ) )

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 TraceEn
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1 CYCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

2 OS

3 User

4 PwrEvtEn If (CPUID.(EAX=07H, 
ECX=1):EBX[5] = 1)

5 FUPonPTW If (CPUID.(EAX=07H, 
ECX=1):EBX[4] = 1)

6 FabricEn If (CPUID.(EAX=07H, 
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 PTWEn If (CPUID.(EAX=07H, 
ECX=1):EBX[4] = 1)

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

18 Reserved, must be zero.

22:19 CYCThresh If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

23 Reserved, must be zero.

27:24 PSBFreq If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

31:28 Reserved, must be zero.

35:32 ADDR0_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

55:48 Reserved, must be zero.

56 InjectPsbPmiOnEnable If (CPUID.(EAX=07H, 
ECX=1):EBX[6] = 1)

63:57 Reserved, must be zero.
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571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 FilterEn (writes ignored) If (CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1)

1 ContexEn (writes ignored)

2 TriggerEn (writes ignored)

3 Reserved

4 Error 

5 Stopped

6 PendPSB If (CPUID.(EAX=07H, 
ECX=0):EBX[6] = 1)

7 PendToPAPMI If (CPUID.(EAX=07H, 
ECX=0):EBX[6] = 1)

31:8 Reserved, must be zero.

48:32 PacketByteCnt If (CPUID.(EAX=07H, 
ECX=0):EBX[1] > 3)

63:49 Reserved

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match.

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address
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63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W) 

Points to the linear address of the first byte 
of the DS buffer management area, which 
is used to manage the BTS and PEBS 
buffers.

See Section 18.6.3.4, “Debug Store (DS) 
Mechanism.”

If( CPUID.01H:EDX.DS[21] = 
1 

63:0 The linear address of the first byte of the 
DS buffer management area, if IA-32e 
mode is active.

31:0 The linear address of the first byte of the 
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6A0H 1696 IA32_U_CET Configure User Mode CET (R/W) Bits 1:0 are defined if 
CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1. 

Bits 5:2 and bits 63:10 are 
defined if 
CPUID.(EAX=07H, 
ECX=0H):EDX.CET_IBT[20] 
= 1.

0 SH_STK_EN: When set to 1, enable shadow 
stacks at CPL3.

1 WR_SHSTK_EN: When set to 1, enables the 
WRSSD/WRSSQ instructions.

2 ENDBR_EN: When set to 1, enables indirect 
branch tracking.

3 LEG_IW_EN: Enable legacy compatibility 
treatment for indirect branch tracking.
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4 NO_TRACK_EN: When set to 1, enables use 
of no-track prefix for indirect branch 
tracking.

5 SUPPRESS_DIS: When set to 1, disables 
suppression of CET indirect branch tracking 
on legacy compatibility.

9:6 Reserved; must be zero.

10 SUPPRESS: When set to 1, indirect branch 
tracking is suppressed. This bit can be 
written to 1 only if TRACKER is written as 
IDLE.

11 TRACKER: Value of the indirect branch 
tracking state machine. Values: IDLE (0), 
WAIT_FOR_ENDBRANCH(1).

63:12 EB_LEG_BITMAP_BASE: Linear address bits 
63:12 of a legacy code page bitmap used 
for legacy compatibility when indirect 
branch tracking is enabled.

If the processor does not support Intel 64 
architecture, these fields have only 32 bits; 
bits 63:32 of the MSRs are reserved. On 
processors that support Intel 64 
architecture this value cannot represent a 
non-canonical address. In protected mode, 
only 31:0 are loaded. The linear address 
written must be aligned to 8 bytes and bits 
2:0 must be 0 (hardware requires bits 1:0 
to be 0).

6A2H 1698 IA32_S_CET Configure Supervisor Mode CET (R/W) See IA32_U_CET (6A0H) 
for reference; similar 
format.

6A4H 1700 IA32_PL0_SSP Linear address to be loaded into SSP on 
transition to privilege level 0. (R/W)

If the processor does not support Intel 64 
architecture, these fields have only 32 bits; 
bits 63:32 of the MSRs are reserved. On 
processors that support Intel 64 
architecture this value cannot represent a 
non-canonical address. In protected mode, 
only 31:0 are loaded. The linear address 
written must be aligned to 8 bytes and bits 
2:0 must be 0 (hardware requires bits 1:0 
to be 0).

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1
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6A5H 1701 IA32_PL1_SSP Linear address to be loaded into SSP on 
transition to privilege level 1. (R/W)

If the processor does not support Intel 64 
architecture, these fields have only 32 bits; 
bits 63:32 of the MSRs are reserved. On 
processors that support Intel 64 
architecture this value cannot represent a 
non-canonical address. In protected mode, 
only 31:0 are loaded. The linear address 
written must be aligned to 8 bytes and bits 
2:0 must be 0 (hardware requires bits 1:0 
to be 0).

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1

6A6H 1702 IA32_PL2_SSP Linear address to be loaded into SSP on 
transition to privilege level 2. (R/W)

If the processor does not support Intel 64 
architecture, these fields have only 32 bits; 
bits 63:32 of the MSRs are reserved. On 
processors that support Intel 64 
architecture this value cannot represent a 
non-canonical address. In protected mode, 
only 31:0 are loaded. The linear address 
written must be aligned to 8 bytes and bits 
2:0 must be 0 (hardware requires bits 1:0 
to be 0).

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1

6A7H 1703 IA32_PL3_SSP Linear address to be loaded into SSP on 
transition to privilege level 3. (R/W)

If the processor does not support Intel 64 
architecture, these fields have only 32 bits; 
bits 63:32 of the MSRs are reserved. On 
processors that support Intel 64 
architecture this value cannot represent a 
non-canonical address. In protected mode, 
only 31:0 are loaded. The linear address 
written must be aligned to 8 bytes and bits 
2:0 must be 0 (hardware requires bits 1:0 
to be 0).

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1

6A8H 1704 IA32_INTERRUPT_SSP_TABLE_ADDR Linear address of a table of seven shadow 
stack pointers that are selected in IA-32e 
mode using the IST index (when not 0) from 
the interrupt gate descriptor. (R/W)

This MSR is not present on processors that 
do not support Intel 64 architecture. This 
field cannot represent a non-canonical 
address. 

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] 
= 1

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline 
Mode (R/W)

If CPUID.01H:ECX.[24] = 1 
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6E1H 1761 IA32_PKRS Specifies the PK permissions associated 
with each protection domain for supervisor 
pages (R/W)

If CPUID.(EAX=07H, 
ECX=0H):ECX.PKS [31] = 1

31:0 For domain i (i between 0 and 15), bits 2i 
and 2i+1 contain the AD and WD 
permissions, respectively.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1 

0 HWP_ENABLE (R/W1-Once)

See Section 14.4.2, “Enabling HWP”.

If CPUID.06H:EAX.[7] = 1 

63:1 Reserved

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration (RO) If CPUID.06H:EAX.[7] = 1 

7:0 Highest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1 

15:8 Guaranteed_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1 

23:16 Most_Efficient_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1 

31:24 Lowest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1 

63:32 Reserved

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All 
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1 

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1 
&& 

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[11] = 1 
&& 

CPUID.06H:EAX.[9] = 1

63:42 Reserved

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1 
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0 EN_Guaranteed_Performance_Change

See Section 14.4.6, “HWP Notifications”.

If CPUID.06H:EAX.[8] = 1 

1 EN_Excursion_Minimum

See Section 14.4.6, “HWP Notifications”.

If CPUID.06H:EAX.[8] = 1 

63:2 Reserved

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a 
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[10] = 
1 

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[9] = 1 

42 Package_Control 

See Section 14.4.4, “Managing HWP”.

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[11] = 
1 

63:43 Reserved

775H 1909 IA32_PECI_HWP_REQUEST_INFO IA32_PECI_HWP_REQUEST_INFO

7:0 Minimum Performance 
(MINIMUM_PERFORMANCE): Used by OS to 
read the latest value of PECI minimum 
performance input. Default value is 0.

15:8 Maximum Performance 
(MAXIMUM_PERFORMANCE): Used by OS to 
read the latest value of PECI maximum 
performance input. Default value is 0.

23:16 Reserved.

31:24 Energy Performance Preference 
(ENERGY_PERFORMANCE_PREFERENCE): 
Used by OS to read the latest value of PECI 
Energy Performance Preference input. 
Default value is 0.

59:32 Reserved.
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60 EPP PECI Override (EPP_PECI_OVERRIDE):

Indicates whether PECI is currently 
overriding the Energy Performance 
Preference input. If set to ‘1’, PECI is 
overriding the Energy Performance 
Preference input. If clear (0), OS has control 
over Energy Performance Preference input. 
Default value is 0.

61 Reserved.

62 Max PECI Override (MAX_PECI_OVERRIDE):

Indicates whether PECI is currently 
overriding the Maximum Performance 
input. If set to ‘1’, PECI is overriding the 
Maximum Performance input. If clear (0), OS 
has control over Maximum Performance 
input. Default value is 0.

63 Min PECI Override (MIN_PECI_OVERRIDE):

Indicates whether PECI is currently 
overriding the Minimum Performance input. 
If set to ‘1’, PECI is overriding the Minimum 
Performance input. If clear (0), OS has 
control over Minimum Performance input. 
Default value is 0.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to Guaranteed & 
excursions to Minimum (R/W)

If CPUID.06H:EAX.[7] = 1 

0 Guaranteed_Performance_Change (R/WC0)

See Section 14.4.5, “HWP Feedback”.

If CPUID.06H:EAX.[7] = 1 

1 Reserved

2 Excursion_To_Minimum (R/WC0)

See Section 14.4.5, “HWP Feedback”.

If CPUID.06H:EAX.[7] = 1 

63:3 Reserved

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification.

If CPUID.01H:ECX[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1
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80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector Register 
(R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 127:96 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits 
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1
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81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits 
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits 
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits 
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits 
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits 
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits 
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits 
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits 
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits 
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits 
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check 
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1
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833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt 
Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor Interrupt 
Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] = 
1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1 

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features. 
Default is 0.

If CPUID.01H:ECX.[11] = 1 

29:1 Reserved

30 Lock (R/W): If 1, locks any further change to 
the MSR. The lock bit is set automatically on 
the first SMI assertion even if not explicitly 
set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1 

31 Debug Occurred (R/O): This “sticky bit” is set 
by hardware to indicate the status of bit 0. 
Default is 0.

If CPUID.01H:ECX.[11] = 1 

63:32 Reserved

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If ( CPUID.(EAX=10H, 
ECX=1):ECX.[2] = 1 )
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0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to 
operate in Code and Data Prioritization 
(CDP) mode.

63:1 Reserved. Attempts to write to reserved 
bits result in a #GP(0).

C82H 3202 IA32_L2_QOS_CFG L2 QOS Configuration (R/W) If ( CPUID.(EAX=10H, 
ECX=2):ECX.[2] = 1 )

0 Enable (R/W)

Set 1 to enable L2 CAT masks and COS to 
operate in Code and Data Prioritization 
(CDP) mode.

63:1 Reserved. Attempts to write to reserved 
bits result in a #GP(0).

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1 )

7:0 Event ID: ID of a supported monitoring 
event to report via IA32_QM_CTR.

31: 8 Reserved

N+31:32 Resource Monitoring ID: ID for monitoring 
hardware to report monitored data via 
IA32_QM_CTR.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1 )

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this 
RMID is not available or not monitored for 
this resource or RMID.

63 Error: If 1, indicates an unsupported RMID 
or event type was written to 
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ( (CPUID.(EAX=07H, 
ECX=0):EBX[12] =1) or 
(CPUID.(EAX=07H, 
ECX=0):EBX[15] =1 )  )

N-1:0 Resource Monitoring ID (R/W): ID for 
monitoring hardware to track internal 
operation, e.g., memory access.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

31:N Reserved 

63:32 COS (R/W): The class of service (COS) to 
enforce (on writes); returns the current COS 
when read.

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[15] = 1 )
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C90H - 
D8FH

3216 - 
3471

Reserved MSR Address Space for CAT 
Mask Registers

See Section 17.19.4.1, “Enumeration and 
Detection Support of Cache Allocation 
Technology”.

C90H 3216 IA32_L3_MASK_0 L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

C90H+
n

3216+n IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D10H - 
D4FH

3344 - 
3407

Reserved MSR Address Space for L2 
CAT Mask Registers

See Section 17.19.4.1, “Enumeration and 
Detection Support of Cache Allocation 
Technology”.

D10H 3344 IA32_L2_MASK_0 L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D10H+
n

3344+n IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration 
(R/W)

If (CPUID.(EAX=07H, 
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode.

1 BNDPRESERVE: Preserve the bounds 
registers for near branch instructions in the 
absence of the BND prefix.

11:2 Reserved, must be zero.

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If( CPUID.(0DH, 1):EAX.[3] = 
1 

7:0 Reserved.

8 Trace Packet Configuration State (R/W)

10:9 Reserved. 
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11 CET_U State (R/W)

12 CET_S State (R/W)

13 HDC State (R/W)

63:14 Reserved. 

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1 

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled 
logical processors in the package. See 
Section 14.5.2, “Package level Enabling 
HDC”.

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1 

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for 
package level HDC control. See Section 
14.5.3.

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle Residency 
(R/0)

If CPUID.06H:EAX.[13] = 1 

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this 
logical processor. See Section 14.5.4.1.

If CPUID.06H:EAX.[13] = 1 

17D0H 6096 IA32_HW_FEEDBACK_PTR Hardware Feedback Interface Pointer If CPUID.06H:EAX.[19] = 1

0 Valid (R/W)

When set to 1, indicates a valid pointer is 
programmed into the ADDR field of the 
MSR.

11:1 Reserved

(MAXPHYADDR-1):12 ADDR (R/W)

Physical address of the page frame of the 
first page of the hardware feedback 
interface structure.

63:MAXPHYADDR Reserved

17D1H 6097 IA32_HW_FEEDBACK_CONFIG Hardware Feedback Interface Configuration If CPUID.06H:EAX.[19] = 1

0 Enable (R/W) 

When set to 1, enables the hardware 
feedback interface.

63:1 Reserved

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address Space All existing and future processors will not 
implement MSRs in this range.
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C000_
0080H

IA32_EFER Extended Feature Enables If ( 
CPUID.80000001H:EDX.[2
0] || 
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in 
64-bit mode.

7:1 Reserved

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved

10 IA-32e Mode Active: IA32_EFER.LMA (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE 
(R/W)

63:12 Reserved

C000_
0081H

IA32_STAR System Call Target Address (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address 
(R/W)

Target RIP for the called procedure when 
SYSCALL is executed in 64-bit mode.

If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0083H

IA32_CSTAR IA-32e Mode System Call Target Address 
(R/W)

Not used, as the SYSCALL instruction is not 
recognized in compatibility mode.

If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H: 
EDX[27] = 1 or 
CPUID.(EAX=7,ECX=0):ECX[
bit 22] = 1

31:0 AUX: Auxiliary signature of TSC.
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2.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 2-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors 
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 2-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 2-1. 

MSRs listed in Table 2-2 and Table 2-3 are also supported by processors based on the Enhanced Intel Core micro-
architecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature 
DisplayFamily_DisplayModel of 06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique” 
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. 
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores. 

63:32 Reserved

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 

model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 

15.3.2.4 for more information.
3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture

Register 
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Unique See Section 8.10.5, “Monitor/Mwait Address Range 
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Unique See Section 17.17, “Time-Stamp Counter,” and see 
Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved

52:50 See Table 2-2.

63:53 Reserved

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name / Bit Fields 
(Former MSR Name) MSR/Bit Description Comment

Hex Decimal



2-52 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location” and 
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates 
current processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W. 

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processors implement R/W. 

5 Reserved

6 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Note: Not all processors implement R/W. 

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)
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18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64 Processor (R/W)

See Table 2-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set, this makes the 
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers 
read visible and writeable while in SMM.

40H 64 MSR_LASTBRANCH_0_FROM_IP Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the 
last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5.

41H 65 MSR_LASTBRANCH_1_FROM_IP Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_LASTBRANCH_3_FROM_IP Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the 
last branch record stack. This To_IP part of the stack 
contains pointers to the destination instruction.

61H 97 MSR_LASTBRANCH_1_TO_IP Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_LASTBRANCH_2_TO_IP Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_LASTBRANCH_3_TO_IP Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.
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A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in 
SMM)

Model-specific implementation of SMRR-like interface, 
read visible and write only in SMM.

11:0 Reserved

31:12 PhysBase: SMRR physical Base Address.

63:32 Reserved

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask 
register (WO in SMM)

Model-specific implementation of SMRR-like interface, 
read visible and write only in SMM.

10:0 Reserved

11 Valid: Physical address base and range mask are valid.

31:12 PhysMask: SMRR physical address range mask.

63:32 Reserved

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed 
for processors based on Intel Core microarchitecture.

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 100B.

63:3 Reserved

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed 
for processors based on Enhanced Intel Core 
microarchitecture.
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2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 111B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R) 

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) can be used to restart the 
program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) is directly associated with 
the error.
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2 MCIP

When set, bit indicates that a machine check has been 
generated. If a second machine check is detected while 
this bit is still set, the processor enters a shutdown state. 
Software should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Current performance status. See Section 14.1.1, 
“Software Interface For Initiating Performance State 
Transitions”.

15:0 Current Performance State Value

30:16 Reserved

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies 
processors based on Enhanced Intel Core 
microarchitecture.

63:47 Reserved

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 2-2.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved
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16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die 
modulation of the stop-clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency 
transitions).

If bit 3 of the IA32_MISC_ENABLE register is cleared, 
TM_SELECT has no effect. Neither TM1 nor TM2 are 
enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and 
disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2.

6:4 Reserved

7 Shared Performance Monitoring Available (R) 

See Table 2-2.

8 Reserved

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on 
streams of data. When clear (default), enables the 
prefetch queue.

Disabling of the hardware prefetcher may impact 
processor performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a 
pending break event within the processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt 
model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.
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13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates 
that the die temperature is at the pre-determined 
threshold, the Thermal Monitor 2 mechanism is engaged. 
TM2 will reduce the bus to core ratio and voltage 
according to the value last written to MSR_THERM2_CTL 
bits 15:0.

When this bit is clear (0, default), the processor does not 
change the VID signals or the bus to core ratio when the 
processor enters a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, 
this feature is not supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification if both this 
bit and the TM1 bit are set to 0.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 2-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line that 
contains data currently required by the processor. When 
set to 0, the processor fetches cache lines that comprise a 
cache line pair (128 bytes).

Single processor platforms should not set this bit. Server 
platforms should set or clear this bit based on platform 
performance observed in validation and testing. 

BIOS may contain a setup option that controls the setting 
of this bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become 
read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this 
bit).

• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on 
reset.

21 Reserved

22 Shared Limit CPUID Maxval (R/W) 

See Table 2-2.
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23 Shared xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

34 Unique XD Bit Disable (R/W) 

See Table 2-2.

36:35 Reserved

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, the DCU L1 data cache prefetcher is 
disabled. The default value after reset is 0. BIOS may 
write ‘1’ to disable this feature. 

The DCU prefetcher is an L1 data cache prefetcher. When 
the DCU prefetcher detects multiple loads from the same 
line done within a time limit, the DCU prefetcher assumes 
the next line will be required. The next line is prefetched 
in to the L1 data cache from memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel 
Dynamic Acceleration feature (IDA) is disabled and the 
IDA_Enable feature flag will be cleared (CPUID.06H: 
EAX[1]=0).

When set to a 0 on processors that support IDA, 
CPUID.06H: EAX[1] reports the processor’s support of IDA 
is enabled.

Note: The power-on default value is used by BIOS to 
detect hardware support of IDA. If the power-on default 
value is 1, IDA is available in the processor. If the power-
on default value is 0, IDA is not available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, the IP prefetcher is disabled. The default 
value after reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The IP prefetcher is an L1 data cache prefetcher. The IP 
prefetcher looks for sequential load history to determine 
whether to prefetch the next expected data into the L1 
cache from memory or L2.

63:40 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 2-2.
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1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that the 
processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last 
branch instruction that the processor executed prior to 
the last exception that was generated or the last 
interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Unique See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Unique See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Unique See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.
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2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W) 

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Unique See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL 
MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support 
architectural perfmon version 2.

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format

7 PEBSSaveArchRegs. See Table 2-2.

63:8 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STATUS Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event 
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

40CH 1036 IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.
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413H 1043 IA32_MC3_MISC Unique Machine Check Error Reporting Register: Contains 
additional information describing the machine-check error 
if the MISCV flag in the IA32_MCi_STATUS register is set.

414H 1044 IA32_MC5_CTL Unique Machine Check Error Reporting Register: Controls 
signaling of #MC for errors produced by a particular 
hardware unit (or group of hardware units).

415H 1045 IA32_MC5_STATUS Unique Machine Check Error Reporting Register: Contains 
information related to a machine-check error if its VAL 
(valid) flag is set. Software is responsible for clearing 
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; 
writing 1s to them causes a general-protection exception.

416H 1046 IA32_MC5_ADDR Unique Machine Check Error Reporting Register: Contains the 
address of the code or data memory location that 
produced the machine-check error if the ADDRV flag in 
the IA32_MCi_STATUS register is set.

417H 1047 IA32_MC5_MISC Unique Machine Check Error Reporting Register: Contains 
additional information describing the machine-check error 
if the MISCV flag in the IA32_MCi_STATUS register is set.

419H 1045 IA32_MC6_STATUS Unique Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS” and Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution 
Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based 
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”
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486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration 
(R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

107CC
H

67532 MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107CD
H

67533 MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107CE
H

67534 MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107CF
H

67535 MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107D0
H

67536 MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107D1
H

67537 MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register 
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec



Vol. 4 2-65

MODEL-SPECIFIC REGISTERS (MSRS)

2.3 MSRS IN THE 45 NM AND 32 NM INTEL ATOM® PROCESSOR FAMILY
Table 2-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR 
addresses are also included in Table 2-4. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 2-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel 
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR 
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation 
of both logical processors in the same core.

107D2
H

67538 MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107D3
H

67539 MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

107D8
H

67544 MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Applies to Intel Xeon processor 7400 series (processor 
signature 06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) 

See Table 2-2.
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0H 0 IA32_P5_MC_ADDR Shared See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 2.23, “MSRs in Pentium Processors.”
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6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range 
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see 
Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

63:13 Reserved

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location” and 
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) 

Enables and disables processor features; (R) indicates 
current processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved

6 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

Table 2-4.  MSRs in 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register 
Address Register Name / Bit Fields

Shared/
Unique Bit Description

 Hex Dec



Vol. 4 2-67

MODEL-SPECIFIC REGISTERS (MSRS)

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

40H 64 MSR_LASTBRANCH_0_FROM_IP Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the 
last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5.

41H 65 MSR_LASTBRANCH_1_FROM_IP Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_LASTBRANCH_3_FROM_IP Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_LASTBRANCH_4_FROM_IP Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_LASTBRANCH_5_FROM_IP Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_LASTBRANCH_6_FROM_IP Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_LASTBRANCH_7_FROM_IP Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the 
last branch record stack. The To_IP part of the stack 
contains pointers to the destination instruction.
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61H 97 MSR_LASTBRANCH_1_TO_IP Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_LASTBRANCH_2_TO_IP Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_LASTBRANCH_3_TO_IP Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_LASTBRANCH_4_TO_IP Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_LASTBRANCH_5_TO_IP Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_LASTBRANCH_6_TO_IP Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_LASTBRANCH_7_TO_IP Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed 
for processors based on Intel Atom microarchitecture.

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation 
with System Bus Speed when encoding is 011B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 2-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R) 

See Table 2-2.
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11EH 281 MSR_BBL_CR_CTL3 Shared Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = Indicates the L2 is hardware-enabled.
0 = Indicates the L2 is hardware-disabled.

7:1 Reserved

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set, the processor will not respond to the 
WBINVD instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) can be used to restart the 
program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) is directly associated with 
the error.

2 MCIP

When set, bit indicates that a machine check has been 
generated. If a second machine check is detected while 
this bit is still set, the processor enters a shutdown state. 
Software should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.
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198H 408 MSR_PERF_STATUS Shared Performance Status

15:0 Current Performance State Value

39:16 Reserved

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 2-2.

19DH 413 MSR_THERM2_CTL Shared Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die 
modulation of the stop-clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency 
transitions).

If bit 3 of the IA32_MISC_ENABLE register is cleared, 
TM_SELECT has no effect. Neither TM1 nor TM2 are 
enabled.

63:17 Reserved

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and 
disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 0.

6:4 Reserved

7 Shared Performance Monitoring Available (R) 

See Table 2-2.

8 Reserved

9 Reserved
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10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a 
pending break event within the processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model 
usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates 
that the die temperature is at the pre-determined 
threshold, the Thermal Monitor 2 mechanism is engaged. 
TM2 will reduce the bus to core ratio and voltage according 
to the value last written to MSR_THERM2_CTL bits 15:0.

When this bit is cleared (0, default), the processor does not 
change the VID signals or the bus to core ratio when the 
processor enters a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, 
this feature is not supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification if both this 
bit and the TM1 bit are set to 0.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 2-2.

19 Reserved

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become 
read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this 
bit).

• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on 
reset.

21 Reserved

22 Unique Limit CPUID Maxval (R/W) 

See Table 2-2.
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23 Shared xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

34 Unique XD Bit Disable (R/W) 

See Table 2-2.

63:35 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the 
processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last 
branch instruction that the processor executed prior to 
the last exception that was generated or the last interrupt 
that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Shared See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Shared See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Shared See Table 2-2.
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268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event 
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

40CH 1036 IA32_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

410H 1040 IA32_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution 
Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based 
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”
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485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration 
(R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) 

See Table 2-2.
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Table 2-5 lists model-specific registers (MSRs) that are specific to Intel Atom® processor with the CPUID signature 
with DisplayFamily_DisplayModel of 06_27H. 

2.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT 
MICROARCHITECTURE

Table 2-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchitec-
ture. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH, 
06_5AH, and 06_5DH; see Table 2-1. The MSRs listed in Table 2-6 are also common to processors based on the 
Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 2-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not 
newer microarchitectures.

Table 2-8, Table 2-9, and Table 2-10 lists MSRs that are model-specific across processors based on the Silvermont 
microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

Table 2-5.  MSRs Supported by Intel Atom® Processors with CPUID Signature 06_27H
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Address Register Name / Bit Fields Scope Bit Description
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3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state parameters 
or ACPI C-States.

63:0 Package Package C2 Residency Counter (R/O)

Time that this package is in processor-specific C2 states 
since last reset. Counts at 1 Mhz frequency.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state parameters 
or ACPI C-States.

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states 
since last reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state parameters 
or ACPI C-States.

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states 
since last reset. Counts at 1 Mhz frequency.
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Table 2-6.   MSRs Common to the Silvermont Microarchitecture and 
Newer Microarchitectures for Intel Atom® Processors
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Address Register Name / Bit Fields Scope Bit Description
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0H 0 IA32_P5_MC_ADDR Module See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Core See Section 8.10.5, “Monitor/Mwait Address Range 
Determination.” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Core See Section 17.17, “Time-Stamp Counter,” and 
Table 2-2.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” 
and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Module Processor Hard Power-On Configuration (R/W) 

Writes ignored.

63:0 Reserved 

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 2-2.

E4H 228 MSR_PMG_IO_CAPTURE_BASE Module Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO 
redirection. If IO MWAIT Redirection is enabled, reads to 
this address will be consumed by the power 
management logic and decoded to MWAIT instructions. 
When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.
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18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State 
code name to be included when IO read to MWAIT 
redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW) 

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler 
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of 
AES instruction sets availability is as follows:

11b: AES instructions are not available until next 
RESET.

Otherwise, AES instructions are available.

Note: AES instruction set is not available if read is 
unsuccessful. If the configuration is not 01b, AES 
instructions can be mis-configured if a privileged agent 
unintentionally writes 11b.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Core See Table 2-2.

175H 373 IA32_SYSENTER_ESP Core See Table 2-2.

176H 374 IA32_SYSENTER_EIP Core See Table 2-2.

179H 377 IA32_MCG_CAP Core See Table 2-2.

17AH 378 IA32_MCG_STATUS Core Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) can be used to 
restart the program. If cleared, the program cannot be 
reliably restarted.

Table 2-6.   MSRs Common to the Silvermont Microarchitecture and 
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1 EIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) is directly 
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been 
generated. If a second machine check is detected while 
this bit is still set, the processor enters a shutdown 
state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Core See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Core See Table 2-2.

198H 408 IA32_PERF_STATUS Module See Table 2-2.

199H 409 IA32_PERF_CTL Core See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved
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23:16 Temperature Target (R) 

The default thermal throttling or PROCHOT# activation 
temperature in degrees C. The effective temperature 
for thermal throttling or PROCHOT# activation is 
“Temperature Target” + “Target Offset”.

29:24 Target Offset (R/W) 

Specifies an offset in degrees C to adjust the throttling 
and PROCHOT# activation temperature from the 
default target specified in TEMPERATURE_TARGET 
(bits 23:16).

63:30 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Module Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Module Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 2-2.

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W) 

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that 
the processor executed prior to the last exception that 
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last 
branch instruction that the processor executed prior to 
the last exception that was generated or the last 
interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.
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20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL 
MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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402H 1026 IA32_MC0_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

404H 1028 IA32_MC1_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Core Capability Reporting Register of Pin-Based 
VM-Execution Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Controls 
(R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”
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489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Core Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENUM Core Capability Reporting Register of EPT and VPID (R/O) 

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Core Capability Reporting Register of Pin-Based 
VM-Execution Flex Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
based VM-Execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Core Capability Reporting Register of VM-Exit Flex Controls 
(R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Flex Controls 
(R/O)

See Table 2-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-Function Controls 
(R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Core See Table 2-2.

4C2H 1218 IA32_A_PMC1 Core See Table 2-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-
specific C1 states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 2-2.
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Table 2-7 lists model-specific registers (MSRs) that are common to Intel® Atom™ processors based on the Silver-
mont and Airmont microarchitectures but not newer microarchitectures.

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Core Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature (R/W) 

See Table 2-2 
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17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R) 

7:0 Reserved

13:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved

52:50 See Table 2-2.

63:33 Reserved

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Reserved

2 Enable VMX outside SMX operation (R/WL) 
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40H 64 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the 
last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.5 and record format in Section 17.4.8.1.

41H 65 MSR_LASTBRANCH_1_FROM_IP Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_LASTBRANCH_2_FROM_IP Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_LASTBRANCH_3_FROM_IP Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_LASTBRANCH_4_FROM_IP Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_LASTBRANCH_5_FROM_IP Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_LASTBRANCH_6_FROM_IP Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_LASTBRANCH_7_FROM_IP Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the 
last branch record stack. The To_IP part of the stack 
contains pointers to the destination instruction.

61H 97 MSR_LASTBRANCH_1_TO_IP Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_LASTBRANCH_2_TO_IP Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_LASTBRANCH_3_TO_IP Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_LASTBRANCH_4_TO_IP Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_LASTBRANCH_5_TO_IP Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_LASTBRANCH_6_TO_IP Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_LASTBRANCH_7_TO_IP Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

CEH 206 MSR_PLATFORM_INFO Package Platform Information: Contains power management and 
other model specific features enumeration. See 
http://biosbits.org.
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7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the maximum frequency that does not 
require turbo. Frequency = ratio * Scalable Bus 
Frequency.

63:16 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Module C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state limit.

The following C-state code name encodings are 
supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved

11EH 281 MSR_BBL_CR_CTL3 Module Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

7:1 Reserved

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set the processor will not respond to the 
WBINVD instruction or the assertion of the FLUSH# 
input.
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22:9 Reserved

23 L2 Not Present (RO) 

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled 
and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Module Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 0.

6:4 Reserved

7 Core Performance Monitoring Available (R) 

See Table 2-2.

10:8 Reserved

11 Core Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.

15:13 Reserved

16 Module Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 2-2.

21:19 Reserved

22 Core Limit CPUID Maxval (R/W) 

See Table 2-2.

23 Module xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

34 Core XD Bit Disable (R/W) 

See Table 2-2.

37:35 Reserved
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38 Module Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo 
Boost Technology, the turbo mode feature is disabled 
and the IDA_Enable feature flag will be cleared 
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, 
CPUID.06H: EAX[1] reports the processor’s support of 
turbo mode is enabled.

Note: The power-on default value is used by BIOS to 
detect hardware support of turbo mode. If the power-on 
default value is 1, turbo mode is available in the 
processor. If the power-on default value is 0, turbo mode 
is not available.

63:39 Reserved

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

38EH 910 IA32_PERF_GLOBAL_STATUS Core See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event 
Based Sampling (PEBS).”

0 Enable PEBS for precise event on IA32_PMC0 (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C6 states. Counts at the TSC Frequency.
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2.4.1  MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 2-8 lists model-specific registers (MSRs) that are specific to Intel Atom® processor E3000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with 
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH). 

664H 1636 MSR_MC6_RESIDENCY_COUNTER Module Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Time that this module is in module-specific C6 states 
since last

reset. Counts at 1 Mhz frequency.

Table 2-8.  Specific MSRs Supported by Intel Atom® Processors with CPUID Signatures
06_37H, 06_4AH, 06_5AH, 06_5DH
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CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock 
speed for processors based on Silvermont 
microarchitecture.

2:0 • 100B: 080.0 MHz 
• 000B: 083.3 MHz 
• 001B: 100.0 MHz 
• 010B: 133.3 MHz 
• 011B: 116.7 MHz 

63:3 Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.10.1, “RAPL Interfaces.”

3:0 Power Units

Power related information (in milliWatts) is based on the 
multiplier,   2^PU; where PU is an unsigned integer 
represented by bits 3:0. Default value is 0101b, 
indicating power unit is in 32 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units

Energy related information (in microJoules) is based on 
the multiplier, 2^ESU; where ESU is an unsigned integer 
represented by bits 12:8. Default value is 00101b, 
indicating energy unit is in 32 microJoules increment.

15:13 Reserved

Table 2-7.  MSRs Common to the Silvermont and Airmont Microarchitectures 

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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Table 2-9 lists model-specific registers (MSRs) that are specific to Intel Atom® processor E3000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_37H).

19:16 Time Unit

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

14:0 Package Power Limit #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.” and 
MSR_RAPL_POWER_UNIT in Table 2-8. 

15 Enable Power Limit #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1 (R/W)

See Section 14.10.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1 (R/W)

In unit of second. If 0 is specified in bits [23:17], defaults 
to 1 second window.

63:24 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.” and 
MSR_RAPL_POWER_UNIT in Table 2-8.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.” and 
MSR_RAPL_POWER_UNIT in Table 2-8.

Table 2-9.  Specific MSRs Supported by Intel Atom® Processor E3000 Series with CPUID Signature 06_37H

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLICY_CONFIG Package Core C6 Demotion Policy Config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of 
0 disables core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLICY_CONFIG Package Module C6 Demotion Policy Config MSR 

63:0 Controls module (i.e., two cores sharing the second-level 
cache) C6 demotion policy. Writing a value of 0 disables 
module level HW demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COUNTER Module Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

Table 2-8.  Specific MSRs Supported by Intel Atom® Processors with CPUID Signatures
06_37H, 06_4AH, 06_5AH, 06_5DH

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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Table 2-10 lists model-specific registers (MSRs) that are specific to Intel Atom® processor C2000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_4DH). 

63:0 Time that this module is in module-specific C6 states 
since last reset. Counts at 1 Mhz frequency.

Table 2-10.  Specific MSRs Supported by Intel Atom® Processor C2000 Series with CPUID Signature 06_4DH

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W) 

0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which 
fetches additional lines of code or data into the L2 
cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which 
fetches the next cache line into L1 data cache.

63:3 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.10.1, “RAPL Interfaces.”

Table 2-9.  Specific MSRs Supported by Intel Atom® Processor E3000 Series (Contd.)with CPUID Signature 06_37H

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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2.4.2  MSRs In Intel Atom® Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-11. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel including 06_4CH; see Table 2-1. 

3:0 Power Units

Power related information (in milliWatts) is based on 
the multiplier,   2^PU; where PU is an unsigned integer 
represented by bits 3:0. Default value is 0101b, 
indicating power unit is in 32 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units. 

Energy related information (in microJoules) is based on 
the multiplier, 2^ESU; where ESU is an unsigned 
integer represented by bits 12:8. Default value is 
00101b, indicating energy unit is in 32 microJoules 
increment.

15:13 Reserved

19:16 Time Unit

The value is 0000b, indicating time unit is in one 
second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0) 

14:0 Thermal Spec Power (R/0)

The unsigned integer value is the equivalent of the 
thermal specification power of the package domain. 
The unit of this field is specified by the “Power Units” 
field of MSR_RAPL_POWER_UNIT.

63:15 Reserved

Table 2-11.   MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock 
speed for processors based on Airmont 
microarchitecture.

