intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 1:
Basic Architecture

NOTE: The Intel® 64 and IA-32 Architectures Software Developer’s
Manual consists of five volumes: Basic Architecture, Order Number
253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667, System
Programming Guide, Part 1, Order Number 253668; System Programming
Guide, Part 2, Order Number 253669. Refer to all five volumes when
evaluating your design needs.

Order Number: 253665-028US
September 2008

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*QOther names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’'s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

CONTENTS

PAGE

CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THISMANUAL.vevveannen, 1-1
1.2 OVERVIEW OF VOLUME 1: BASICARCHITECTUREcovieii i eeieeiieanas 1-3
13 NOTATIONAL CONVENTIONS ..ottt ettt et et e e e e 1-5
1.3.1 Bit and Byte Order. . ..vv ittt e 1-5
1.3.2 Reserved Bits and Software Compatibility...............cooiiiiii i 1-5
1.3.2.1 INSTrUCTION OPEIaNdS. ..\ttt e 1-6
133 Hexadecimal and Binary NUMbers.o 1-7
134 Segmented AdAreSSINg. . ..o vttt e 1-7
135 A New Syntax for CPUID, CR,and MSRVaIUESoviriiiiiiiiiii i 1-7
136 EXCPTIONS ittt e 1-8
14 RELATED LITERATURE .. .ttt et ettt e 1-9
CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES
2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURE.ovvieeieeiieeanen, 2-1
2.1.1 16-bit Processors and Segmentation (1978) ... 2-1
2.1.2 The Intel® 286 Processor (1982)uvu ettt ete et eeenans 2-1
213 The INtel386 ™ Processor (1985)vvu ettt et e ittt eeeennns 2-2
2.1.4 The INtel486™ Processor (1989)'vrreeeieeee ettt iieeeiniaes 2-2
2.15 The Intel® Pentium® Processor (1993). v vttt iieeeieeeeinins 2-2
2.16 The P6 Family of Processors (1995-1999) ...t 2-3
2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006)ovvvevveenennnnn. 2-4
2.18 The Intel® Xeon® Processor (2007-2007) .t ee e 2-4
219 The Intel® Pentium® M Processor (2003-CUMFENt).vvvveeeerieeeieeeinnnss 2-5
2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007)...........covvennn.. 2-5
2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007)............. 2-5
2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and

Intel® Core™2 Processor Family (2006-CUMTeNt).eovvreirreeieeeirieainnnns 2-6
2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and

Intel® Core™2 Processor Family (2007-CUMTENT)vvvveeieieeeiieeeeininnnns 2-6
2.1.14 The Intel® Atom™ Processor Family (2008-CUMTeNt)ovvveerveeirreeireennns. 2-7
2.2 MORE ON SPECIFIC ADVANCES. .. ottt 2-7
2.2.1 P6 Family Microarchitectureovuii e 2-7
2.2.2 Intel NetBurst® MicroarchiteCtUre. et ettt et et eeieaeneas 2-9
2.2.2.1 The Front ENd Pipelineovini i e 2-11
2222 Out-Of-0Order EXeCUtioN COMettt 2-12
2.2.2.3 Retirement Unito 2-12
223 INtel® Core™ MIiCroarChiteCtUNE ...\ttt et et e et 2-12
2.2.3.1 The FroNT BN ... e 2-14
2232 (o TaL N o 0o = 2-15
2.2.4 Intel® Atom™ MicroarchiteCtureo o' ettt et ie e 2-15
2.2.5 SIMD INSTIUCTIONS . . vttt e e e e 2-16

Vol. 1 iii

CONTENTS

PAGE
2.2.6 Hyper-Threading Technologycoiririi i i 2-19
2.2.6.1 Some Implementation NOTES.ovve i 2-20
2.2.7 Multi-Core TeChNOIOgY ...\ oviv it e e s 2-20
228 INTEI® B4 ArChITECEUNE. ..o\ttt ettt ettt ettt et 2-22
229 Intel® Virtualization Technology (INtel® VT) ..ot 2-23
2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS ...ttt eiieeiieeenens 2-23
CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1 MODES OF OPERATION . . o1ttt sttt e e i 3-1
3.1.1 INtEl® B4 ArChITECTUNE & ..\ttt ettt e e 3-2
3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT ...t 3-2
3.2.1 64-Bit Mode Execution ENVIFONMENTvi i 3-6
33 MEMORY ORGANIZATION. . .ottt e e et eans 3-8
3.3.1 [A-32 MemMOry MOdEISo 3-8
33.2 Paging and Virtual Memoryovv i e 3-10
333 Memory Organization in 64-BitMode.cooviiiii e 3-10
334 Modes of Operation vs.Memory Model ..ot i 3-10
335 32-Bit and 16-Bit Address and Operand Sizesccoviiiiiii i 3-11
336 Extended Physical Addressing in ProtectedMode...............cooiiiiiiiinn, 3-12
3.3.7 Address Calculations in 64-BitMode ... 3-12
3.3.7.1 CanoNICal AdAreSSING. . o\ vttt ettt e 3-13
3.4 BASIC PROGRAM EXECUTION REGISTERS. ..\ttt ettt i 3-13
34.1 General-PUrpose RegiSTerSv it i e i e 3-14
3.4.1.1 General-Purpose Registers in64-BitMode ... 3-16
34.2 SEOMENT RIS OIS, ..ottt it e e e 3-17
34.2.1 Segment Registers in64-BitMode.cooviiiiiiii i 3-20
3.4.3 EFLAGS REGISTO . ot ettt ettt e e e e e 3-20
3.4.3.1 StATUS Flags . oot e e 3-21
3432] = o 3-22
3433 System Flags and IOPL Field.o e 3-23
3434 RFLAGS Registerin 64-BitMode.........coviviiiii e 3-24
35 INSTRUCTION POINTER. . . .ottt ettt ettt 3-24
3.5.1 Instruction Pointer in 64-BitMode ... 3-24
3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES. ... it 3-24
3.6.1 Operand Size and Address Size in64-BitModecooviiiiiiiiiiiinininns 3-25
3.7 OPERAND ADDRESSING .ttt ettt 3-26
3.7.1 Immediate OPerandsvvit it e e 3-27
3.7.2 REGISTEr OPEraNAS . oottt e e 3-27
3.7.2.1 Register Operands in64-BitMode ..ot 3-28
373 MEMOTY OPEIANGS . . vttt et e et e e 3-28
3.7.3.1 Memory Operands in 64-BitMode.coiiiiii e 3-29
374 Specifying a Segment Selector.o e 3-29
3.7.4.1 Segmentation iN64-BitMode. ...t e 3-30
3.7.5 Specifying an Offset . ..o e 3-30
3.7.5.1 Specifying an Offset in 64-BitMode..........cccoviiiiii i 3-32
3.7.6 Assembler and Compiler Addressing Modes............covviviiiiiiiiiiiins 3-32