Table 2-10.  Specific MSRs Supported by Intel Atom® Processor C2000 Series (Contd.)with CPUID Signature 

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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3:0 • 0000B: 083.3 MHz 
• 0001B: 100.0 MHz 
• 0010B: 133.3 MHz 
• 0011B: 116.7 MHz 
• 0100B: 080.0 MHz 
• 0101B: 093.3 MHz 
• 0110B: 090.0 MHz 
• 0111B: 088.9 MHz 
• 1000B: 087.5 MHz 

63:5 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Module C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

000b: No limit

001b: C1 

010b: C2 

110b: C6

111b: C7 

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

63:16 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Module Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO 
redirection. If IO MWAIT Redirection is enabled, reads to 
this address will be consumed by the power 
management logic and decoded to MWAIT instructions. 
When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

Table 2-11.   MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture (Contd.)
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Address Register Name / Bit Fields Scope Bit Description
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2.5 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT 
MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support MSRs listed in Table 2-6 and Table 2-12. 
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_5CH; see Table 2-1. 

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State 
code name to be included when IO read to MWAIT 
redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - Deep Power Down Technology is the max C-
State.

010b - C7 is the max C-State to include.

63:19 Reserved

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

14:0 PP0 Power Limit #1 (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains” and 
MSR_RAPL_POWER_UNIT in Table 2-8. 

15 Enable Power Limit #1 (R/W)

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

16 Reserved

23:17 Time Window for Power Limit #1 (R/W)

Specifies the time duration over which the average 
power must remain below PP0_POWER_LIMIT 
#1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 2-11.   MSRs in Intel Atom® Processors Based on the Airmont Microarchitecture (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-96 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R) 

49:0 Reserved

52:50 See Table 2-2.

63:33 Reserved

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

18 SGX global functions enable (R/WL) 

63:19 Reserved

3BH 59 IA32_TSC_ADJUST Core Per-Core TSC ADJUST (R/W)

See Table 2-2.

C3H 195 IA32_PMC2 Core Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Core Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the maximum frequency that does 
not require turbo. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio 
Limit for Turbo mode is enabled. When set to 0, 
indicates Programmable Ratio Limit for Turbo mode is 
disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo 
mode is programmable. When set to 0, indicates TDP 
Limit for Turbo mode is not programmable.
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30 Package Programmable TJ OFFSET (R/O) 

When set to 1, indicates that 
MSR_TEMPERATURE_TARGET.[27:24] is valid and 
writable to specify a temperature offset.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that 
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

See http://biosbits.org.

3:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

0000b: No limit

0001b: C1 

0010b: C3 

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10 

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

63:16 Reserved

17DH 381 MSR_SMM_MCA_CAP Core Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability enhancement. Accessible only 
while in SMM.

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access 
restriction is supported and the 
MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is 
supported and the MSR_SMM_DELAYED is supported.

63:60 Reserved

188H 392 IA32_PERFEVTSEL2 Core See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Core See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled 
and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Package Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 1.

6:4 Reserved

7 Core Performance Monitoring Available (R) 

See Table 2-2.

10:8 Reserved

11 Core Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 2-2.

21:19 Reserved

22 Core Limit CPUID Maxval (R/W) 

See Table 2-2.

23 Package xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

34 Core XD Bit Disable (R/W) 

See Table 2-2.

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo 
Boost Technology, the turbo mode feature is disabled 
and the IDA_Enable feature flag will be clear 
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, 
CPUID.06H: EAX[1] reports the processor’s support of 
turbo mode is enabled.

Note: The power-on default value is used by BIOS to 
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the 
processor. If the power-on default value is 0, turbo 
mode is not available.

63:39 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W) 

0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which 
fetches additional lines of code or data into the L2 
cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which 
fetches the next cache line into L1 data cache.

63:3 Reserved

1AAH 426 MSR_MISC_PWR_MGMT Package Miscellaneous Power Management Control

Various model specific features enumeration. See 
http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced 
Intel Speedstep Technology request from processor 
cores. When 1, disables hardware coordination of 
Enhanced Intel Speedstep Technology requests.

21:1 Reserved

22 Thermal Interrupt Coordination Enable (R/W) 

If set, then thermal interrupt on one core is routed to 
all cores.

63:23 Reserved

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-100 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode by Core Groups 
(RW)

Specifies Maximum Ratio Limit for each Core Group. 
Max ratio for groups with more cores must decrease 
monotonically.

For groups with less than 4 cores, the max ratio must 
be 32 or less. For groups with 4-5 cores, the max ratio 
must be 22 or less. For groups with more than 5 cores, 
the max ratio must be 16 or less.

7:0 Package Maximum Ratio Limit for Active Cores in Group 0

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 0 threshold. 

15:8 Package Maximum Ratio Limit for Active Cores in Group 1

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 1 threshold, 
and greater than the Group 0 threshold. 

23:16 Package Maximum Ratio Limit for Active Cores in Group 2

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 2 threshold, 
and greater than the Group 1 threshold. 

31:24 Package Maximum Ratio Limit for Active Cores in Group 3

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 3 threshold, 
and greater than the Group 2 threshold. 

39:32 Package Maximum Ratio Limit for Active Cores in Group 4

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 4 threshold, 
and greater than the Group 3 threshold. 

47:40 Package Maximum Ratio Limit for Active Cores in Group 5

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 5 threshold, 
and greater than the Group 4 threshold. 

55:48 Package Maximum Ratio Limit for Active Cores in Group 6

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 6 threshold, 
and greater than the Group 5 threshold. 

63:56 Package Maximum Ratio Limit for Active Cores in Group 7

Maximum turbo ratio limit when the number of active 
cores is less than or equal to the Group 7 threshold, 
and greater than the Group 6 threshold. 

1AEH 430 MSR_TURBO_GROUP_CORECNT Package Group Size of Active Cores for Turbo Mode Operation 
(RW)

Writes of 0 threshold is ignored.

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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7:0 Package Group 0 Core Count Threshold

Maximum number of active cores to operate under the 
Group 0 Max Turbo Ratio limit. 

15:8 Package Group 1 Core Count Threshold

Maximum number of active cores to operate under the 
Group 1 Max Turbo Ratio limit. Must be greater than 
the Group 0 Core Count.

23:16 Package Group 2 Core Count Threshold

Maximum number of active cores to operate under the 
Group 2 Max Turbo Ratio limit. Must be greater than 
the Group 1 Core Count.

31:24 Package Group 3 Core Count Threshold

Maximum number of active cores to operate under the 
Group 3 Max Turbo Ratio limit. Must be greater than 
the Group 2 Core Count.

39:32 Package Group 4 Core Count Threshold

Maximum number of active cores to operate under the 
Group 4 Max Turbo Ratio limit. Must be greater than 
the Group 3 Core Count.

47:40 Package Group 5 Core Count Threshold

Maximum number of active cores to operate under the 
Group 5 Max Turbo Ratio limit. Must be greater than 
the Group 4 Core Count.

55:48 Package Group 6 Core Count Threshold

Maximum number of active cores to operate under the 
Group 6 Max Turbo Ratio limit. Must be greater than 
the Group 5 Core Count.

63:56 Package Group 7 Core Count Threshold

Maximum number of active cores to operate under the 
Group 7 Max Turbo Ratio limit. Must be greater than 
the Group 6 Core Count, and not less than the total 
number of processor cores in the package. E.g., specify 
255.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the 
Minimum Enhanced Intel SpeedStep Technology 
operating point when all execution cores enter MWAIT 
(C1).

63:2 Reserved

210H 528 IA32_MTRR_PHYSBASE8 Core See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Core See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Core See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Core See Table 2-2.

280H 640 IA32_MC0_CTL2 Module See Table 2-2.

281H 641 IA32_MC1_CTL2 Module See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Module See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if 
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any 
thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for 
key derivation of an enclave.

301H 769 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if 
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any 
thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for 
key derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_STATUS Core See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.” 

0 Ovf_PMC0 

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved

55 Trace_ToPA_PMI

57:56 Reserved

58 LBR_Frz. 

59 CTR_Frz. 

60 ASCI

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Core See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.”

0 Set 1 to clear Ovf_PMC0.

1 Set 1 to clear Ovf_PMC1.

2 Set 1 to clear Ovf_PMC2.

3 Set 1 to clear Ovf_PMC3.

31:4 Reserved

32 Set 1 to clear Ovf_FixedCtr0.

33 Set 1 to clear Ovf_FixedCtr1.

34 Set 1 to clear Ovf_FixedCtr2.

54:35 Reserved

55 Set 1 to clear Trace_ToPA_PMI. 

57:56 Reserved

58 Set 1 to clear LBR_Frz. 

59 Set 1 to clear CTR_Frz. 

60 Set 1 to clear ASCI. 

61 Set 1 to clear Ovf_Uncore.

62 Set 1 to clear Ovf_BufDSSAVE.

63 Set 1 to clear CondChgd.

391H 913 IA32_PERF_GLOBAL_STATUS_SET Core See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.”

Table 2-12.   MSRs in Intel Atom® Processors Based on the Goldmont Microarchitecture (Contd.)
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0 Set 1 to cause Ovf_PMC0 = 1.

1 Set 1 to cause Ovf_PMC1 = 1.

2 Set 1 to cause Ovf_PMC2 = 1.

3 Set 1 to cause Ovf_PMC3 = 1.

31:4 Reserved

32 Set 1 to cause Ovf_FixedCtr0 = 1.

33 Set 1 to cause Ovf_FixedCtr1 = 1.

34 Set 1 to cause Ovf_FixedCtr2 = 1.

54:35 Reserved

55 Set 1 to cause Trace_ToPA_PMI = 1.

57:56 Reserved

58 Set 1 to cause LBR_Frz = 1.

59 Set 1 to cause CTR_Frz = 1.

60 Set 1 to cause ASCI = 1.

61 Set 1 to cause Ovf_Uncore.

62 Set 1 to cause Ovf_BufDSSAVE.

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Core See Table 2-2. 

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event 
Based Sampling (PEBS).”

0 Enable PEBS trigger and recording for the 
programmed event (precise or otherwise) on 
IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in 
processor-specific C3 states. Count at the same 
frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in 
processor-specific C6 states. Count at the same 
frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.
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63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the 
TSC.

406H 1030 IA32_MC1_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C3H 1219 IA32_A_PMC2 Core See Table 2-2.

4C4H 1220 IA32_A_PMC3 Core See Table 2-2.

4E0H 1248 MSR_SMM_FEATURE_CONTROL Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only 
while in SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further 
changes.

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if 
MSR_SMM_MCA_CAP[58] == 1. When set to ‘0’ 
(default) none of the logical processors are prevented 
from executing SMM code outside the ranges defined 
by the SMRR. 

When set to ‘1’ any logical processor in the package 
that attempts to execute SMM code not within the 
ranges defined by the SMRR will assert an 
unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors 
in the package. Available only while in SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.
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N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a 
long flow of internal operation which delays servicing 
an interrupt. The corresponding bit will be set at the 
start of long events such as: Microcode Update Load, 
C6, WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each long 
event. The reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in 
the package. Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked 
state to service an SMI. The corresponding bit will be 
set if the logical processor is in one of the following 
states: Wait For SIPI or SENTER Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

500H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of SGX Support for ACM 
(RO)

0 Lock

See Section 41.11.3, “Interactions with Authenticated 
Code Modules (ACMs)”.

15:1 Reserved

23:16 SGX_SVN_SINIT

See Section 41.11.3, “Interactions with Authenticated 
Code Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Core Trace Output Base Register (R/W)

See Table 2-2. 

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Core Trace Output Mask Pointers Register (R/W) 

See Table 2-2. 

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.
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7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Core Tracing Status Register (R/W)

0 FilterEn

Writes ignored.

1 ContexEn

Writes ignored.

2 TriggerEn

Writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH Core Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match.

580H 1408 IA32_RTIT_ADDR0_A Core Region 0 Start Address (R/W)

63:0 See Table 2-2. 

581H 1409 IA32_RTIT_ADDR0_B Core Region 0 End Address (R/W)

63:0 See Table 2-2. 
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582H 1410 IA32_RTIT_ADDR1_A Core Region 1 Start Address (R/W)

63:0 See Table 2-2. 

583H 1411 IA32_RTIT_ADDR1_B Core Region 1 End Address (R/W)

63:0 See Table 2-2. 

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.10.1, “RAPL Interfaces.”

3:0 Power Units

Power related information (in Watts) is in unit of 
1W/2^PU; where PU is an unsigned integer 
represented by bits 3:0. Default value is 1000b, 
indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units

Energy related information (in Joules) is in unit of 
1Joule/ (2^ESU); where ESU is an unsigned integer 
represented by bits 12:8. Default value is 01110b, 
indicating energy unit is in 61 microJoules.

15:13 Reserved

19:16 Time Unit

Time related information (in seconds) is in unit of 
1S/2^TU; where TU is an unsigned integer 
represented by bits 19:16. Default value is 1010b, 
indicating power unit is in 0.977 millisecond.

63:20 Reserved

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the 
package should be put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. See Table 2-20 for 
supported time unit encodings. 

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and 
can be used by the processor for package C-sate 
management. 

63:16 Reserved
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60BH 1547 MSR_PKGC_IRTL1 Package Package C6/C7S Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit 
used by the processor to manage a transition to a 
package C6 or C7S state. 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the 
package should be put into a package C6 or C7S state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. See Table 2-20 for 
supported time unit encodings.

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and 
can be used by the processor for package C-sate 
management. 

63:16 Reserved

60CH 1548 MSR_PKGC_IRTL2 Package Package C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit 
used by the processor to manage a transition to a 
package C7 state. 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the 
package should be put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. See Table 2-20 for 
supported time unit encodings.

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and 
can be used by the processor for package C-sate 
management. 

63:16 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.
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63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in 
processor-specific C2 states. Count at the same 
frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) 

14:0 Thermal Spec Power (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

15 Reserved

30:16 Minimum Power (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

31 Reserved

46:32 Maximum Power (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

47 Reserved

54:48 Maximum Time Window (R/W) 

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where 
“Y” is the unsigned integer value represented by bits 
52:48, “Z” is an unsigned integer represented by bits 
54:53. “Time_Unit” is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT.

63:55 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

63:0 Package C10 Residency Counter (R/O)

Value since last reset that the entire SOC is in an S0i3 
state. Count at the same frequency as the TSC.
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639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is 
locked until a reset. 

63:32 Reserved

64FH 1615 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores 
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below 
the operating system request due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL2.

8:4 Reserved

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the 
Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating 
system request due to multi-core turbo limits.
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12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating 
system request due to Turbo transition attenuation. 
This prevents performance degradation due to 
frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum 
efficiency frequency.

15 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

18 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power 
Limiting Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software 
writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power 
Limiting Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software 
writing 0.

24:20 Reserved

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.
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26 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Electrical Design Point Log 

When set, indicates that the EDP Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition 
Attenuation Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

30 Maximum Efficiency Frequency Log 

When set, indicates that the Maximum Efficiency 
Frequency Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:31 Reserved

680H 1664 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the 
last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.6 and record format in Section 17.4.8.1.

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

681H 1665 MSR_LASTBRANCH_1_FROM_IP Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_LASTBRANCH_3_FROM_IP Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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684H 1668 MSR_LASTBRANCH_4_FROM_IP Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Core Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Core Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP Core Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Core Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Core Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Core Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP Core Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Core Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

690H 1680 MSR_LASTBRANCH_16_FROM_IP Core Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

691H 1681 MSR_LASTBRANCH_17_FROM_IP Core Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_LASTBRANCH_18_FROM_IP Core Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

693H 1683 MSR_LASTBRANCH_19_FROM_IP Core Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_LASTBRANCH_20_FROM_IP Core Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_LASTBRANCH_21_FROM_IP Core Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_LASTBRANCH_22_FROM_IP Core Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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697H 1687 MSR_LASTBRANCH_23_FROM_IP Core Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_LASTBRANCH_24_FROM_IP Core Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_LASTBRANCH_25_FROM_IP Core Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_LASTBRANCH_26_FROM_IP Core Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_LASTBRANCH_27_FROM_IP Core Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_LASTBRANCH_28_FROM_IP Core Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_LASTBRANCH_29_FROM_IP Core Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_LASTBRANCH_30_FROM_IP Core Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_LASTBRANCH_31_FROM_IP Core Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the 
last branch record stack. The To_IP part of the stack 
contains pointers to the Destination instruction and 
elapsed cycles from last LBR update. See Section 17.6.

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6C8H 1736 MSR_LASTBRANCH_8_TO_IP Core Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Core Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Core Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Core Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Core Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Core Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Core Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Core Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D0H 1744 MSR_LASTBRANCH_16_TO_IP Core Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D1H 1745 MSR_LASTBRANCH_17_TO_IP Core Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_LASTBRANCH_18_TO_IP Core Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D3H 1747 MSR_LASTBRANCH_19_TO_IP Core Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_LASTBRANCH_20_TO_IP Core Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_LASTBRANCH_21_TO_IP Core Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_LASTBRANCH_22_TO_IP Core Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_LASTBRANCH_23_TO_IP Core Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_LASTBRANCH_24_TO_IP Core Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_LASTBRANCH_25_TO_IP Core Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_LASTBRANCH_26_TO_IP Core Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.
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6DBH 1755 MSR_LASTBRANCH_27_TO_IP Core Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_LASTBRANCH_28_TO_IP Core Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_LASTBRANCH_29_TO_IP Core Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_LASTBRANCH_30_TO_IP Core Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_LASTBRANCH_31_TO_IP Core Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Core x2APIC ID register (R/O) 

803H 2051 IA32_X2APIC_VERSION Core x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Core x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Core x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Core x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Core x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Core x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Core x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Core x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Core x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Core x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Core x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Core x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Core x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Core x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Core x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Core x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Core x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Core x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Core x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Core x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Core x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Core x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Core x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Core x2APIC Interrupt Request register bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Core x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Core x2APIC Interrupt Request register bits [127:96] (R/O) 
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824H 2084 IA32_X2APIC_IRR4 Core x2APIC Interrupt Request register bits [159:128] 
(R/O) 

825H 2085 IA32_X2APIC_IRR5 Core x2APIC Interrupt Request register bits [191:160] 
(R/O) 

826H 2086 IA32_X2APIC_IRR6 Core x2APIC Interrupt Request register bits [223:192] 
(R/O) 

827H 2087 IA32_X2APIC_IRR7 Core x2APIC Interrupt Request register bits [255:224] 
(R/O) 

828H 2088 IA32_X2APIC_ESR Core x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Core x2APIC LVT Corrected Machine Check Interrupt 
register (R/W) 

830H 2096 IA32_X2APIC_ICR Core x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Core x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERMAL Core x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Core x2APIC LVT Performance Monitor register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Core x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Core x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Core x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Core x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Core x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Core x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Core x2APIC Self IPI register (W/O) 

C8FH 3215 IA32_PQR_ASSOC Core Resource Association Register (R/W)

31:0 Reserved

33:32 COS (R/W)

63: 34 Reserved

D10H 3344 IA32_L2_QOS_MASK_0 Module L2 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:7 CBM: Bit vector of available L2 ways for COS 0 
enforcement.

63:8 Reserved

D11H 3345 IA32_L2_QOS_MASK_1 Module L2 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:7 CBM: Bit vector of available L2 ways for COS 0 
enforcement.

63:8 Reserved

D12H 3346 IA32_L2_QOS_MASK_2 Module L2 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:7 CBM: Bit vector of available L2 ways for COS 0 
enforcement.
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2.6 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT PLUS 
MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support MSRs listed in Table 2-6, Table 2-12 
and Table 2-13. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_7AH; see Table 
2-1. For an MSR listed in Table 2-13 that also appears in the model-specific tables of prior generations, Table 2-13 
supersede prior generation tables.

In the Goldmont Plus microarchitecture, the scope column indicates the following: “Core” means each processor 
core has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit 
field is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the 
physical package share the same MSR or bit interface.

63:8 Reserved

D13H 3347 IA32_L2_QOS_MASK_3 Package L2 Class Of Service Mask - COS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L2 ways for COS 3 
enforcement.

63:20 Reserved

D90H 3472 IA32_BNDCFGS Core See Table 2-2.

DA0H 3488 IA32_XSS Core See Table 2-2.

See Table 2-6, and Table 2-12 for MSR definitions applicable to processors with CPUID signature 06_5CH. 
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3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration 
of SGX Launch Control via IA32_SGXLEPUBKEYHASHn 
MSR. 

Valid if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL) 

63:19 Reserved

8CH 140 IA32_SGXLEPUBKEYHASH0 Core See Table 2-2.
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8DH 141 IA32_SGXLEPUBKEYHASH1 Core See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Core See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Core See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core (R/W) See Table 2-2. See Section 18.6.2.4, “Processor 
Event Based Sampling (PEBS).”

0 Enable PEBS trigger and recording for the 
programmed event (precise or otherwise) on 
IA32_PMC0. 

1 Enable PEBS trigger and recording for the 
programmed event (precise or otherwise) on 
IA32_PMC1.

2 Enable PEBS trigger and recording for the 
programmed event (precise or otherwise) on 
IA32_PMC2.

3 Enable PEBS trigger and recording for the 
programmed event (precise or otherwise) on 
IA32_PMC3.

31:4 Reserved

32 Enable PEBS trigger and recording for 
IA32_FIXED_CTR0.

33 Enable PEBS trigger and recording for 
IA32_FIXED_CTR1.

34 Enable PEBS trigger and recording for 
IA32_FIXED_CTR2.

63:35 Reserved

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn
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17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

680H 1664 MSR_LASTBRANCH_0_FROM_IP Core Last Branch Record 0 From IP (R/W)

One of the three MSRs that make up the first entry of 
the 32-entry LBR stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.7, “Last Branch, Call Stack, Interrupt, and 

Exception Recording for Processors based on 
Goldmont Plus Microarchitecture.”

681H 
- 

69FH

1665 
- 

1695

MSR_LASTBRANCH_i_FROM_IP Core Last Branch Record i From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP; i 
= 1-31.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Core Last Branch Record 0 To IP (R/W)

One of the three MSRs that make up the first entry of 
the 32-entry LBR stack. The To_IP part of the stack 
contains pointers to the Destination instruction. See 
also:

• Section 17.7, “Last Branch, Call Stack, Interrupt, and 
Exception Recording for Processors based on 
Goldmont Plus Microarchitecture.”

6C1H
-

6DFH

1729
-

1759

MSR_LASTBRANCH_i_TO_IP Core Last Branch Record i To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP; i = 1-
31. 

DC0H 3520 MSR_LASTBRANCH_INFO_0 Core Last Branch Record 0 Additional Information (R/W)

One of the three MSRs that make up the first entry of 
the 32-entry LBR stack. This part of the stack 
contains flag and elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LASTBRANCH_INFO_1 Core Last Branch Record 1 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC2H 3522 MSR_LASTBRANCH_INFO_2 Core Last Branch Record 2 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0. 

DC3H 3523 MSR_LASTBRANCH_INFO_3 Core Last Branch Record 3 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.
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DC4H 3524 MSR_LASTBRANCH_INFO_4 Core Last Branch Record 4 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC5H 3525 MSR_LASTBRANCH_INFO_5 Core Last Branch Record 5 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC6H 3526 MSR_LASTBRANCH_INFO_6 Core Last Branch Record 6 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC7H 3527 MSR_LASTBRANCH_INFO_7 Core Last Branch Record 7 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC8H 3528 MSR_LASTBRANCH_INFO_8 Core Last Branch Record 8 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC9H 3529 MSR_LASTBRANCH_INFO_9 Core Last Branch Record 9 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCAH 3530 MSR_LASTBRANCH_INFO_10 Core Last Branch Record 10 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCBH 3531 MSR_LASTBRANCH_INFO_11 Core Last Branch Record 11 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCCH 3532 MSR_LASTBRANCH_INFO_12 Core Last Branch Record 12 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCDH 3533 MSR_LASTBRANCH_INFO_13 Core Last Branch Record 13 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCEH 3534 MSR_LASTBRANCH_INFO_14 Core Last Branch Record 14 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCFH 3535 MSR_LASTBRANCH_INFO_15 Core Last Branch Record 15 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD0H 3536 MSR_LASTBRANCH_INFO_16 Core Last Branch Record 16 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD1H 3537 MSR_LASTBRANCH_INFO_17 Core Last Branch Record 17 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD2H 3538 MSR_LASTBRANCH_INFO_18 Core Last Branch Record 18 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD3H 3539 MSR_LASTBRANCH_INFO_19 Core Last Branch Record 19 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD4H 3520 MSR_LASTBRANCH_INFO_20 Core Last Branch Record 20 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD5H 3521 MSR_LASTBRANCH_INFO_21 Core Last Branch Record 21 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD6H 3522 MSR_LASTBRANCH_INFO_22 Core Last Branch Record 22 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0. 
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2.7 MSRS IN INTEL ATOM® PROCESSORS BASED ON TREMONT 
MICROARCHITECTURE

Intel Atom processors based on the Tremont microarchitecture support MSRs listed in Table 2-6, Table 2-12, Table 
2-13 and Table 2-14. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_86H; see 
Table 2-1. For an MSR listed in Table 2-14 that also appears in the model-specific tables of prior generations, Table 
2-14 supersede prior generation tables.

In the Tremont microarchitecture, the scope column indicates the following: “Core” means each processor core has 
a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field is 
shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

DD7H 3523 MSR_LASTBRANCH_INFO_23 Core Last Branch Record 23 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD8H 3524 MSR_LASTBRANCH_INFO_24 Core Last Branch Record 24 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD9H 3525 MSR_LASTBRANCH_INFO_25 Core Last Branch Record 25 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDAH 3526 MSR_LASTBRANCH_INFO_26 Core Last Branch Record 26 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDBH 3527 MSR_LASTBRANCH_INFO_27 Core Last Branch Record 27 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDCH 3528 MSR_LASTBRANCH_INFO_28 Core Last Branch Record 28 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDDH 3529 MSR_LASTBRANCH_INFO_29 Core Last Branch Record 29 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDEH 3530 MSR_LASTBRANCH_INFO_30 Core Last Branch Record 30 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDFH 3531 MSR_LASTBRANCH_INFO_31 Core Last Branch Record 31 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

See Table 2-6, Table 2-12 and Table 2-13 for MSR definitions applicable to processors with CPUID signature 06_7AH. 
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33H 51 MSR_TEST_CTRL Core Test Control Register

28:0 Reserved.

29 Enable #AC(0) exception for split locked accesses:

Cause #AC(0) exception for split locked access at all 
CPL irrespective of CR0.AM or EFLAGS.AC. If bits 29 
and 31 are both set, bit 29 takes precedence.

30 Reserved.

31 Reserved.

CFH 207 IA32_CORE_CAPABILITIES Core IA32 Core Capabilities Register

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

4:0 Reserved.

5 Bit 29 of MSR_TEST_CTRL (address 33H) supported.

63:6 Reserved.

3F1H 1009 MSR_PEBS_ENABLE Core (R/W) See Table 2-2. See Section 18.6.2.4, “Processor 
Event Based Sampling (PEBS)”.

n:0 Enable PEBS trigger and recording for the programmed 
event (precise or otherwise) on IA32_PMCx. The 
maximum value n can be determined from 
CPUID.0AH:EAX[15:8].

31:n+1 Reserved.

32+m:32 Enable PEBS trigger and recording for 
IA32_FIXED_CTRx. The maximum value m can be 
determined from CPUID.0AH:EDX[4:0].

59:33+m Reserved.

60 Pend a PerfMon Interrupt (PMI) after each PEBS event.

62:61 Specifies PEBS output destination. Encodings:

00B: DS Save Area

01B: Intel PT trace output. Supported if 
IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[
16] and CPUID.07H.0.EBX[25] are set.

10B: Reserved

11B: Reserved

63 Reserved.

1309H
-

130BH

4873
- 

4875

MSR_RELOAD_FIXED_CTRx Reload value for IA32_FIXED_CTRx (R/W)

47:0 Value loaded into IA32_FIXED_CTRx when a PEBS 
record is generated while PEBS_EN_FIXEDx = 1 and 
PEBS_OUTPUT = 01B in IA32_PEBS_ENABLE, and 
FIXED_CTRx is overflowed.

63:48 Reserved.
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2.8 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 2-15 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name 
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 2-1. Additional MSRs specific to 
06_1AH, 06_1EH, 06_1FH are listed in Table 2-16. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means 
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be 
programmed on each processor core independently, logical processors in the same core will be affected by change 
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed once 
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

14C1H
-

14C8H

5313 
- 

5320

MSR_RELOAD_PMCx Reload value for IA32_PMCx (R/W)

47:0 Value loaded into IA32_PMCx when a PEBS record is 
generated while PEBS_EN_PMCx = 1 and 
PEBS_OUTPUT = 01B in IA32_PEBS_ENABLE, and 
PMCx is overflowed.

63:48 Reserved.

See Table 2-6, Table 2-12, Table 2-13 and Table 2-14 for MSR definitions applicable to processors with CPUID signature 06_86H. 

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Thread See Section 8.10.5, “Monitor/Mwait Address Range 
Determination” and Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter,” and see 
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 2-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R) 

49:0 Reserved

52:50 See Table 2-2.

63:53 Reserved

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” 
and Table 2-2.

Table 2-14.   MSRs in Intel Atom® Processors Based on the Tremont Microarchitecture (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC 
runs at. The invariant TSC frequency can be computed 
by multiplying this ratio by 133.33 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit 
for Turbo mode is enabled. When set to 0, indicates 
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDC and TDP Limits for 
Turbo mode are programmable. When set to 0, indicates 
TDC and TDP Limits for Turbo mode are not 
programmable.

39:30 Reserved

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description
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47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the 
processor can operate, in units of 133.33MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States. See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state 
limit.

The following C-state code name encodings are 
supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state 
to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

23:16 Reserved

24 Interrupt filtering enable (R/W) 

When set, processor cores in a deep C-State will wake 
only when the event message is destined for that core. 
When 0, all processor cores in a deep C-State will wake 
for an event message.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote 
C6/C7 requests to C3 based on uncore auto-demote 
information.

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote 
C3/C6/C7 requests to C1 based on uncore auto-demote 
information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO 
redirection. If IO MWAIT Redirection is enabled, reads to 
this address will be consumed by the power 
management logic and decoded to MWAIT instructions. 
When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State 
code name to be included when IO read to MWAIT 
redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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0 RIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) can be used to 
restart the program. If cleared, the program cannot be 
reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) is directly 
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been 
generated. If a second machine check is detected while 
this bit is still set, the processor enters a shutdown 
state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Core See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved

199H 409 IA32_PERF_CTL Thread See Table 2-2.

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

0 Reserved

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled 
and disabled.

0 Thread Fast-Strings Enable

See Table 2-2.

2:1 Reserved

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

6:4 Reserved

7 Thread Performance Monitoring Available (R) 

See Table 2-2.

10:8 Reserved

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved

22 Thread Limit CPUID Maxval (R/W) 

See Table 2-2.

23 Thread xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo 
Boost Technology, the turbo mode feature is disabled 
and the IDA_Enable feature flag will be clear 
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, 
CPUID.06H: EAX[1] reports the processor’s support of 
turbo mode is enabled.

Note: The power-on default value is used by BIOS to 
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the 
processor. If the power-on default value is 0, turbo 
mode is not available.

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Thread Temperature Target

15:0 Reserved

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be 
asserted. The value is degrees C.

63:24 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W) 

0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches 
additional lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which 
fetches the cache line that comprises a cache line pair 
(128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which 
fetches the next cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which 
uses sequential load history (based on instruction 
pointer of previous loads) to determine whether to 
prefetch additional lines.

63:4 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control

Various model specific features enumeration. See 
http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced 
Intel Speedstep Technology request from processor 
cores. When 1, disables hardware coordination of 
Enhanced Intel Speedstep Technology requests.

1 Thread Energy/Performance Bias Enable (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS register 
(MSR 1B0h) visible to software with Ring 0 privileges. 
This bit’s status (1 or 0) is also reflected by 
CPUID.(EAX=06h):ECX[3].

63:2 Reserved

1ACH 428 MSR_TURBO_POWER_CURRENT_LIMIT See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active; a value = 1 
indicates override is active.

30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active; a value = 1 
indicates override is active.

63:32 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.9.2, “Filtering of Last Branch Records.”

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that 
the processor executed prior to the last exception that 
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last 
branch instruction that the processor executed prior to 
the last exception that was generated or the last 
interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register

See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the 
Minimum Enhanced Intel SpeedStep Technology 
operating point when all execution cores enter MWAIT 
(C1).

63:2 Reserved

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Package See Table 2-2.

281H 641 IA32_MC1_CTL2 Package See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Core See Table 2-2.

285H 645 IA32_MC5_CTL2 Core See Table 2-2.

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL 
MSR.”

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format

7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STATUS Thread Provides single-bit status used by software to query 
the overflow condition of each performance counter. 
(RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” Allows software to clear counter 
overflow conditions on any combination of fixed-
function PMCs (IA32_FIXED_CTRx) or general-purpose 
PMCs via a single WRMSR.

390H 912 MSR_PERF_GLOBAL_OVF_CTRL Thread  (R/W)

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based 
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

1 Enable PEBS on IA32_PMC1 (R/W)

2 Enable PEBS on IA32_PMC2 (R/W)

3 Enable PEBS on IA32_PMC3 (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0 (R/W)

33 Enable Load Latency on IA32_PMC1 (R/W)

34 Enable Load Latency on IA32_PMC2 (R/W)

35 Enable Load Latency on IA32_PMC3 (R/W)

63:36 Reserved

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance 
Monitoring Facility.”

15:0 Minimum threshold latency value of tagged load 
operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C3 states. Count at the same frequency as the 
TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C6 states. Count at the same frequency as the 
TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C7 states. Count at the same frequency as the 
TSC.
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3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the 
TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Count at the same frequency as the 
TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

403H 1027 IA32_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

407H 1031 IA32_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.
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40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV flag 
in the MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

413H 1043 IA32_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 IA32_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”
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480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Thread Capability Reporting Register of Pin-based 
VM-execution Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Controls 
(R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”
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48BH 1163 IA32_VMX_PROCBASED_CTLS2 Thread Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on 
the last branch record stack. The From_IP part of the 
stack contains pointers to the source instruction. See 
also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1 and record format in Section 17.4.8.1.

681H 1665 MSR_LASTBRANCH_1_FROM_IP Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_LASTBRANCH_3_FROM_IP Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_LASTBRANCH_4_FROM_IP Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68EH 1678 MSR_LASTBRANCH_14_FROM_IP Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on 
the last branch record stack. This part of the stack 
contains pointers to the destination instruction.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_LASTBRANCH_8_TO_IP Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID Register (R/O) 
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803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version Register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority Register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority Register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI Register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination Register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector Register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service Register Bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service Register Bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service Register Bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service Register Bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service Register Bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service Register Bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service Register Bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service Register Bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode Register Bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode Register Bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode Register Bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode Register Bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode Register Bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode Register Bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode Register Bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode Register Bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request Register Bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request Register Bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request Register Bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request Register Bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request Register Bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request Register Bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request Register Bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request Register Bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status Register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt Register 
(R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command Register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt Register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERMAL Thread x2APIC LVT Thermal Sensor Interrupt Register (R/W) 

Table 2-15.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



Vol. 4 2-143

MODEL-SPECIFIC REGISTERS (MSRS)

2.8.1  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
Intel Xeon Processor 5500 and 3400 series support additional model-specific registers listed in Table 2-16. These 
MSRs also apply to Intel Core i7 and i5 processor family CPUID signature with DisplayFamily_DisplayModel of 
06_1AH, 06_1EH and 06_1FH, see Table 2-1. 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor Register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 Register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 Register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error Register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count Register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count Register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration Register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI Register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables 

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W) 

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W) 

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W) 

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W) 

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W) 

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX 
Register and RDTSCP Support.” 

Table 2-16.  Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Actual maximum turbo frequency is multiplied by 
133.33MHz. 

(Not available in model 06_2EH.)
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7:0 Maximum Turbo Ratio Limit 1C (R/O) 

Maximum Turbo mode ratio limit with 1 core active. 

15:8 Maximum Turbo Ratio Limit 2C (R/O) 

Maximum Turbo mode ratio limit with 2 cores active. 

23:16 Maximum Turbo Ratio Limit 3C (R/O) 

Maximum Turbo mode ratio limit with 3 cores active. 

31:24 Maximum Turbo Ratio Limit 4C (R/O) 

Maximum Turbo mode ratio limit with 4 cores active. 

63:32 Reserved

301H 769 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved

391H 913 MSR_UNCORE_PERF_GLOBAL_CTRL Package See Section 18.3.1.2.1, “Uncore Performance 
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PERF_GLOBAL_STATUS Package See Section 18.3.1.2.1, “Uncore Performance 
Monitoring Management Facility.”

393H 915 MSR_UNCORE_PERF_GLOBAL_OVF_CTRL Package See Section 18.3.1.2.1, “Uncore Performance 
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIXED_CTR0 Package See Section 18.3.1.2.1, “Uncore Performance 
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIXED_CTR_CTRL Package See Section 18.3.1.2.1, “Uncore Performance 
Monitoring Management Facility.”

396H 918 MSR_UNCORE_ADDR_OPCODE_MATCH Package See Section 18.3.1.2.3, “Uncore Address/Opcode 
Match MSR.”

3B0H 960 MSR_UNCORE_PMC0 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B1H 961 MSR_UNCORE_PMC1 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B2H 962 MSR_UNCORE_PMC2 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B3H 963 MSR_UNCORE_PMC3 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B4H 964 MSR_UNCORE_PMC4 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”
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2.8.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 2-15 (except MSR address 1ADH) and additional 
model-specific registers listed in Table 2-17. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2EH.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B6H 966 MSR_UNCORE_PMC6 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3B7H 967 MSR_UNCORE_PMC7 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C0H 944 MSR_UNCORE_PERFEVTSEL0 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C1H 945 MSR_UNCORE_PERFEVTSEL1 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C2H 946 MSR_UNCORE_PERFEVTSEL2 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C3H 947 MSR_UNCORE_PERFEVTSEL3 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C4H 948 MSR_UNCORE_PERFEVTSEL4 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C5H 949 MSR_UNCORE_PERFEVTSEL5 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C6H 950 MSR_UNCORE_PERFEVTSEL6 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

3C7H 951 MSR_UNCORE_PERFEVTSEL7 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”

Table 2-17.  Additional MSRs in Intel® Xeon® Processor 7500 Series
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

Table 2-16.  Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series (Contd.)
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290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter.

395H 817 MSR_W_PMON_FIXED_CTR_CTL Package Uncore U-box perfmon fixed counter control MSR.

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

452H 1106 IA32_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 IA32_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 IA32_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

456H 1110 IA32_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 IA32_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_CTRL Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_STATUS Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_OVF_CTRL Package Uncore U-box perfmon global overflow control MSR.
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C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.

C21H 3105 MSR_B0_PMON_BOX_STATUS Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_CTRL Package Uncore B-box 0 perfmon local box overflow control 
MSR.

C30H 3120 MSR_B0_PMON_EVNT_SEL0 Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_SEL1 Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.

C34H 3124 MSR_B0_PMON_EVNT_SEL2 Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_SEL3 Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_STATUS Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_CTRL Package Uncore S-box 0 perfmon local box overflow control 
MSR.

C50H 3152 MSR_S0_PMON_EVNT_SEL0 Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_SEL1 Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_SEL2 Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_SEL3 Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.
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C61H 3169 MSR_B1_PMON_BOX_STATUS Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_CTRL Package Uncore B-box 1 perfmon local box overflow control 
MSR.

C70H 3184 MSR_B1_PMON_EVNT_SEL0 Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_SEL1 Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.

C74H 3188 MSR_B1_PMON_EVNT_SEL2 Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_SEL3 Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_STATUS Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_CTRL Package Uncore W-box perfmon local box overflow control 
MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_STATUS Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_OVF_CTRL Package Uncore M-box 0 perfmon local box overflow control 
MSR.

CA4H 3236 MSR_M0_PMON_TIMESTAMP Package Uncore M-box 0 perfmon time stamp unit select 
MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.
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CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.

CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.

CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_SEL0 Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_SEL1 Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_SEL2 Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_SEL3 Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_SEL4 Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_SEL5 Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_STATUS Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_CTRL Package Uncore S-box 1 perfmon local box overflow control 
MSR.

CD0H 3280 MSR_S1_PMON_EVNT_SEL0 Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_SEL1 Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_SEL2 Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.
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CD6H 3286 MSR_S1_PMON_EVNT_SEL3 Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_STATUS Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_OVF_CTRL Package Uncore M-box 1 perfmon local box overflow control 
MSR.

CE4H 3300 MSR_M1_PMON_TIMESTAMP Package Uncore M-box 1 perfmon time stamp unit select 
MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_SEL0 Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_SEL1 Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_SEL2 Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_SEL3 Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_SEL4 Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_SEL5 Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.

D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.

D01H 3329 MSR_C0_PMON_BOX_STATUS Package Uncore C-box 0 perfmon local box status MSR.
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D02H 3330 MSR_C0_PMON_BOX_OVF_CTRL Package Uncore C-box 0 perfmon local box overflow control 
MSR.

D10H 3344 MSR_C0_PMON_EVNT_SEL0 Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_SEL1 Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_SEL2 Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_SEL3 Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_SEL4 Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_SEL5 Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_STATUS Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_CTRL Package Uncore C-box 4 perfmon local box overflow control 
MSR.

D30H 3376 MSR_C4_PMON_EVNT_SEL0 Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_SEL1 Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.

D34H 3380 MSR_C4_PMON_EVNT_SEL2 Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_SEL3 Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.

D38H 3384 MSR_C4_PMON_EVNT_SEL4 Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.
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D3AH 3386 MSR_C4_PMON_EVNT_SEL5 Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_STATUS Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_CTRL Package Uncore C-box 2 perfmon local box overflow control 
MSR.

D50H 3408 MSR_C2_PMON_EVNT_SEL0 Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_SEL1 Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_SEL2 Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_SEL3 Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_SEL4 Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_SEL5 Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.

D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_STATUS Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_CTRL Package Uncore C-box 6 perfmon local box overflow control 
MSR.

D70H 3440 MSR_C6_PMON_EVNT_SEL0 Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.

D72H 3442 MSR_C6_PMON_EVNT_SEL1 Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_SEL2 Package Uncore C-box 6 perfmon event select MSR.
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D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_SEL3 Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_SEL4 Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_SEL5 Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_STATUS Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_CTRL Package Uncore C-box 1 perfmon local box overflow control 
MSR.

D90H 3472 MSR_C1_PMON_EVNT_SEL0 Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_SEL1 Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.

D94H 3476 MSR_C1_PMON_EVNT_SEL2 Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_SEL3 Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_SEL4 Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_SEL5 Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.

DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_STATUS Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_CTRL Package Uncore C-box 5 perfmon local box overflow control 
MSR.

DB0H 3504 MSR_C5_PMON_EVNT_SEL0 Package Uncore C-box 5 perfmon event select MSR.
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DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_SEL1 Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_SEL2 Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_SEL3 Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_SEL4 Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_SEL5 Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.

DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_STATUS Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_CTRL Package Uncore C-box 3 perfmon local box overflow control 
MSR.

DD0H 3536 MSR_C3_PMON_EVNT_SEL0 Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_SEL1 Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_SEL2 Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

DD6H 3542 MSR_C3_PMON_EVNT_SEL3 Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_SEL4 Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_SEL5 Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.
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DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_STATUS Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_CTRL Package Uncore C-box 7 perfmon local box overflow control 
MSR.

DF0H 3568 MSR_C7_PMON_EVNT_SEL0 Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_SEL1 Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.

DF4H 3572 MSR_C7_PMON_EVNT_SEL2 Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_SEL3 Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_SEL4 Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_SEL5 Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_STATUS Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_CTRL Package Uncore R-box 0 perfmon local box overflow control 
MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select 
MSR.

E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select 
MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select 
MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select 
MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select 
MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select 
MSR.
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E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select 
MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select 
MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_SEL0 Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_SEL1 Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.

E14H 3604 MSR_R0_PMON_EVNT_SEL2 Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_SEL3 Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_SEL4 Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_SEL5 Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_SEL6 Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_SEL7 Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_STATUS Package Uncore R-box 1 perfmon local box status MSR.

E22H 3618 MSR_R1_PMON_BOX_OVF_CTRL Package Uncore R-box 1 perfmon local box overflow control 
MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select 
MSR.
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E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select 
MSR.

E26H 3622 MSR_R1_PMON_IPERF1_P10 Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select 
MSR.

E27H 3623 MSR_R1_PMON_IPERF1_P11 Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select 
MSR.

E28H 3624 MSR_R1_PMON_IPERF1_P12 Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select 
MSR.

E29H 3625 MSR_R1_PMON_IPERF1_P13 Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select 
MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_P14 Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select 
MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_P15 Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select 
MSR.

E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_SEL8 Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_SEL9 Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_SEL10 Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_SEL11 Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_SEL12 Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_SEL13 Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_SEL14 Package Uncore R-box 1 perfmon event select MSR.

E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.
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2.9 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL® 
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR 
interfaces listed in Table 2-15, Table 2-16, plus additional MSR listed in Table 2-18. These MSRs apply to Intel Core 
i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table 
2-1.

E3EH 3646 MSR_R1_PMON_EVNT_SEL15 Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.

E54H 3668 MSR_M0_PMON_MM_CONFIG Package Uncore M-box 0 perfmon local box address 
match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_MATCH Package Uncore M-box 0 perfmon local box address match 
MSR.

E56H 3670 MSR_M0_PMON_ADDR_MASK Package Uncore M-box 0 perfmon local box address mask 
MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_CONFIG Package Uncore M-box 1 perfmon local box address 
match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_MATCH Package Uncore M-box 1 perfmon local box address match 
MSR.

E5EH 3678 MSR_M1_PMON_ADDR_MASK Package Uncore M-box 1 perfmon local box address mask 
MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event 
Configuration Facility.”
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2.10 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL® 
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR 
interfaces listed in Table 2-15 (except MSR address 1ADH), Table 2-16, plus additional MSR listed in Table 2-19. 
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

Table 2-18.  Additional MSRs Supported by Intel Processors 
(Based on Intel® Microarchitecture Code Name Westmere)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler 
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration 
of AES instruction set availability is as follows:

11b: AES instructions are not available until next 
RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is 
unsuccessful. If the configuration is not 01b, AES 
instructions can be mis-configured if a privileged agent 
unintentionally writes 11b.

63:2 Reserved

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.
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Table 2-19.  Additional MSRs Supported by Intel® Xeon® Processor E7 Family
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13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler 
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of 
AES instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is 
unsuccessful. If the configuration is not 01b, AES 
instructions can be mis-configured if a privileged agent 
unintentionally writes 11b.

63:2 Reserved

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

F40H 3904 MSR_C8_PMON_BOX_CTRL Package Uncore C-box 8 perfmon local box control MSR.

F41H 3905 MSR_C8_PMON_BOX_STATUS Package Uncore C-box 8 perfmon local box status MSR.

F42H 3906 MSR_C8_PMON_BOX_OVF_CTRL Package Uncore C-box 8 perfmon local box overflow control MSR.

F50H 3920 MSR_C8_PMON_EVNT_SEL0 Package Uncore C-box 8 perfmon event select MSR.

F51H 3921 MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter MSR.

F52H 3922 MSR_C8_PMON_EVNT_SEL1 Package Uncore C-box 8 perfmon event select MSR.

F53H 3923 MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter MSR.

F54H 3924 MSR_C8_PMON_EVNT_SEL2 Package Uncore C-box 8 perfmon event select MSR.

F55H 3925 MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter MSR.

F56H 3926 MSR_C8_PMON_EVNT_SEL3 Package Uncore C-box 8 perfmon event select MSR.

F57H 3927 MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter MSR.

F58H 3928 MSR_C8_PMON_EVNT_SEL4 Package Uncore C-box 8 perfmon event select MSR.

F59H 3929 MSR_C8_PMON_CTR4 Package Uncore C-box 8 perfmon counter MSR.

F5AH 3930 MSR_C8_PMON_EVNT_SEL5 Package Uncore C-box 8 perfmon event select MSR.

F5BH 3931 MSR_C8_PMON_CTR5 Package Uncore C-box 8 perfmon counter MSR.
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2.11 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 2-20 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel micro-
architecture code name Sandy Bridge. These processors have a CPUID signature with DisplayFamily_DisplayModel 
of 06_2AH, 06_2DH, see Table 2-1. Additional MSRs specific to 06_2AH are listed in Table 2-21.

FC0H 4032 MSR_C9_PMON_BOX_CTRL Package Uncore C-box 9 perfmon local box control MSR.

FC1H 4033 MSR_C9_PMON_BOX_STATUS Package Uncore C-box 9 perfmon local box status MSR.

FC2H 4034 MSR_C9_PMON_BOX_OVF_CTRL Package Uncore C-box 9 perfmon local box overflow control MSR.

FD0H 4048 MSR_C9_PMON_EVNT_SEL0 Package Uncore C-box 9 perfmon event select MSR.

FD1H 4049 MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter MSR.

FD2H 4050 MSR_C9_PMON_EVNT_SEL1 Package Uncore C-box 9 perfmon event select MSR.

FD3H 4051 MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter MSR.

FD4H 4052 MSR_C9_PMON_EVNT_SEL2 Package Uncore C-box 9 perfmon event select MSR.

FD5H 4053 MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter MSR.

FD6H 4054 MSR_C9_PMON_EVNT_SEL3 Package Uncore C-box 9 perfmon event select MSR.

FD7H 4055 MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter MSR.

FD8H 4056 MSR_C9_PMON_EVNT_SEL4 Package Uncore C-box 9 perfmon event select MSR.

FD9H 4057 MSR_C9_PMON_CTR4 Package Uncore C-box 9 perfmon counter MSR.

FDAH 4058 MSR_C9_PMON_EVNT_SEL5 Package Uncore C-box 9 perfmon event select MSR.

FDBH 4059 MSR_C9_PMON_CTR5 Package Uncore C-box 9 perfmon counter MSR.
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0H 0 IA32_P5_MC_ADDR Thread See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range 
Determination” and Table 2-2.
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10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter” and see 
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location” 
and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register 

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register 

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register 

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register 

See Table 2-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by 
threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by 
threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by 
threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by 
threads)
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CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC 
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit 
for Turbo mode is enabled. When set to 0, indicates 
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode 
is programmable. When set to 0, indicates TDP Limit for 
Turbo mode is not programmable.

39:30 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that 
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state 
limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit

Note: This field cannot be used to limit package C-state 
to C3.

9:3 Reserved
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10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote 
C6/C7 requests to C3 based on uncore auto-demote 
information.

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote 
C3/C6/C7 requests to C1 based on uncore auto-demote 
information.

27 Enable C3 Undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 Undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved

E4H 228 MSR_PMG_IO_CAPTURE_BASE Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO 
redirection. If IO MWAIT Redirection is enabled, reads to 
this address will be consumed by the power 
management logic and decoded to MWAIT instructions. 
When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-State Range (R/W) 

Specifies the encoding value of the maximum C-State 
code name to be included when IO read to MWAIT 
redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.
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E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler 
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration 
of AES instruction set availability is as follows:

11b: AES instructions are not available until next 
RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is 
unsuccessful. If the configuration is not 01b, AES 
instructions can be mis-configured if a privileged agent 
unintentionally writes 11b.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) can be used to 
restart the program. If cleared, the program cannot be 
reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed 
by the instruction pointer pushed on the stack (when 
the machine check was generated) is directly 
associated with the error.

2 MCIP

When set, bit indicates that a machine check has been 
generated. If a second machine check is detected while 
this bit is still set, the processor enters a shutdown 
state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.
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188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

18AH 394 IA32_PERFEVTSEL4 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18BH 395 IA32_PERFEVTSEL5 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18CH 396 IA32_PERFEVTSEL6 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

18DH 397 IA32_PERFEVTSEL7 Core See Table 2-2. If CPUID.0AH:EAX[15:8] = 8.

198H 408 IA32_PERF_STATUS Package See Table 2-2.

15:0 Current Performance State Value

63:16 Reserved

198H 408 MSR_PERF_STATUS Package Performance Status

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment.

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

0 Thermal Status (RO) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (RO) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

Table 2-20.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-168 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 Thermal Threshold #1 Status (RO) 

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (RO) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (RO) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

15:12 Reserved

22:16 Digital Readout (RO) 

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) 

See Table 2-2.

31 Reading Valid (RO) 

See Table 2-2.

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled 
and disabled.

0 Thread Fast-Strings Enable 

See Table 2-2

6:1 Reserved

7 Thread Performance Monitoring Available (R) 

See Table 2-2.

10:8 Reserved

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO) 

See Table 2-2.

15:13 Reserved

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.
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18 Thread ENABLE MONITOR FSM (R/W) 

See Table 2-2.

21:19 Reserved

22 Thread Limit CPUID Maxval (R/W) 

See Table 2-2.

23 Thread xTPR Message Disable (R/W) 

See Table 2-2.

33:24 Reserved

34 Thread XD Bit Disable (R/W) 

See Table 2-2.

37:35 Reserved

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo 
Boost Technology, the turbo mode feature is disabled 
and the IDA_Enable feature flag will be clear 
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, 
CPUID.06H: EAX[1] reports the processor’s support of 
turbo mode is enabled.

Note: The power-on default value is used by BIOS to 
detect hardware support of turbo mode. If the power-
on default value is 1, turbo mode is available in the 
processor. If the power-on default value is 0, turbo 
mode is not available.

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Unique Temperature Target

15:0 Reserved

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be 
asserted. The value is degrees C.

63:24 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W) 

0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which 
fetches additional lines of code or data into the L2 
cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which 
fetches the cache line that comprises a cache line pair 
(128 bytes).

Table 2-20.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-170 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which 
fetches the next cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which 
uses sequential load history (based on instruction 
pointer of previous loads) to determine whether to 
prefetch additional lines.

63:4 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control

Various model specific features enumeration. See 
http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved

6 TR: Branch Trace
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7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that 
the processor executed prior to the last exception that 
was generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last 
branch instruction that the processor executed prior to 
the last exception that was generated or the last 
interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.
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20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL 
MSR.”

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format. 

Table 2-20.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



Vol. 4 2-173

MODEL-SPECIFIC REGISTERS (MSRS)

7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

0 Thread Ovf_PMC0 

1 Thread Ovf_PMC1 

2 Thread Ovf_PMC2 

3 Thread Ovf_PMC3 

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved

32 Thread Ovf_FixedCtr0 

33 Thread Ovf_FixedCtr1 

34 Thread Ovf_FixedCtr2 

60:35 Reserved

61 Thread Ovf_Uncore 

62 Thread Ovf_BufDSSAVE 

63 Thread CondChgd 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

0 Thread Set 1 to enable PMC0 to count.

1 Thread Set 1 to enable PMC1 to count.

2 Thread Set 1 to enable PMC2 to count.

3 Thread Set 1 to enable PMC3 to count.

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] 
> 4).

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] 
> 5).
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6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] 
> 6).

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] 
> 7).

31:8 Reserved

32 Thread Set 1 to enable FixedCtr0 to count.

33 Thread Set 1 to enable FixedCtr1 to count.

34 Thread Set 1 to enable FixedCtr2 to count.

63:35 Reserved

390H 912 IA32_PERF_GLOBAL_OVF_CTRL See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

0 Thread Set 1 to clear Ovf_PMC0.

1 Thread Set 1 to clear Ovf_PMC1.

2 Thread Set 1 to clear Ovf_PMC2.

3 Thread Set 1 to clear Ovf_PMC3.

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4).

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5).

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6).

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7).

31:8 Reserved

32 Thread Set 1 to clear Ovf_FixedCtr0.

33 Thread Set 1 to clear Ovf_FixedCtr1.

34 Thread Set 1 to clear Ovf_FixedCtr2.

60:35 Reserved

61 Thread Set 1 to clear Ovf_Uncore.

62 Thread Set 1 to clear Ovf_BufDSSAVE.

63 Thread Set 1 to clear CondChgd.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based 
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)
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35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved

63 Enable Precise Store (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance 
Monitoring Facility.”

15:0 Minimum threshold latency value of tagged load 
operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C3 states. Count at the same frequency as the 
TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-
specific C6 states. Count at the same frequency as the 
TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C7 states. Count at the same frequency as the 
TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C3 states. Count at the same frequency as the 
TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C6 states. Count at the same frequency as the 
TSC.
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3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 CORE C7 Residency Counter (R/O)

Value since last reset that this core is in processor-
specific C7 states. Count at the same frequency as the 
TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected 
errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected 
errors.

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected 
errors.

63:2 Reserved

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.
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480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS Thread Capability Reporting Register of Pin-Based 
VM-Execution Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Controls 
(R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 
(R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field 
Enumeration (R/O) 

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

Table 2-20.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-178 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Thread Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENUM Thread Capability Reporting Register of EPT and VPID (R/O) 

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Thread Capability Reporting Register of Pin-Based 
VM-Execution Flex Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Thread Capability Reporting Register of Primary Processor-
Based VM-Execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Thread Capability Reporting Register of VM-Exit Flex Controls 
(R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Thread Capability Reporting Register of VM-Entry Flex Controls 
(R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 2-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 2-2.

4C5H 1221 IA32_A_PMC4 Core See Table 2-2.

4C6H 1222 IA32_A_PMC5 Core See Table 2-2.

4C7H 1223 IA32_A_PMC6 Core See Table 2-2.

4C8H 1224 IA32_A_PMC7 Core See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.10.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the 
package should be put into a package C3 state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. The following time unit 
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and 
can be used by the processor for package C-sate 
management. 

63:16 Reserved

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package 
to exit from a C6 to a C0 state, where an interrupt 
request can be delivered to the core and serviced. 
Additional core-exit latency may be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the 
package should be put into a package C6 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. The following time unit 
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and 
can be used by the processor for package C-sate 
management. 
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63:16 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C2 states. Count at the same frequency as the 
TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.10.3, 
“Package RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on 
the last branch record stack. This part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1 and record format in Section 17.4.8.1.

681H 1665 MSR_LASTBRANCH_1_FROM_IP Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_LASTBRANCH_2_FROM_IP Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_LASTBRANCH_3_FROM_IP Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_LASTBRANCH_4_FROM_IP Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_LASTBRANCH_5_FROM_IP Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_LASTBRANCH_6_FROM_IP Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_LASTBRANCH_7_FROM_IP Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_LASTBRANCH_8_FROM_IP Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_LASTBRANCH_9_FROM_IP Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68AH 1674 MSR_LASTBRANCH_10_FROM_IP Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on 
the last branch record stack. This part of the stack 
contains pointers to the destination instruction.

6C1H 1729 MSR_LASTBRANCH_1_TO_IP Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_LASTBRANCH_2_TO_IP Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_LASTBRANCH_3_TO_IP Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_LASTBRANCH_4_TO_IP Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_LASTBRANCH_5_TO_IP Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_LASTBRANCH_6_TO_IP Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_LASTBRANCH_7_TO_IP Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_LASTBRANCH_8_TO_IP Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_LASTBRANCH_9_TO_IP Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_LASTBRANCH_10_TO_IP Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_LASTBRANCH_11_TO_IP Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Table 2-20.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-182 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.1  MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel® 
Microarchitecture Code Name Sandy Bridge)

Table 2-21 and Table 2-22 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ 
processor family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID 
signature with DisplayFamily_DisplayModel of 06_2AH; see Table 2-1. 

6CCH 1740 MSR_LASTBRANCH_12_TO_IP Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_LASTBRANCH_13_TO_IP Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_LASTBRANCH_14_TO_IP Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_LASTBRANCH_15_TO_IP Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 2-2.

802H-
83FH

2050- 
2111

X2APIC MSRs Thread See Table 2-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX 
Register and RDTSCP Support.” 
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Table 2-21.  MSRs Supported by 2nd Generation Intel® Core™ Processors 
(Intel® microarchitecture code name Sandy Bridge)
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the 
package to exit from a C7 to a C0 state, where 
interrupt request can be delivered to the core and 
serviced. Additional core-exit latency may be 
applicable depending on the actual C-state the core 
is in. 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if 
the package should be put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. The following time unit 
encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid 
and can be used by the processor for package C-sate 
management. 

63:16 Reserved
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Table 2-22 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_2AH.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-21, and Table 2-22 for MSR definitions applicable to processors with CPUID signature 06_2AH. 

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 
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391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4 select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

392H 914 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status 

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.
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21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Report the number of C-Box units with performance 
counters, including processor cores and processor 
graphics.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

702H 1794 MSR_UNC_CBO_0_PERFEVTSEL2 Package Uncore C-Box 0, Counter 2 Event Select MSR

703H 1795 MSR_UNC_CBO_0_PERFEVTSEL3 Package Uncore C-Box 0, Counter 3 Event Select MSR

705H 1797 MSR_UNC_CBO_0_UNIT_STATUS Package Uncore C-Box 0, Unit Status for Counter 0-3 

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0 

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

708H 1800 MSR_UNC_CBO_0_PERFCTR2 Package Uncore C-Box 0, Performance Counter 2

709H 1801 MSR_UNC_CBO_0_PERFCTR3 Package Uncore C-Box 0, Performance Counter 3

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

712H 1810 MSR_UNC_CBO_1_PERFEVTSEL2 Package Uncore C-Box 1, Counter 2 Event Select MSR

713H 1811 MSR_UNC_CBO_1_PERFEVTSEL3 Package Uncore C-Box 1, Counter 3 Event Select MSR

715H 1813 MSR_UNC_CBO_1_UNIT_STATUS Package Uncore C-Box 1, Unit Status for Counter 0-3 

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0 

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

718H 1816 MSR_UNC_CBO_1_PERFCTR2 Package Uncore C-Box 1, Performance Counter 2

719H 1817 MSR_UNC_CBO_1_PERFCTR3 Package Uncore C-Box 1, Performance Counter 3

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

722H 1826 MSR_UNC_CBO_2_PERFEVTSEL2 Package Uncore C-Box 2, Counter 2 Event Select MSR

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 
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2.11.2  MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code 
Name Sandy Bridge)

Table 2-23 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 Family 
(based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 2-20 and Table 2-24. 

723H 1827 MSR_UNC_CBO_2_PERFEVTSEL3 Package Uncore C-Box 2, Counter 3 Event Select MSR

725H 1829 MSR_UNC_CBO_2_UNIT_STATUS Package Uncore C-Box 2, Unit Status for Counter 0-3 

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0 

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

728H 1832 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, Performance Counter 2

729H 1833 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, Performance Counter 3

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

732H 1842 MSR_UNC_CBO_3_PERFEVTSEL2 Package Uncore C-Box 3, Counter 2 Event Select MSR

733H 1843 MSR_UNC_CBO_3_PERFEVTSEL3 Package Uncore C-Box 3, counter 3 Event Select MSR

735H 1845 MSR_UNC_CBO_3_UNIT_STATUS Package Uncore C-Box 3, Unit Status for Counter 0-3 

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

738H 1848 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, Performance Counter 2

739H 1849 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, Performance Counter 3

740H 1856 MSR_UNC_CBO_4_PERFEVTSEL0 Package Uncore C-Box 4, Counter 0 Event Select MSR

741H 1857 MSR_UNC_CBO_4_PERFEVTSEL1 Package Uncore C-Box 4, Counter 1 Event Select MSR

742H 1858 MSR_UNC_CBO_4_PERFEVTSEL2 Package Uncore C-Box 4, Counter 2 Event Select MSR

743H 1859 MSR_UNC_CBO_4_PERFEVTSEL3 Package Uncore C-Box 4, Counter 3 Event Select MSR

745H 1861 MSR_UNC_CBO_4_UNIT_STATUS Package Uncore C-Box 4, Unit status for Counter 0-3 

746H 1862 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, Performance Counter 0

747H 1863 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, Performance Counter 1

748H 1864 MSR_UNC_CBO_4_PERFCTR2 Package Uncore C-Box 4, Performance Counter 2

749H 1865 MSR_UNC_CBO_4_PERFCTR3 Package Uncore C-Box 4, Performance Counter 3

Table 2-23.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family 
(based on Sandy Bridge microarchitecture)
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17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved
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1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional 
info in bits 36:32.

63:2 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 cores active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 cores active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 cores active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 cores active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 cores active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 cores active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 cores active.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-23.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family 
(based on Sandy Bridge microarchitecture) (Contd.)
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39CH 924 MSR_PEBS_NUM_ALT Package ENABLE_PEBS_NUM_ALT (RW)

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for 
specific events requiring additional configuration, see 
Table 19-19.

63:1 Reserved, must be zero.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

Table 2-23.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family 
(based on Sandy Bridge microarchitecture) (Contd.)
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42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-23.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family 
(based on Sandy Bridge microarchitecture) (Contd.)
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2.11.3  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 2-24. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 Product 
Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2DH

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS” and 
Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-23, and Table 2-24 for MSR definitions applicable to processors with CPUID signature 06_2DH. 

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family
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C08H 3080 MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK Fixed Counter Control

C09H 3081 MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK Fixed Counter 

C10H 3088 MSR_U_PMON_EVNTSEL0 Package Uncore U-box Perfmon Event Select for U-box 
Counter 0

C11H 3089 MSR_U_PMON_EVNTSEL1 Package Uncore U-box Perfmon Event Select for U-box 
Counter 1

C16H 3094 MSR_U_PMON_CTR0 Package Uncore U-box Perfmon Counter 0

C17H 3095 MSR_U_PMON_CTR1 Package Uncore U-box Perfmon Counter 1

C24H 3108 MSR_PCU_PMON_BOX_CTL Package Uncore PCU Perfmon for PCU-box-wide Control

C30H 3120 MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU Perfmon Event Select for PCU Counter 0

C31H 3121 MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU Perfmon Event Select for PCU Counter 1

C32H 3122 MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU Perfmon Event Select for PCU Counter 2

Table 2-23.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family 
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C33H 3123 MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU Perfmon Event Select for PCU Counter 3

C34H 3124 MSR_PCU_PMON_BOX_FILTER Package Uncore PCU Perfmon box-wide Filter

C36H 3126 MSR_PCU_PMON_CTR0 Package Uncore PCU Perfmon Counter 0

C37H 3127 MSR_PCU_PMON_CTR1 Package Uncore PCU Perfmon Counter 1

C38H 3128 MSR_PCU_PMON_CTR2 Package Uncore PCU Perfmon Counter 2

C39H 3129 MSR_PCU_PMON_CTR3 Package Uncore PCU Perfmon Counter 3

D04H 3332 MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 Perfmon Local Box Wide Control

D10H 3344 MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 Perfmon Event Select for C-box 0 
Counter 0

D11H 3345 MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 Perfmon Event Select for C-box 0 
Counter 1

D12H 3346 MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 Perfmon Event Select for C-box 0 
Counter 2

D13H 3347 MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 Perfmon Event Select for C-box 0 
Counter 3

D14H 3348 MSR_C0_PMON_BOX_FILTER Package Uncore C-box 0 Perfmon Box Wide Filter

D16H 3350 MSR_C0_PMON_CTR0 Package Uncore C-box 0 Perfmon Counter 0

D17H 3351 MSR_C0_PMON_CTR1 Package Uncore C-box 0 Perfmon Counter 1

D18H 3352 MSR_C0_PMON_CTR2 Package Uncore C-box 0 Perfmon Counter 2

D19H 3353 MSR_C0_PMON_CTR3 Package Uncore C-box 0 Perfmon Counter 3

D24H 3364 MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 Perfmon Local Box Wide Control

D30H 3376 MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 Perfmon Event Select for C-box 1 
Counter 0

D31H 3377 MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 Perfmon Event Select for C-box 1 
Counter 1

D32H 3378 MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 Perfmon Event Select for C-box 1 
Counter 2

D33H 3379 MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 Perfmon Event Select for C-box 1 
Counter 3

D34H 3380 MSR_C1_PMON_BOX_FILTER Package Uncore C-box 1 Perfmon Box Wide Filter

D36H 3382 MSR_C1_PMON_CTR0 Package Uncore C-box 1 Perfmon Counter 0

D37H 3383 MSR_C1_PMON_CTR1 Package Uncore C-box 1 Perfmon Counter 1

D38H 3384 MSR_C1_PMON_CTR2 Package Uncore C-box 1 Perfmon Counter 2

D39H 3385 MSR_C1_PMON_CTR3 Package Uncore C-box 1 Perfmon Counter 3

D44H 3396 MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 Perfmon Local Box Wide Control

D50H 3408 MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 Perfmon Event Select for C-box 2 
Counter 0

D51H 3409 MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 Perfmon Event Select for C-box 2 
Counter 1

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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D52H 3410 MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 Perfmon Event Select for C-box 2 
Counter 2

D53H 3411 MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 Perfmon Event Select for C-box 2 
Counter 3

D54H 3412 MSR_C2_PMON_BOX_FILTER Package Uncore C-box 2 Perfmon Box Wide Filter

D56H 3414 MSR_C2_PMON_CTR0 Package Uncore C-box 2 Perfmon Counter 0

D57H 3415 MSR_C2_PMON_CTR1 Package Uncore C-box 2 Perfmon Counter 1

D58H 3416 MSR_C2_PMON_CTR2 Package Uncore C-box 2 Perfmon Counter 2

D59H 3417 MSR_C2_PMON_CTR3 Package Uncore C-box 2 Perfmon Counter 3

D64H 3428 MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 Perfmon Local Box Wide Control

D70H 3440 MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 Perfmon Event Select for C-box 3 
Counter 0

D71H 3441 MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 Perfmon Event Select for C-box 3 
Counter 1

D72H 3442 MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 Perfmon Event Select for C-box 3 
Counter 2

D73H 3443 MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 Perfmon Event Select for C-box 3 
Counter 3

D74H 3444 MSR_C3_PMON_BOX_FILTER Package Uncore C-box 3 Perfmon Box Wide Filter

D76H 3446 MSR_C3_PMON_CTR0 Package Uncore C-box 3 Perfmon Counter 0

D77H 3447 MSR_C3_PMON_CTR1 Package Uncore C-box 3 Perfmon Counter 1

D78H 3448 MSR_C3_PMON_CTR2 Package Uncore C-box 3 Perfmon Counter 2

D79H 3449 MSR_C3_PMON_CTR3 Package Uncore C-box 3 Perfmon Counter 3

D84H 3460 MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 Perfmon Local Box Wide Control

D90H 3472 MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 Perfmon Event Select for C-box 4 
Counter 0

D91H 3473 MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 Perfmon Event Select for C-box 4 
Counter 1

D92H 3474 MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 Perfmon Event Select for C-box 4 
Counter 2

D93H 3475 MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 Perfmon Event Select for C-box 4 
Counter 3

D94H 3476 MSR_C4_PMON_BOX_FILTER Package Uncore C-box 4 Perfmon Box Wide Filter

D96H 3478 MSR_C4_PMON_CTR0 Package Uncore C-box 4 Perfmon Counter 0

D97H 3479 MSR_C4_PMON_CTR1 Package Uncore C-box 4 Perfmon Counter 1

D98H 3480 MSR_C4_PMON_CTR2 Package Uncore C-box 4 Perfmon Counter 2

D99H 3481 MSR_C4_PMON_CTR3 Package Uncore C-box 4 Perfmon Counter 3

DA4H 3492 MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 Perfmon Local Box Wide Control

DB0H 3504 MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 Perfmon Event Select for C-box 5 
Counter 0

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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DB1H 3505 MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 Perfmon Event Select for C-box 5 
Counter 1

DB2H 3506 MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 Perfmon Event Select for C-box 5 
Counter 2

DB3H 3507 MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 Perfmon Event Select for C-box 5 
Counter 3

DB4H 3508 MSR_C5_PMON_BOX_FILTER Package Uncore C-box 5 Perfmon Box Wide Filter

DB6H 3510 MSR_C5_PMON_CTR0 Package Uncore C-box 5 Perfmon Counter 0

DB7H 3511 MSR_C5_PMON_CTR1 Package Uncore C-box 5 Perfmon Counter 1

DB8H 3512 MSR_C5_PMON_CTR2 Package Uncore C-box 5 Perfmon Counter 2

DB9H 3513 MSR_C5_PMON_CTR3 Package Uncore C-box 5 Perfmon Counter 3

DC4H 3524 MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 Perfmon Local Box Wide Control

DD0H 3536 MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 Perfmon Event Select for C-box 6 
Counter 0

DD1H 3537 MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 Perfmon Event Select for C-box 6 
Counter 1

DD2H 3538 MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 Perfmon Event Select for C-box 6 
Counter 2

DD3H 3539 MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 Perfmon Event Select for C-box 6 
Counter 3

DD4H 3540 MSR_C6_PMON_BOX_FILTER Package Uncore C-box 6 Perfmon Box Wide Filter

DD6H 3542 MSR_C6_PMON_CTR0 Package Uncore C-box 6 Perfmon Counter 0

DD7H 3543 MSR_C6_PMON_CTR1 Package Uncore C-box 6 Perfmon Counter 1

DD8H 3544 MSR_C6_PMON_CTR2 Package Uncore C-box 6 Perfmon Counter 2

DD9H 3545 MSR_C6_PMON_CTR3 Package Uncore C-box 6 Perfmon Counter 3

DE4H 3556 MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 Perfmon Local Box Wide Control

DF0H 3568 MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 Perfmon Event Select for C-box 7 
Counter 0

DF1H 3569 MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 Perfmon Event Select for C-box 7 
Counter 1

DF2H 3570 MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 Perfmon Event Select for C-box 7 
Counter 2

DF3H 3571 MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 Perfmon Event Select for C-box 7 
Counter 3

DF4H 3572 MSR_C7_PMON_BOX_FILTER Package Uncore C-box 7 Perfmon Box Wide Filter

DF6H 3574 MSR_C7_PMON_CTR0 Package Uncore C-box 7 Perfmon Counter 0

DF7H 3575 MSR_C7_PMON_CTR1 Package Uncore C-box 7 Perfmon Counter 1

DF8H 3576 MSR_C7_PMON_CTR2 Package Uncore C-box 7 Perfmon Counter 2

DF9H 3577 MSR_C7_PMON_CTR3 Package Uncore C-box 7 Perfmon Counter 3
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2.12 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY 
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family 
(based on Intel microarchitecture code name Ivy Bridge) support the MSR interfaces listed in Table 2-20, Table 
2-21, Table 2-22, and Table 2-25. These processors have a CPUID signature with DisplayFamily_DisplayModel of 
06_3AH. 