iv Vol. 1

CONTENTS

PAGE
3.7.7 1/0 POt AdArESSiNg. . oo vttt et e e 3-33
CHAPTER 4
DATA TYPES
4.1 FUNDAMENT AL DAT A TYPES ittt e e 4-1
41.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords 4-2
4.2 NUMERIC DAT A TYPES . .ttt e 4-3
4.2.1) =T 0 =] P 4-4
4211 UNSIGNed INTE0EIS .. vttt et e e 4-5
4.2.1.2 SIGNEA INTEAETS ..\ttt 4-5
422 Floating-Point Data TYPES ... vvv ittt e 4-6
43 POINTER DAT A TYPES . .ttt e 4-9
431 Pointer Data Typesin64-BitMode..........cc i e 4-9
44 BIT FIELD DAT A TY P . et et e e e 4-10
45 STRING DAT A TYPES ittt e e 4-10
46 PACKED SIMD DATA TYPES ..ttt 4-11
46.1 64-Bit SIMD Packed Data TYPeS ... v vttt 4-11
46.2 128-Bit Packed SIMD Data TYPeS. ..ottt ettt et i ittt i 4-12
4.7 BCD AND PACKED BCD INTEGERS. . . .o vt e ottt et 4-13
48 REAL NUMBERS AND FLOATING-POINT FORMATS. ...ttt 4-15
4.8.1 Real NUMbDEr Sy STem .ot e e e e 4-16
482 Floating-Point FOrmMat ...t e e 4-16
4.8.2.1 Normalized NUMDETSt e 4-18
4822 Biased EXPONENT . ..ot e 4-18
483 Real Number and Non-number Encodingsovvviiiiiiiiiii s 4-19
4.83.1 SIGNEA ZEI0S . ittt et e 4-20
483.2 Normalized and Denormalized Finite Numberscovviviiiniennnn. 4-20
4833 Signed INFINIties . ..o 4-21
4834 AN S L 4-21
483.5 Operating on SNaNs and QNaNS. ..ot e 4-22
483.6 Using SNaNs and QNaNs in Applicationscccoviiiiiiiiiiiiii e, 4-23
483.7 QNaN Floating-Point Indefinite. ... 4-24
484 ROUNAING .« vt e e 4-24
484.1 Rounding Control (RC) Fieldsovvre e 4-25
484.2 Truncation with SSE and SSE2 Conversion Instructions................covvnts. 4-26
49 OVERVIEW OF FLOATING-POINT EXCEPTIONS. ..\ttt i 4-26
491 Floating-Point Exception Conditionsc.ovi i i 4-28
49.1.1 Invalid Operation Exception (#1) ... e 4-28
49.1.2 Denormal Operand Exception (HD).......covvririi e 4-28
4913 Divide-By-Zero Exception (HZ)ovviiii i 4-29
49.1.4 Numeric Overflow Exception (HO)covviriiii i 4-29
4915 Numeric Underflow Exception (HU)........covvviiiiii e 4-30
49.1.6 Inexact-Result (Precision) Exception (#P) ... 4-31
49.2 Floating-Point EXception Priorityc.vvvriii e 4-32
493 Typical Actions of a Floating-Point ExceptionHandlerccovnnas 4-33