Table 2-25.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors 
(based on Intel® microarchitecture code name Ivy Bridge)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model 
specific features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC 
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio 
Limit for Turbo mode is enabled. When set to 0, 
indicates Programmable Ratio Limit for Turbo mode is 
disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo 
mode is programmable. When set to 0, indicates that 
TDP Limit for Turbo mode is not programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported. When 
set to 0, indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved

39:35 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that 
the processor can operate, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported operating ratio in 
units of 100 MHz.

63:56 Reserved
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E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-
state to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE 
to MWAIT instructions.

14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote 
C6/C7 requests to C3 based on uncore auto-demote 
information.

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote 
C3/C6/C7 requests to C1 based on uncore auto-
demote information.

27 Enable C3 Undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 Undemotion (R/W) 

When set, enables undemotion from demoted C1.

Table 2-25.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors 
(based on Intel® microarchitecture code name Ivy Bridge) (Contd.)
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63:29 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific 
processor (in units of 100 MHz). 

63:8 Reserved

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific 
processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific 
processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved

64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

Table 2-25.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors 
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2.12.1  MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E 
Microarchitecture)

Table 2-26 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product 
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_3EH, see Table 2-1. These processors supports the MSR interfaces listed in 
Table 2-20, and Table 2-26. 

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is 
locked until a reset. 

63:32 Reserved

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is 
locked until a reset. 

63:32 Reserved

See Table 2-20, Table 2-21 and Table 2-22 for other MSR definitions applicable to processors with CPUID signature 06_3AH.

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture)
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Address Register Name / Bit Fields Scope Bit Description
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4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control 
(R/W)
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0 LockOut (R/WO)

If 0, indicates that further writes to MSR_PPIN_CTL is 
allowed.

If 1, indicates that further writes to MSR_PPIN_CTL is 
disallowed. Writing 1 to this bit is only permitted if the 
Enable_PPIN bit is clear.

The Privileged System Software Inventory Agent 
should read MSR_PPIN_CTL[bit 1] to determine if 
MSR_PPIN is accessible.

The Privileged System Software Inventory Agent is not 
expected to write to this MSR.

1 Enable_PPIN (R/W)

If 1, indicates that MSR_PPIN is accessible using 
RDMSR.

If 0, indicates that MSR_PPIN is inaccessible using 
RDMSR. Any attempt to read MSR_PPIN will cause #GP.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID 
family/model/stepping signature that a privileged 
inventory initialization agent can access to identify 
each physical processor, when access to MSR_PPIN is 
enabled. Access to MSR_PPIN is permitted only if 
MSR_PPIN_CTL[bits 1:0] = ‘10b’.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC 
runs at. Frequency = ratio * 100 MHz.

22:16 Reserved

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor 
Inventory Number (PPIN) capability can be enabled for 
a privileged system inventory agent to read PPIN from 
MSR_PPIN.

When set to 0, PPIN capability is not supported. An 
attempt to access MSR_PPIN_CTL or MSR_PPIN will 
cause #GP.

27:24 Reserved

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit 
for Turbo mode is enabled. When set to 0, indicates 
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode 
is programmable. When set to 0, indicates TDP Limit for 
Turbo mode is not programmable.

30 Package Programmable TJ OFFSET (R/O) 

When set to 1, indicates that 
MSR_TEMPERATURE_TARGET.[27:24] is valid and 
writable to specify a temperature offset.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that 
the processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state 
to C3.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
register specified by MSR_PMG_IO_CAPTURE_BASE to 
MWAIT instructions.

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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14:11 Reserved

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next 
reset.

63:16 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved

26 MCG_ELOG_P

63:27 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info 
in bits 36:32.

63:2 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (RO) 

The minimum temperature at which PROCHOT# will be 
asserted. The value is degrees C.

27:24 TCC Activation Offset (R/W) 

Specifies a temperature offset in degrees C from the 
temperature target (bits 23:16). PROCHOT# will assert 
at the offset target temperature. Write is permitted 
only if MSR_PLATFORM_INFO.[30] is set.

63:28 Reserved

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

296H 662 IA32_MC22_CTL2 Package See Table 2-2.

297H 663 IA32_MC23_CTL2 Package See Table 2-2.

298H 664 IA32_MC24_CTL2 Package See Table 2-2.

299H 665 IA32_MC25_CTL2 Package See Table 2-2.

29AH 666 IA32_MC26_CTL2 Package See Table 2-2.

29BH 667 IA32_MC27_CTL2 Package See Table 2-2.

29CH 668 IA32_MC28_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O 
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC errors from the two 
home agents.

41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC errors from the two 
home agents.

421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package Bank MC11 reports MC errors from a specific channel 
of the integrated memory controller.42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package Bank MC20 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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458H 1112 IA32_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

459H 1113 IA32_MC22_STATUS Package

45AH 1114 IA32_MC22_ADDR Package

45BH 1115 IA32_MC22_MISC Package

45CH 1116 IA32_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

45DH 1117 IA32_MC23_STATUS Package

45EH 1118 IA32_MC23_ADDR Package

45FH 1119 IA32_MC23_MISC Package

460H 1120 IA32_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

461H 1121 IA32_MC24_STATUS Package

462H 1122 IA32_MC24_ADDR Package

463H 1123 IA32_MC24_MISC Package

464H 1124 IA32_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

465H 1125 IA32_MC25_STATUS Package

466H 1126 IA32_MC25_ADDR Package

467H 1127 IA32_MC2MISC Package

468H 1128 IA32_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

469H 1129 IA32_MC26_STATUS Package

46AH 1130 IA32_MC26_ADDR Package

46BH 1131 IA32_MC26_MISC Package

46CH 1132 IA32_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

46DH 1133 IA32_MC27_STATUS Package

46EH 1134 IA32_MC27_ADDR Package

46FH 1135 IA32_MC27_MISC Package

470H 1136 IA32_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

471H 1137 IA32_MC28_STATUS Package

472H 1138 IA32_MC28_ADDR Package

473H 1139 IA32_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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2.12.2  Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 2-20, Table 2-26, and 
Table 2-27. 

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH. 

Table 2-27.  Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family 
with DisplayFamily_DisplayModel Signature 06_3EH

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

63:16 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status (R/WO)

0 RIPV

1 EIPV

Table 2-26.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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2 MCIP

3 LMCE Signaled

63:4 Reserved

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified 
in MSR_TURBO_RATIO_LIMIT and 
MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration 
(Default).

29DH 669 IA32_MC29_CTL2 Package See Table 2-2.

29EH 670 IA32_MC30_CTL2 Package See Table 2-2.

29FH 671 IA32_MC31_CTL2 Package See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0 (R/W)

1 Enable PEBS on IA32_PMC1 (R/W)

2 Enable PEBS on IA32_PMC2 (R/W)

3 Enable PEBS on IA32_PMC3 (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0 (R/W)

33 Enable Load Latency on IA32_PMC1 (R/W)

Table 2-27.  Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family 
with DisplayFamily_DisplayModel Signature 06_3EH
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2.12.3  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families
Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based 
uncore PMU interfaces are listed in Table 2-24 and Table 2-28. For complete detail of the uncore PMU, refer to Intel 
Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel of 06_3EH.

34 Enable Load Latency on IA32_PMC2 (R/W)

35 Enable Load Latency on IA32_PMC3 (R/W)

63:36 Reserved

41BH 1051 IA32_MC6_MISC Package Misc MAC Information of Integrated I/O (R/O) 

See Section 15.3.2.4.

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 IA32_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

475H 1141 IA32_MC29_STATUS Package

476H 1142 IA32_MC29_ADDR Package

477H 1143 IA32_MC29_MISC Package

478H 1144 IA32_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

479H 1145 IA32_MC30_STATUS Package

47AH 1146 IA32_MC30_ADDR Package

47BH 1147 IA32_MC30_MISC Package

47CH 1148 IA32_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC errors from a specific CBo (core 
broadcast) and its corresponding slice of L3.

47DH 1149 IA32_MC31_STATUS Package

47EH 1150 IA32_MC31_ADDR Package

47FH 1147 IA32_MC31_MISC Package

See Table 2-20, Table 2-26 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature 06_3AH. 

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-27.  Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family 
with DisplayFamily_DisplayModel Signature 06_3EH
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Table 2-28.  Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

C00H 3072 MSR_PMON_GLOBAL_CTL Package Uncore Perfmon Per-Socket Global Control

C01H 3073 MSR_PMON_GLOBAL_STATUS Package Uncore Perfmon Per-Socket Global Status

C06H 3078 MSR_PMON_GLOBAL_CONFIG Package Uncore Perfmon Per-Socket Global Configuration

C15H 3093 MSR_U_PMON_BOX_STATUS Package Uncore U-box Perfmon U-Box Wide Status

C35H 3125 MSR_PCU_PMON_BOX_STATUS Package Uncore PCU Perfmon Box Wide Status

D1AH 3354 MSR_C0_PMON_BOX_FILTER1 Package Uncore C-Box 0 Perfmon Box Wide Filter1

D3AH 3386 MSR_C1_PMON_BOX_FILTER1 Package Uncore C-Box 1 Perfmon Box Wide Filter1

D5AH 3418 MSR_C2_PMON_BOX_FILTER1 Package Uncore C-Box 2 Perfmon Box Wide Filter1

D7AH 3450 MSR_C3_PMON_BOX_FILTER1 Package Uncore C-Box 3 Perfmon Box Wide Filter1

D9AH 3482 MSR_C4_PMON_BOX_FILTER1 Package Uncore C-Box 4 Perfmon Box Wide Filter1

DBAH 3514 MSR_C5_PMON_BOX_FILTER1 Package Uncore C-Box 5 Perfmon Box Wide Filter1

DDAH 3546 MSR_C6_PMON_BOX_FILTER1 Package Uncore C-Box 6 Perfmon Box Wide Filter1

DFAH 3578 MSR_C7_PMON_BOX_FILTER1 Package Uncore C-Box 7 Perfmon Box Wide Filter1

E04H 3588 MSR_C8_PMON_BOX_CTL Package Uncore C-Box 8 Perfmon Local Box Wide Control

E10H 3600 MSR_C8_PMON_EVNTSEL0 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 0

E11H 3601 MSR_C8_PMON_EVNTSEL1 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 1

E12H 3602 MSR_C8_PMON_EVNTSEL2 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 2

E13H 3603 MSR_C8_PMON_EVNTSEL3 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 3

E14H 3604 MSR_C8_PMON_BOX_FILTER Package Uncore C-Box 8 Perfmon Box Wide Filter

E16H 3606 MSR_C8_PMON_CTR0 Package Uncore C-Box 8 Perfmon Counter 0

E17H 3607 MSR_C8_PMON_CTR1 Package Uncore C-Box 8 Perfmon Counter 1

E18H 3608 MSR_C8_PMON_CTR2 Package Uncore C-Box 8 Perfmon Counter 2

E19H 3609 MSR_C8_PMON_CTR3 Package Uncore C-Box 8 Perfmon Counter 3

E1AH 3610 MSR_C8_PMON_BOX_FILTER1 Package Uncore C-Box 8 Perfmon Box Wide Filter1

E24H 3620 MSR_C9_PMON_BOX_CTL Package Uncore C-Box 9 Perfmon Local Box Wide Control

E30H 3632 MSR_C9_PMON_EVNTSEL0 Package Uncore C-Box 9 Perfmon Event Select for C-box 9 
Counter 0

E31H 3633 MSR_C9_PMON_EVNTSEL1 Package Uncore C-Box 9 Perfmon Event Select for C-box 9 
Counter 1

E32H 3634 MSR_C9_PMON_EVNTSEL2 Package Uncore C-Box 9 Perfmon Event Select for C-box 9 
Counter 2

E33H 3635 MSR_C9_PMON_EVNTSEL3 Package Uncore C-Box 9 Perfmon Event Select for C-box 9 
Counter 3

E34H 3636 MSR_C9_PMON_BOX_FILTER Package Uncore C-Box 9 Perfmon Box Wide Filter

E36H 3638 MSR_C9_PMON_CTR0 Package Uncore C-Box 9 Perfmon Counter 0
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E37H 3639 MSR_C9_PMON_CTR1 Package Uncore C-Box 9 Perfmon Counter 1

E38H 3640 MSR_C9_PMON_CTR2 Package Uncore C-Box 9 Perfmon Counter 2

E39H 3641 MSR_C9_PMON_CTR3 Package Uncore C-Box 9 Perfmon Counter 3

E3AH 3642 MSR_C9_PMON_BOX_FILTER1 Package Uncore C-Box 9 Perfmon Box Wide Filter1

E44H 3652 MSR_C10_PMON_BOX_CTL Package Uncore C-Box 10 Perfmon Local Box Wide Control

E50H 3664 MSR_C10_PMON_EVNTSEL0 Package Uncore C-Box 10 Perfmon Event Select for C-Box 
10 Counter 0

E51H 3665 MSR_C10_PMON_EVNTSEL1 Package Uncore C-Box 10 Perfmon Event Select for C-Box 
10 Counter 1

E52H 3666 MSR_C10_PMON_EVNTSEL2 Package Uncore C-Box 10 Perfmon Event Select for C-Box 
10 Counter 2

E53H 3667 MSR_C10_PMON_EVNTSEL3 Package Uncore C-Box 10 Perfmon Event Select for C-Box 
10 Counter 3

E54H 3668 MSR_C10_PMON_BOX_FILTER Package Uncore C-Box 10 Perfmon Box Wide Filter

E56H 3670 MSR_C10_PMON_CTR0 Package Uncore C-Box 10 Perfmon Counter 0

E57H 3671 MSR_C10_PMON_CTR1 Package Uncore C-Box 10 Perfmon Counter 1

E58H 3672 MSR_C10_PMON_CTR2 Package Uncore C-Box 10 Perfmon Counter 2

E59H 3673 MSR_C10_PMON_CTR3 Package Uncore C-Box 10 Perfmon Counter 3

E5AH 3674 MSR_C10_PMON_BOX_FILTER1 Package Uncore C-Box 10 Perfmon Box Wide Filter1

E64H 3684 MSR_C11_PMON_BOX_CTL Package Uncore C-Box 11 Perfmon Local Box Wide Control

E70H 3696 MSR_C11_PMON_EVNTSEL0 Package Uncore C-Box 11 Perfmon Event Select for C-Box 
11 Counter 0

E71H 3697 MSR_C11_PMON_EVNTSEL1 Package Uncore C-Box 11 Perfmon Event Select for C-Box 
11 Counter 1

E72H 3698 MSR_C11_PMON_EVNTSEL2 Package Uncore C-Box 11 Perfmon Event Select for C-Box 
11 Counter 2

E73H 3699 MSR_C11_PMON_EVNTSEL3 Package Uncore C-Box 11 Perfmon Event Select for C-Box 
11 Counter 3

E74H 3700 MSR_C11_PMON_BOX_FILTER Package Uncore C-Box 11 Perfmon Box Wide Filter

E76H 3702 MSR_C11_PMON_CTR0 Package Uncore C-Box 11 Perfmon Counter 0

E77H 3703 MSR_C11_PMON_CTR1 Package Uncore C-Box 11 Perfmon Counter 1

E78H 3704 MSR_C11_PMON_CTR2 Package Uncore C-Box 11 Perfmon Counter 2

E79H 3705 MSR_C11_PMON_CTR3 Package Uncore C-Box 11 Perfmon Counter 3

E7AH 3706 MSR_C11_PMON_BOX_FILTER1 Package Uncore C-Box 11 Perfmon Box Wide Filter1

E84H 3716 MSR_C12_PMON_BOX_CTL Package Uncore C-Box 12 Perfmon Local Box Wide Control

E90H 3728 MSR_C12_PMON_EVNTSEL0 Package Uncore C-Box 12 Perfmon Event Select for C-Box 
12 Counter 0

E91H 3729 MSR_C12_PMON_EVNTSEL1 Package Uncore C-Box 12 Perfmon Event Select for C-Box 
12 Counter 1

Table 2-28.  Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)
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E92H 3730 MSR_C12_PMON_EVNTSEL2 Package Uncore C-Box 12 Perfmon Event Select for C-Box 
12 Counter 2

E93H 3731 MSR_C12_PMON_EVNTSEL3 Package Uncore C-Box 12 Perfmon Event Select for C-Box 
12 Counter 3

E94H 3732 MSR_C12_PMON_BOX_FILTER Package Uncore C-Box 12 Perfmon Box Wide Filter

E96H 3734 MSR_C12_PMON_CTR0 Package Uncore C-Box 12 Perfmon Counter 0

E97H 3735 MSR_C12_PMON_CTR1 Package Uncore C-Box 12 Perfmon Counter 1

E98H 3736 MSR_C12_PMON_CTR2 Package Uncore C-Box 12 Perfmon Counter 2

E99H 3737 MSR_C12_PMON_CTR3 Package Uncore C-Box 12 Perfmon Counter 3

E9AH 3738 MSR_C12_PMON_BOX_FILTER1 Package Uncore C-Box 12 Perfmon Box Wide Filter1

EA4H 3748 MSR_C13_PMON_BOX_CTL Package Uncore C-Box 13 Perfmon Local Box Wide Control

EB0H 3760 MSR_C13_PMON_EVNTSEL0 Package Uncore C-Box 13 Perfmon Event Select for C-Box 
13 Counter 0

EB1H 3761 MSR_C13_PMON_EVNTSEL1 Package Uncore C-Box 13 Perfmon Event Select for C-Box 
13 Counter 1

EB2H 3762 MSR_C13_PMON_EVNTSEL2 Package Uncore C-Box 13 Perfmon Event Select for C-Box 
13 Counter 2

EB3H 3763 MSR_C13_PMON_EVNTSEL3 Package Uncore C-Box 13 Perfmon Event Select for C-Box 
13 Counter 3

EB4H 3764 MSR_C13_PMON_BOX_FILTER Package Uncore C-Box 13 Perfmon Box Wide Filter

EB6H 3766 MSR_C13_PMON_CTR0 Package Uncore C-Box 13 Perfmon Counter 0

EB7H 3767 MSR_C13_PMON_CTR1 Package Uncore C-Box 13 Perfmon Counter 1

EB8H 3768 MSR_C13_PMON_CTR2 Package Uncore C-Box 13 Perfmon Counter 2

EB9H 3769 MSR_C13_PMON_CTR3 Package Uncore C-Box 13 Perfmon Counter 3

EBAH 3770 MSR_C13_PMON_BOX_FILTER1 Package Uncore C-Box 13 Perfmon Box Wide Filter1

EC4H 3780 MSR_C14_PMON_BOX_CTL Package Uncore C-Box 14 Perfmon Local Box Wide Control

ED0H 3792 MSR_C14_PMON_EVNTSEL0 Package Uncore C-Box 14 Perfmon Event Select for C-Box 
14 Counter 0

ED1H 3793 MSR_C14_PMON_EVNTSEL1 Package Uncore C-Box 14 Perfmon Event Select for C-Box 
14 Counter 1

ED2H 3794 MSR_C14_PMON_EVNTSEL2 Package Uncore C-Box 14 Perfmon Event Select for C-Box 
14 Counter 2

ED3H 3795 MSR_C14_PMON_EVNTSEL3 Package Uncore C-Box 14 Perfmon Event Select for C-Box 
14 Counter 3

ED4H 3796 MSR_C14_PMON_BOX_FILTER Package Uncore C-Box 14 Perfmon Box Wide Filter

ED6H 3798 MSR_C14_PMON_CTR0 Package Uncore C-Box 14 Perfmon Counter 0

ED7H 3799 MSR_C14_PMON_CTR1 Package Uncore C-Box 14 Perfmon Counter 1

ED8H 3800 MSR_C14_PMON_CTR2 Package Uncore C-Box 14 Perfmon Counter 2

ED9H 3801 MSR_C14_PMON_CTR3 Package Uncore C-Box 14 Perfmon Counter 3

EDAH 3802 MSR_C14_PMON_BOX_FILTER1 Package Uncore C-Box 14 Perfmon Box Wide Filter1

Table 2-28.  Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)
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2.13 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON 
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based 
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, 
support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-22, and Table 2-29. For an MSR listed in Table 
2-20 that also appears in Table 2-29, Table 2-29 supersede Table 2-20.

The MSRs listed in Table 2-29 also apply to processors based on Haswell-E microarchitecture (see Section 2.14).

Table 2-29.  Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST Thread Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model 
specific features enumeration. See 
http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC 
runs at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio 
Limit for Turbo mode is enabled. When set to 0, 
indicates Programmable Ratio Limit for Turbo mode 
is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo 
mode is programmable. When set to 0, indicates TDP 
Limit for Turbo mode is not programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported. 
When set to 0, indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved

39:35 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that 
the processor can operate, in units of 100MHz.
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55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported operating ratio in 
units of 100 MHz.

63:56 Reserved

186H 390 IA32_PERFEVTSEL0 Thread Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 2-2 and the 
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) 
should be cleared to prevent incorrect results.

187H 391 IA32_PERFEVTSEL1 Thread Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 2-2 and the 
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) 
should be cleared to prevent incorrect results.

188H 392 IA32_PERFEVTSEL2 Thread Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 2-2 and the 
fields below.

32 IN_TX: See Section 18.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) 
should be cleared to prevent incorrect results.

33 IN_TXCP: See Section 18.3.6.5.1.

When IN_TXCP=1 & IN_TX=1 and in sampling, a 
spurious PMI may occur and transactions may 
continuously abort near overflow conditions. 
Software should favor using IN_TXCP for counting 
over sampling. If sampling, software should use large 
“sample-after” value after clearing the counter 
configured to use IN_TXCP and also always reset the 
counter even when no overflow condition was 
reported. 

189H 393 IA32_PERFEVTSEL3 Thread Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 2-2 and the 
fields below.

32 IN_TX: See Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) 
should be cleared to prevent incorrect results.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL
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4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS Buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved

491H 1169 IA32_VMX_VMFUNC Thread Capability Reporting Register of VM-Function 
Controls (R/O)

See Table 2-2.

60BH 1548 MSR_PKGC_IRTL1 Package Package C6/C7 Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit 
used by the processor to manage a transition to a 
package C6 or C7 state. The latency programmed in 
this register is for the shorter-latency sub C-states 
used by an MWAIT hint to a C6 or C7 state.

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if 
the package should be put into a package C6 or C7 
state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. See Table 2-20 for 
supported time unit encodings.

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid 
and can be used by the processor for package C-sate 
management. 

63:16 Reserved

60CH 1548 MSR_PKGC_IRTL2 Package Package C6/C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit 
used by the processor to manage a transition to a 
package C6 or C7 state. The latency programmed in 
this register is for the longer-latency sub C-states 
used by an MWAIT hint to a C6 or C7 state.

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if 
the package should be put into a package C6 or C7 
state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the 
interrupt response time limit. See Table 2-20 for 
supported time unit encodings.

14:13 Reserved

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid 
and can be used by the processor for package C-sate 
management. 

63:16 Reserved

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific 
processor (in units of 100 MHz). 
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63:8 Reserved

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 Ratio and Power Level (R/O)

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific 
processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

62:47 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 Ratio and Power Level (R/O)

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific 
processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

62:47 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved

64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is 
locked until a reset. 

63:32 Reserved

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

Table 2-29.  Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures 

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-216 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.13.1  MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell 
Microarchitecture)

Table 2-30 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor family 
and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors 
have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 2-1. 

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is 
locked until a reset. 

63:32 Reserved

C80H 3200 IA32_DEBUG_INTERFACE Package Silicon Debug Feature Control (R/W)

See Table 2-2.

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture)
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E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

Package C states C7 are not available to processors 
with a signature of 06_3CH.

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)
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14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible 
only while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access 
restriction is supported and the 
MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator 
is supported and the MSR_SMM_DELAYED is 
supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved
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29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

392H 914 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status 

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

391H 913 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved
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395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

4E0H 1248 MSR_SMM_FEATURE_CONTROL Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible 
only while in SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further 
changes.

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if 
MSR_SMM_MCA_CAP[58] == 1. When set to ‘0’ 
(default) none of the logical processors are 
prevented from executing SMM code outside the 
ranges defined by the SMRR. 

When set to ‘1’ any logical processor in the package 
that attempts to execute SMM code not within the 
ranges defined by the SMRR will assert an 
unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical 
processors in the package. Available only while in 
SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 
1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in 
a long flow of internal operation which delays 
servicing an interrupt. The corresponding bit will be 
set at the start of long events such as: Microcode 
Update Load, C6, WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each 
long event. The reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in 
the package. Available only while in SMM.
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N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked 
state to service an SMI. The corresponding bit will be 
set if the logical processor is in one of the following 
states: Wait For SIPI or SENTER Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the 
multiplier, 1/2^ESU; where ESU is an unsigned 
integer represented by bits 12:8. Default value is 
0EH (or 61 micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores 
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below 
the operating system request due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

3:2 Reserved
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4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating 
system request due to Processor Graphics driver 
override.

5 Autonomous Utilization-Based Frequency Control 
Status (R0)

When set, frequency is reduced below the operating 
system request because the processor has detected 
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the 
Voltage Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating 
system request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating 
system request due to Turbo transition attenuation. 
This prevents performance degradation due to 
frequent operating ratio changes.

15:14 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19:18 Reserved

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 Reserved

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition 
Attenuation Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:30 Reserved

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Processor 
Graphics (R/W)

(Frequency refers to processor graphics frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating 
system request due to assertion of external 
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

3:2 Reserved

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating 
system request due to Processor Graphics driver 
override.

5 Autonomous Utilization-Based Frequency Control 
Status (R0) 

When set, frequency is reduced below the operating 
system request because the processor has detected 
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the 
Voltage Regulator.

7 Reserved
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8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19:18 Reserved

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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23 Reserved

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition 
Attenuation Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:30 Reserved

6B1H 1713 MSR_RING_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Ring 
Interconnect (R/W)

(Frequency refers to ring interconnect in the uncore.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating 
system request due to assertion of external 
PROCHOT.
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1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

5:2 Reserved

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the 
Voltage Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

9 Reserved

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating 
system request due to package-level power limiting 
PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-
Based Frequency Control Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 Reserved

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 
Power Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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2.13.2  Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 2-20, Table 2-21, Table 
2-29, Table 2-30, and Table 2-31. 

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition 
Attenuation Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:30 Reserved

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0 

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0 

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1824 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0 

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29 for other MSR definitions applicable to processors with CPUID 
signatures 063CH, 06_46H. 
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Table 2-31.  Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors 
with DisplayFamily_DisplayModel Signature 06_45H

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state 
limit.

The following C-state code name encodings are 
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

59:0 Package C8 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C8 states. Count at the same frequency as the 
TSC.

63:60 Reserved

http://biosbits.org
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2.14 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microarchi-
tecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in 
Table 2-20, Table 2-29, and Table 2-32. 

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

59:0 Package C9 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C9 states. Count at the same frequency as the 
TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-States.

59:0 Package C10 Residency Counter (R/O)

Value since last reset that this package is in processor-
specific C10 states. Count at the same frequency as the 
TSC.

63:60 Reserved

See Table 2-20, Table 2-21, Table 2-22, Table 2-29, Table 2-30 for other MSR definitions applicable to processors with CPUID 
signature 06_45H.

Table 2-32.  Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family
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35H 53 MSR_CORE_THREAD_COUNT Package Configured State of Enabled Processor Core Count and 
Logical Processor Count (RO)

• After a Power-On RESET, enumerates factory 
configuration of the number of processor cores and 
logical processors in the physical package.

• Following the sequence of (i) BIOS modified a 
Configuration Mask which selects a subset of 
processor cores to be active post RESET and (ii) a 
RESET event after the modification, enumerates the 
current configuration of enabled processor core 
count and logical processor count in the physical 
package.

15:0 THREAD_COUNT (RO)

The number of logical processors that are currently 
enabled (by either factory configuration or BIOS 
configuration) in the physical package.
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31:16 Core_COUNT (RO)

The number of processor cores that are currently 
enabled (by either factory configuration or BIOS 
configuration) in the physical package.

63:32 Reserved

53H 83 MSR_THREAD_ID_INFO Thread A Hardware Assigned ID for the Logical Processor (RO)

7:0 Logical_Processor_ID (RO)

An implementation-specific numerical value physically 
assigned to each logical processor. This ID is not related 
to Initial APIC ID or x2APIC ID, it is unique within a 
physical package.

63:8 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state 
limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported 
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved
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179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only 
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access 
restriction is supported and a host-space interface 
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is 
supported and a host-space interface available to SMM 
handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info 
in bits 36:32.

63:2 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.
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31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active. 

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active. 

62:16 Package Reserved
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63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 
specified in MSR_TURBO_RATIO_LIMIT, 
MSR_TURBO_RATIO_LIMIT1 and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration 
(Default).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI 0 
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O 
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package
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430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, 
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC errors from the Intel QPI 1 
module.

451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package
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454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from the Intel QPI 2 
module.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the 
multiplier, 1/2^ESU; where ESU is an unsigned integer 
represented by bits 12:8. Default value is 0EH (or 61 
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

Energy Consumed by DRAM devices. 

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration 
to enable DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

61EH 1566 MSR_PCIE_PLL_RATIO Package Configuration of PCIE PLL Relative to BCLK(R/W) 

1:0 Package PCIE Ratio (R/W)

00b: Use 5:5 mapping for100MHz operation (default).

01b: Use 5:4 mapping for125MHz operation.

10b: Use 5:3 mapping for166MHz operation.

11b: Use 5:2 mapping for250MHz operation.

2 Package LPLL Select (R/W)

If 1, use configured setting of PCIE Ratio.

3 Package LONG RESET (R/W)

If 1, wait an additional time-out before re-locking 
Gen2/Gen3 PLLs.

63:4 Reserved

Table 2-32.  Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



Vol. 4 2-237

MODEL-SPECIFIC REGISTERS (MSRS)

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields 
represent the widest possible range of uncore 
frequencies. Writing to these fields allows software to 
control the minimum and the maximum frequency that 
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio 
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O) 

Reads return 0.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below 
the operating system request due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating 
system request due to PBM limit

3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating 
system request due to PCS limit

4 Reserved

5 Autonomous Utilization-Based Frequency Control 
Status (R0) 

When set, frequency is reduced below the operating 
system request because the processor has detected 
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the Voltage 
Regulator.

7 Reserved
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8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

9 Reserved

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating 
system request due to Multi-Core Turbo limits.

12:11 Reserved

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo 
P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core turbo 
frequency.

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating 
system request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

18 Power Budget Management Log 

When set, indicates that the PBM Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

20 Reserved
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21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 Reserved

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Reserved

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28:27 Reserved

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo 
Frequency Limiting Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

63:32 Reserved

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.
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2.14.1  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore 
PMU interfaces are listed in Table 2-33. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3 
Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_3FH.

7:0 EventID (RW)

Event encoding:

0x0: No monitoring.

0x1: L3 occupancy monitoring.

All other encoding reserved.

31:8 Reserved

41:32 RMID (RW)

63:42 Reserved

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this RMID is not 
available or not monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event 
type was written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID 

63: 10 Reserved

See Table 2-20, Table 2-29 for other MSR definitions applicable to processors with CPUID signature 06_3FH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.
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700H 1792 MSR_PMON_GLOBAL_CTL Package Uncore Perfmon Per-Socket Global Control

701H 1793 MSR_PMON_GLOBAL_STATUS Package Uncore Perfmon Per-Socket Global Status

702H 1794 MSR_PMON_GLOBAL_CONFIG Package Uncore Perfmon Per-Socket Global Configuration

703H 1795 MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-Box UCLK Fixed Counter Control

704H 1796 MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-Box UCLK Fixed Counter 

705H 1797 MSR_U_PMON_EVNTSEL0 Package Uncore U-Box Perfmon Event Select for U-Box 
Counter 0
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706H 1798 MSR_U_PMON_EVNTSEL1 Package Uncore U-Box Perfmon Event Select for U-Box 
Counter 1

708H 1800 MSR_U_PMON_BOX_STATUS Package Uncore U-Box Perfmon U-Box Wide Status

709H 1801 MSR_U_PMON_CTR0 Package Uncore U-Box Perfmon Counter 0

70AH 1802 MSR_U_PMON_CTR1 Package Uncore U-Box Perfmon Counter 1

710H 1808 MSR_PCU_PMON_BOX_CTL Package Uncore PCU Perfmon for PCU-Box-Wide Control

711H 1809 MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU Perfmon Event Select for PCU Counter 0

712H 1810 MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU Perfmon Event Select for PCU Counter 1

713H 1811 MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU Perfmon Event Select for PCU Counter 2

714H 1812 MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU Perfmon Event Select for PCU Counter 3

715H 1813 MSR_PCU_PMON_BOX_FILTER Package Uncore PCU Perfmon Box-Wide Filter

716H 1814 MSR_PCU_PMON_BOX_STATUS Package Uncore PCU Perfmon Box Wide Status

717H 1815 MSR_PCU_PMON_CTR0 Package Uncore PCU Perfmon Counter 0

718H 1816 MSR_PCU_PMON_CTR1 Package Uncore PCU Perfmon Counter 1

719H 1817 MSR_PCU_PMON_CTR2 Package Uncore PCU Perfmon Counter 2

71AH 1818 MSR_PCU_PMON_CTR3 Package Uncore PCU Perfmon Counter 3

720H 1824 MSR_S0_PMON_BOX_CTL Package Uncore SBo 0 Perfmon for SBo 0 Box-Wide Control

721H 1825 MSR_S0_PMON_EVNTSEL0 Package Uncore SBo 0 Perfmon Event Select for SBo 0 
Counter 0

722H 1826 MSR_S0_PMON_EVNTSEL1 Package Uncore SBo 0 Perfmon Event Select for SBo 0 
Counter 1

723H 1827 MSR_S0_PMON_EVNTSEL2 Package Uncore SBo 0 Perfmon Event Select for SBo 0 
Counter 2

724H 1828 MSR_S0_PMON_EVNTSEL3 Package Uncore SBo 0 Perfmon Event Select for SBo 0 
Counter 3

725H 1829 MSR_S0_PMON_BOX_FILTER Package Uncore SBo 0 Perfmon Box-Wide Filter

726H 1830 MSR_S0_PMON_CTR0 Package Uncore SBo 0 Perfmon Counter 0

727H 1831 MSR_S0_PMON_CTR1 Package Uncore SBo 0 Perfmon Counter 1

728H 1832 MSR_S0_PMON_CTR2 Package Uncore SBo 0 Perfmon Counter 2

729H 1833 MSR_S0_PMON_CTR3 Package Uncore SBo 0 Perfmon Counter 3

72AH 1834 MSR_S1_PMON_BOX_CTL Package Uncore SBo 1 Perfmon for SBo 1 Box-Wide Control

72BH 1835 MSR_S1_PMON_EVNTSEL0 Package Uncore SBo 1 Perfmon Event Select for SBo 1 
Counter 0

72CH 1836 MSR_S1_PMON_EVNTSEL1 Package Uncore SBo 1 Perfmon Event Select for SBo 1 
Counter 1

72DH 1837 MSR_S1_PMON_EVNTSEL2 Package Uncore SBo 1 Perfmon Event Select for SBo 1 
Counter 2

72EH 1838 MSR_S1_PMON_EVNTSEL3 Package Uncore SBo 1 Perfmon Event Select for SBo 1 
Counter 3

72FH 1839 MSR_S1_PMON_BOX_FILTER Package Uncore SBo 1 Perfmon Box-Wide Filter
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730H 1840 MSR_S1_PMON_CTR0 Package Uncore SBo 1 Perfmon Counter 0

731H 1841 MSR_S1_PMON_CTR1 Package Uncore SBo 1 Perfmon Counter 1

732H 1842 MSR_S1_PMON_CTR2 Package Uncore SBo 1 Perfmon Counter 2

733H 1843 MSR_S1_PMON_CTR3 Package Uncore SBo 1 Perfmon Counter 3

734H 1844 MSR_S2_PMON_BOX_CTL Package Uncore SBo 2 Perfmon for SBo 2 Box-Wide Control

735H 1845 MSR_S2_PMON_EVNTSEL0 Package Uncore SBo 2 Perfmon Event Select for SBo 2 
Counter 0

736H 1846 MSR_S2_PMON_EVNTSEL1 Package Uncore SBo 2 Perfmon Event Select for SBo 2 
Counter 1

737H 1847 MSR_S2_PMON_EVNTSEL2 Package Uncore SBo 2 Perfmon Event Select for SBo 2 
Counter 2

738H 1848 MSR_S2_PMON_EVNTSEL3 Package Uncore SBo 2 Perfmon Event Select for SBo 2 
Counter 3

739H 1849 MSR_S2_PMON_BOX_FILTER Package Uncore SBo 2 Perfmon Box-Wide Filter

73AH 1850 MSR_S2_PMON_CTR0 Package Uncore SBo 2 Perfmon Counter 0

73BH 1851 MSR_S2_PMON_CTR1 Package Uncore SBo 2 Perfmon Counter 1

73CH 1852 MSR_S2_PMON_CTR2 Package Uncore SBo 2 Perfmon Counter 2

73DH 1853 MSR_S2_PMON_CTR3 Package Uncore SBo 2 Perfmon Counter 3

73EH 1854 MSR_S3_PMON_BOX_CTL Package Uncore SBo 3 Perfmon for SBo 3 Box-Wide Control