Vol.1 v

CONTENTS

PAGE
CHAPTER 5
INSTRUCTION SET SUMMARY
5.1 GENERAL-PURPOSE INSTRUCTIONSttt ettt 5-2
51.1 Data Transter INStrUCHIONS. v o'ttt it e e it et i inans 5-3
51.2 Binary Arithmetic INSTruCtionSot e e e 5-4
51.3 Decimal Arithmetic INStrUCtIONS . ..ot i i e e ettt i eees 5-4
514 LOoGICal INSTTUCTIONS .\ vttt e e e 5-5
515 Shift and Rotate INSTrUCHIONS . ..o\t e e e 5-5
5.16 Bit and Byte INSTrUCtioNSo vt e e 5-5
51.7 Control TransTer INStrUCTIONS ..\ v vttt e i i et e et 5-6
518 SHING IS TUCTIONS . .o e 5-7
519 74 N [T3 1 ot o o 3 5-8
5.1.10 Enter and Leave INStrUCiONS .. v vttt ittt i i i i i 5-8
5.1.11 Flag Control (EFLAG) INSTrUCTIONS 'vvi i aes 5-8
51.12 Segment Register INSTrUCtioNS. vv ettt 5-9
5.1.13 Miscellaneous INSTrUCTIONS. . v vttt e i i i i i 5-9
5.2 X87 FPU INSTRUCTIONS .ttt ettt et 5-9
5.2.1 x87 FPU Data Transfer INStructions.ottt i i i i i 5-9
5.2.2 x87 FPU Basic Arithmetic INnStructionscoviiiiii i e 5-10
523 x87 FPU Comparison INSTrUCtioNS.vvvr vt 5-11
524 x87 FPU Transcendental INStructionsc.oiiii i 5-11
5.2.5 x87 FPU Load Constants INStrucCtions ..o e e 5-12
526 X87 FPU Control INSTruCTioNS . ..ot 5-12
53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONSvv e 5-13
54 MMX ™ INSTRUCTIONS ittt et et e et 5-13
5.4.1 MMX Data Transfer INStructions vvv vt e e e i 5-13
54.2 MMX ConVersion INStrUCIONS v vttt et e e e iene s 5-14
543 MMX Packed Arithmetic INStructionso 5-14
544 MMX Comparison INStrUCtioNScviu it i e i 5-14
545 MMX Logical INStrUCHiONS . ..ot e 5-15
5.4.6 MMX Shift and Rotate INStruCtions.ovvi i e s 5-15
54.7 MMX State Management INStrUCtioNSov vttt 5-15
55 SSE INSTRUCTIONS Lttt e et e e e e e 5-15
5.5.1 SSE SIMD Single-Precision Floating-Point Instructionscocoiinie 5-16
5.5.1.1 SSE Data Transfer INStruCtionSovv v e e i nee s 5-16
55.1.2 SSE Packed Arithmetic INStructions e 5-17
55.1.3 SSE Comparison INSTrUCTIONS. ..o v vttt et 5-17
5514 SSE Logical INSTMUCTIONS ..\ v vttt e e 5-18
5515 SSE Shuffle and Unpack INnStructionsoovviiiiiii e 5-18
5.5.1.6 SSE Conversion INStrUCtiONS . ..ot e e e 5-18
55.2 SSE MXCSR State Management INStructions.c.oovivvi it 5-19
553 SSE 64-Bit SIMD Integer INStructions.ov it 5-19
554 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions. 5-19
56 SSE2 INSTRUCTIONS . .ottt e e et e e e 5-20
56.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions 5-20
5.6.1.1 SSE2 Data Movement INSTrUCtiONS ... vvv vt e e 5-20
56.1.2 SSE?2 Packed Arithmetic InStructions. ..o v 5-21

Vi Vol. 1

56.1.3
56.1.4
56.1.5
5.6.1.6
56.2
563
564
57
571
572
573
574
575
576
5.8
5.8.1
58.2
583
584
585
586
58.7
59
5.10
5.10.1
5.10.2
5.103
5.104
5.105
5.106
5.10.7
5.108
5.109
5.10.10
5.10.11
5.10.12
5.10.13
511
5111
511.2
5113
512
513
514
515

CONTENTS

PAGE

SSE2 Logical INSTMUCTIONS ..o\ v vttt 5-21

SSE2 Compare INSTIUCIONS . ..o vt 5-22

SSE2 Shuffle and Unpack INStructions ..o 5-22

SSEZ2 Conversion INSTIUCTIONSo vv vt 5-22

SSE2 Packed Single-Precision Floating-Point Instructions 5-23
SSE2 128-Bit SIMD Integer INStructions. . ..o e 5-23
SSE2 Cacheability Control and Ordering Instructions.cvvvviiiiiinnnnnn.. 5-24
SSE3 INSTRUCTIONS ettt e e e e 5-24
SSE3 x87-FP Integer Conversion Instruction............cocoviiiviiiiiiiininnnns, 5-25
SSE3 Specialized 128-bit Unaligned Data Load Instruction........................ 5-25
SSE3 SIMD Floating-Point Packed ADD/SUB Instructions............oovvvvvvnnn.. 5-25
SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions.....................s. 5-25
SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions. 5-26
SSE3 Agent Synchronization Instructions............cocoiiii i 5-26
SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS............ 5-26
Horizontal Addition/Subtraction.oviiiiii e 5-27
Packed ADbSOIUTE ValUBS v 5-28
Multiply and Add Packed Signed and Unsigned Bytesccoiinet 5-28
Packed Multiply High withRoundand Scaleoo i 5-28
Packed ShUffle BYteS. ...ttt e e e 5-28
Packed SigN . ..o v e e 5-28
Packed Align Right. e e 5-29
SSE4 INSTRUCTIONS ittt e e e 5-29
SSEA. T INSTRUCTIONS . ettt e e 5-30
Dword Multiply INStructionSo v e 5-30
Floating-Point Dot Product INStructions. ..o 5-30
Streaming Load Hint INStruction. ...t 5-30
Packed Blending INStrUCLIONS.o vttt 5-30
Packed Integer MIN/MAX INSTrUCHiONS ..ottt 5-31
Floating-Point Round Instructions with Selectable RoundingMode 5-31
Insertion and Extractions from XMM Registers........ccovviiiiiiiiiiinianenns 5-32
Packed Integer Format ConVErsioNSvvtit ittt i e 5-32
Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks.................. 5-33
HOFZoNtal SEarcho e 5-33
PaCcKed TOST. .ottt e 5-33
Packed Qword Equality COMPAriSONSc.vvnveiiiiii i eeieenns 5-33
Dword Packing With Unsigned Saturation............ccooiiiiiiiiiii i 5-33
SSE4.2 INSTRUCTION SET. vttt et 5-33
String and Text Processing INStructionsc..ooviviiiiiiniiiii i 5-34
Packed Comparison SIMD integer Instruction................coiiiiiiiiiiiinnnss 5-34
Application-Targeted Accelerator INStructionscovviiiiiriiniinnnnnn. 5-34
SYSTEM INSTRUCTIONS. .ttt e 5-34
64-BIT MODE INSTRUCTIONS. .. .ottt ettt e e 5-35
VIRTUAL-MACHINE EXTENSIONS ... 5-36
SAFER MODE EXTENSIONS . ..ttt 5-37

Vol. 1 vii

CONTENTS

PAGE
CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.1 PROCEDURE CALL TYPES . ..ttt 6-1
6.2 ST ACK S ot 6-1
6.2.1 SettiNG UpP @ Stack . ..ot e 6-2
6.2.2 Stack Al GNmMENT L 6-3
6.23 Address-Size Attributes for Stack ACCESSES ...\t vii i 6-3
6.24 Procedure Linking Information.cooi i e 6-4
6.2.4.1 Stack-Frame Base Pointer.vvuiiii 6-4
6.24.2 Return INStruction POINTer. vv e 6-4
6.2.5 Stack Behavior in 64-Bit Mode. ... e 6-5
6.3 CALLING PROCEDURES USING CALL AND RET . .o vttt 6-5
6.3.1 Near CALL and RET Operationovii ittt i i 6-5
6.3.2 Far CALL and RET Operation.vvivtit ittt et it ie e nieeans 6-6
6.3.3 Parameter Passing. .. .ovvv it 6-7
6.3.3.1 Passing Parameters Through the General-Purpose Registers................... 6-7
6.33.2 Passing Parameters on the Stackovvii i i 6-7
6333 Passing Parametersinan Argument List ... 6-8
634 Saving Procedure State Informationciii i 6-8
6.35 Calls to Other Privilege LEVEISc.ii i e 6-8
6.3.6 CALL and RET Operation Between Privilege Levelscccoviiiinnn 6-10
6.3.7 Branch Functions in 64-Bit Mode.c.vviiii 6-11
6.4 INTERRUPTS AND EXCEPTIONS . . .ottt ae s 6-13
6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures 6-14
6.4.2 Calls to Interrupt or Exception Handler Tasks...........covviiiiiiiiiiiinnnnn.. 6-17
643 Interrupt and Exception Handling in Real-Address Mode....................covue 6-17
6.4.4 INT n, INTO, INT 3, and BOUND INStructions.vvrveiiiiinie i, 6-18
6.4.5 Handling Floating-Point EXCEPLiONSo.vve i 6-18
6.4.6 Interrupt and Exception Behaviorin 64-BitMode ..., 6-19
6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES ..o 6-19
6.5.1 ENTER INSTTUCTION « . v et i 6-20
6.5.2 LEAVE INSTrUCHION. . ottt e e 6-25
CHAPTER 7
PROGRAMMING WITH
GENERAL-PURPOSE INSTRUCTIONS
7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS 7-1
7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE.............. 7-2
7.3 SUMMARY OF GP INSTRUCTIONS ...ttt e e 7-3
7.3.1 Data Transfer INSTrUCTIONS.ot 7-3
7.3.1.1 General Data Movement INSTructions.vov i 7-4
7.3.1.2 EXChanNge INStrUCtiONS .. .u v i e e 7-5
7313 Exchange Instructions in 64-BitMode. ..ot 7-7
7314 Stack Manipulation INStructions. ... 7-7
7315 Stack Manipulation Instructions in 64-BitModecoiiiiiii e, 7-9
7.3.16 Type Conversion INSTtrUCTIONSo v vttt 7-10
7317 Type Conversion Instructions in 64-BitModecoovviviiiiiiiiiinnn 7-11

viii Vol. 1

73.2
7.3.2.1
7322
7323
7324
73.25
733
7.33.1
733.2
734
735
736
7.3.6.1
73.6.2
7363
737
7.3.7.1
73.7.2
7373
7374
738
7.3.8.1
7382
7383
7384
7385
739
7.3.9.1
7.3.10
7.3.10.1
7.3.11
7312
7313
73.14
7.3.14.1
73.14.2
73143
7315
73.16
7.3.16.1
7.3.16.2
73.16.3
73.16.4
7317
73171
73172
73173

CONTENTS

PAGE

Binary Arithmetic INStruCtions.vv i e e 7-12
Addition and Subtraction INSTrUCtions.oovvv i e 7-12
Increment and Decrement INSTructions ... 7-12
Increment and Decrement Instructions in 64-BitMode.s 7-12
Comparison and Sign Change Instruction. ...t i 7-12
Multiplication and Divide INSTrucCtionsovvu i 7-13
Decimal Arithmetic INSTructions ...t e 7-13
Packed BCD Adjustment INSTruCtionsov vt i ieees 7-14
Unpacked BCD Adjustment INStructions.o.vvvvvvi i eiiiean 7-14
Decimal Arithmetic Instructions in 64-BitMode.............ccoviiiiiiiiiiinnt 7-15
LOgiCal INStrUCHIONSot e e e e 7-15
Shift and Rotate INSTruCtions.ot e 7-15
STt IS tTUCTIONS . .ot e 7-15
Double-Shift INStrUCIONSo e 7-17
Rotate INSTrUCTIONS e e e e 7-18
Bit and Byte INStruCtions.o e e 7-20
Bit Test and Modify INStructions.ovveii e 7-20
Bit SCan INStrUCTIONS. . ..o e 7-20
Byte Set on Condition INSTrUCtiONS ..ot e 7-20
TSt INStTUCTION « et e e 7-21
Control Transfer INSTrUCtioNS. . ..o vt e 7-21
Unconditional Transfer INStructions ..., 7-21
Conditional Transfer INStructions.o e 7-23
Control Transfer Instructions in64-BitMode..............cooviiiiiiiiinn.t, 7-25
Software Interrupt INStructions ..o 7-25
Software Interrupt Instructions in 64-bit Mode and Compatibility Mode 7-26
SHrING OPEratiONS. . v vttt 7-26
Repeating String Operationsvvvviiiiii e 7-27
String Operations iN 64-Bit Mode. ...t e 7-28
Repeating String Operations in 64-bitMode.ccovviiiii it 7-28
0 IS UC I ONS . . ot i ettt e i e e e e 7-28
1/0 Instructions iN 64-BitModeoiiiii i 7-29
Enter and Leave INStrUCTIONS. ... vv v e 7-29
Flag Control (EFLAG) INStrUCHIONS. . ..o v ettt 7-29
Carry and Direction FIag INStructionscoiiii i 7-29
EFLAGS Transfer INSTruCtionSvv v v 7-30
Interrupt FIag INStrUCtiONSottt e 7-31
Flag Control (RFLAG) Instructions in 64-BitMode..............cocoviiiiiiinnnns, 7-31
Segment Register INStrUCtioNSvviii e 7-31
Segment-Register Load and Store Instructions.ccovviiiiiiinnen... 7-31
Far Control Transfer INSTruCtionS. . ..ot vt e i 7-32
Software Interrupt INSTructionst 7-32
Load Far Pointer INStructions ... e e 7-32
Miscellaneous INSTIUCTIONS v vttt e e aas 7-32
Address Computation INStrucCtion. ..ot e 7-33
Table LookUp INStrUCTIONS. ...\ttt eeaas 7-33
Processor Identification Instruction............oov it 7-33