73FH 1855 MSR_S3_PMON_EVNTSEL0 Package Uncore SBo 3 Perfmon Event Select for SBo 3 
Counter 0

740H 1856 MSR_S3_PMON_EVNTSEL1 Package Uncore SBo 3 Perfmon Event Select for SBo 3 
Counter 1

741H 1857 MSR_S3_PMON_EVNTSEL2 Package Uncore SBo 3 Perfmon Event Select for SBo 3 
Counter 2

742H 1858 MSR_S3_PMON_EVNTSEL3 Package Uncore SBo 3 Perfmon Event Select for SBo 3 
Counter 3

743H 1859 MSR_S3_PMON_BOX_FILTER Package Uncore SBo 3 Perfmon Box-Wide Filter

744H 1860 MSR_S3_PMON_CTR0 Package Uncore SBo 3 Perfmon Counter 0

745H 1861 MSR_S3_PMON_CTR1 Package Uncore SBo 3 Perfmon Counter 1

746H 1862 MSR_S3_PMON_CTR2 Package Uncore SBo 3 Perfmon Counter 2

747H 1863 MSR_S3_PMON_CTR3 Package Uncore SBo 3 Perfmon Counter 3

E00H 3584 MSR_C0_PMON_BOX_CTL Package Uncore C-Box 0 Perfmon for Box-Wide Control

E01H 3585 MSR_C0_PMON_EVNTSEL0 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0 
Counter 0

E02H 3586 MSR_C0_PMON_EVNTSEL1 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0 
Counter 1

E03H 3587 MSR_C0_PMON_EVNTSEL2 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0 
Counter 2

E04H 3588 MSR_C0_PMON_EVNTSEL3 Package Uncore C-Box 0 Perfmon Event Select for C-Box 0 
Counter 3
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E05H 3589 MSR_C0_PMON_BOX_FILTER0 Package Uncore C-Box 0 Perfmon Box Wide Filter 0

E06H 3590 MSR_C0_PMON_BOX_FILTER1 Package Uncore C-Box 0 Perfmon Box Wide Filter 1

E07H 3591 MSR_C0_PMON_BOX_STATUS Package Uncore C-Box 0 Perfmon Box Wide Status

E08H 3592 MSR_C0_PMON_CTR0 Package Uncore C-Box 0 Perfmon Counter 0

E09H 3593 MSR_C0_PMON_CTR1 Package Uncore C-Box 0 Perfmon Counter 1

E0AH 3594 MSR_C0_PMON_CTR2 Package Uncore C-Box 0 Perfmon Counter 2

E0BH 3595 MSR_C0_PMON_CTR3 Package Uncore C-Box 0 Perfmon Counter 3

E10H 3600 MSR_C1_PMON_BOX_CTL Package Uncore C-Box 1 Perfmon for Box-Wide Control

E11H 3601 MSR_C1_PMON_EVNTSEL0 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1 
Counter 0

E12H 3602 MSR_C1_PMON_EVNTSEL1 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1 
Counter 1

E13H 3603 MSR_C1_PMON_EVNTSEL2 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1 
Counter 2

E14H 3604 MSR_C1_PMON_EVNTSEL3 Package Uncore C-Box 1 Perfmon Event Select for C-Box 1 
Counter 3

E15H 3605 MSR_C1_PMON_BOX_FILTER0 Package Uncore C-Box 1 Perfmon Box Wide Filter 0

E16H 3606 MSR_C1_PMON_BOX_FILTER1 Package Uncore C-Box 1 Perfmon Box Wide Filter1

E17H 3607 MSR_C1_PMON_BOX_STATUS Package Uncore C-Box 1 Perfmon Box Wide Status

E18H 3608 MSR_C1_PMON_CTR0 Package Uncore C-Box 1 Perfmon Counter 0

E19H 3609 MSR_C1_PMON_CTR1 Package Uncore C-Box 1 Perfmon Counter 1

E1AH 3610 MSR_C1_PMON_CTR2 Package Uncore C-Box 1 Perfmon Counter 2

E1BH 3611 MSR_C1_PMON_CTR3 Package Uncore C-Box 1 Perfmon Counter 3

E20H 3616 MSR_C2_PMON_BOX_CTL Package Uncore C-Box 2 Perfmon for Box-Wide Control

E21H 3617 MSR_C2_PMON_EVNTSEL0 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2 
Counter 0

E22H 3618 MSR_C2_PMON_EVNTSEL1 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2 
Counter 1

E23H 3619 MSR_C2_PMON_EVNTSEL2 Package Uncore C-Box 2 Perfmon Event Select for C-Box 2 
Counter 2

E24H 3620 MSR_C2_PMON_EVNTSEL3 Package Uncore C-Box 2 Perfmon Event select for C-Box 2 
Counter 3

E25H 3621 MSR_C2_PMON_BOX_FILTER0 Package Uncore C-Box 2 Perfmon Box Wide Filter 0

E26H 3622 MSR_C2_PMON_BOX_FILTER1 Package Uncore C-Box 2 Perfmon Box Wide Filter1

E27H 3623 MSR_C2_PMON_BOX_STATUS Package Uncore C-Box 2 Perfmon Box Wide Status

E28H 3624 MSR_C2_PMON_CTR0 Package Uncore C-Box 2 Perfmon Counter 0

E29H 3625 MSR_C2_PMON_CTR1 Package Uncore C-Box 2 Perfmon Counter 1

E2AH 3626 MSR_C2_PMON_CTR2 Package Uncore C-Box 2 Perfmon Counter 2

E2BH 3627 MSR_C2_PMON_CTR3 Package Uncore C-Box 2 Perfmon Counter 3
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E30H 3632 MSR_C3_PMON_BOX_CTL Package Uncore C-Box 3 Perfmon for Box-Wide Control

E31H 3633 MSR_C3_PMON_EVNTSEL0 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3 
Counter 0

E32H 3634 MSR_C3_PMON_EVNTSEL1 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3 
Counter 1

E33H 3635 MSR_C3_PMON_EVNTSEL2 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3 
Counter 2

E34H 3636 MSR_C3_PMON_EVNTSEL3 Package Uncore C-Box 3 Perfmon Event Select for C-Box 3 
Counter 3

E35H 3637 MSR_C3_PMON_BOX_FILTER0 Package Uncore C-Box 3 Perfmon Box Wide Filter 0

E36H 3638 MSR_C3_PMON_BOX_FILTER1 Package Uncore C-Box 3 Perfmon Box Wide Filter1

E37H 3639 MSR_C3_PMON_BOX_STATUS Package Uncore C-Box 3 Perfmon Box Wide Status

E38H 3640 MSR_C3_PMON_CTR0 Package Uncore C-Box 3 Perfmon Counter 0

E39H 3641 MSR_C3_PMON_CTR1 Package Uncore C-Box 3 Perfmon Counter 1

E3AH 3642 MSR_C3_PMON_CTR2 Package Uncore C-Box 3 Perfmon Counter 2

E3BH 3643 MSR_C3_PMON_CTR3 Package Uncore C-Box 3 Perfmon Counter 3

E40H 3648 MSR_C4_PMON_BOX_CTL Package Uncore C-Box 4 Perfmon for Box-Wide Control

E41H 3649 MSR_C4_PMON_EVNTSEL0 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4 
Counter 0

E42H 3650 MSR_C4_PMON_EVNTSEL1 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4 
Counter 1

E43H 3651 MSR_C4_PMON_EVNTSEL2 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4 
Counter 2

E44H 3652 MSR_C4_PMON_EVNTSEL3 Package Uncore C-Box 4 Perfmon Event Select for C-Box 4 
Counter 3

E45H 3653 MSR_C4_PMON_BOX_FILTER0 Package Uncore C-Box 4 Perfmon Box Wide Filter 0

E46H 3654 MSR_C4_PMON_BOX_FILTER1 Package Uncore C-Box 4 Perfmon Box Wide Filter1

E47H 3655 MSR_C4_PMON_BOX_STATUS Package Uncore C-Box 4 Perfmon Box Wide Status

E48H 3656 MSR_C4_PMON_CTR0 Package Uncore C-Box 4 Perfmon Counter 0

E49H 3657 MSR_C4_PMON_CTR1 Package Uncore C-Box 4 Perfmon Counter 1

E4AH 3658 MSR_C4_PMON_CTR2 Package Uncore C-Box 4 Perfmon Counter 2

E4BH 3659 MSR_C4_PMON_CTR3 Package Uncore C-Box 4 Perfmon Counter 3

E50H 3664 MSR_C5_PMON_BOX_CTL Package Uncore C-Box 5 Perfmon for Box-Wide Control

E51H 3665 MSR_C5_PMON_EVNTSEL0 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5 
Counter 0

E52H 3666 MSR_C5_PMON_EVNTSEL1 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5 
Counter 1

E53H 3667 MSR_C5_PMON_EVNTSEL2 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5 
Counter 2

E54H 3668 MSR_C5_PMON_EVNTSEL3 Package Uncore C-Box 5 Perfmon Event Select for C-Box 5 
Counter 3
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E55H 3669 MSR_C5_PMON_BOX_FILTER0 Package Uncore C-Box 5 Perfmon Box Wide Filter 0

E56H 3670 MSR_C5_PMON_BOX_FILTER1 Package Uncore C-Box 5 Perfmon Box Wide Filter 1

E57H 3671 MSR_C5_PMON_BOX_STATUS Package Uncore C-Box 5 Perfmon Box Wide Status

E58H 3672 MSR_C5_PMON_CTR0 Package Uncore C-Box 5 Perfmon Counter 0

E59H 3673 MSR_C5_PMON_CTR1 Package Uncore C-Box 5 Perfmon Counter 1

E5AH 3674 MSR_C5_PMON_CTR2 Package Uncore C-Box 5 Perfmon Counter 2

E5BH 3675 MSR_C5_PMON_CTR3 Package Uncore C-Box 5 Perfmon Counter 3

E60H 3680 MSR_C6_PMON_BOX_CTL Package Uncore C-Box 6 Perfmon for Box-Wide Control

E61H 3681 MSR_C6_PMON_EVNTSEL0 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6 
Counter 0

E62H 3682 MSR_C6_PMON_EVNTSEL1 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6 
Counter 1

E63H 3683 MSR_C6_PMON_EVNTSEL2 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6 
Counter 2

E64H 3684 MSR_C6_PMON_EVNTSEL3 Package Uncore C-Box 6 Perfmon Event Select for C-Box 6 
Counter 3

E65H 3685 MSR_C6_PMON_BOX_FILTER0 Package Uncore C-Box 6 Perfmon Box Wide Filter 0

E66H 3686 MSR_C6_PMON_BOX_FILTER1 Package Uncore C-Box 6 Perfmon Box Wide Filter 1

E67H 3687 MSR_C6_PMON_BOX_STATUS Package Uncore C-Box 6 Perfmon Box Wide Status

E68H 3688 MSR_C6_PMON_CTR0 Package Uncore C-Box 6 Perfmon Counter 0

E69H 3689 MSR_C6_PMON_CTR1 Package Uncore C-Box 6 Perfmon Counter 1

E6AH 3690 MSR_C6_PMON_CTR2 Package Uncore C-Box 6 Perfmon Counter 2

E6BH 3691 MSR_C6_PMON_CTR3 Package Uncore C-Box 6 Perfmon Counter 3

E70H 3696 MSR_C7_PMON_BOX_CTL Package Uncore C-Box 7 Perfmon for Box-Wide Control

E71H 3697 MSR_C7_PMON_EVNTSEL0 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7 
Counter 0

E72H 3698 MSR_C7_PMON_EVNTSEL1 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7 
Counter 1

E73H 3699 MSR_C7_PMON_EVNTSEL2 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7 
Counter 2

E74H 3700 MSR_C7_PMON_EVNTSEL3 Package Uncore C-Box 7 Perfmon Event Select for C-Box 7 
Counter 3

E75H 3701 MSR_C7_PMON_BOX_FILTER0 Package Uncore C-Box 7 Perfmon Box Wide Filter 0

E76H 3702 MSR_C7_PMON_BOX_FILTER1 Package Uncore C-Box 7 Perfmon Box Wide Filter 1

E77H 3703 MSR_C7_PMON_BOX_STATUS Package Uncore C-Box 7 Perfmon Box Wide Status

E78H 3704 MSR_C7_PMON_CTR0 Package Uncore C-Box 7 Perfmon Counter 0

E79H 3705 MSR_C7_PMON_CTR1 Package Uncore C-Box 7 Perfmon Counter 1

E7AH 3706 MSR_C7_PMON_CTR2 Package Uncore C-Box 7 Perfmon Counter 2

E7BH 3707 MSR_C7_PMON_CTR3 Package Uncore C-Box 7 Perfmon Counter 3
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E80H 3712 MSR_C8_PMON_BOX_CTL Package Uncore C-Box 8 Perfmon Local Box Wide Control

E81H 3713 MSR_C8_PMON_EVNTSEL0 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 0

E82H 3714 MSR_C8_PMON_EVNTSEL1 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 1

E83H 3715 MSR_C8_PMON_EVNTSEL2 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 2

E84H 3716 MSR_C8_PMON_EVNTSEL3 Package Uncore C-Box 8 Perfmon Event Select for C-Box 8 
Counter 3

E85H 3717 MSR_C8_PMON_BOX_FILTER0 Package Uncore C-Box 8 Perfmon Box Wide Filter 0

E86H 3718 MSR_C8_PMON_BOX_FILTER1 Package Uncore C-Box 8 Perfmon Box Wide Filter 1

E87H 3719 MSR_C8_PMON_BOX_STATUS Package Uncore C-Box 8 Perfmon Box Wide Status

E88H 3720 MSR_C8_PMON_CTR0 Package Uncore C-Box 8 Perfmon Counter 0

E89H 3721 MSR_C8_PMON_CTR1 Package Uncore C-Box 8 Perfmon Counter 1

E8AH 3722 MSR_C8_PMON_CTR2 Package Uncore C-Box 8 Perfmon Counter 2

E8BH 3723 MSR_C8_PMON_CTR3 Package Uncore C-Box 8 Perfmon Counter 3

E90H 3728 MSR_C9_PMON_BOX_CTL Package Uncore C-Box 9 Perfmon Local Box Wide Control

E91H 3729 MSR_C9_PMON_EVNTSEL0 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9 
Counter 0

E92H 3730 MSR_C9_PMON_EVNTSEL1 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9 
Counter 1

E93H 3731 MSR_C9_PMON_EVNTSEL2 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9 
Counter 2

E94H 3732 MSR_C9_PMON_EVNTSEL3 Package Uncore C-Box 9 Perfmon Event Select for C-Box 9 
Counter 3

E95H 3733 MSR_C9_PMON_BOX_FILTER0 Package Uncore C-Box 9 Perfmon Box Wide Filter 0

E96H 3734 MSR_C9_PMON_BOX_FILTER1 Package Uncore C-Box 9 Perfmon Box Wide Filter 1

E97H 3735 MSR_C9_PMON_BOX_STATUS Package Uncore C-Box 9 Perfmon Box Wide Status

E98H 3736 MSR_C9_PMON_CTR0 Package Uncore C-Box 9 Perfmon Counter 0

E99H 3737 MSR_C9_PMON_CTR1 Package Uncore C-Box 9 Perfmon Counter 1

E9AH 3738 MSR_C9_PMON_CTR2 Package Uncore C-Box 9 Perfmon Counter 2

E9BH 3739 MSR_C9_PMON_CTR3 Package Uncore C-Box 9 Perfmon Counter 3

EA0H 3744 MSR_C10_PMON_BOX_CTL Package Uncore C-Box 10 Perfmon Local Box Wide Control

EA1H 3745 MSR_C10_PMON_EVNTSEL0 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10 
Counter 0

EA2H 3746 MSR_C10_PMON_EVNTSEL1 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10 
Counter 1

EA3H 3747 MSR_C10_PMON_EVNTSEL2 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10 
Counter 2

EA4H 3748 MSR_C10_PMON_EVNTSEL3 Package Uncore C-Box 10 Perfmon Event Select for C-Box 10 
Counter 3
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EA5H 3749 MSR_C10_PMON_BOX_FILTER0 Package Uncore C-Box 10 Perfmon Box Wide Filter 0

EA6H 3750 MSR_C10_PMON_BOX_FILTER1 Package Uncore C-Box 10 Perfmon Box Wide Filter 1

EA7H 3751 MSR_C10_PMON_BOX_STATUS Package Uncore C-Box 10 Perfmon Box Wide Status

EA8H 3752 MSR_C10_PMON_CTR0 Package Uncore C-Box 10 Perfmon Counter 0

EA9H 3753 MSR_C10_PMON_CTR1 Package Uncore C-Box 10 perfmon Counter 1

EAAH 3754 MSR_C10_PMON_CTR2 Package Uncore C-Box 10 Perfmon Counter 2

EABH 3755 MSR_C10_PMON_CTR3 Package Uncore C-Box 10 Perfmon Counter 3

EB0H 3760 MSR_C11_PMON_BOX_CTL Package Uncore C-Box 11 Perfmon Local Box Wide Control

EB1H 3761 MSR_C11_PMON_EVNTSEL0 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11 
Counter 0

EB2H 3762 MSR_C11_PMON_EVNTSEL1 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11 
Counter 1

EB3H 3763 MSR_C11_PMON_EVNTSEL2 Package Uncore C-Box 11 Perfmon Event Select for C-Box 11 
Counter 2

EB4H 3764 MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 Perfmon Event Select for C-Box 11 
Counter 3

EB5H 3765 MSR_C11_PMON_BOX_FILTER0 Package Uncore C-Box 11 Perfmon Box Wide Filter 0

EB6H 3766 MSR_C11_PMON_BOX_FILTER1 Package Uncore C-Box 11 Perfmon Box Wide Filter 1

EB7H 3767 MSR_C11_PMON_BOX_STATUS Package Uncore C-Box 11 Perfmon Box Wide Status

EB8H 3768 MSR_C11_PMON_CTR0 Package Uncore C-Box 11 Perfmon Counter 0

EB9H 3769 MSR_C11_PMON_CTR1 Package Uncore C-Box 11 Perfmon Counter 1

EBAH 3770 MSR_C11_PMON_CTR2 Package Uncore C-Box 11 Perfmon Counter 2

EBBH 3771 MSR_C11_PMON_CTR3 Package Uncore C-Box 11 Perfmon Counter 3

EC0H 3776 MSR_C12_PMON_BOX_CTL Package Uncore C-Box 12 Perfmon Local Box Wide Control

EC1H 3777 MSR_C12_PMON_EVNTSEL0 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12 
Counter 0

EC2H 3778 MSR_C12_PMON_EVNTSEL1 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12 
Counter 1

EC3H 3779 MSR_C12_PMON_EVNTSEL2 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12 
Counter 2

EC4H 3780 MSR_C12_PMON_EVNTSEL3 Package Uncore C-Box 12 Perfmon Event Select for C-Box 12 
Counter 3

EC5H 3781 MSR_C12_PMON_BOX_FILTER0 Package Uncore C-Box 12 Perfmon Box Wide Filter 0

EC6H 3782 MSR_C12_PMON_BOX_FILTER1 Package Uncore C-Box 12 Perfmon Box Wide Filter 1

EC7H 3783 MSR_C12_PMON_BOX_STATUS Package Uncore C-Box 12 Perfmon Box Wide Status

EC8H 3784 MSR_C12_PMON_CTR0 Package Uncore C-Box 12 Perfmon Counter 0

EC9H 3785 MSR_C12_PMON_CTR1 Package Uncore C-Box 12 Perfmon Counter 1

ECAH 3786 MSR_C12_PMON_CTR2 Package Uncore C-Box 12 Perfmon Counter 2

ECBH 3787 MSR_C12_PMON_CTR3 Package Uncore C-Box 12 Perfmon Counter 3
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ED0H 3792 MSR_C13_PMON_BOX_CTL Package Uncore C-Box 13 Perfmon local box wide control.

ED1H 3793 MSR_C13_PMON_EVNTSEL0 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13 
Counter 0

ED2H 3794 MSR_C13_PMON_EVNTSEL1 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13 
Counter 1

ED3H 3795 MSR_C13_PMON_EVNTSEL2 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13 
Counter 2

ED4H 3796 MSR_C13_PMON_EVNTSEL3 Package Uncore C-Box 13 Perfmon Event Select for C-Box 13 
Counter 3

ED5H 3797 MSR_C13_PMON_BOX_FILTER0 Package Uncore C-Box 13 Perfmon Box Wide Filter 0

ED6H 3798 MSR_C13_PMON_BOX_FILTER1 Package Uncore C-Box 13 Perfmon Box Wide Filter 1

ED7H 3799 MSR_C13_PMON_BOX_STATUS Package Uncore C-Box 13 Perfmon Box Wide Status

ED8H 3800 MSR_C13_PMON_CTR0 Package Uncore C-Box 13 Perfmon Counter 0

ED9H 3801 MSR_C13_PMON_CTR1 Package Uncore C-Box 13 Perfmon Counter 1

EDAH 3802 MSR_C13_PMON_CTR2 Package Uncore C-Box 13 Perfmon Counter 2

EDBH 3803 MSR_C13_PMON_CTR3 Package Uncore C-Box 13 Perfmon Counter 3

EE0H 3808 MSR_C14_PMON_BOX_CTL Package Uncore C-Box 14 Perfmon Local Box Wide Control

EE1H 3809 MSR_C14_PMON_EVNTSEL0 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14 
Counter 0

EE2H 3810 MSR_C14_PMON_EVNTSEL1 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14 
Counter 1

EE3H 3811 MSR_C14_PMON_EVNTSEL2 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14 
Counter 2

EE4H 3812 MSR_C14_PMON_EVNTSEL3 Package Uncore C-Box 14 Perfmon Event Select for C-Box 14 
Counter 3

EE5H 3813 MSR_C14_PMON_BOX_FILTER Package Uncore C-Box 14 Perfmon Box Wide Filter 0

EE6H 3814 MSR_C14_PMON_BOX_FILTER1 Package Uncore C-Box 14 Perfmon Box Wide Filter 1

EE7H 3815 MSR_C14_PMON_BOX_STATUS Package Uncore C-Box 14 Perfmon Box Wide Status

EE8H 3816 MSR_C14_PMON_CTR0 Package Uncore C-Box 14 Perfmon Counter 0

EE9H 3817 MSR_C14_PMON_CTR1 Package Uncore C-Box 14 Perfmon Counter 1

EEAH 3818 MSR_C14_PMON_CTR2 Package Uncore C-Box 14 Perfmon Counter 2

EEBH 3819 MSR_C14_PMON_CTR3 Package Uncore C-Box 14 Perfmon Counter 3

EF0H 3824 MSR_C15_PMON_BOX_CTL Package Uncore C-Box 15 Perfmon Local Box Wide Control

EF1H 3825 MSR_C15_PMON_EVNTSEL0 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15 
Counter 0

EF2H 3826 MSR_C15_PMON_EVNTSEL1 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15 
Counter 1

EF3H 3827 MSR_C15_PMON_EVNTSEL2 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15 
Counter 2

EF4H 3828 MSR_C15_PMON_EVNTSEL3 Package Uncore C-Box 15 Perfmon Event Select for C-Box 15 
Counter 3
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EF5H 3829 MSR_C15_PMON_BOX_FILTER0 Package Uncore C-Box 15 Perfmon Box Wide Filter 0

EF6H 3830 MSR_C15_PMON_BOX_FILTER1 Package Uncore C-Box 15 Perfmon Box Wide Filter 1

EF7H 3831 MSR_C15_PMON_BOX_STATUS Package Uncore C-Box 15 Perfmon Box Wide Status

EF8H 3832 MSR_C15_PMON_CTR0 Package Uncore C-Box 15 Perfmon Counter 0

EF9H 3833 MSR_C15_PMON_CTR1 Package Uncore C-Box 15 Perfmon Counter 1

EFAH 3834 MSR_C15_PMON_CTR2 Package Uncore C-Box 15 Perfmon Counter 2

EFBH 3835 MSR_C15_PMON_CTR3 Package Uncore C-Box 15 Perfmon Counter 3

F00H 3840 MSR_C16_PMON_BOX_CTL Package Uncore C-Box 16 Perfmon for Box-Wide Control

F01H 3841 MSR_C16_PMON_EVNTSEL0 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16 
Counter 0

F02H 3842 MSR_C16_PMON_EVNTSEL1 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16 
Counter 1

F03H 3843 MSR_C16_PMON_EVNTSEL2 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16 
Counter 2

F04H 3844 MSR_C16_PMON_EVNTSEL3 Package Uncore C-Box 16 Perfmon Event Select for C-Box 16 
Counter 3

F05H 3845 MSR_C16_PMON_BOX_FILTER0 Package Uncore C-Box 16 Perfmon Box Wide Filter 0

F06H 3846 MSR_C16_PMON_BOX_FILTER1 Package Uncore C-Box 16 Perfmon Box Wide Filter 1

F07H 3847 MSR_C16_PMON_BOX_STATUS Package Uncore C-Box 16 Perfmon Box Wide Status

F08H 3848 MSR_C16_PMON_CTR0 Package Uncore C-Box 16 Perfmon Counter 0

F09H 3849 MSR_C16_PMON_CTR1 Package Uncore C-Box 16 Perfmon Counter 1

F0AH 3850 MSR_C16_PMON_CTR2 Package Uncore C-Box 16 Perfmon Counter 2

F0BH 3851 MSR_C16_PMON_CTR3 Package Uncore C-Box 16 Perfmon Counter 3

F10H 3856 MSR_C17_PMON_BOX_CTL Package Uncore C-Box 17 Perfmon for Box-Wide Control

F11H 3857 MSR_C17_PMON_EVNTSEL0 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17 
Counter 0

F12H 3858 MSR_C17_PMON_EVNTSEL1 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17 
Counter 1

F13H 3859 MSR_C17_PMON_EVNTSEL2 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17 
Counter 2

F14H 3860 MSR_C17_PMON_EVNTSEL3 Package Uncore C-Box 17 Perfmon Event Select for C-Box 17 
Counter 3

F15H 3861 MSR_C17_PMON_BOX_FILTER0 Package Uncore C-Box 17 Perfmon Box Wide Filter 0

F16H 3862 MSR_C17_PMON_BOX_FILTER1 Package Uncore C-Box 17 Perfmon Box Wide Filter1

F17H 3863 MSR_C17_PMON_BOX_STATUS Package Uncore C-Box 17 Perfmon Box Wide Status

F18H 3864 MSR_C17_PMON_CTR0 Package Uncore C-Box 17 Perfmon Counter 0

F19H 3865 MSR_C17_PMON_CTR1 Package Uncore C-Box 17 Perfmon Counter 1

F1AH 3866 MSR_C17_PMON_CTR2 Package Uncore C-Box 17 Perfmon Counter 2

F1BH 3867 MSR_C17_PMON_CTR3 Package Uncore C-Box 17 Perfmon Counter 3
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2.15 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL 
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor 
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th 
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon® 
Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID 
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR 
interfaces listed in Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29, Table 2-30, Table 2-34, and Table 
2-35. For an MSR listed in Table 2-35 that also appears in the model-specific tables of prior generations, Table 2-35 
supersede prior generation tables.

Table 2-34 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID 
signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 2-34.  Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.” 

0 Ovf_PMC0 

1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved

55 Trace_ToPA_PMI

See Section 35.2.6.2, “Table of Physical Addresses 
(ToPA).”

60:56 Reserved

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter 
Control Facilities.”

0 Set 1 to clear Ovf_PMC0 

1 Set 1 to clear Ovf_PMC1 

2 Set 1 to clear Ovf_PMC2 

3 Set 1 to clear Ovf_PMC3 

31:4 Reserved

32 Set 1 to clear Ovf_FixedCtr0 

33 Set 1 to clear Ovf_FixedCtr1 
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34 Set 1 to clear Ovf_FixedCtr2 

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. 

See Section 35.2.6.2, “Table of Physical Addresses 
(ToPA).”

60:56 Reserved

61 Set 1 to clear Ovf_Uncore 

62 Set 1 to clear Ovf_BufDSSAVE 

63 Set 1 to clear CondChgd 

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, must be zero.

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 Reserved, must be zero.

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 Reserved; writing 0 will #GP if also setting TraceEn.

63:14 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

Table 2-34.  Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-252 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-35 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

4 Error (R/W)

5 Stopped

63:6 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match.

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields 
represent the widest possible range of uncore 
frequencies. Writing to these fields allows software to 
control the minimum and the maximum frequency that 
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible 
ratio of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

NOTES:
1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-35.  Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors
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E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

Table 2-34.  Additional MSRs Common to Processors Based the Broadwell Microarchitectures
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3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-Demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Table 2-35.  Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors
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2.16 MSRS IN INTEL® XEON® PROCESSORS E5 V4 FAMILY
The MSRs listed in Table 2-36 are available and common to Intel® Xeon® Processor D product Family (CPUID 
DisplayFamily_DisplayModel = 06_56H) and to Intel Xeon processors E5 v4, E7 v4 families (CPUID 
DisplayFamily_DisplayModel = 06_4FH). They are based on the Broadwell microarchitecture.

See Section 2.16.1 for lists of tables of MSRs that are supported by Intel® Xeon® Processor D Family.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29, Table 2-30, Table 2-34 for other MSR definitions applicable to 
processors with CPUID signature 06_3DH.

Table 2-36.  Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family 
Based on the Broadwell Microarchitecture
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4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control 
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-26.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

See Table 2-26.

22:16 Reserved.
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23 Package PPIN_CAP (R/O)

See Table 2-26.

27:24 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

See Table 2-26.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

See Table 2-26.

30 Package Programmable TJ OFFSET (R/O) 

See Table 2-26.

39:31 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

See Table 2-26.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. The 
default is set as factory-configured package C-state 
limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported 
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to 
MWAIT(C6).

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

Table 2-36.  Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family 
Based on the Broadwell Microarchitecture
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26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only 
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access 
restriction is supported and a host-space interface 
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is 
supported and a host-space interface available to SMM 
handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

0 Thermal Status (RO) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.
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2 PROTCHOT # or FORCEPR# Status (RO) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (RO) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal Threshold #1 Status (RO) 

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (RO) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (RO) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (RO) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (RO) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (RO) 

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) 

See Table 2-2.

31 Reading Valid (RO) 

See Table 2-2.

63:32 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

Table 2-36.  Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family 
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23:16 Temperature Target (RO) 

See Table 2-26.

27:24 TCC Activation Offset (R/W) 

See Table 2-26.

63:28 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 1C

15:8 Package Maximum Ratio Limit for 2C

23:16 Package Maximum Ratio Limit for 3C

31:24 Package Maximum Ratio Limit for 4C

39:32 Package Maximum Ratio Limit for 5C

47:40 Package Maximum Ratio Limit for 6C

55:48 Package Maximum Ratio Limit for 7C

63:56 Package Maximum Ratio Limit for 8C

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

7:0 Package Maximum Ratio Limit for 9C

15:8 Package Maximum Ratio Limit for 10C

23:16 Package Maximum Ratio Limit for 11C

31:24 Package Maximum Ratio Limit for 12C

39:32 Package Maximum Ratio Limit for 13C

47:40 Package Maximum Ratio Limit for 14C

55:48 Package Maximum Ratio Limit for 15C

63:56 Package Maximum Ratio Limit for 16C

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the 
multiplier, 1/2^ESU; where ESU is an unsigned integer 
represented by bits 12:8. Default value is 0EH (or 61 
micro-joules).

15:13 Package Reserved
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19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

Energy consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS 
configuration to enable DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields 
represent the widest possible range of uncore 
frequencies. Writing to these fields allows software to 
control the minimum and the maximum frequency that 
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio 
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O) 

Reads return 0.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores 
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below 
the operating system request due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.
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2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating 
system request due to PBM limit.

3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating 
system request due to PCS limit.

4 Reserved

5 Autonomous Utilization-Based Frequency Control 
Status (R0) 

When set, frequency is reduced below the operating 
system request because the processor has detected 
that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from the Voltage 
Regulator.

7 Reserved

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical design point 
constraints (e.g., maximum electrical current 
consumption).

9 Reserved

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating 
system request due to Multi-Core Turbo limits.

12:11 Reserved

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo 
P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core 
turbo frequency.

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating 
system request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

18 Power Budget Management Log 

When set, indicates that the PBM Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

20 Reserved

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 Reserved

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Reserved

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28:27 Reserved
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29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo 
Frequency Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

63:32 Reserved

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”.

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and 
Dynamic Capabilities”.

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”.

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”.

1:0 Reserved

2 Excursion to Minimum (RO)

63:3 Reserved

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

7:0 EventID (RW)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved
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41:32 RMID (RW)

63:42 Reserved

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID 

31:10 Reserved

51:32 COS (R/W)

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:19 CBM: Bit vector of available L3 ways for COS 0 
enforcement.

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:19 CBM: Bit vector of available L3 ways for COS 1 
enforcement.

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:19 CBM: Bit vector of available L3 ways for COS 2 
enforcement.

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L3 ways for COS 3 
enforcement.

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

0:19 CBM: Bit vector of available L3 ways for COS 4 
enforcement.

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

0:19 CBM: Bit vector of available L3 ways for COS 5 
enforcement.

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.
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0:19 CBM: Bit vector of available L3 ways for COS 6 
enforcement.

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

0:19 CBM: Bit vector of available L3 ways for COS 7 
enforcement.

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

0:19 CBM: Bit vector of available L3 ways for COS 8 
enforcement.

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

0:19 CBM: Bit vector of available L3 ways for COS 9 
enforcement.

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=10.

0:19 CBM: Bit vector of available L3 ways for COS 10 
enforcement.

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=11.

0:19 CBM: Bit vector of available L3 ways for COS 11 
enforcement.

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=12.

0:19 CBM: Bit vector of available L3 ways for COS 12 
enforcement.

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=13.

0:19 CBM: Bit vector of available L3 ways for COS 13 
enforcement.

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=14.
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2.16.1  Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 2-37 are available to Intel® Xeon® Processor D Product Family (CPUID 
DisplayFamily_DisplayModel = 06_56H). The Intel® Xeon® processor D product family is based on the Broadwell 
microarchitecture and supports the MSR interfaces listed in Table 2-20, Table 2-29, Table 2-34, Table 2-36, and 
Table 2-37. 

0:19 CBM: Bit vector of available L3 ways for COS 14 
enforcement.

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=15.

0:19 CBM: Bit vector of available L3 ways for COS 15 
enforcement.

63:20 Reserved

Table 2-37.  Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H
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1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 
specified in MSR_TURBO_RATIO_LIMIT, 
MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration 
(Default).

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.
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2.16.2  Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families
The MSRs listed in Table 2-37 are available to Intel® Xeon® Processor E5 v4 and E7 v4 Families (CPUID 
DisplayFamily_DisplayModel = 06_4FH). The Intel® Xeon® processor E5 v4 family is based on the Broadwell micro-

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O 
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC errors from each 
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC errors from each 
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, 
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

See Table 2-20, Table 2-29, Table 2-34, and Table 2-36 for other MSR definitions applicable to processors with CPUID signature 
06_56H. 

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 

factory-set configuration is dependent on features specific to the processor and the platform.
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architecture and supports the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-29, Table 2-34, Table 2-36, 
and Table 2-38. 
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1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0.

RW if MSR_PLATFORM_INFO.[28] = 1.

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 
specified in MSR_TURBO_RATIO_LIMIT, 
MSR_TURBO_RATIO_LIMIT1 and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration 
(Default).

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from the Intel QPI 0 
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O 
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package
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41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the home agent HA 
0.

41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the home agent HA 
1.

421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH
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440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC errors from each 
channel of the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, 
CBo9, CBo12, CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from the following pair of 
CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC errors from the Intel QPI 1 
module.

451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC errors from the Intel QPI 2 
module.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

C81H 3201 IA32_L3_QOS_CFG Package Cache Allocation Technology Configuration (R/W)

0 CAT Enable. Set 1 to enable Cache Allocation 
Technology.

63:1 Reserved

See Table 2-20, Table 2-21, Table 2-29, and Table 2-30 for other MSR definitions applicable to processors with CPUID signature 
06_45H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH
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2.17 MSRS IN THE 6TH GENERATION, 7TH GENERATION, 8TH GENERATION, 
9TH GENERATION, 10TH GENERATION, AND 11TH GENERATION INTEL® 
CORE™ PROCESSORS, INTEL® XEON® PROCESSOR SCALABLE FAMILY, 8TH 
GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E 
PROCESSORS

6th generation Intel® Core™ processors and the Intel® Xeon® Processor Scalable Family are based on the Skylake 
microarchitecture and have CPUID DisplayFamily_DisplayModel signatures of 06_4EH, 06_5EH, and 06_55H. 