Vol. 1 ix

CONTENTS

PAGE

73174 No-Operation and Undefined Instructionscocoviiiiiiiiiinninn 7-33
CHAPTER 8
PROGRAMMING WITH THE X87 FPU
8.1 X87 FPU EXECUTION ENVIRONMENT ..ttt it 8-1
8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode.............c..coviiiiiiininnts, 8-2
8.1.2 X87 FPU Data RegiSTerS. ..ottt e i e e e 8-2
8.1.2.1 Parameter Passing With the x87 FPU Register Stack 8-5
8.1.3 X87 FPU Status REGISTOr ..o\ttt e 8-6
8.1.3.1 Top of Stack (TOP) POINTEr vv e e 8-6
8.1.3.2 Condition Code FIagso v vt 8-6
8.1.33 x87 FPU Floating-Point Exception FIags.coviiiii i 8-7
8134 Stack FaUIt Flag. . ..o e e 8-9
814 Branching and Conditional Moves on Condition Codesooviviviinninnnn 8-9
8.1.5 X87 FPU CoNTrol WO ..o vv ettt et 8-10
8.1.5.1 x87 FPU Floating-Point Exception Mask Bits.............cocoiiiiiiiinnnn.n, 8-11
8.1.5.2 Precision Control Field.oooi i e 8-11
8.1.53 Rounding Control Fieldo e 8-12
8.1.6 INfinity Control FIagovori i e e e 8-12
8.1.7 X87 FPU Tag Word. ..ot e 8-12
8.1.8 x87 FPU Instruction and Data (Operand) Pointers............coooviiiiiiiinnnn... 8-13
81.9 Last INSTrUCtion OPCOde v vttt e e 8-14
8.1.9.1 Fopcode Compatibility Sub-mode ... 8-14
8.1.10 Saving the x87 FPU's State with FSTENV/FNSTENV and FSAVE/FNSAVE 8-15
8.1.11 Saving the x87 FPU's State With FXSAVEooviiii i 8-17
8.2 XB7 FPU DAT A TYPES ottt e e e 8-17
8.2.1 D012 T T =L 8-19
8.2.2 Unsupported Double Extended-Precision

Floating-Point Encodings and Pseudo-Denormalscocoviiiiiiiiinnn, 8-20
83 X86 FPU INSTRUCTION SET .ttt ittt ettt ittt aees 8-21
8.3.1 Escape (ESC) INSTrUCHIONS . . v v ettt 8-22
83.2 X87 FPU INStruction Operands.ovvveiuii ittt 8-22
833 Data Transfer INSTruCtionsS.o . vv e 8-22
834 Load Constant INSTrUCTIONSo vt e 8-24
835 Basic Arithmetic INStruCtionsvev e 8-24
836 Comparison and Classification INStructions.coovi it 8-26
8.3.6.1 Branching on the x87 FPU Condition Codes.ooviiiiiiiiiiiiiiininnns 8-28
83.7 Trigonometric INSTrUCTIONS v.v it e 8-29
8.3.8 P e 8-30
8.3.9 Logarithmic, Exponential, and Scale ... 8-31
8.3.10 Transcendental INSTrUCtion ACCUMACY. vv vttt 8-31
8.3.11 X87 FPU Control INSTrUCTIONS . ..o v v vttt eee e 8-32
83.12 Waiting vs. Non-waiting INStructions ... e 8-33
8.3.13 Unsupported x87 FPU INSTruCtions. . ..ot 8-34
84 X87 FPU FLOATING-POINT EXCEPTION HANDLING.ot 8-34
8.4.1 Arithmetic vs. Non-arithmetic Instructions. ..o 8-35
8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS oo 8-36

X Vol. 1

CONTENTS

PAGE
8.5.1 Invalid Operation EXCEPLiON . ..o vt e e e 8-36
8.5.1.1 Stack Overflow or Underflow Exception (#IS) ..o, 8-37
8.5.1.2 Invalid Arithmetic Operand Exception (#IA) ... 8-38
8.5.2 Denormal Operand Exception (#D).vriiiii i 8-39
8.5.3 Divide-By-Zero EXcepltion (HZ)vvvririi e 8-40
854 Numeric Overflow EXCeption (HO)vvvuinii i 8-40
8.5.5 Numeric Underflow Exception (HU).ooiriiiiii i i 8-41
8.5.6 Inexact-Result (Precision) Exception (HP) ... 8-42
8.6 X87 FPU EXCEPTION SYNCHRONIZATION. ..ottt 8-43
8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWAREot 8-45
8.7.1 NativE MOAE .. o 8-45
8.7.2 MS-DOS* Compatibility Sub-modecoviiiii i 8-45
8.7.3 Handling x87 FPU Exceptionsin Softwareccoovii i 8-46
CHAPTER 9
PROGRAMMING WITH INTEL®° MMX™ TECHNOLOGY
9.1 OVERVIEW OF MMX TECHNOLOGY. ..\ttt ettt et ie e iaaaes 9-1
9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT . ..\vviiii i iiiieieans 9-2
9.2.1 MMX Technology in 64-Bit Mode and CompatibilityModecovut 9-2
9.2.2 MM RIS OIS . v ettt ittt it e et e e 9-3
9.23 MM DaTa T DS + ettt vttt ittt et e e e e e 9-3
9.24 Memory Data FOmmMatS . ..ottt e e e 9-4
9.25 Single Instruction, Multiple Data (SIMD) Execution Model................ccocovennn. 9-4
9.3 SATURATION AND WRAPAROUND MODESt e et in e 9-5
94 MMX INSTRUCTIONS. .ot e e e e 9-6
9.4.1 Data Transfer INSTruCtionso e 9-8
94.2 Arthmetic INSTTUCTIONS ..o\ v e e 9-8
94.3 ComparisoN INSTIUCTIONS v et et 9-9
944 ConVErsioN INSTTUCTIONS. ..ot v et 9-9
9.4.5 UNPack INSTIUCTIONS ...ttt e e 9-9
9.4.6 LOgiCal INStrUCTIONSot e e e e 9-10
94.7 SHI ST UCTIONS . . vt e 9-10
94.8 EMMS INSTrUCHION. ..ot e 9-10
95 COMPATIBILITY WITH X87 FPU ARCHITECTUREt 9-10
9.5.1 MMX Instructions and the x87 FPU TagWord...........ccooviviiiii i 9-11
9.6 WRITING APPLICATIONS WITHMMX CODE ...\ vv vt ae e 9-11
9.6.1 Checking for MMX Technology SUPPOrtt e 9-11
96.2 Transitions Between x87 FPUand MMX Code.cvvvviiiiiiiiiiiiiinienn, 9-12
96.3 Using the EMMS INSTruCtionov ittt e e i 9-12
964 Mixing MMX and x87 FPU INSTrUCtioNS.vvirii i i i ieieaas 9-13
9.6.5 Interfacing With MMX Codeoiiii e 9-13
9.6.6 Using MMX Code in a Multitasking Operating System Environment 9-14
9.6.7 Exception Handling in MMX Codeot e e 9-14
9.6.8 RegiSTer MapPiNg. ..o vv ittt e 9-14
96.9 Effect of Instruction Prefixes on MMX INStructions.ooovvvvviiininnninnns 9-14

Vol.1 Xi

CONTENTS

PAGE

CHAPTER 10
PROGRAMMING WITH
STREAMING SIMD EXTENSIONS (SSE)
10.1 OVERVIEW OF SSE EXTENSIONS ...\ttt 10-1
10.2 SSE PROGRAMMING ENVIRONMENT . ..ttt 10-3
10.2.1 SSE in 64-Bit Mode and Compatibility Mode. ...t 10-4
10.2.2 XMM R EGIS OIS, .« vttt ettt ettt e e 10-4
10.2.3 MXCSR Control and Status Register. ..o i 10-5
10.2.3.1 SIMD Floating-Point Mask and FIag Bits.cooviiiiiiiiiii e 10-6
10.23.2 SIMD Floating-Point Rounding Control Field. ..., 10-7
10.2.3.3 FIUSN-TO-ZEI0 . vt e 10-7
10234 DENOrMAIS-ArE-ZEI0S . vttt e et ettt e 10-7
10.24 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU.......... 10-8
103 SSE DAT A TYPES .ot 10-8
104 SSE INSTRUCTION SET L.ttt ittt e et e e e 10-9
10.4.1 SSE Packed and Scalar Floating-Point Instructions ...t 10-9
104.1.1 SSE Data Movement INStrUCTiONSvv v e 10-11
104.1.2 SSE Arithmetic INSTrUCtioNS. .. oot e 10-11
104.2 SSE Logical INStrUCtiONS . oo v e e 10-13
104.2.1 SSE Comparison INStrUCTIONS. . ..o vv vt 10-13
104.2.2 SSE Shuffle and Unpack Instructionscooviiii i 10-14
1043 SSE Conversion INSTIUCTIONSo v et ee s 10-15
1044 SSE 64-Bit SIMD Integer INSTructions. ..ot 10-16
104.5 MXCSR State Management INStructionsoovvve it 10-17
104.6 Cacheability Control, Prefetch, and Memory Ordering Instructions 10-18
104.6.1 Cacheability Control INStructions. ...t 10-18
104.6.2 Caching of Temporal vs. Non-Temporal Data.............coovviviiiiiiiinnnn, 10-18
104.6.3 PREFETCHR INSTrUCTIONS vttt et 10-19
104.6.4 SEENCE INSTrUCHION. .. vttt e 10-20
105 FXSAVE AND FXRSTOR INSTRUCTIONS .. .ottt 10-20
10.6 HANDLING SSE INSTRUCTION EXCEPTIONS\t 10-21
10.7 WRITING APPLICATIONS WITH THESSE EXTENSIONScooii e 10-21
CHAPTER 11
PROGRAMMING WITH
STREAMING SIMD EXTENSIONS 2 (SSE2)
11.1 OVERVIEW OF SSE2 EXTENSIONS. ..\ttt e 11-1
11.2 SSE2 PROGRAMMING ENVIRONMENT .. ovi et 11-3
11.2.1 SSEZ2 in 64-Bit Mode and CompatibilityMode ..ot 11-4
11.2.2 Compatibility of SSE2 Extensions with SSE, MMX

Technology and x87 FPU Programming Environmentccocovvininnns 11-4
11.23 Denormals-Are-Zeros FlIag. ..ot e e 11-4
11.3 SSE2 DAT A TYPES .ottt e e e e 11-5
114 SSEZ2 INSTRUCTIONS L .ottt e e e e 11-6
11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions................... 11-6
11.4.1.1 Data Movement INStrUCtioNS. vttt 11-7
11.4.1.2 SSEZ2 Arithmetic INStrUCtioNS ... ov vt e 11-8

xii Vol. 1

11.4.1.3
11414
11415
11416
114.2
1143
1144
11.4.4.1
11.4.4.2
11443
11.4.44
11.4.5
115
11.5.1
11.5.2
11.5.2.1
115.2.2
115.23
11524
115.25
11526
1153
11531
11532
11533
1154
1155
116
11.6.1
116.2
1163
1164
1165
11.6.6
11.6.7
116.8
11.6.9