7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture, 8th generation and 9th 
generation Intel® Core™ processors and Intel® Xeon® E processors are based on the Coffee Lake microarchitec-
ture; these processors have CPUID DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH. 

8th generation Intel® Core™ i3 processors are based on Cannon Lake microarchitecture and have a CPUID 
DisplayFamily_DisplayModel signature of 06_66H. 

10th generation Intel® Core™ processors are based on Comet Lake microarchitecture (with CPUID 
DisplayFamily_DisplayModel signatures of 06_A5H, 06_A6H) and Ice Lake microarchitecture (with CPUID 
DisplayFamily_DisplayModel signatures of 06_7DH and 06_7EH). 

11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and have CPUID 
DisplayFamily_DisplayModel signatures of 06_8CH and 06_8DH.

These processors support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-25, Table 2-29, Table 2-35, 
Table 2-39, and Table 2-40. For an MSR listed in Table 2-39 that also appears in the model-specific tables of prior 
generations, Table 2-39 supersede prior generation tables.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and 
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery 
integration may vary by platform vendor’s implementation.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description
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3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread MTRR Capability (RO, Architectural)

See Table 2-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

0 Thermal Status (RO) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO) 

See Table 2-2.
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3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (RO) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal threshold #1 Status (RO) 

See Table 2-2.

7 Thermal threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (RO) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (RO) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (RO) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (RO) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (RO) 

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) 

See Table 2-2.

31 Reading Valid (RO) 

See Table 2-2.

63:32 Reserved

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
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Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR 
containing the most recent branch record.

1FCH 508 MSR_POWER_CTL Core Power Control Register

See http://biosbits.org.

0 Reserved

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the 
Minimum Enhanced Intel SpeedStep Technology 
operating point when all execution cores enter MWAIT 
(C1).

18:2 Reserved

19 Disable Energy Efficiency Optimization (R/W) 

Setting this bit disables the P-States energy efficiency 
optimization. Default value is 0. Disable/enable the 
energy efficiency optimization in P-State legacy mode 
(when IA32_PM_ENABLE[HWP_ENABLE] = 0), has an 
effect only in the turbo range or into PERF_MIN_CTL 
value if it is not zero set. In HWP mode 
(IA32_PM_ENABLE[HWP_ENABLE] == 1), has an effect 
between the OS desired or OS maximize to the OS 
minimize performance setting.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture
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20 Disable Race to Halt Optimization (R/W) 

Setting this bit disables the Race to Halt optimization 
and avoids this optimization limitation to execute 
below the most efficient frequency ratio. Default value 
is 0 for processors that support Race to Halt 
optimization.

63:21 Reserved

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if 
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread 
in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for 
key derivation of an enclave.

301H 768 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if 
CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread 
in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for 
key derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_STATUS See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.” 

0 Thread Ovf_PMC0 

1 Thread Ovf_PMC1 

2 Thread Ovf_PMC2 

3 Thread Ovf_PMC3 

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved

32 Thread Ovf_FixedCtr0 

33 Thread Ovf_FixedCtr1 

34 Thread Ovf_FixedCtr2 

54:35 Reserved

55 Thread Trace_ToPA_PMI

57:56 Reserved

58 Thread LBR_Frz

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture
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59 Thread CTR_Frz

60 Thread ASCI

61 Thread Ovf_Uncore 

62 Thread Ovf_BufDSSAVE 

63 Thread CondChgd 

390H 912 IA32_PERF_GLOBAL_STATUS_RESET See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0.

1 Thread Set 1 to clear Ovf_PMC1.

2 Thread Set 1 to clear Ovf_PMC2.

3 Thread Set 1 to clear Ovf_PMC3.

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4).

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5).

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6).

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7).

31:8 Reserved

32 Thread Set 1 to clear Ovf_FixedCtr0.

33 Thread Set 1 to clear Ovf_FixedCtr1.

34 Thread Set 1 to clear Ovf_FixedCtr2.

54:35 Reserved

55 Thread Set 1 to clear Trace_ToPA_PMI. 

57:56 Reserved

58 Thread Set 1 to clear LBR_Frz. 

59 Thread Set 1 to clear CTR_Frz. 

60 Thread Set 1 to clear ASCI. 

61 Thread Set 1 to clear Ovf_Uncore.

62 Thread Set 1 to clear Ovf_BufDSSAVE.

63 Thread Set 1 to clear CondChgd.

391H 913 IA32_PERF_GLOBAL_STATUS_SET See Table 2-2. See Section 18.2.4, “Architectural 
Performance Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1.

1 Thread Set 1 to cause Ovf_PMC1 = 1.

2 Thread Set 1 to cause Ovf_PMC2 = 1.

3 Thread Set 1 to cause Ovf_PMC3 = 1.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
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4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 
4).

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 
5).

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 
6).

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 
7).

31:8 Reserved

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1.

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1.

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1.

54:35 Reserved

55 Thread Set 1 to cause Trace_ToPA_PMI = 1.

57:56 Reserved

58 Thread Set 1 to cause LBR_Frz = 1.

59 Thread Set 1 to cause CTR_Frz = 1.

60 Thread Set 1 to cause ASCI = 1.

61 Thread Set 1 to cause Ovf_Uncore.

62 Thread Set 1 to cause Ovf_BufDSSAVE.

63 Reserved

392H 913 IA32_PERF_GLOBAL_INUSE Thread See Table 2-2. 

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W) 

2:0 Event Code Select 

3 Reserved

4 Event Code Select High

7:5 Reserved

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO)

0 Lock

See Section 41.11.3, “Interactions with Authenticated 
Code Modules (ACMs)”.

15:1 Reserved

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
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23:16 SGX_SVN_SINIT

See Section 41.11.3, “Interactions with Authenticated 
Code Modules (ACMs)”.

63:24 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W)

See Table 2-2. 

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Thread Trace Output Mask Pointers Register (R/W)

See Table 2-2. 

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3 filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CYCThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
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2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

572H 1394 IA32_RTIT_CR3_MATCH Thread Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Thread Region 0 Start Address (R/W)

63:0 See Table 2-2. 

581H 1409 IA32_RTIT_ADDR0_B Thread Region 0 End Address (R/W)

63:0 See Table 2-2. 

582H 1410 IA32_RTIT_ADDR1_A Thread Region 1 Start Address (R/W)

63:0 See Table 2-2. 

583H 1411 IA32_RTIT_ADDR1_B Thread Region 1 End Address (R/W)

63:0 See Table 2-2. 

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

64DH 1613 MSR_PLATFORM_ENERGY_COUNTER Platform* Platform Energy Counter (R/O)

This MSR is valid only if both platform vendor hardware 
implementation and BIOS enablement support it. This 
MSR will read 0 if not valid.

31:0 Total energy consumed by all devices in the platform 
that receive power from integrated power delivery 
mechanism, included platform devices are processor 
cores, SOC, memory, add-on or peripheral devices that 
get powered directly from the platform power delivery 
means. The energy units are specified in the 
MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved

64EH 1614 MSR_PPERF Thread Productive Performance Count (R/O)

63:0 Hardware’s view of workload scalability. See Section 
14.4.5.1.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
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64FH 1615 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores 
(R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal event.

3:2 Reserved

4 Residency State Regulation Status (R0)

When set, frequency is reduced below the operating 
system request due to residency state regulation limit.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced below the operating 
system request due to Running Average Thermal Limit 
(RATL).

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating 
system request due to a thermal alert from a processor 
Voltage Regulator (VR).

7 VR Therm Design Current Status (R0)

When set, frequency is reduced below the operating 
system request due to VR thermal design current limit.

8 Other Status (R0)

When set, frequency is reduced below the operating 
system request due to electrical or other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status 
(R0)

When set, frequency is reduced below the operating 
system request due to package/platform-level power 
limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status 
(R0)

When set, frequency is reduced below the operating 
system request due to package/platform-level power 
limiting PL2/PL3.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
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12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating 
system request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating 
system request due to Turbo transition attenuation. 
This prevents performance degradation due to 
frequent operating ratio changes.

15:14 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

19:18 Reserved.

20 Residency State Regulation Log 

When set, indicates that the Residency State 
Regulation Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software 
writing 0.

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-280 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23 VR Thermal Design Current Log 

When set, indicates that the VR TDC Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

24 Other Log 

When set, indicates that the Other Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Reserved 

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package or Platform Level 
PL1 Power Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package or Platform Level 
PL2/PL3 Power Limiting Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition 
Attenuation Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:30 Reserved

652H 1618 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W)

2:0 PKG_Cx_Monitor

Configures Package Cx state threshold for 
MSR_PKG_HDC_DEEP_RESIDENCY.
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63: 3 Reserved

653H 1619 MSR_CORE_HDC_RESIDENCY Core Core HDC Idle Residency (R/O)

63:0 Core_Cx_Duty_Cycle_Cnt

655H 1621 MSR_PKG_HDC_SHALLOW_RESIDENCY Package Accumulate the cycles the package was in C2 state and 
at least one logical processor was in forced idle (R/O)

63:0 Pkg_C2_Duty_Cycle_Cnt

656H 1622 MSR_PKG_HDC_DEEP_RESIDENCY Package Package Cx HDC Idle Residency (R/O)

63:0 Pkg_Cx_Duty_Cycle_Cnt

658H 1624 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment 
each cycle is weighted by the number of processor 
cores in the package that reside in C0. If N cores are 
simultaneously in C0, then each cycle the counter 
increments by N. 

659H 1625 MSR_ANY_CORE_C0 Package Any Core C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment 
each cycle is one if any processor core in the package is 
in C0. 

65AH 1626 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency (R/O)

63:0 Increment at the same rate as the TSC. The increment 
each cycle is one if any processor graphic device’s 
compute engines are in C0. 

65BH 1627 MSR_CORE_GFXE_OVERLAP_C0 Package Core and Graphics Engine Overlapped C0 Residency 
(R/O)

63:0 Increment at the same rate as the TSC. The increment 
each cycle is one if at least one compute engine of the 
processor graphics is in C0 and at least one processor 
core in the package is also in C0. 

65CH 1628 MSR_PLATFORM_POWER_LIMIT Platform* Platform Power Limit Control (R/W-L) 

Allows platform BIOS to limit power consumption of the 
platform devices to the specified values. The Long 
Duration power consumption is specified via 
Platform_Power_Limit_1 and 
Platform_Power_Limit_1_Time. The Short Duration 
power consumption limit is specified via the 
Platform_Power_Limit_2 with duration chosen by the 
processor. 

The processor implements an exponential-weighted 
algorithm in the placement of the time windows.
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14:0 Platform Power Limit #1

Average Power limit value which the platform must not 
exceed over a time window as specified by 
Power_Limit_1_TIME field. 

The default value is the Thermal Design Power (TDP) 
and varies with product skus. The unit is specified in 
MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1

When set, enables the processor to apply control policy 
such that the platform power does not exceed 
Platform Power limit #1 over the time window 
specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1

When set, allows the processor to go below the OS 
requested P states in order to maintain the power 
below specified Platform Power Limit #1 value. 

This bit is writeable only when CPUID (EAX=6):EAX[4] 
is set.

23:17 Time Window for Platform Power Limit #1

Specifies the duration of the time window over which 
Platform Power Limit 1 value should be maintained for 
sustained long duration. This field is made up of two 
numbers from the following equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17]

The maximum allowed value in this field is defined in 
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in 
MSR_RAPLPOWER_UNIT[Time Unit].

31:24 Reserved

46:32 Platform Power Limit #2

Average Power limit value which the platform must not 
exceed over the Short Duration time window chosen 
by the processor. 

The recommended default value is 1.25 times the Long 
Duration Power Limit (i.e., Platform Power Limit # 1).
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47 Enable Platform Power Limit #2

When set, enables the processor to apply control policy 
such that the platform power does not exceed 
Platform Power limit #2 over the Short Duration time 
window.

48 Platform Clamping Limitation #2

When set, allows the processor to go below the OS 
requested P states in order to maintain the power 
below specified Platform Power Limit #2 value. 

62:49 Reserved

63 Lock. Setting this bit will lock all other bits of this MSR 
until system RESET.

690H 1680 MSR_LASTBRANCH_16_FROM_IP Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the 
last branch record stack. This part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.12.

691H 1681 MSR_LASTBRANCH_17_FROM_IP Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_LASTBRANCH_18_FROM_IP Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

693H 1683 MSR_LASTBRANCH_19_FROM_IP Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_LASTBRANCH_20_FROM_IP Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_LASTBRANCH_21_FROM_IP Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_LASTBRANCH_22_FROM_IP Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_LASTBRANCH_23_FROM_IP Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_LASTBRANCH_24_FROM_IP Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_LASTBRANCH_25_FROM_IP Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_LASTBRANCH_26_FROM_IP Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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69BH 1691 MSR_LASTBRANCH_27_FROM_IP Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_LASTBRANCH_28_FROM_IP Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_LASTBRANCH_29_FROM_IP Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_LASTBRANCH_30_FROM_IP Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_LASTBRANCH_31_FROM_IP Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Processor 
Graphics (R/W)

(Frequency refers to processor graphics frequency.)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0) 

When set, frequency is reduced due to running average 
thermal limit. 

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert 
from a processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or 
other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status 
(R0)

When set, frequency is reduced due to 
package/platform-level power limiting PL1.
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11 Package/Platform-Level PL2 Power Limiting Status 
(R0)

When set, frequency is reduced due to 
package/platform-level power limiting PL2/PL3.

12 Inefficient Operation Status (R0)

When set, processor graphics frequency is operating 
below target frequency.

15:13 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 VR Thermal Design Current Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

24 Other Log 

When set, indicates that the OTHER Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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25 Reserved 

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package/Platform Level 
PL1 Power Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level 
PL2 Power Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

28 Inefficient Operation Log

When set, indicates that the Inefficient Operation 
Status bit has asserted since the log bit was last 
cleared.

This log bit will remain set until cleared by software 
writing 0.

63:29 Reserved

6B1H 1713 MSR_RING_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in the Ring Interconnect 
(R/W)

(Frequency refers to ring interconnect in the uncore.)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of 
external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved

5 Running Average Thermal Limit Status (R0) 

When set, frequency is reduced due to running average 
thermal limit. 

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert 
from a processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.
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8 Other Status (R0)

When set, frequency is reduced due to electrical or 
other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status 
(R0)

When set, frequency is reduced due to 
package/Platform-level power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status 
(R0)

When set, frequency is reduced due to 
package/Platform-level power limiting PL2/PL3.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

20:18 Reserved

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

23 VR Thermal Design Current Log 

When set, indicates that the VR Therm Alert Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.
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24 Other Log 

When set, indicates that the OTHER Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

25 Reserved 

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package/Platform Level 
PL1 Power Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level 
PL2 Power Limiting Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software 
writing 0.

63:28 Reserved

6D0H 1744 MSR_LASTBRANCH_16_TO_IP Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the 
last branch record stack. This part of the stack contains 
pointers to the destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.12.

6D1H 1745 MSR_LASTBRANCH_17_TO_IP Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_LASTBRANCH_18_TO_IP Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D3H 1747 MSR_LASTBRANCH_19_TO_IP Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_LASTBRANCH_20_TO_IP Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_LASTBRANCH_21_TO_IP Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_LASTBRANCH_22_TO_IP Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.
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6D7H 1751 MSR_LASTBRANCH_23_TO_IP Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_LASTBRANCH_24_TO_IP Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_LASTBRANCH_25_TO_IP Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_LASTBRANCH_26_TO_IP Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_LASTBRANCH_27_TO_IP Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_LASTBRANCH_28_TO_IP Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_LASTBRANCH_29_TO_IP Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_LASTBRANCH_30_TO_IP Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_LASTBRANCH_31_TO_IP Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”.

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and 
Dynamic Capabilities”.

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”.

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”.

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”.

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

31:24 Energy/Performance Preference (R/W)

41:32 Activity Window (R/W)

42 Package Control (R/W)

63:43 Reserved

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”.

D90H 3472 IA32_BNDCFGS Thread See Table 2-2.

DA0H 3488 IA32_XSS Thread See Table 2-2.
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DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”.

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC 
Control”.

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”.

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the 
last branch record stack. This part of the stack contains 
flag, TSX-related and elapsed cycle information. See 
also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture
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Table 2-40 lists the MSRs of uncore PMU for Intel processors with CPUID DisplayFamily_DisplayModel signatures of 
06_4EH, 06_5EH, 06_8EH, 06_9EH, and 06_66H.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-40.  Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™ 
Processors, and Future Intel® Core™ Processors

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

43:0 Current count.

63:44 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Specifies the number of C-Box units with 
programmable counters (including processor cores 
and processor graphics).

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb Unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0 

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

710H 1808 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

Table 2-39.  Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor 
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake 

Microarchitecture, 8th Generation and 9th Generation Intel® Core™ Processors and Intel® Xeon® E Processors Based 
on Coffee Lake Microarchitecture, 8th Generation Intel® Core™ i3 Processors Based on Cannon Lake 

Microarchitecture, 10th Generation Intel® Core™ Processors Based on Comet Lake Microarchitecture and
Ice Lake Microarchitecture, and 11th Generation Intel® Core™ Processors Based on Tiger Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0 

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

720H 1824 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0 

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

730H 1840 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1

E01H 3585 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

E02H 3586 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status 

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

Table 2-40.  Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™ 
Processors, and Future Intel® Core™ Processors
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2.17.1  MSRs Specific to 7th Generation and 8th Generation Intel® Core™ Processors based on 
Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Table 2-42 lists additional MSRs for 7th generation and 8th generation Intel Core processors with a CPUID 
DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH. For an MSR listed in Table 2-42 that also appears 
in the model-specific tables of prior generations, Table 2-42 supersedes prior generation tables.

Table 2-41.  Additional MSRs Supported by 7th Generation and 8th Generation Intel® Core™ Processors 
Based on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

80H 128 MSR_TRACE_HUB_STH_ACPIBAR_BASE Package NPK Address Used by AET Messages (R/W)

0 Lock Bit

If set, this MSR cannot be re-written anymore. Lock bit 
has to be set in order for the AET packets to be 
directed to NPK MMIO. 

17:1 Reserved

63:18 ACPIBAR_BASE_ADDRESS 

AET target address in NPK MMIO space. 

1F4H 500 MSR_PRMRR_PHYS_BASE Core Processor Reserved Memory Range Register - 
Physical Base Control Register (R/W)

2:0 MemType

PRMRR BASE MemType.

11:3 Reserved

45:12 Base

PRMRR Base Address.

63:46 Reserved

1F5H 501 MSR_PRMRR_PHYS_MASK Core Processor Reserved Memory Range Register - 
Physical Mask Control Register (R/W)

9:0 Reserved

10 Lock

Lock bit for the PRMRR.

11 VLD

Enable bit for the PRMRR.

45:12 Mask

PRMRR MASK bits.

63:46 Reserved

1FBH 507 MSR_PRMRR_VALID_CONFIG Core Valid PRMRR Configurations (R/W)

0 1M supported MEE size.

4:1 Reserved

5 32M supported MEE size.

6 64M supported MEE size.

7 128M supported MEE size.

31:8 Reserved
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2F4H 756 MSR_UNCORE_PRMRR_PHYS_BASE Package (R/W)

The PRMRR range is used to protect the processor 
reserved memory from unauthorized reads and 
writes. Any IO access to this range is aborted. This 
register controls the location of the PRMRR range by 
indicating its starting address. It functions in tandem 
with the PRMRR mask register.

11:0 Reserved

PAWIDTH-1:12 Range Base

This field corresponds to bits PAWIDTH-1:12 of the 
base address memory range which is allocated to 
PRMRR memory.

63:PAWIDTH Reserved

2F5H 757 MSR_UNCORE_PRMRR_PHYS_MASK Package (R/W)

This register controls the size of the PRMRR range by 
indicating which address bits must match the PRMRR 
base register value.

9:0 Reserved

10 Lock

Setting this bit locks all writeable settings in this 
register, including itself.

11 Range_En

Indicates whether the PRMRR range is enabled and 
valid.

38:12 Range_Mask

This field indicates which address bits must match 
PRMRR base in order to qualify as an PRMRR access.

63:39 Reserved

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the 
LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the 
LLC/Ring.

7 Reserved

14:8 MIN_Ratio

Writing to this field controls the minimum possible 
ratio of the LLC/Ring.

63:15 Reserved

Table 2-41.  Additional MSRs Supported by 7th Generation and 8th Generation Intel® Core™ Processors 
Based on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture
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Address Register Name / Bit Fields Scope Bit Description
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2.17.2  MSRs Specific to 8th Generation Intel® Core™ i3 Processors 
Table 2-42 lists additional MSRs for 8th generation Intel Core i3 processors with a CPUID 
DisplayFamily_DisplayModel signature of 06_66H. For an MSR listed in Table 2-42 that also appears in the model-
specific tables of prior generations, Table 2-42 supersede prior generation tables.

Table 2-42.  Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration 
of SGX Launch Control via IA32_SGXLEPUBKEYHASHn 
MSR.

Available only if CPUID.(EAX=07H, ECX=0H): ECX[30] 
= 1.

18 SGX Global Functions Enable (R/WL) 

63:21 Reserved

350H 848 MSR_BR_DETECT_CTRL Branch Monitoring Global Control (R/W)

0 EnMonitoring

Global enable for branch monitoring.

1 EnExcept

Enable branch monitoring event signaling on threshold 
trip. 

The branch monitoring event handler is signaled via 
the existing PMI signaling mechanism as programmed 
from the corresponding local APIC LVT entry.

2 EnLBRFrz

Enable LBR freeze on threshold trip. This will cause 
the LBR frozen bit 58 to be set in 
IA32_PERF_GLOBAL_STATUS when a triggering 
condition occurs and this bit is enabled.

3 DisableInGuest

When set to ‘1’, branch monitoring, event triggering 
and LBR freeze actions are disabled when operating 
at VMX non-root operation.

7:4 Reserved
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17:8 WindowSize

Window size defined by WindowCntSel. Values 0 – 
1023 are supported.

Once the Window counter reaches the WindowSize 
count both the Window Counter and all Branch 
Monitoring Counters are cleared.

23:18 Reserved

25:24 WindowCntSel

Window event count select:

‘00 = Instructions retired.

‘01 = Branch instructions retired

‘10 = Return instructions retired.

‘11 = Indirect branch instructions retired.

26 CntAndMode

When set to ‘1’, the overall branch monitoring event 
triggering condition is true only if all enabled counters’ 
threshold conditions are true. 

When ‘0’, the threshold tripping condition is true if any 
enabled counters’ threshold is true.

63:27 Reserved

351H 849 MSR_BR_DETECT_STATUS Branch Monitoring Global Status (R/W)

0 Branch Monitoring Event Signaled

When set to '1', Branch Monitoring event signaling is 
blocked until this bit is cleared by software.

1 LBRsValid

This status bit is set to ‘1’ if the LBR state is 
considered valid for sampling by branch monitoring 
software.

7:2 Reserved

8 CntrHit0

Branch monitoring counter #0 threshold hit. This 
status bit is sticky and once set requires clearing by 
software. Counter operation continues independent 
of the state of the bit.

9 CntrHit1

Branch monitoring counter #1 threshold hit. This 
status bit is sticky and once set requires clearing by 
software. Counter operation continues independent 
of the state of the bit.

15:10 Reserved

Reserved for additional branch monitoring counters 
threshold hit status.

Table 2-42.  Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-298 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

25:16 CountWindow

The current value of the window counter. The count 
value is frozen on a valid branch monitoring triggering 
condition. This is a 10-bit unsigned value.

31:26 Reserved

Reserved for future extension of CountWindow.

39:32 Count0

The current value of counter 0 updated after each 
occurrence of the event being counted. The count 
value is frozen on a valid branch monitoring triggering 
condition (in which case CntrHit0 will also be set). This 
is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate 
and freeze at maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 
0x7F (+127) and minimum value 0x80 (-128).

47:40 Count1

The current value of counter 1 updated after each 
occurrence of the event being counted. The count 
value is frozen on a valid branch monitoring triggering 
condition (in which case CntrHit1 will also be set). This 
is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate 
and freeze at maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 
0x7F (+127) and minimum value 0x80 (-128).

63:48 Reserved

354H
-

355H

852
-

853

MSR_BR_DETECT_COUNTER_CONFIG_i Branch Monitoring Detect Counter Configuration (R/W)

0 CntrEn

Enable counter.

7:1 CntrEvSel

Event select (other values #GP)

‘0000000 = RETs.

‘0000001 = RET-CALL bias.

‘0000010 = RET mispredicts.

‘0000011 = Branch (all) mispredicts.

‘0000100 = Indirect branch mispredicts.

‘0000101 = Far branch instructions.

Table 2-42.  Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)
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Address Register Name / Bit Fields Scope Bit Description
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14:8 CntrThreshold

Threshold (an unsigned value of 0 to 127 supported). 
The value 0 of counter threshold will result in event 
signaled after every instruction. #GP if threshold is < 
2.

15 MispredEventCnt

Mispredict events counting behavior:

‘0 = Mispredict events are counted in a window.

‘1 = Mispredict events are counted based on a 
consecutive occurrence. CntrThreshold is treated as # 
of consecutive mispredicts. This control bit only 
applies to events specified by CntrEvSel that involve a 
prediction (0000010, 0000011, 0000100). Setting 
this bit for other events is ignored.

63:16 Reserved

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Package C3 Residency Counter (R/O)

63:0 Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the 
LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the 
LLC/Ring.

7 Reserved

14:8 MIN_Ratio

Writing to this field controls the minimum possible 
ratio of the LLC/Ring.

63:15 Reserved

660H 1632 MSR_CORE_C1_RESIDENCY Core Core C1 Residency Counter (R/O)

63:0 Value since last reset for the Core C1 residency. 
Counter rate is the Max Non-Turbo frequency (same 
as TSC). This counter counts in case both of the core's 
threads are in an idle state and at least one of the 
core's thread residency is in a C1 state or in one of its 
sub states. The counter is updated only after a core C 
state exit. Note: Always reads 0 if core C1 is 
unsupported. A value of zero indicates that this 
processor does not support core C1 or never entered 
core C1 level state.

662H 1634 MSR_CORE_C3_RESIDENCY Core Core C3 Residency Counter (R/O)

63:0 Will always return 0.

Table 2-42.  Additional MSRs Supported by 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)
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 Hex Dec



2-300 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-43 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_66H.

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_CTRL Package Uncore Fixed Counter Control (R/W)

19:0 Reserved

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved

395H 917 MSR_UNC_PERF_FIXED_CTR Package Uncore Fixed Counter

47:0 Current count.

63:48 Reserved

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box Configuration Information (R/O)

3:0 Report the number of C-Box units with performance 
counters, including processor cores and processor 
graphics.

63:4 Reserved

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb Unit, Performance Counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb Unit, Performance Counter 1

3B2H 944 MSR_UNC_ARB_PERFEVTSEL0 Package Uncore Arb Unit, Counter 0 Event Select MSR

3B3H 945 MSR_UNC_ARB_PERFEVTSEL1 Package Uncore Arb unit, Counter 1 Event Select MSR

700H 1792 MSR_UNC_CBO_0_PERFEVTSEL0 Package Uncore C-Box 0, Counter 0 Event Select MSR

701H 1793 MSR_UNC_CBO_0_PERFEVTSEL1 Package Uncore C-Box 0, Counter 1 Event Select MSR

702H 1794 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, Performance Counter 0

703H 1795 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, Performance Counter 1

708H 1800 MSR_UNC_CBO_1_PERFEVTSEL0 Package Uncore C-Box 1, Counter 0 Event Select MSR

709H 1801 MSR_UNC_CBO_1_PERFEVTSEL1 Package Uncore C-Box 1, Counter 1 Event Select MSR

70AH 1802 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, Performance Counter 0

70BH 1803 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, Performance Counter 1

710H 1808 MSR_UNC_CBO_2_PERFEVTSEL0 Package Uncore C-Box 2, Counter 0 Event Select MSR

711H 1809 MSR_UNC_CBO_2_PERFEVTSEL1 Package Uncore C-Box 2, Counter 1 Event Select MSR

712H 1810 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, Performance Counter 0

713H 1811 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, Performance Counter 1

718H 1816 MSR_UNC_CBO_3_PERFEVTSEL0 Package Uncore C-Box 3, Counter 0 Event Select MSR

719H 1817 MSR_UNC_CBO_3_PERFEVTSEL1 Package Uncore C-Box 3, Counter 1 Event Select MSR

71AH 1818 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, Performance Counter 0

71BH 1819 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, Performance Counter 1
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720H 1824 MSR_UNC_CBO_4_PERFEVTSEL0 Package Uncore C-Box 4, Counter 0 Event Select MSR

721H 1825 MSR_UNC_CBO_4_PERFEVTSEL1 Package Uncore C-Box 4, Counter 1 Event Select MSR

722H 1826 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, Performance Counter 0

723H 1827 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, Performance Counter 1

728H 1832 MSR_UNC_CBO_5_PERFEVTSEL0 Package Uncore C-Box 5, Counter 0 Event Select MSR

729H 1833 MSR_UNC_CBO_5_PERFEVTSEL1 Package Uncore C-Box 5, Counter 1 Event Select MSR

72AH 1834 MSR_UNC_CBO_5_PERFCTR0 Package Uncore C-Box 5, Performance Counter 0

72BH 1835 MSR_UNC_CBO_5_PERFCTR1 Package Uncore C-Box 5, Performance Counter 1

730H 1840 MSR_UNC_CBO_6_PERFEVTSEL0 Package Uncore C-Box 6, Counter 0 Event Select MSR

731H 1841 MSR_UNC_CBO_6_PERFEVTSEL1 Package Uncore C-Box 6, Counter 1 Event Select MSR

732H 1842 MSR_UNC_CBO_6_PERFCTR0 Package Uncore C-Box 6, Performance Counter 0

733H 1843 MSR_UNC_CBO_6_PERFCTR1 Package Uncore C-Box 6, Performance Counter 1

738H 1848 MSR_UNC_CBO_7_PERFEVTSEL0 Package Uncore C-Box 7, Counter 0 Event Select MSR

739H 1849 MSR_UNC_CBO_7_PERFEVTSEL1 Package Uncore C-Box 7, Counter 1 Event Select MSR

73AH 1850 MSR_UNC_CBO_7_PERFCTR0 Package Uncore C-Box 7, Performance Counter 0

73BH 1851 MSR_UNC_CBO_7_PERFCTR1 Package Uncore C-Box 7, Performance Counter 1

E01H 3585 MSR_UNC_PERF_GLOBAL_CTRL Package Uncore PMU Global Control

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved

E02H 3586 MSR_UNC_PERF_GLOBAL_STATUS Package Uncore PMU Main Status 

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved

3 A CBox counter overflowed (on any slice).

63:4 Reserved

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture
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Address Register Name / Bit Fields Scope Bit Description

 Hex Dec
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2.17.3  MSRs Specific to 10th Generation Intel® Core™ Processors 
Table 2-44 lists additional MSRs for 10th generation Intel Core processors with a CPUID 
DisplayFamily_DisplayModel signature values of 06_7DH and 06_7EH. For an MSR listed in Table 2-44 that also 
appears in the model-specific tables of prior generations, Table 2-44 supersede prior generation tables.

Table 2-44.  MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

33H 51 MSR_TEST_CTRL Core Test Control Register

28:0 Reserved.

29 Enable #AC(0) exception for split locked accesses:

Cause #AC(0) exception for split locked access at all 
CPL irrespective of CR0.AM or EFLAGS.AC. If bits 29 
and 31 are both set, bit 29 takes precedence.

30 Reserved.

31 Reserved.

48H 72 IA32_SPEC_CTRL Core See Table 2-2.

49H 73 IA32_PREDICT_CMD Thread See Table 2-2.

8CH 140 IA32_SGXLEPUBKEYHASH0 Thread See Table 2-2.

8DH 141 IA32_SGXLEPUBKEYHASH1 Thread See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Thread See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Thread See Table 2-2.

A0H 160 MSR_BIOS_MCU_ERRORCODE Package BIOS MCU ERRORCODE (R/O)

This MSR indicates if WRMSR 0x79 failed to configure 
PRM memory and gives a hint to debug BIOS.

15:0 Package Error Codes (R/O)

30:16 Reserved.

31 Thread MCU Partial Success (R/O)

When set to 1, WRMSR 0x79 skipped part of the 
functionality during BIOS.

A5H 165 MSR_FIT_BIOS_ERROR Thread FIT BIOS ERROR (R/W)

Report error codes for debug in case the processor 
failed to parse the Firmware Table in BIOS.

Can also be used to log BIOS information.

7:0 Error Codes (R/W)

Error codes for debug.

15:8 Entry Type (R/W)

Failed FIT entry type.

16 FIT MCU Entry (R/W)

FIT contains MCU entry.

62:17 Reserved.

63 LOCK (R/W)

When set to 1, writes to this MSR will be skipped.
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10BH 267 IA32_FLUSH_CMD Thread See Table 2-2.

151H 337 MSR_BIOS_DONE Thread BIOS Done (R/WO)

0 Thread BIOS Done Indication (R/WO)

Set by BIOS when it finishes programming the 
processor and wants to lock the memory 
configuration from changes by software that is 
running on this thread.

Writes to the bit will be ignored if EAX[0] is 0.

1 Package Package BIOS Done Indication (R/O)

When set to 1, all threads in the package have bit 0 of 
this MSR set.

31:2 Reserved.

1F1H 497 MSR_CRASHLOG_CONTROL Thread Write Data to a Crash Log Configuration

0 CDDIS: CrashDump_Disable

If set, indicates that Crash Dump is disabled.

63:1 Reserved.

2A0H 672 MSR_PRMRR_BASE_0 Core Processor Reserved Memory Range Register - 
Physical Base Control Register (R/W)

2:0 MEMTYPE: PRMRR BASE Memory Type.

3 CONFIGURED: PRMRR BASE Configured.

11:4 Reserved.

51:12 BASE: PRMRR Base Address.

63:52 Reserved.

30CH 780 IA32_FIXED_CTR3 Thread Fixed-Function Performance Counter Register 3 (R/W)

Bit definitions are the same as found in 
IA32_FIXED_CTR0, offset 309H. See Table 2-2.

329H 809 MSR_PERF_METRICS Thread Performance Metrics (R/W)

Reports metrics directly. Software can check (and/or 
expose to its guests) the availability of 
PERF_METRICS feature using 
IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABL
E (bit 15).

7:0 Retiring. Percent of utilized slots by uops that 
eventually retire (commit).

15:8 Bad Speculation. Percent of wasted slots due to 
incorrect speculation, covering utilized by uops that do 
not retire, or recovery bubbles (unutilized slots).

23:16 Frontend Bound. Percent of unutilized slots where 
front-end did not deliver a uop while back-end is 
ready.

31:24 Backend Bound. Percent of unutilized slots where a 
uop was not delivered to back-end due to lack of back-
end resources.

Table 2-44.  MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture
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Address Register Name / Bit Fields Scope Bit Description
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63:25 Reserved.

3F2H 1010 MSR_PEBS_DATA_CFG Thread PEBS Data Configuration (R/W)

Provides software the capability to select data groups 
of interest and thus reduce the record size in memory 
and record generation latency. Hence, a PEBS record's 
size and layout vary based on the selected groups. 
The MSR also allows software to select LBR depth for 
branch data records.

0 Memory Info.

Setting this bit will capture memory information such 
as the linear address, data source and latency of the 
memory access in the PEBS record.

1 GPRs.

Setting this bit will capture the contents of the 
General Purpose registers in the PEBS record.

2 XMMs.

Setting this bit will capture the contents of the XMM 
registers in the PEBS record.

3 LBRs.

Setting this bit will capture LBR TO, FROM and INFO in 
the PEBS record.

23:4 Reserved.

31:24 LBR Entries.

Set the field to the desired number of entries - 1. For 
example, if the LBR_entries field is 0, a single entry 
will be included in the record. To include 32 LBR 
entries, set the LBR_entries field to 31 (0x1F). To 
ensure all PEBS records are 16-byte aligned, software 
can use LBR_entries that is multiple of 3.

541H 1345 MSR_CORE_UARCH_CTL Core Core Microarchitecture Control MSR (R/W)

0 L1 Scrubbing Enable

When set to 1, enable L1 scrubbing.

31:1 Reserved.

657H 1623 MSR_FAST_UNCORE_MSRS_CTL Thread Fast WRMSR/RDMSR Control MSR (R/W)

3:0 FAST_ACCESS_ENABLE:

Bit 0: When set to '1', provides a hint for the hardware 
to enable fast access mode for the 
IA32_HWP_REQUEST MSR. 

This bit is sticky and is cleaned by the hardware only 
during reset time. 

This bit is valid only if 
FAST_UNCORE_MSRS_CAPABILITY[0] is set. Setting 
this bit will cause CPUID[6].EAX[18] to be set.

31:4 Reserved.

Table 2-44.  MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture
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2.17.4  MSRs Specific to 11th Generation Intel® Core™ Processors based on Tiger Lake 
Microarchitecture

Table 2-45 lists additional MSRs for 11th generation Intel Core processors with CPUID DisplayFamily_DisplayModel 
signatures of 06_8CH and 06_8DH. For an MSR listed in Table 2-45 that also appears in the model-specific tables 
of prior generations, Table 2-45 supersedes prior generation tables.