11.6.10
11.6.10.1
11.6.10.2
11.6.103
11.6.11

11.6.12
11.6.13
11.6.14

CONTENTS

PAGE

SSE2 Logical INSTMUCTIONS .+ .\ vttt e 11-9
SSE2 Comparison INSTIUCTIONS. v vt et 11-9
SSE2 Shuffle and Unpack Instructions ..., 11-10
SSE2 Conversion INStrUCTIONS ... oo v v e 11-12
SSE2 64-Bit and 128-Bit SIMD Integer Instructions.ccoviiiiiiiinnn 11-15
128-Bit SIMD Integer Instruction EXtENSIONSot 11-16
Cacheability Control and Memory Ordering Instructions...............coovvvvuns. 11-16
FLUSH Cache LiNe ..ot e 11-17
Cacheability Control INSTrUCtioNSvvvvir i 11-17
Memory Ordering INStrUCtioNS.o ve s 11-17
PaUS . L e 11-18
BranCh HINtS ..o 11-18
SSE, SSE2, AND SSE3 EXCEPTIONS ..ttt 11-18
SIMD Floating-Point EXCEPTIONSvvie e 11-19
SIMD Floating-Point Exception Conditions............covviviiiiiiiiiiii e, 11-19
Invalid Operation Exception (H1) ..o 11-20
Denormal-Operand Exception (D)vvrvriveiiiii s 11-21
Divide-By-Zero EXception (HZ)vvvviiiii e 11-22
Numeric Overflow Exception (H0)ovvvrvirii i 11-22
Numeric Underflow Exception (HU).........coiiiiiiiii i 11-22
Inexact-Result (Precision) Exception (#P) ... 11-23
Generating SIMD Floating-Point EXCeptionscovviiiii i 11-23
Handling Masked EXCEPLiONSovveii s 11-23
Handling Unmasked EXCEpLionscoviii i 11-25
Handling Combinations of Masked and Unmasked Exceptions 11-26
Handling SIMD Floating-Point Exceptions in Software........................... 11-26
Interaction of SIMD and x87 FPU Floating-Point Exceptions..................... 11-26
WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONSoovviiii i, 11-27
General Guidelines for Using SSE/SSE2 EXteNsioNscvvvviiivieneinnnnn. 11-27
Checking for SSE/SSEZ SUPPOIT vv ittt e i 11-28
Checking for the DAZ Flag in the MXCSR Register..........covvvviiiiiiiinnn 11-28
Initialization of SSE/SE2 EXTENSIONS ...\ vvv et 11-29
Saving and Restoring the SSE/SSEZ2 State ... 11-30
Guidelines for Writing to the MXCSR Registercovvvviviiiiiiiinennns, 11-30
Interaction of SSE/SSEZ Instructions with x87 FPU and MMX Instructions 11-31
Compatibility of SIMD and x87 FPU Floating-Point Data Types 11-32

Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and Data
11-32

Interfacing with SSE/SSE2 Procedures and Functions..............coovvvivnnn 11-34
Passing Parameters in XMM Registers.cvvviiiiiiiiiiiiiiieanns, 11-34
Saving XMM Register State on a Procedure or FunctionCall.................. 11-34
Caller-Save Requirement for Procedure and Function Calls................... 11-35

Updating Existing MMX Technology Routines

Using 128-Bit SIMD Integer INStructionscovvviiviiii i inenas 11-35

Branching on Arithmetic Operations ..o i 11-36

Cacheability HINt INSTrUCTIONSo v et e 11-36

Effect of Instruction Prefixes on the SSE/SSEZ Instructions..................... 11-37

Vol. 1 Xiii

CONTENTS

PAGE

CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, AND SSE4
12.1 PROGRAMMING ENVIRONMENT AND DATATYPES ..o 12-1
12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Modeco.t 12-1
12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 FPU Environment, and

SSE/SSEZ EXTENSIONS ... v vttt ettt e e e e 12-2
12.1.3 Horizontal and Asymmetric Processing........ovvvviririineniiiiiei i, 12-2
12.2 OVERVIEW OF SSE3 INSTRUCTIONS.ottt ettt 12-3
123 SSESINSTRUCTIONS .. oottt e e e e e 12-3
12.3.1 x87 FPU Instruction for Integer CONVErsionooviiiriiiiniiiiannnnes 12-4
123.2 SIMD Integer Instruction for Specialized 128-bit Unaligned Data Load............. 12-4
1233 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance. .

12-4
1234 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction............ 12-5
1235 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction......... 12-5
12.3.6 Two Thread Synchronization Instructions ... 12-7
124 WRITING APPLICATIONS WITH SSE3 EXTENSIONS ...t 12-7
12.4.1 Guidelines for Using SSE3 EXtENSIONS it it 12-7
124.2 Checking for SSE3 SUPPOIt . ..\ vv ittt e e e s 12-7
124.3 Enable FTZ and DAZ for SIMD Floating-Point Computation........................ 12-8
1244 Programming SSE3 with SSE/SSE2 EXTENSIONS.ovvvvii i 12-8
125 OVERVIEW OF SSSE3 INSTRUCTIONS ...ttt 12-8
126 SSSE3 INSTRUCTIONS . ..ottt e e e 12-9
12.6.1 Horizontal Addition/Subtraction ...t 12-9
126.2 Packed Absolute Values. 12-11
12.6.3 Multiply and Add Packed Signed and Unsigned Bytes.covvvivinnnt, 12-11
1264 Packed Multiply High withRoundand Scale................ccoiiiiiiiiinnnt 12-11
126.5 Packed ShUffle BYtesvii i 12-12
12.6.6 PaCKEd iGN vttt 12-12
126.7 Packed AlIgN RIGNt . ..o 12-12
12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS . ..ot 12-12
12.7.1 Guidelines for Using SSSE3 EXteNSIONS vvvir it eieeens 12-12
12.7.2 Checking for SSSE3 SUPPOMt ...ttt e 12-13
128 SSE3/SSSE3 AND SSE4 EXCEPTIONS . ..ottt it 12-13
12.8.1 Device Not Available (DNA) EXCEPLIONS. . ..o vvi i 12-13
128.2 Numeric Error flagand IGNNEH# ... e 12-14
12.8.3 EMUIRTION L e 12-14
1284 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions...................... 12-14
129 SSEA OVERVIEW . . vttt e e e e 12-15
12.10 SSE4.TINSTRUCTION SET . vttt it 12-16
12.10.1 Dword Multiply INStrUCLIONS ...\ v e 12-16
12.10.2 Floating-Point Dot Product InStructions ...t 12-16
12.10.3 Streaming Load Hint INStruction ... e 12-17
12104 Packed Blending INSTrUCtioNSvvveit e 12-21
12.105 Packed Integer MIN/MAX INStrUCtioNSt v v 12-22
12.10.6 Floating-Point Round Instructions with Selectable Rounding Mode............... 12-23
12.10.7 Insertion and Extractions from XMM Registerscooviiiiiiiininnnn. 12-23