65EH 1630 MSR_FAST_UNCORE_MSRS_STATUS Thread Indication of Uncore MSRs, Post Write Activates

0 Indicates whether the CPU is still in the middle of 
writing IA32_HWP_REQUEST MSR, even after the 
WRMSR instruction has retired. 

A value of 1 indicates the last write of 
IA32_HWP_REQUEST is still ongoing. 

A value of 0 indicates the last write of 
IA32_HWP_REQUEST is visible outside the logical 
processor.

Software can use the status of this bit to avoid 
overwriting IA32_HWP_REQUEST.

31:1 Reserved.

65FH 1631 MSR_FAST_UNCORE_MSRS_CAPABILITY Thread Fast WRMSR/RDMSR Enumeration MSR (RO)

3:0 MSRS_CAPABILITY:

Bit 0: If set to ‘1’, hardware supports the fast access 
mode for the IA32_HWP_REQUEST MSR.

31:4 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Package See Table 2-2.

775H 1909 IA32_PECI_HWP_REQUEST_INFO Thread See Table 2-2.

777H 1911 IA32_HWP_STATUS Thread See Table 2-2.

Table 2-45.  Additional MSRs Supported by 11th Generation Intel® Core™ Processors 
Based on Tiger Lake Microarchitecture

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

A0H 160 MSR_BIOS_MCU_ERRORCODE Package BIOS MCU ERRORCODE (R/O)

15:0 Error Codes

31:16 Reserved

A7H 167 MSR_BIOS_DEBUG Thread BIOS DEBUG (R/O)

This MSR indicates if WRMSR 79H failed to configure 
PRM memory and gives a hint to debug BIOS.

30:0 Reserved

31 MCU Partial Success 

When set to 1, WRMSR 79H skipped part of the 
functionality during BIOS.

Table 2-44.  MSRs Supported by 10th Generation Intel® Core™ Processors Based on Ice Lake Microarchitecture
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63:32 Reserved

CFH 207 IA32_CORE_CAPABILITIES Package IA32_CR_CORE_CAPABILITIES (R/O)

This MSR provides an architectural enumeration 
function for model-specific behavior. 

0 STLB_QOS_SUPPORTED

When set to 1, the STLB QoS feature is supported and 
the STLB QoS MSRs (1A8FH -1A97H) are accessible. 
When set to 0, access to these MSRs will #GP.

1 Reserved

2 FUSA_SUPPORTED

3 RSM_IN_CPL0_ONLY

When set to 1, the RSM instruction is only allowed in 
CPL0 (#GP triggered in any CPL != 0). 

When set to 0, then any CPL may execute the RSM 
instruction.

4 Reserved

5 SPLIT_LOCK_DISABLE_SUPPORTED

When set to 1, the ability to set MEMORY_CONTROL 
(MSR 33H) bit 29 enables an #AC to be created when 
a split lock is detected.

6 SNOOP_FILTER_QOS_SUPPORTED

When set to 1, the Snoop Filter Qos Mask MSRs are 
supported. 

When set to 0, access to these MSRs will #GP.

31:7 Reserved

492H 1170 IA32_VMX_PROCBASED_CTLS3 Core IA32_VMX_PROCBASED_CTLS3

This MSR enumerates the allowed 1-settings of the 
third set of processor-based controls. Specifically, VM 
entry allows bit X of the tertiary processor-based VM-
execution controls to be 1 if and only if bit X of the 
MSR is set to 1. 

If bit X of the MSR is cleared to 0, VM entry fails if 
control X and the “activate tertiary controls” primary 
processor-based VM-execution control are both 1.

0 LOADIWKEY

This control determines whether executions of 
LOADIWKEY cause VM exits.

63:1 Reserved

601H 1537 MSR_VR_CURRENT_CONFIG Package Power Limit 4 (PL4)

Package-level maximum power limit (in Watts).

It is a proactive, instantaneous limit.

Table 2-45.  Additional MSRs Supported by 11th Generation Intel® Core™ Processors 
Based on Tiger Lake Microarchitecture
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2.17.5  MSRs Specific to Intel® Xeon® Processor Scalable Family 
Intel® Xeon® Processor Scalable Family (CPUID DisplayFamily_DisplayModel = 06_55H) support the MSRs listed in 
Table 2-46.

12:0 PL4 Value

PL4 value in 0.125 A increments. This field is locked 
by VR_CURRENT_CONFIG[LOCK]. When the LOCK bit is 
set to 1b, this field becomes Read Only.

30:13 Reserved

31 Lock Indication (LOCK)

This bit will lock the CURRENT_LIMIT settings in this 
register and will also lock this setting. This means that 
once set to 1b, the CURRENT_LIMIT setting and this 
bit become Read Only until the next Warm Reset.

62:32 Not in use.

63 Reserved

C82H 3202 IA32_L2_QOS_CFG Core IA32_CR_L2_QOS_CFG

This MSR provides software an enumeration of the 
parameters that L2 QoS (Intel RDT) support in any 
particular implementation.

0 CDP_ENABLE

When set to 1, it will enable the code and data 
prioritization for the L2 CAT/Intel RDT feature. 

When set to 0, code and data prioritization is disabled 
for L2 CAT/Intel RDT. See Chapter 17, “Debug, Branch 
Profile, TSC, and Intel® Resource Director Technology 
(Intel® RDT) Features” for further details on CDP.

31:1 Reserved

D10H
-

D17H

3220
-

3351

IA32_L2_QOS_MASK_[0-7] Package IA32_CR_L2_QOS_MASK_[0-7]

Controls MLC (L2) Intel RDT allocation. For more 
details on CAT/RDT, see Chapter 17, “Debug, Branch 
Profile, TSC, and Intel® Resource Director Technology 
(Intel® RDT) Features”.

19:0 WAYS_MASK

Setting a 1 in this bit X allows threads with CLOS <n> 
(where N is [0-7]) to allocate to way X in the MLC. 
Ones are only allowed to be written to ways that 
physically exist in the MLC (CPUID.4.2:EBX[31:22] will 
indicate this). 

Writing a 1 to a value beyond the highest way or a 
non-contiguous set of 1s will cause a #GP on the 
WRMSR to this MSR.

31:20 Reserved

Table 2-45.  Additional MSRs Supported by 11th Generation Intel® Core™ Processors 
Based on Tiger Lake Microarchitecture
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Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

18 SGX Global Functions Enable (R/WL) 

20 LMCE_ENABLED (R/WL) 

63:21 Reserved

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control 
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-26.

CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

See Table 2-26.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

See Table 2-26.

27:24 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

See Table 2-26.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

See Table 2-26.

30 Package Programmable TJ OFFSET (R/O) 

See Table 2-26.

39:31 Reserved
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47:40 Package Maximum Efficiency Ratio (R/O) 

See Table 2-26.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state 
code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code 
name (consuming the least power) for the package. 
The default is set as factory-configured package C-
state limit.

The following C-state code name encodings are 
supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported 
by the processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to 
MWAIT(C6).

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H
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11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only 
while in SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access 
restriction is supported and a host-space interface is 
available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is 
supported and a host-space interface is available to 
SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 2-2.

0 Thermal Status (RO) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (RO) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (RO) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal Threshold #1 Status (RO) 

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (RO) 

See Table 2-2.

Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H
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9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (RO) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (RO) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (RO) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (RO) 

See Table 2-2.

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) 

See Table 2-2.

31 Reading Valid (RO) 

See Table 2-2.

63:32 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (RO) 

See Table 2-26.

27:24 TCC Activation Offset (R/W) 

See Table 2-26.

63:28 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package This register defines the ratio limits. RATIO[0:7] must 
be populated in ascending order. RATIO[i+1] must be 
less than or equal to RATIO[i]. Entries with RATIO[i] will 
be ignored. If any of the rules above are broken, the 
configuration is silently rejected. If the programmed 
ratio is: 

• Above the fused ratio for that core count, it will be 
clipped to the fuse limits (assuming !OC).

• Below the min supported ratio, it will be clipped.

7:0 RATIO_0

Defines ratio limits.

Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H
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15:8 RATIO_1

Defines ratio limits.

23:16 RATIO_2

Defines ratio limits.

31:24 RATIO_3

Defines ratio limits.

39:32 RATIO_4

Defines ratio limits.

47:40 RATIO_5

Defines ratio limits.

55:48 RATIO_6

Defines ratio limits.

63:56 RATIO_7

Defines ratio limits.

1AEH 430 MSR_TURBO_RATIO_LIMIT_CORES Package This register defines the active core ranges for each 
frequency point. NUMCORE[0:7] must be populated in 
ascending order. NUMCORE[i+1] must be greater than 
NUMCORE[i]. Entries with NUMCORE[i] == 0 will be 
ignored. The last valid entry must have NUMCORE >= 
the number of cores in the SKU. If any of the rules 
above are broken, the configuration is silently rejected.

7:0 NUMCORE_0

Defines the active core ranges for each frequency 
point.

15:8 NUMCORE_1

Defines the active core ranges for each frequency 
point.

23:16 NUMCORE_2

Defines the active core ranges for each frequency 
point.

31:24 NUMCORE_3

Defines the active core ranges for each frequency 
point.

39:32 NUMCORE_4

Defines the active core ranges for each frequency 
point.

47:40 NUMCORE_5

Defines the active core ranges for each frequency 
point.

55:48 NUMCORE_6

Defines the active core ranges for each frequency 
point.

Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H
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63:56 NUMCORE_7

Defines the active core ranges for each frequency 
point.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC0 reports MC errors from the IFU module.
401H 1025 IA32_MC0_STATUS Core

402H 1026 IA32_MC0_ADDR Core

403H 1027 IA32_MC0_MISC Core

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC1 reports MC errors from the DCU module.
405H 1029 IA32_MC1_STATUS Core

406H 1030 IA32_MC1_ADDR Core

407H 1031 IA32_MC1_MISC Core

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC2 reports MC errors from the DTLB module.
409H 1033 IA32_MC2_STATUS Core

40AH 1034 IA32_MC2_ADDR Core

40BH 1035 IA32_MC2_MISC Core

Table 2-46.  MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H
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40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC3 reports MC errors from the MLC module.
40DH 1037 IA32_MC3_STATUS Core

40EH 1038 IA32_MC3_ADDR Core

40FH 1039 IA32_MC3_MISC Core

410H 1040 IA32_MC4_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC4 reports MC errors from the PCU module.
411H 1041 IA32_MC4_STATUS Package

412H 1042 IA32_MC4_ADDR Package

413H 1043 IA32_MC4_MISC Package

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC errors from a link interconnect 
module.

415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC errors from the integrated I/O 
module.

419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC errors from the M2M 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC errors from the M2M 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA 
425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA.
429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC errors from the CHA.
42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package
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430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC12 report MC errors from each channel of a 
link interconnect module.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC errors from the 
integrated memory controllers.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs” through 
Section 15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC errors from a link interconnect 
module.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved
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12:8 Package Energy Status Units

Energy related information (in Joules) is based on the 
multiplier, 1/2^ESU; where ESU is an unsigned integer 
represented by bits 12:8. Default value is 0EH (or 61 
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

Energy consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS 
configuration to enable DRAM RAPL mode 0 (Direct 
VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields 
represent the widest possible range of uncore 
frequencies. Writing to these fields allows software to 
control the minimum and the maximum frequency that 
hardware will select.

63:15 Reserved

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio 
of the LLC/Ring.

7 Reserved

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O) 

Reads return 0.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.
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7:0 EventID (RW)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved

41:32 RMID (RW)

63:42 Reserved

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID 

31:10 Reserved

51:32 COS (R/W)

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

0:19 CBM: Bit vector of available L3 ways for COS 0 
enforcement.

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

0:19 CBM: Bit vector of available L3 ways for COS 1 
enforcement.

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

0:19 CBM: Bit vector of available L3 ways for COS 2 
enforcement.

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

0:19 CBM: Bit vector of available L3 ways for COS 3 
enforcement.

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

0:19 CBM: Bit vector of available L3 ways for COS 4 
enforcement.

63:20 Reserved
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C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

0:19 CBM: Bit vector of available L3 ways for COS 5 
enforcement.

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.

0:19 CBM: Bit vector of available L3 ways for COS 6 
enforcement.

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

0:19 CBM: Bit vector of available L3 ways for COS 7 
enforcement.

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

0:19 CBM: Bit vector of available L3 ways for COS 8 
enforcement.

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

0:19 CBM: Bit vector of available L3 ways for COS 9 
enforcement.

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=10.

0:19 CBM: Bit vector of available L3 ways for COS 10 
enforcement.

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=11.

0:19 CBM: Bit vector of available L3 ways for COS 11 
enforcement.

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=12.
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2.18 MSRS IN INTEL® XEON PHI™ PROCESSOR 3200/5200/7200 SERIES AND 
INTEL® XEON PHI™ PROCESSOR 7215/7285/7295 SERIES

Intel® Xeon Phi™ processor 3200, 5200, 7200 series, with CPUID DisplayFamily_DisplayModel signature 06_57H, 
supports the MSR interfaces listed in Table 2-47. These processors are based on the Knights Landing microarchi-
tecture. Intel® Xeon Phi™ processor 7215, 7285, 7295 series, with CPUID DisplayFamily_DisplayModel signature 
06_85H, supports the MSR interfaces listed in Table 2-47 and Table 2-48. These processors are based on the 
Knights Mill microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as 
module.

0:19 CBM: Bit vector of available L3 ways for COS 12 
enforcement.

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=13.

0:19 CBM: Bit vector of available L3 ways for COS 13 
enforcement.

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=14.

0:19 CBM: Bit vector of available L3 ways for COS 14 
enforcement.

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=15.

0:19 CBM: Bit vector of available L3 ways for COS 15 
enforcement.

63:20 Reserved
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0H 0 IA32_P5_MC_ADDR Module See Section 2.23, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZE Thread See Section 8.10.5, “Monitor/Mwait Address Range 
Determination.” See Table 2-2.
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10H 16 IA32_TIME_STAMP_COUNTER Thread See Section 17.17, “Time-Stamp Counter,” and see 
Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” 
and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

63:32 Reserved

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL) 

1 Reserved

2 Enable VMX outside SMX operation (R/WL) 

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control 
(R/W)

0 LockOut (R/WO)

See Table 2-26.

1 Enable_PPIN (R/W)

See Table 2-26.

63:2 Reserved

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID 
family/model/stepping signature that a privileged 
inventory initialization agent can access to identify each 
physical processor, when access to MSR_PPIN is 
enabled. Access to MSR_PPIN is permitted only if 
MSR_PPIN_CTL[bits 1:0] = ‘10b’.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 THREAD Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 2-2.
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CEH 206 MSR_PLATFORM_INFO Package Platform Information

Contains power management and other model specific 
features enumeration. See http://biosbits.org.

7:0 Reserved

15:8 Package Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs 
at. Frequency = ratio * 100 MHz.

27:16 Reserved

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit 
for Turbo mode is enabled. When set to 0, indicates 
Programmable Ratio Limit for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode 
is programmable. When set to 0, indicates TDP Limit for 
Turbo mode is not programmable.

39:30 Reserved

47:40 Package Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the 
processor can operate, in units of 100MHz.

63:48 Reserved

E2H 226 MSR_PKG_CST_CONFIG_CONTROL Package C-State Configuration Control (R/W) 
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2:0 Package C-State Limit (R/W) 

Specifies the lowest C-state for the package. This 
feature does not limit the processor core C-state. The 
power-on default value from bit[2:0] of this register 
reports the deepest package C-state the processor is 
capable to support when manufactured. It is 
recommended that BIOS always read the power-on 
default value reported from this bit field to determine 
the supported deepest C-state on the processor and 
leave it as default without changing it.

000b - C0/C1 (No package C-state support)

001b - C2

010b - C6 (non retention)*

011b - C6 (Retention)*

100b - Reserved

101b - Reserved

110b - Reserved

111b - No package C-state limit. All C-States supported 
by the processor are available.

Note: C6 retention mode provides more power saving 
than C6 non-retention mode. Limiting the package to C6 
non retention mode does prevent the 
MSR_PKG_C6_RESIDENCY counter (MSR 3F9h) from 
being incremented.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO 
registers at MSR_PMG_IO_CAPTURE_BASE[15:0] to 
MWAIT instructions.

14:11 Reserved

15 CFG Lock (RO) 

When set, locks bits [15:0] of this register for further 
writes until the next reset occurs.

25 Reserved

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote 
C3/C6/C7 requests to C1 based on uncore auto-demote 
information.

27 Reserved

28 C1 State Auto Undemotion Enable (R/W) 

When set, enables Undemotion from Demoted C1.

29 PKG C-State Auto Demotion Enable (R/W) 

When set, enables Package C state demotion.

63:30 Reserved
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E4H 228 MSR_PMG_IO_CAPTURE_BASE Tile Power Management IO Capture Base (R/W) 

15:0 LVL_2 Base Address (R/W) 

Microcode will compare IO-read zone to this base 
address to determine if an MWAIT(C2/3/4) needs to be 
issued instead of the IO-read. Should be programmed to 
the chipset Plevel_2 IO address.

22:16 C-State Range (R/W) 

The IO-port block size in which IO-redirection will be 
executed (0-127). Should be programmed based on the 
number of LVLx registers existing in the chipset.

63:23 Reserved

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler 
to handle unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of 
AES instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, the AES instruction set is not available if read is 
unsuccessful. If the configuration is not 01b, AES 
instructions can be mis-configured if a privileged agent 
unintentionally writes 11b.

63:2 Reserved

140H 320 MISC_FEATURE_ENABLES Thread MISC_FEATURE_ENABLES

0 Reserved

1 User Mode MONITOR and MWAIT (R/W) 

If set to 1, the MONITOR and MWAIT instructions do not 
cause invalid-opcode exceptions when executed with 
CPL > 0 or in virtual-8086 mode. If MWAIT is executed 
when CPL > 0 or in virtual-8086 mode, and if EAX 
indicates a C-state other than C0 or C1, the instruction 
operates as if EAX indicated the C-state C1.

63:2 Reserved

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.
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176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread See Table 2-2.

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only 
while in SMM.

31:0 Bank Support (SMM-RO)

One bit per MCA bank. If the bit is set, that bank 
supports Enhanced MCA (Default all 0; does not support 
EMCA).

55:32 Reserved

56 Targeted SMI (SMM-RO)

Set if targeted SMI is supported.

57 SMM_CPU_SVRSTR (SMM-RO)

Set if SMM SRAM save/restore feature is supported.

58 SMM_CODE_ACCESS_CHK (SMM-RO)

Set if SMM code access check feature is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is 
supported and a host-space interface available to SMM 
handler.

63:60 Reserved

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Package See Table 2-2.
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199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W) 

See Table 2-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W) 

See Table 2-2.

0 Thermal Status (RO) 

1 Thermal Status Log (R/WC0) 

2 PROTCHOT # or FORCEPR# Status (RO) 

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

4 Critical Temperature Status (RO) 

5 Critical Temperature Status Log (R/WC0) 

6 Thermal Threshold #1 Status (RO) 

7 Thermal Threshold #1 Log (R/WC0) 

8 Thermal Threshold #2 Status (RO) 

9 Thermal Threshold #2 Log (R/WC0) 

10 Power Limitation Status (RO) 

11 Power Limitation Log (RWC0) 

15:12 Reserved

22:16 Digital Readout (RO) 

26:23 Reserved

30:27 Resolution in Degrees Celsius (RO) 

31 Reading Valid (RO) 

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled 
and disabled.

0 Fast-Strings Enable

2:1 Reserved

3 Automatic Thermal Control Circuit Enable (R/W) 

6:4 Reserved

7 Performance Monitoring Available (R) 

10:8 Reserved

11 Branch Trace Storage Unavailable (RO) 

12 Processor Event Based Sampling Unavailable (RO) 

15:13 Reserved
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16 Enhanced Intel SpeedStep Technology Enable (R/W) 

18 ENABLE MONITOR FSM (R/W) 

21:19 Reserved

22 Limit CPUID Maxval (R/W) 

23 xTPR Message Disable (R/W) 

33:24 Reserved

34 XD Bit Disable (R/W) 

37:35 Reserved

38 Turbo Mode Disable (R/W)

63:39 Reserved

1A2H 418 MSR_TEMPERATURE_TARGET Package Temperature Target

15:0 Reserved

23:16 Temperature Target (R) 

29:24 Target Offset (R/W) 

63:30 Reserved

1A4H 420 MSR_MISC_FEATURE_CONTROL Miscellaneous Feature Control (R/W) 

0 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher.

1 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher.

63:2 Reserved

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores 
(RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under 
the maximum ratio limit for group 0. 

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active 
cores are not more than the group 0 maximum core 
count. 

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of 
additional cores plus the cores in group 0, operates 
under the group 1 turbo max ratio limit = “group 0 Max 
ratio limit” - “group ratio delta for group 1”.
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23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of 
additional cores plus all the cores in group 1, operates 
under the group 2 turbo max ratio limit = “group 1 Max 
ratio limit” - “group ratio delta for group 2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of 
additional cores plus all the cores in group 2, operates 
under the group 3 turbo max ratio limit = “group 2 Max 
ratio limit” - “group ratio delta for group 3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of 
additional cores plus all the cores in group 3, operates 
under the group 4 turbo max ratio limit = “group 3 Max 
ratio limit” - “group ratio delta for group 4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of 
additional cores plus all the cores in group 4, operates 
under the group 5 turbo max ratio limit = “group 4 Max 
ratio limit” - “group ratio delta for group 5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of 
additional cores plus all the cores in group 5, operates 
under the group 6 turbo max ratio limit = “group 5 Max 
ratio limit” - “group ratio delta for group 6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement 
relative to the Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 2-2.
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1B1H 433 IA32_PACKAGE_THERM_STATUS Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR 
containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

0 LBR

Setting this bit to 1 enables the processor to record a 
running trace of the most recent branches taken by the 
processor in the LBR stack.

1 BTF

Setting this bit to 1 enables the processor to treat 
EFLAGS.TF as single-step on branches instead of single-
step on instructions.

5:2 Reserved

6 TR

Setting this bit to 1 enables branch trace messages to 
be sent.

7 BTS

Setting this bit enables branch trace messages (BTMs) 
to be logged in a BTS buffer.

8 BTINT

When clear, BTMs are logged in a BTS buffer in circular 
fashion. When this bit is set, an interrupt is generated 
by the BTS facility when the BTS buffer is full.

9 BTS_OFF_OS

When set, BTS or BTM is skipped if CPL = 0.
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10 BTS_OFF_USR

When set, BTS or BTM is skipped if CPL > 0.

11 FREEZE_LBRS_ON_PMI

When set, the LBR stack is frozen on a PMI request.

12 FREEZE_PERFMON_ON_PMI

When set, each ENABLE bit of the global counter control 
MSR are frozen (address 3BFH) on a PMI request.

13 Reserved

14 FREEZE_WHILE_SMM

When set, freezes perfmon and trace messages while in 
SMM.

31:15 Reserved

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record from Linear IP (R) 

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record to Linear IP (R) 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A0000 Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.
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26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Package See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL 
MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATUS Thread See Table 2-2. 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. 

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Thread See Table 2-2. 

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 2-2. 

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

63:0 Package C3 Residency Counter (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

63:0 Module C0 Residency Counter (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter (R/O)
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3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

63:0 CORE C6 Residency Counter (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented 
or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and 
writes to this MSR will cause a general-protection 
exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers Used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.10.1, “RAPL Interfaces.”

7:4 Package Reserved
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12:8 Package Energy Status Units

Energy related information (in Joules) is based on the 
multiplier, 1/2^ESU; where ESU is an unsigned integer 
represented by bits 12:8. Default value is 0EH (or 61 
micro-joules).

15:13 Package Reserved

19:16 Package Time Units

See Section 14.10.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code 
names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

63:0 Package C2 Residency Counter (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.10.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) 

See Section 14.10.3, “Package RAPL Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_STATUS Package DRAM Energy Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) 

See Section 14.10.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.10.5, “DRAM RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.10.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_NOMINAL Package Base TDP Ratio (R/O)

See Table 2-25.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

See Table 2-25.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

See Table 2-25.
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64BH 1611 MSR_CONFIG_TDP_CONTROL Package ConfigTDP Control (R/W)

See Table 2-25.

64CH 1612 MSR_TURBO_ACTIVATION_RATIO Package ConfigTDP Control (R/W)

See Table 2-25.

690H 1680 MSR_CORE_PERF_LIMIT_REASONS Package Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved

6 VR Therm Alert Status (R0)

7 Reserved

8 Electrical Design Point Status (R0)

63:9 Reserved

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 2-2.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID Register (R/O) 

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version Register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority Register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority Register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI Register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination Register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector Register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service Register Bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service Register Bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service Register Bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service Register Bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service Register Bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service Register Bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service Register Bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service Register Bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode Register Bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode Register Bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode Register Bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode Register Bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode Register Bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode Register Bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode Register Bits [223:192] (R/O) 
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81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode Register Bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request Register Bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request Register Bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request Register Bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request Register Bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request Register Bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request Register Bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request Register Bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request Register Bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status Register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt Register 
(R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command Register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt Register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERMAL Thread x2APIC LVT Thermal Sensor Interrupt Register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor Register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 Register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 Register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error Register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count Register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count Register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration Register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI Register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) 

See Table 2-2.
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Table 2-48 lists model-specific registers that are supported by Intel® Xeon Phi™ processor 7215, 7285, 7295 series 
based on the Knights Mill microarchitecture.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W) 

See Table 2-2 

Table 2-48.  Additional MSRs Supported by Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series 
with DisplayFamily_DisplayModel Signature 06_85H 
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9BH 155 IA32_SMM_MONITOR_CTL Core SMM Monitor Configuration (R/W)

This MSR is readable only if VMX is enabled, and 
writeable only if VMX is enabled and in SMM mode, and is 
used to configure the VMX MSEG base address. See 
Table 2-2.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

481H 1153 IA32_VMX_PINBASED_ CTLS Core Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 2-2.

482H 1154 IA32_VMX_PROCBASED_ CTLS Core Capability Reporting Register of Primary Processor-
based VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O) 

See Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O) 

See Table 2-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities 
(R/O) 

See Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 
(R/O) 

See Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 
(R/O) 

See Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 
(R/O) 

See Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 
(R/O) 

See Table 2-2.

Table 2-47.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with 
DisplayFamily_DisplayModel Signatures 06_57H and 06_85H

Register 
Address Register Name / Bit Fields Scope Bit Description

 Hex Dec



2-336 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.19 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 2-49 lists MSRs (architectural and model-specific) that are defined across processor generations based on 
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily 
encoding of 0FH, see Table 2-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and 

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model Avail-

ability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the specified 
register address. The model encoding value of a processor can be queried using CPUID. See “CPUID—CPU 
Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration 
(R/O) 

See Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_ CTLS2 Core Capability Reporting Register of Secondary Processor-
Based VM-Execution Controls (R/O)

See Table 2-2.

48CH 1164 IA32_VMX_EPT_VPID_ENUM Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2.

48DH 1165 IA32_VMX_TRUE_PINBASE D_CTLS Core Capability Reporting Register of Pin-Based VM-Execution 
Flex Controls (R/O)

See Table 2-2.

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Core Capability Reporting Register of Primary Processor-
Based VM-Execution Flex Controls (R/O)

See Table 2-2.

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Core Capability Reporting Register of VM-Exit Flex Controls 
(R/O)

See Table 2-2.

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Core Capability Reporting Register of VM-Entry Flex Controls 
(R/O)

See Table 2-2.

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-Function Controls 
(R/O)

See Table 2-2.

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors 

Register 
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Register Name
Fields and Flags
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Avail-
ability
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Unique1 Bit Description
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0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 2.23, “MSRs in Pentium Processors.”

Table 2-48.  Additional MSRs Supported by Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series 
with DisplayFamily_DisplayModel Signature 06_85H 

Register 
Address Register Name / Bit Fields Scope Bit Description
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1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3, 
4, 6

Shared See Section 2.23, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_SIZE 3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3, 
4, 6

Unique Time Stamp Counter

See Table 2-2.

On earlier processors, only the lower 32 bits are 
writable. On any write to the lower 32 bits, the 
upper 32 bits are cleared. For processor family 
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3, 
4, 6

Shared Platform ID (R) 

See Table 2-2.

The operating system can use this MSR to 
determine “slot” information for the processor 
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3, 
4, 6

Unique APIC Location and Status (R/W)

See Table 2-2. See Section 10.4.4, “Local APIC 
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1) 
or disabled (0) as set by the strapping of SMI#. 
The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

1 Execute BIST (R) 

Indicates whether the execution of the BIST is 
enabled (1) or disabled (0) as set by the 
strapping of INIT#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is 
asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for 
the system bus is 1 (1) or up to 12 (0) as set by 
the strapping of A7#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is 
asserted.

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is 
enabled (0) or disabled (1) as determined by the 
strapping of A9#. The value in this bit is written 
on the deassertion of RESET#; the bit is set to 1 
when the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is 
enabled (0) or disabled (1) as determined by the 
strapping of A10#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is 
asserted.

6:5 APIC Cluster ID (R) 

Contains the logical APIC cluster ID value as set 
by the strapping of A12# and A11#. The logical 
cluster ID value is written into the field on the 
deassertion of RESET#; the field is set to 1 
when the address bus signal is asserted.

7 Bus Park Disable (R) 

Indicates whether bus park is enabled (0) or 
disabled (1) as set by the strapping of A15#. 
The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

11:8 Reserved

13:12 Agent ID (R) 

Contains the logical agent ID value as set by the 
strapping of BR[3:0]. The logical ID value is 
written into the field on the deassertion of 
RESET#; the field is set to 1 when the address 
bus signal is asserted.

63:14 Reserved

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Soft Power-On Configuration (R/W) 

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W) 

Controls the driving of RCNT/SCNT on the 
request encoding. Set to enable (1); clear to 
disabled (0, default).

1 Data Error Checking Disable (R/W) 

Set to disable system data bus parity checking; 
clear to enable parity checking.

2 Response Error Checking Disable (R/W) 

Set to disable (default); clear to enable. 

3 Address/Request Error Checking Disable (R/W) 

Set to disable (default); clear to enable.

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus 
requests (default); clear to enable. 

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator 
internal errors (default); clear to enable. 

6 BINIT# Driver Disable (R/W) 

Set to disable BINIT# driver (default); clear to 
enable driver.

63:7 Reserved

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according 
to the MODEL value in the CPUID version 
information. The following bit field layout 
applies to Pentium 4 and Xeon Processors with 
MODEL encoding equal or greater than 2. 

(R) The field Indicates the current processor 
frequency configuration.

15:0 Reserved

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved
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31:24 Core Clock Frequency to System Bus Frequency 
Ratio (R)

The processor core clock frequency to system 
bus frequency ratio observed at the de-
assertion of the reset pin.

63:25 Reserved

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R) 

The bit field layout of this MSR varies according 
to the MODEL value of the CPUID version 
information. This bit field layout applies to 
Pentium 4 and Xeon Processors with MODEL 
encoding less than 2.

Indicates current processor frequency 
configuration.

20:0 Reserved

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 2-2.

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3, 
4, 6

Shared BIOS Update Trigger Register (W) 

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3, 
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 2-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3, 
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature 
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3, 
4, 6

Unique CS Register Target for CPL 0 Code (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3, 
4, 6

Unique Stack Pointer for CPL 0 Stack (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”
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176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3, 
4, 6

Unique CPL 0 Code Entry Point (R/W)

See Table 2-2. See Section 5.8.7, “Performing 
Fast Calls to System Procedures with the 
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3, 
4, 6

Unique Machine Check Capabilities (R)

See Table 2-2. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3, 
4, 6

Unique Machine Check Status (R)

See Table 2-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 2-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3, 
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3, 
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3, 
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3, 
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3, 
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.
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185H 389 MSR_MCG_RDI 0, 1, 2, 3, 
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3, 
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3, 
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3, 
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3, 
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3, 
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or 
page fault occurred during DS normal operation. 
The processors response is to shut down. 

The bit is used as an aid for debugging DS 
handling code. It is the responsibility of the user 
(BIOS or operating system) to clear this bit for 
normal operation.

63:1 Reserved

18BH - 
18FH

395- 
399

MSR_MCG_RESERVED1 - 
MSR_MCG_RESERVED5

Reserved
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190H 400 MSR_MCG_R8 0, 1, 2, 3, 
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3, 
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3, 
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3, 
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3, 
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3, 
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3, 
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3, 
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when 
the processor is operating in 64-bit mode at the 
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced 
Intel Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced 
Intel Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3, 
4, 6

Unique Thermal Monitor Control (R/W)

See Table 2-2. 

See Section 14.8.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3, 
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.8.2, “Thermal Monitor,” and see 
Table 2-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3, 
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.8.2, “Thermal Monitor,” and see 
Table 2-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

3, Shared For Family F, Model 3 processors: When read, 
specifies the value of the target TM2 transition 
last written. When set, it sets the next target 
value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 processors: 
When read, specifies the value of the target 
TM2 transition last written. Writes may cause 
#GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3, 
4, 6

Shared Enable Miscellaneous Processor Features (R/W) 
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0 Fast-Strings Enable. See Table 2-2.

1 Reserved

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.8.2, “Thermal Monitor,” and see 
Table 2-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be 
issued instead of a split-lock cycle. Operating 
systems that set this bit must align system 
structures to avoid split-lock scenarios. 

When the bit is clear (default), normal split-locks 
are issued to the bus.

This debug feature is specific to the Pentium 4 
processor.

5 Reserved

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; 
when clear (default) the third-level cache is 
enabled. This flag is reserved for processors 
that do not have a third-level cache. 

Note that the bit controls only the third-level 
cache; and only if overall caching is enabled 
through the CD flag of control register CR0, the 
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the 
L3 Cache.”

7 Performance Monitoring Available (R)

See Table 2-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is 
suppressed during a Split Lock access. When 
clear (default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When 
clear (default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W) 

When set, interrupt reporting through the 
FERR# pin is enabled; when clear, this interrupt 
reporting function is disabled. 
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When this flag is set and the processor is in the 
stop-clock state (STPCLK# is asserted), 
asserting the FERR# pin signals to the 
processor that an interrupt (such as, INIT#, 
BINIT#, INTR, NMI, SMI#, or RESET#) is pending 
and that the processor should return to normal 
operation to handle the interrupt.

This flag does not affect the normal operation 
of the FERR# pin (to indicate an unmasked 
floating-point error) when the STPCLK# pin is 
not asserted.

11 Branch Trace Storage Unavailable 
(BTS_UNAVILABLE) (R)

See Table 2-2.

When set, the processor does not support 
branch trace storage (BTS); when clear, BTS is 
supported.

12 PEBS_UNAVILABLE: Processor Event Based 
Sampling Unavailable (R)

See Table 2-2.

When set, the processor does not support 
processor event-based sampling (PEBS); when 
clear, PEBS is supported.

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus 
to core ratio and voltage according to the value 
last written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor 
does not change the VID signals or the bus to 
core ratio when the processor enters a thermal 
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not 
alter the contents of this bit location. The 
processor is operating out of spec if both this 
bit and the TM1 bit are set to disabled states.

17:14 Reserved

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 2-2.
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19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache 
line of the 128-byte sector containing currently 
required data. When set to 0, the processor 
fetches both cache lines in the sector.

Single processor platforms should not set this 
bit. Server platforms should set or clear this bit 
based on platform performance observed in 
validation and testing. 

BIOS may contain a setup option that controls 
the setting of this bit.

21:20 Reserved

22 3, 4, 6 Limit CPUID MAXVAL (R/W) 

See Table 2-2.

Setting this can cause unexpected behavior to 
software that depends on the availability of 
CPUID leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

24 L1 Data Cache Context Mode (R/W) 

When set, the L1 data cache is placed in shared 
mode; when clear (default), the cache is placed 
in adaptive mode. This bit is only enabled for IA-
32 processors that support Intel Hyper-
Threading Technology. See Section 11.5.6, “L1 
Data Cache Context Mode.”

When L1 is running in adaptive mode and CR3s 
are identical, data in L1 is shared across logical 
processors. Otherwise, L1 is not shared and 
cache use is competitive.

If the Context ID feature flag (ECX[10]) is set to 
0 after executing CPUID with EAX = 1, the 
ability to switch modes is not supported. BIOS 
must not alter the contents of 
IA32_MISC_ENABLE[24].

33:25 Reserved

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved
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18 PLATFORM Requirements

When set to 1, indicates the processor has 
specific platform requirements. The details of 
the platform requirements are listed in the 
respective data sheets of the processor.

63:19 Reserved

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last 
interrupt that was handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction. 

63:32 Reserved

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If 
IA-32e mode is active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch 
instruction. 

63:32 Reserved

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch 
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3, 
4, 6

Unique Debug Control (R/W) 

Controls how several debug features are used. 
Bit definitions are discussed in the referenced 
section.

See Section 17.13.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH_TOS 0, 1, 2, 3, 
4, 6

Unique Last Branch Record Stack TOS (R/O) 

Contains an index (0-3 or 0-15) that points to 
the top of the last branch record stack (that is, 
that points the index of the MSR containing the 
most recent branch record).

See Section 17.13.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture”; 
and addresses 1DBH-1DEH and 680H-68FH.
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1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/O) 

One of four last branch record registers on the 
last branch record stack. It contains pointers to 
the source and destination instruction for one 
of the last four branches, exceptions, or 
interrupts that the processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-1DEH are 
available only on family 0FH, models 0H-02H. 
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH. 

See Section 17.12, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for 
Processors based on Skylake Microarchitecture.”

1DCH 477 MSR_LASTBRANCH_1 0, 1, 2 Unique Last Branch Record 1

See description of the MSR_LASTBRANCH_0 
MSR at 1DBH.

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 
MSR at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 
MSR at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3, 
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”
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20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3, 
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3, 
4, 6

Shared Default Memory Types (R/W) 

See Table 2-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”
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300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



2-352 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

364H 868 MSR_MS_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



Vol. 4 2-353

MODEL-SPECIFIC REGISTERS (MSRS)

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It 
is only available on processor family 0FH, 
models 01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It 
is only available on processor family 0FH, 
models 01H-02H.
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3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3, 
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3, 
4, 6

Shared Processor Event Based Sampling (PEBS) (R/W) 

Controls the enabling of processor event 
sampling and replay tagging. 

12:0 See Table 19-38.

23:13 Reserved

24 UOP Tag 

Enables replay tagging when set.
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25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default). 

See Section 18.6.4.3, “IA32_PEBS_ENABLE 
MSR,” for an explanation of the target logical 
processor. 

This bit is called ENABLE_PEBS in IA-32 
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE 
MSR,” for an explanation of the target logical 
processor. 

This bit is reserved for IA-32 processors that do 
not support Intel Hyper-Threading Technology.

63:27 Reserved

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3, 
4, 6

Shared See Table 19-38.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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406H 1030 IA32_MC1_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. When not implemented in the processor, 
all reads and writes to this MSR will cause a 
general-protection exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

Table 2-49.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



Vol. 4 2-357

MODEL-SPECIFIC REGISTERS (MSRS)

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities 
(R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-Based 
VM-Execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary 
Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 2-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-Exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see 
Table 2-2.
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484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-Entry 
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see 
Table 2-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX 
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see 
Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see 
Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary 
Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 2-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3, 
4, 6

Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) 
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers 
on the last branch record stack (680H-68FH). 
This part of the stack contains pointers to the 
source instruction for one of the last 16 
branches, exceptions, or interrupts taken by the 
processor.
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The MSRs at 680H-68FH, 6C0H-6CfH are not 
available in processor releases before family 
0FH, model 03H. These MSRs replace MSRs 
previously located at 1DBH-1DEH.which 
performed the same function for early releases. 

See Section 17.12, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for 
Processors based on Skylake Microarchitecture.”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 
680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 
680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 
680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 
680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 
680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 
680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 
680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 
680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 
680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 
680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 
680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 
680H.
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68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 
680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 
680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 
680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers 
on the last branch record stack (6C0H-6CFH). 
This part of the stack contains pointers to the 
destination instruction for one of the last 16 
branches, exceptions, or interrupts that the 
processor took.

See Section 17.12, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for 
Processors based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 
6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 
6C0H.
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6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 
6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 
6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W) 

See Table 2-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that 

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.
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2.19.1  MSRs Unique to Intel® Xeon® Processor MP with L3 Cache
The MSRs listed in Table 2-50 apply to Intel® Xeon® Processor MP with up to 8MB level three cache. These proces-
sors can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as 
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model 
encoding 3 or 4 (see CPUID instruction for more details).

The MSRs listed in Table 2-51 apply to Intel® Xeon® Processor 7100 series. These processors can be detected by 
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the 
presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID 
instruction for more details.). The performance monitoring MSRs listed in Table 2-51 are shared between logical 
processors in the same core, but are replicated for each core.

Table 2-50.  MSRs Unique to 64-bit Intel® Xeon® Processor MP with 
Up to an 8 MB L3 Cache

Register Address
Register Name

Fields and Flags
Model Avail-

ability
Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control and Counter Register (R/W) 

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control and Counter Register (R/W) 

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control and Counter Register (R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control and Counter Register (R/W) 

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache.”

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control and Counter Register (R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control Register (R/W)

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache.”

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event Counter Register (R/W) 

See Section 18.6.6, “Performance Monitoring on 64-
bit Intel Xeon Processor MP with Up to 8-MByte L3 
Cache.” 

Table 2-51.  MSRs Unique to Intel® Xeon® Processor 7100 Series

Register Address

Register Name
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107CCH MSR_EMON_L3_CTR_CTL0 6 Shared GBUSQ Event Control and Counter Register (R/W)

See Section 18.6.6, “Performance Monitoring on 
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”
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2.20 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor 
LV are listed in Table 2-52. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means each 
processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” means the 
MSR or the bit field in an MSR address governs the operation of both processor cores.

107CDH MSR_EMON_L3_CTR_CTL1 6 Shared GBUSQ Event Control and Counter Register (R/W) 

107CEH MSR_EMON_L3_CTR_CTL2 6 Shared GSNPQ Event Control and Counter Register (R/W) 

See Section 18.6.6, “Performance Monitoring on 
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”

107CFH MSR_EMON_L3_CTR_CTL3 6 Shared GSNPQ Event Control and Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_CTL4 6 Shared FSB Event Control and Counter Register (R/W) 

See Section 18.6.6, “Performance Monitoring on 
64-bit Intel Xeon Processor MP with Up to 8-
MByte L3 Cache.”

107D1H MSR_EMON_L3_CTR_CTL5 6 Shared FSB Event Control and Counter Register (R/W)

107D2H MSR_EMON_L3_CTR_CTL6 6 Shared FSB Event Control and Counter Register (R/W)

107D3H MSR_EMON_L3_CTR_CTL7 6 Shared FSB Event Control and Counter Register (R/W)

Table 2-52.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register 
Address Register Name

Shared/
Unique Bit Description
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0H 0 P5_MC_ADDR Unique See Section 2.23, “MSRs in Pentium Processors,” and see 
Table 2-2.

1H 1 P5_MC_TYPE Unique See Section 2.23, “MSRs in Pentium Processors,” and see 
Table 2-2.

6H 6 IA32_MONITOR_FILTER_SIZE Unique See Section 8.10.5, “Monitor/Mwait Address Range 
Determination,” and see Table 2-2.

10H 16 IA32_TIME_STAMP_COUNTER Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 

See Table 2-2.

The operating system can use this MSR to determine “slot” 
information for the processor and the proper microcode 
update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see 
Table 2-2.

Table 2-51.  MSRs Unique to Intel® Xeon® Processor 7100 Series (Contd.)

Register Address
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2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)
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3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W) 

See Table 2-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record 
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold 
the ‘to’ address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception 

Recording (Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 101B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B.

63:3 Reserved
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E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the 
WBINVD instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) can be used to restart the 
program. If this bit is cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by 
the instruction pointer pushed on the stack (when the 
machine check was generated) is directly associated with the 
error.
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2 MCIP

When set, this bit indicates that a machine check has been 
generated. If a second machine check is detected while this bit 
is still set, the processor enters a shutdown state. Software 
should write this bit to 0 after processing a machine check 
exception.

63:3 Reserved

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 2-2.

See Section 14.8.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 2-2. 

See Section 14.8.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation 
of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency 
transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, 
TM_SELECT has no effect. Neither TM1 nor TM2 will be 
enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features

(R/W) 

Allows a variety of processor functions to be enabled and 
disabled.

2:0 Reserved

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. 

6:4 Reserved

7 Shared Performance Monitoring Available (R)

See Table 2-2.
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9:8 Reserved

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending 
break event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model 
usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Reserved

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that 
the die temperature is at the pre-determined threshold, the 
Thermal Monitor 2 mechanism is engaged. TM2 will reduce the 
bus to core ratio and voltage according to the value last 
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not 
change the VID signals or the bus to core ratio when the 
processor enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing 
CPUID with EAX = 1, then this feature is not supported and 
BIOS must not alter the contents of this bit location. The 
processor is operating out of spec if both this bit and the TM1 
bit are set to disabled states.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved

22 Shared Limit CPUID Maxval (R/W) 

See Table 2-2. 

Setting this bit may cause behavior in software that depends 
on the availability of CPUID leaves greater than 2.

33:23 Reserved

34 Shared XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing 
the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).
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1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

Controls how several debug features are used. Bit definitions 
are discussed in Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the 
processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was 
handled. 

200H 512 MTRRphysBase0 Unique Memory Type Range Registers

201H 513 MTRRphysMask0 Unique Memory Type Range Registers

202H 514 MTRRphysBase1 Unique Memory Type Range Registers

203H 515 MTRRphysMask1 Unique Memory Type Range Registers

204H 516 MTRRphysBase2 Unique Memory Type Range Registers

205H 517 MTRRphysMask2 Unique Memory Type Range Registers

206H 518 MTRRphysBase3 Unique Memory Type Range Registers

207H 519 MTRRphysMask3 Unique Memory Type Range Registers

208H 520 MTRRphysBase4 Unique Memory Type Range Registers

209H 521 MTRRphysMask4 Unique Memory Type Range Registers

20AH 522 MTRRphysBase5 Unique Memory Type Range Registers

20BH 523 MTRRphysMask5 Unique Memory Type Range Registers

20CH 524 MTRRphysBase6 Unique Memory Type Range Registers

20DH 525 MTRRphysMask6 Unique Memory Type Range Registers

20EH 526 MTRRphysBase7 Unique Memory Type Range Registers

20FH 527 MTRRphysMask7 Unique Memory Type Range Registers

250H 592 MTRRfix64K_00000 Unique Memory Type Range Registers

258H 600 MTRRfix16K_80000 Unique Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Unique Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Unique Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Unique Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Unique Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Unique Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Unique Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Unique Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Unique Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Unique Memory Type Range Registers
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2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. When not implemented in 
the processor, all reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
IA32_MC1_STATUS register is clear. When not implemented in 
the processor, all reads and writes to this MSR will cause a 
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. When not implemented in 
the processor, all reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. When not implemented in 
the processor, all reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. When not implemented in 
the processor, all reads and writes to this MSR will cause a 
general-protection exception.
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413H 1043 MSR_MC3_MISC Unique Machine Check Error Reporting Register - contains additional 
information describing the machine-check error if the MISCV 
flag in the IA32_MCi_STATUS register is set.

414H 1044 MSR_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of 
#MC for errors produced by a particular hardware unit (or 
group of hardware units).

415H 1045 MSR_MC5_STATUS Unique Machine Check Error Reporting Register - contains information 
related to a machine-check error if its VAL (valid) flag is set. 
Software is responsible for clearing IA32_MCi_STATUS MSRs 
by explicitly writing 0s to them; writing 1s to them causes a 
general-protection exception.

416H 1046 MSR_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address 
of the code or data memory location that produced the 
machine-check error if the ADDRV flag in the 
IA32_MCi_STATUS register is set.

417H 1047 MSR_MC5_MISC Unique Machine Check Error Reporting Register - contains additional 
information describing the machine-check error if the MISCV 
flag in the IA32_MCi_STATUS register is set.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information”.

(If CPUID.01H:ECX.[bit 5])

481H 1153 IA32_VMX_PINBASED_CTLS Unique Capability Reporting Register of Pin-Based VM-Execution 
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5])

482H 1154 IA32_VMX_PROCBASED_CTLS Unique Capability Reporting Register of Primary Processor-Based 
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-Exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”.

(If CPUID.01H:ECX.[bit 5])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-Entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”.

(If CPUID.01H:ECX.[bit 5])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”.

(If CPUID.01H:ECX.[bit 5])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”.

(If CPUID.01H:ECX.[bit 5])
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2.21 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 2.22 for P6 
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium 
M processor. 

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”.

(If CPUID.01H:ECX.[bit 5])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”.

(If CPUID.01H:ECX.[bit 5])

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”.

(If CPUID.01H:ECX.[bit 5])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”.

(If CPUID.01H:ECX.[bit 5])

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Unique Capability Reporting Register of Secondary Processor-Based 
VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”.

(If CPUID.01H:ECX.[bit 5] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W) 

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management 
area.

63:32 Reserved

C000_
0080H

IA32_EFER Unique See Table 2-2.

10:0 Reserved

11 Execute Disable Bit Enable

63:12 Reserved

Table 2-53.  MSRs in Pentium M Processors

Register 
Address Register Name / Bit Fields

Bit Description
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1H 1 P5_MC_TYPE See Section 2.23, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot” information 
for the processor and the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R) 

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0 on the Pentium M processor.

13 Reserved
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14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 
31-0 hold the ‘from’ address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 17.15, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”.

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL Control Register

Used to program L2 commands to be issued via cache configuration 
accesses mechanism. Also receives L2 lookup response.

63:0 Reserved

11EH 281 MSR_BBL_CR_CTL3 Control register 3

Used to configure the L2 Cache.
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0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

4:1 Reserved

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always 
generated on write cycles. 

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is 
always enabled.

7:6 Reserved

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved

179H 377 IA32_MCG_CAP Read-only register that provides information about the machine-check 
architecture of the processor. 

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in 
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL 
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved

17AH 378 IA32_MCG_STATUS Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) can be used to restart the program. If this bit is cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) is directly associated with the error.
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2 MCIP

When set, this bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved

198H 408 IA32_PERF_STATUS See Table 2-2.

199H 409 IA32_PERF_CTL See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W). 

See Table 2-2. 

See Section 14.8.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 2-2. 

See Section 14.8.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.8.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

15:0 Reserved

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the 
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved
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3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of 
the Intel Thermal Monitor feature. This allows processor clocks to 
be automatically modulated based on the processor's thermal 
sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit determines if the 
thermal control circuit (TCC) will be activated when the processor's 
internal thermal sensor determines the processor is about to exceed its 
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will 
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control 
circuit enable bit.

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.

9:8 Reserved

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (RO) 

1 = Processor does not support processor event based sampling 
(PEBS); 

0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional 
messages that allow the processor to inform the chipset of its priority. 
The default is processor specific.

63:24 Reserved
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1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most 
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H).
• Section 17.15, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”.

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors).”

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction 
that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last 
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last 
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W) 

Sets the memory type for the regions of physical memory that are not 
mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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2.22 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available 
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this 
list have been designated as “architectural” and have had their names changed. See Table 2-2 for a list of the archi-
tectural MSRs.

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 2-2.

Points to the DS buffer management area, which is used to manage the 
BTS and PEBS buffers. See Section 18.6.3.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved

Table 2-54.  MSRs in the P6 Family Processors 
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0H 0 P5_MC_ADDR See Section 2.23, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.23, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”
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17H 23 IA32_PLATFORM_ID Platform ID (R) 

The operating system can use this MSR to determine “slot” information for 
the processor and the proper microcode update to load.

49:0 Reserved

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved

60 Clock Frequency Ratio Read.

63:61 Reserved

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved

8 Boot Strap Processor Indicator Bit

1 = BSP

10:9 Reserved

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled 
0 = Disabled 

31:12 APIC Base Address.

63:32 Reserved

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration 

(R/W) Enables and disables processor features; 

(R) indicates current processor configuration.

0 Reserved1

1 Data Error Checking Enable (R/W)

1 = Enabled
0 = Disabled 

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled 
0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled
0 = Disabled 
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4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled
0 = Disabled 

5 Reserved

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled
0 = Disabled 

7 BINIT# Driver Enable (R/W)

1 = Enabled
0 = Disabled 

8 Output Tri-state Enabled (R)

1 = Enabled
0 = Disabled 

9 Execute BIST (R)

1 = Enabled
0 = Disabled 

10 AERR# Observation Enabled (R)

1 = Enabled
0 = Disabled 

11 Reserved

12 BINIT# Observation Enabled (R)

1 = Enabled
0 = Disabled 

13 In Order Queue Depth (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled
0 = Disabled 

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)
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27 Clock Frequency Ratio

63:28 Reserved1

33H 51 MSR_TEST_CTRL Test Control Register

29:0 Reserved

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88H 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

 89H 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

 8AH 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2

8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0) Performance Counter Register 

See Table 2-2.

C2H 194 PerfCtr1 (PERFCTR1) Performance Counter Register 

See Table 2-2.

FEH 254 MTRRcap Memory Type Range Registers

 116H 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during 
cache initialization accesses.

Reserved, 

Address bits [35:3]

Reserved Set to 0.

 118H  280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

119H  281 BBL_CR_CTL 

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache 
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved
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BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2 

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

11AH  282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access, 
Write only with Data = 0.

11BH  283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command 
is in progress. D[0] = 1 = BUSY

11EH  286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved 

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110 
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)
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BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP Machine Check Global Control Register

17AH 378 MCG_STATUS Machine Check Error Reporting Register - contains information related to a 
machine-check error if its VAL (valid) flag is set. Software is responsible 
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; 
writing 1s to them causes a general-protection exception.

17BH 379 MCG_CTL Machine Check Error Reporting Register - controls signaling of #MC for 
errors produced by a particular hardware unit (or group of hardware 
units).

186H 390 PerfEvtSel0 (EVNTSEL0) Performance Event Select Register 0 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.
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18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

187H 391 PerfEvtSel1 (EVNTSEL1) Performance Event Select for Counter 1 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

18 E

Occurrence/Duration Mode Select.

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.
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20 INT

Enables the signaling of counter overflow via input to APIC.

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition.

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR Enables last branch, interrupt, and exception recording; taken branch 
breakpoints; the breakpoint reporting pins; and trace messages. This 
register can be written to using the WRMSR instruction, when operating 
at privilege level 0 or when in real-address mode.

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP 32-bit register for recording the instruction pointers for the last branch, 
interrupt, or exception that the processor took prior to a debug exception 
being generated.

1DCH 476 LASTBRANCHTOIP 32-bit register for recording the instruction pointers for the last branch, 
interrupt, or exception that the processor took prior to a debug exception 
being generated.

1DDH 477 LASTINTFROMIP Last INT from IP

1DEH 478 LASTINTTOIP Last INT to IP

200H 512 MTRRphysBase0 Memory Type Range Registers

201H 513 MTRRphysMask0 Memory Type Range Registers

202H 514 MTRRphysBase1 Memory Type Range Registers

203H 515 MTRRphysMask1 Memory Type Range Registers

204H 516 MTRRphysBase2 Memory Type Range Registers

205H 517 MTRRphysMask2 Memory Type Range Registers

206H 518 MTRRphysBase3 Memory Type Range Registers

207H 519 MTRRphysMask3 Memory Type Range Registers

208H 520 MTRRphysBase4 Memory Type Range Registers

209H 521 MTRRphysMask4 Memory Type Range Registers

20AH 522 MTRRphysBase5 Memory Type Range Registers
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20BH 523 MTRRphysMask5 Memory Type Range Registers

20CH 524 MTRRphysBase6 Memory Type Range Registers

20DH 525 MTRRphysMask6 Memory Type Range Registers

20EH 526 MTRRphysBase7 Memory Type Range Registers

20FH 527 MTRRphysMask7 Memory Type Range Registers

250H 592 MTRRfix64K_00000 Memory Type Range Registers

258H 600 MTRRfix16K_80000 Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Memory Type Range Registers

2FFH 767 MTRRdefType Memory Type Range Registers

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL Machine Check Error Reporting Register - controls signaling of #MC for 
errors produced by a particular hardware unit (or group of hardware 
units).

401H 1025 MC0_STATUS Machine Check Error Reporting Register - contains information related to a 
machine-check error if its VAL (valid) flag is set. Software is responsible 
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; 
writing 1s to them causes a general-protection exception.

15:0 MC_STATUS_MCACOD 

31:16 MC_STATUS_MSCOD 

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV 

59 MC_STATUS_MISCV 

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC 

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.
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2.23 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs 
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) 
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without 
generating exceptions (see Section 2.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to 
Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family 
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are 
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

NOTES
1.Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.

2.The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) 
to “1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled 

until the processor is reset.
3.The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency 

selected is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB 
frequency the BIOS may choose to use bit 11 to implement its own shutdown policy.
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2.24 MSR INDEX
MSRs of recent processors are indexed here for convenience. IA32 MSRs are excluded from this index.

Table 2-55.  MSRs in the Pentium Processor

Register 
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

11H 17 CESR See Section 18.6.9.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.6.9.3, “Events Counted.”

13H 19 CTR1 Section 18.6.9.3, “Events Counted.”

MSR Name and CPUID DisplayFamily_DisplayModel Location

MSR_ALF_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_ALF_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_ANY_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_ANY_GFXE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_B0_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_CTR2 

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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MSR_B0_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_MASK

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B0_PMON_MATCH

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_MASK

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_B1_PMON_MATCH

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_BBL_CR_CTL

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_BBL_CR_CTL3

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_BIOS_DEBUG

06_8CH, 06_8DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-45

MSR_BIOS_DONE

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_BIOS_MCU_ERRORCODE

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

06_8CH, 06_8DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-45

MSR_BPU_CCCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_CCCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_CCCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_CCCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_COUNTER0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BPU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BR_DETECT_COUNTER_CONFIG_i

06_66H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-42

MSR_BR_DETECT_CTRL

06_66H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-42

MSR_BR_DETECT_STATUS

06_66H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-42

MSR_BSU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_BSU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_C0_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_BOX_FILTER

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

MSR_C0_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_C0_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C0_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24
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06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C13_PMON_BOX_FILTER

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

MSR_C13_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C13_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C14_PMON_BOX_FILTER

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

MSR_C14_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C14_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_BOX_CTL

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_BOX_FILTER1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_BOX_STATUS

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_CTR0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_CTR1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_CTR2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_CTR3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_EVNTSEL0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-396 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C15_PMON_EVNTSEL1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_EVNTSEL2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C15_PMON_EVNTSEL3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_BOX_CTL

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_BOX_FILTER1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_BOX_STATUS

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_CTR0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_CTR3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_CTR2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_CTR3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_EVNTSEL0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_EVNTSEL1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_EVNTSEL2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C16_PMON_EVNTSEL3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_BOX_CTL

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_BOX_FILTER1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_BOX_STATUS

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_CTR0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_CTR1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-397

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C17_PMON_CTR2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_CTR3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_EVNTSEL0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_EVNTSEL1

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_EVNTSEL2

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C17_PMON_EVNTSEL3

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_BOX_FILTER

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

MSR_C2_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_C2_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-398 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_CTR4

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_C2_PMON_CTR5

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_C2_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C2_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C8_PMON_EVNT_SEL2

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C8_PMON_EVNT_SEL3

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C8_PMON_EVNT_SEL4

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C8_PMON_EVNT_SEL5

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C9_PMON_BOX_CTRL

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_BOX_FILTER

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

MSR_C9_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_BOX_OVF_CTRL

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C9_PMON_BOX_STATUS

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-407

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C9_PMON_CTR0

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_CTR1

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_CTR2

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_CTR3

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_CTR4

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C9_PMON_CTR5

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C9_PMON_EVNT_SEL0

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_EVNT_SEL1

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_EVNT_SEL2

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_EVNT_SEL3

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_C9_PMON_EVNT_SEL4

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_C9_PMON_EVNT_SEL5

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

MSR_CC6_DEMOTION_POLICY_CONFIG

06_37H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-9

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-408 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_CONFIG_TDP_CONTROL

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CONFIG_TDP_LEVEL1

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CONFIG_TDP_LEVEL2

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CONFIG_TDP_NOMINAL

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CORE_C1_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_66H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-42

MSR_CORE_C3_RESIDENCY

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_CORE_C6_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CORE_C7_RESIDENCY

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_CORE_GFXE_OVERLAP_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_CORE_HDC_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_CORE_PERF_LIMIT_REASONS

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_CORE_THREAD_COUNT

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-409

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_CRASHLOG_CONTROL

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_CRU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_CRU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_CRU_ESCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_CRU_ESCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_CRU_ESCR4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_CRU_ESCR5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_DAC_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_DAC_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_DRAM_ENERGY_ STATUS

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_DRAM_PERF_STATUS

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_DRAM_POWER_INFO

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_DRAM_POWER_LIMIT

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-410 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_EBC_FREQUENCY_ID

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_EBC_HARD_POWERON

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_EBC_SOFT_POWERON

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_EBL_CR_POWERON

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_EFSB_DRDY0

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_EFSB_DRDY1

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_EMON_L3_CTR_CTL0

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL1

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL2

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL3

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL4

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL5

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL6

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-411

MODEL-SPECIFIC REGISTERS (MSRS)

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_CTR_CTL7

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-51

MSR_EMON_L3_GL_CTL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR_ERROR_CONTROL

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

MSR_FAST_UNCORE_MSRS_CAPABILITY

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_FAST_UNCORE_MSRS_CTL

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_FAST_UNCORE_MSRS_STATUS

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_FEATURE_CONFIG

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_25H, 06_2CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-18

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_2AH, 06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_FIRM_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FIRM_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_CCCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_CCCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_CCCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_CCCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_COUNTER0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_FLAME_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FLAME_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FSB_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FSB_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_FSB_FREQ

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_4CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-11

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

MSR_GQ_SNOOP_MESF

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_GRAPHICS_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_IFSB_BUSQ0

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IFSB_BUSQ1

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IFSB_CNTR7

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IFSB_CTL6

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IFSB_SNPQ0

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IFSB_SNPQ1

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-50

MSR_IQ_CCCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_CCCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_CCCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_CCCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_CCCR4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_CCCR5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_IQ_COUNTER0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_COUNTER4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_COUNTER5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IQ_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IS_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IS_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_ITLB_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_ITLB_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IX_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_IX_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_0_FROM_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_0_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_1_FROM_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_1_TO_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_10_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_10_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_11_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_11_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15
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06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_12_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_12_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_13_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_13_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_14_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_14_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_15_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_15_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49
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MSR_LASTBRANCH_16_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_16_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_17_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_17_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_18_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_18_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_19_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_19_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_2

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_2_FROM_IP

06_0FH, 06_17H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_2_TO_IP

06_0FH, 06_17H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2AH, 06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_20_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_20_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_21_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_21_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_22_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_22_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_23_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_23_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_24_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_24_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_25_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_25_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_26_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_26_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_27_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_27_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_28_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_28_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_29_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_29_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_3

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_3_FROM_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_3_TO_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_30_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_30_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_31_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_31_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_LASTBRANCH_4

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_4_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_4_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_5

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_5_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_5_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_6

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_6_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_6_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_7

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_7_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_7_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_8_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_8_TO_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_9_FROM_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_9_TO_IP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_LASTBRANCH_TOS

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LASTBRANCH_INFO_0

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_1

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_10

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_11

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_13

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_LBR_INFO_14

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_15

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_16

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_17

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_18

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_2

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_21

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_22

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_23

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_24

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_25

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_26

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_LBR_INFO_27

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_28

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_29

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_3

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_30

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_31

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_4

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_5

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_6

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_7

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_8

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_INFO_9

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

MSR_LBR_SELECT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_LER_FROM_LIP 

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_LER_TO_LIP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_M0_PMON_ADDR_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_ADDR_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_CTR5

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_DSP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_EVNT_SEL5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_ISS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_MAP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_MM_CONFIG

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_MSC_THR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_PGT

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_PLD

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_TIMESTAMP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M0_PMON_ZDP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_ADDR_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_ADDR_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR0

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-426 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_CTR5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_DSP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_EVNT_SEL5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_ISS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_MAP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_MM_CONFIG

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_MSC_THR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_PGT

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_PLD

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_TIMESTAMP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_M1_PMON_ZDP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

IA32_MC0_MISC / MSR_MC0_MISC

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR_MC0_RESIDENCY

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

IA32_MC1_MISC / MSR_MC1_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

IA32_MC10_ADDR / MSR_MC10_ADDR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC10_CTL / MSR_MC10_CTL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC10_MISC / MSR_MC10_MISC

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC10_STATUS / MSR_MC10_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC11_ADDR / MSR_MC11_ADDR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC11_CTL / MSR_MC11_CTL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23
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06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38
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06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26
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06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC8_STATUS / MSR_MC8_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC9_ADDR / MSR_MC9_ADDR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

IA32_MC9_CTL / MSR_MC9_CTL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-441

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-37

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

MSR_MCG_MISC

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R10

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R11

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R12

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R13

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R14

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R15

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R8

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_R9

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RAX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RBP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RBX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49
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0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RDI

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RDX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RFLAGS

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RIP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RSI

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-442 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MCG_RSP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MISC_FEATURE_CONTROL

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_MISC_PWR_MGMT

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_MOB_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MOB_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_CCCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_CCCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_CCCR2

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_CCCR3

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_COUNTER0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_COUNTER1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_COUNTER2

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_COUNTER3

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MS_ESCR0
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0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_MTRRCAP

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_OFFCORE_RSP_0

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47
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MSR_OFFCORE_RSP_1

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-18

06_2FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-19

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PCIE_PLL_RATIO

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

MSR_PCU_PMON_BOX_CTL

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_BOX_FILTER

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_BOX_STATUS

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_CTR0

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_CTR1

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_CTR2

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_CTR3

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_EVNTSEL0

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_EVNTSEL1

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_EVNTSEL2

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PCU_PMON_EVNTSEL3

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-24

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PEBS_DATA_CFG 
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06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_PEBS_ENABLE

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-13

06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-14

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-27

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_PEBS_FRONTEND

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PEBS_LD_LAT

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_PEBS_MATRIX_VERT

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_PEBS_NUM_ALT

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

MSR_PERF_CAPABILITIES

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR_PERF_GLOBAL_CTRL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR_PERF_GLOBAL_OVF_CTRL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR_PERF_GLOBAL_STATUS

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR_PERF_METRICS

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_PERF_STATUS

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_PKG_C10_RESIDENCY

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30 and 
Table 2-31
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06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

MSR_PKG_C2_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-5

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_C3_RESIDENCY

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_66H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-42

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_C4_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-5

MSR_PKG_C6_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-5

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_C7_RESIDENCY

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_C8_RESIDENCY

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-31

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

MSR_PKG_C9_RESIDENCY

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-31

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-38

MSR_PKG_CST_CONFIG_CONTROL

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-11

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-31

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-446 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-35

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_ENERGY_STATUS

06_37H, 06_4AH, 06_4CH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-8

06_5CH, 06_7AH, 06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3DH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H, 
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_HDC_CONFIG

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_HDC_DEEP_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_HDC_SHALLOW_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PKG_PERF_STATUS

06_5CH, 06_7AH, 06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-23

06_3AH, 06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3CH, 06_3DH, 06_3FH, 06_45H, 06_46H, 06_47H, 06_4EH, 06_4FH, 06_55H, 

 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

See Table 2-29

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_POWER_INFO

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-10

06_5CH, 06_7AH, 06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3DH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H, 
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKG_POWER_LIMIT

06_37H, 06_4AH, 06_4CH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-8

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-10

06_5CH, 06_7AH, 06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3DH, 06_3EH, 06_3FH, 06_45H, 06_46H, 06_47H, 
06_4EH, 06_4FH, 06_55H, 06_56H, 06_5EH, 06_66H, 06_8EH, 06_9EH, 06_7DH, 06_7EH

See Table 2-20

06_57H, 06_85H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PKGC_IRTL1

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

MSR_PKGC_IRTL2

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

MSR_PKGC3_IRTL

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_PKGC6_IRTL

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_PKGC7_IRTL

06_2AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-21

MSR_PLATFORM_BRV

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_PLATFORM_ENERGY_COUNTER

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PLATFORM_ID

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-7

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR_PLATFORM_INFO

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29 and 
Table 2-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PLATFORM_POWER_LIMIT

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PMG_IO_CAPTURE_BASE

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-11

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PMH_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_PMH_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_PMON_GLOBAL_CONFIG

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33
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MSR_PMON_GLOBAL_CTL

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_PMON_GLOBAL_STATUS

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-28

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_POWER_CTL

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

MSR_PP0_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-8

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PP0_POLICY

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-21

MSR_PP0_POWER_LIMIT

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-11

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_PP1_ENERGY_STATUS

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-21

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_PP1_POLICY

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-21

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_PP1_POWER_LIMIT

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-21

06_3CH, 06_45H, 06_46H See Table 2-30

MSR_PPERF

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_PPIN

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

MSR_PPIN_CTL

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

MSR_PRMRR_BASE_0

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

MSR_PRMRR_PHYS_BASE

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MODEL-SPECIFIC REGISTERS (MSRS)

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_PRMRR_PHYS_MASK

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_PRMRR_VALID_CONFIG

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_RELOAD_FIXED_CTRx

06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-14

MSR_RELOAD_PMCx

06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-14

MSR_RING_RATIO_LIMIT

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_R0_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_CTR7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL4

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_EVNT_SEL7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_IPERF0_P7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_QLX_P0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_QLX_P1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_QLX_P2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R0_PMON_QLX_P3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR11

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR12

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_CTR9

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL11

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL12

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_EVNT_SEL9

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P11

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P12

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_IPERF1_P9

MSR Name and CPUID DisplayFamily_DisplayModel Location



2-452 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_QLX_P4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_QLX_P5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_QLX_P6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_R1_PMON_QLX_P7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_RAPL_POWER_UNIT

06_37H, 06_4AH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-8

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-10

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_RAT_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_RAT_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_RING_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_S0_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_BOX_FILTER

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S0_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S0_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_CTR3

MSR Name and CPUID DisplayFamily_DisplayModel Location



Vol. 4 2-453

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S0_PMON_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S0_PMON_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S1_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_BOX_FILTER

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S1_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S1_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33
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2-454 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S1_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S1_PMON_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S1_PMON_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_S2_PMON_BOX_CTL

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_BOX_FILTER

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_CTR0

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_CTR1

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_CTR2

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_CTR3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_EVNTSEL0

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_EVNTSEL1

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_EVNTSEL2

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S2_PMON_EVNTSEL3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_BOX_CTL

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_BOX_FILTER

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_CTR0

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_CTR1

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_CTR2

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_CTR3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_EVNTSEL0

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_EVNTSEL1

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_EVNTSEL2

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_S3_PMON_EVNTSEL3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-33

MSR_SAAT_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_SAAT_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_SGXOWNEREPOCH0

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_SGXOWNEREPOCH1

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_SMI_COUNT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_SMM_BLOCKED

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_SMM_DELAYED

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_SMM_FEATURE_CONTROL

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

MSR_SMM_MCA_CAP

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_SMRR_PHYSBASE

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR_SMRR_PHYSMASK

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

MSR_SSU_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TBPU_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TBPU_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TC_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TC_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TC_PRECISE_EVENT

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

MSR_TEMPERATURE_TARGET

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-20

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-26

06_56H, 06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-36

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_THERM2_CTL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-4

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-49

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-53

MSR_THREAD_ID_INFO

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-32

MSR_TRACE_HUB_STH_ACPIBAR_BASE

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_TURBO_ACTIVATION_RATIO

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-29

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-47

MSR_TURBO_GROUP_CORECNT

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

MSR_TURBO_POWER_CURRENT_LIMIT

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

MSR_TURBO_RATIO_LIMIT

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-6

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-10

06_5CH, 06_7AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-15

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_1_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30
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06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_1_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_1_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_1_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_2_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_2_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_2_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_2_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_2_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_2_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_2_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_2_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_2_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_3_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_3_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_3_PERFCTR2
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06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_3_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_3_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_3_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_CBO_3_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_3_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_3_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_4_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

MSR_UNC_CBO_CONFIG

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_PERF_FIXED_CTR

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30
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06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_PERF_FIXED_CTRL

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_PERF_GLOBAL_CTRL

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNC_PERF_GLOBAL_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-22

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-40

MSR_UNCORE_ADDR_OPCODE_MATCH

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_FIXED_CTR_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_FIXED_CTR0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERF_GLOBAL_STATUS

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PERFEVTSEL7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC0
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06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_UNCORE_PMC6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PMC7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-16

MSR_UNCORE_PRMRR_BASE

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_UNCORE_PRMRR_MASK

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MSR_UNCORE_PRMRR_PHYS_BASE

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_UNCORE_PRMRR_PHYS_MASK

06_8EH, 06_9EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-41

MSR_VR_CURRENT_CONFIG

06_8CH, 06_8DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-45

MSR_W_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17
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MSR_W_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_FIXED_CTR

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_W_PMON_FIXED_CTR_CTL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-17

MSR_WEIGHTED_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H, 06_7DH, 06_7EH, 06_8CH, 06_8DH. . . . See Table 2-39

MTRRfix16K_80000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix16K_A0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_C0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_C8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_D0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_D8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_E0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_E8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_F0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRfix4K_F8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54
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MTRRfix64K_00000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase0

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase1

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase2

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase3

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase4

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase5

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysBase7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask0

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask1

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask2

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask3

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask4

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MTRRphysMask5

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MTRRphysMask7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-52

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MSR_TEST_CTRL

06_86H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-14

06_7DH, 06_7EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 2-54

MSR Name and CPUID DisplayFamily_DisplayModel Location
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