Xiv Vol. 1

CONTENTS

PAGE
12.10.8 Packed Integer FOrMat CoONVErSIONS .. . vvvt vttt ettt iieieenennas 12-23
12109 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks................ 12-24
12.710.10 HOMzZoNtal SEAMCN ..\ttt 12-25
L 1 T I T o =T =T 12-25
12.10.12 Packed Qword Equality COMPAriSONSvutiitiii e iieieieeneens 12-26
12.10.13 Dword Packing With Unsigned Saturation.............cooviiiiiiiiiiiiiiiinns, 12-26
1217 SSEA.2INSTRUCTION SET. .ttt 12-26
12111 String and Text Processing INStructions ...t 12-26
1211.1.1 Memory Operand AlIGNMENTttt e 12-27
1211.2 Packed Comparison SIMD Integer Instruction. ..o, 12-28
12113 Application-Targeted Accelerator INStructionscovviiiiiiiiinnnnn, 12-28
1212 WRITING APPLICATIONS WITH SSE4 EXTENSIONS 12-28
12121 Guidelines for Using SSE4 EXtENSIONS. ... ov vt ci e 12-28
12.12.2 Checking for SSE4.T SUPPOM v it 12-28
12123 Checking for SSE4.2 SUPPOItttt 12-29
CHAPTER 13
INPUT/OUTPUT
13.1 I/0 PORT ADDRESSING. . ittt ettt ettt e e 13-1
13.2 /0 PORT HARDWARE. . . vttt ettt et et 13-1
133 /0 ADDRESS SPACE . ..ttt e e 13-2
13.3.1 Memory-Mapped /0 . .. o 13-2
134 O INSTRUCTIONS. .ottt et e e e eeaes 13-3
135 PROTECTED-MODE 1/ . . ettt ettt e e 13-4
13.5.1 /O Privilege Level e 13-4
135.2 /0 Permission Bit Map.o e e 13-5
136 ORDERING /0 . ettt ettt e e e e e 13-7
CHAPTER 14
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
14.1 USING THE CPUID INSTRUCTION. . .+ oottt ettt 14-1
14.1.1 Notes onWhere to Start.o 14-1
14.1.2 Identification of Earlier IA-32 ProCeSSOrSovvviii i 14-2
APPENDIX A
EFLAGS CROSS-REFERENCE
A EFLAGS AND INSTRUCTIONS . . ottt A-1
APPENDIX B
EFLAGS CONDITION CODES
B.1 CONDITION CODES . . .ottt ettt e e e B-1
APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY
C1 OV RV B Lt e e e e C-1
C2 X87 FPUINSTRUCTIONS . . ettt e s c-2
C3 SSE INSTRUCTIONS . L ettt e e C-4

Vol.1 Xv

CONTENTS

PAGE
C4 SSEZ2 INSTRUCTIONS . .ottt e e e e e c-7
C5 SSES INSTRUCTIONS .ottt ettt e e e e e e e C-11
Cc6 SSSE3 INSTRUCTIONS . ..ttt e e e C-12
c7 SSEA INSTRUCTIONS ..ottt e e e e e e C12
APPENDIX D
GUIDELINES FOR WRITING X87 FPU
EXCEPTION HANDLERS
D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU EXCEPTIONS D-1
D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY SUB-MODE IN THE INTEL486™,
PENTIUM®, AND P6 PROCESSOR FAMILY, AND PENTIUM® 4 PROCESSORS D-3
D.2.1 MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors........ D-3
D.2.1.1 Basic Rules: When FERR# Is Generated.ovviiiiiii i D-4
D.2.1.2 Recommended External Hardware to Support the MS-DOS* Compatibility Sub-mode
D-5
D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window D-8
D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family
AN PentiUmM® 4 PrOCESSOMS . ..ttt sttt ettt aeaenas D-10
D3 RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS. D-11
D.3.1 Floating-Point Exceptions and Their Defaults.ccoii it D-12
D.3.2 Two Options for Handling Numeric Exceptions..............coviiiiiiiinninn D-12
D.3.2.1 Automatic Exception Handling: Using Masked Exceptions...................... D-12
D.3.2.2 Software Exception Handling.o.ovniiii D-14
D33 Synchronization Required for Use of x87 FPU Exception Handlers................ D-15
D.3.3.1 Exception Synchronization: What, Why,andWhenc.oooviint D-16
D.3.3.2 Exception Synchronization EXamples.c.veiiii i e D-17
D.3.33 Proper Exception Synchronizationccociii i D-18
D34 x87 FPU Exception Handling EXamples.vvriiniiiiiii i D-18
D35 Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMM............... D-22
D.3.6 Considerations When x87 FPU Shared Between Tasks..........covvvviiininnnnnn. D-23
D.3.6.1 Speculatively Deferring x87 FPU Saves, General Overview.................... D-23
D.3.6.2 Tracking X87 FPU OWNership. ..o i D-24
D.3.6.3 Interaction of x87 FPU State Saves and Floating-Point Exception Association. . D-25
D.3.64 Interrupt Routing Fromthe Kernel. ... e D-28
D.3.6.5 Special Considerations for Operating Systems that Support Streaming SIMD
TG 1=T Y o D-28
D4 DIFFERENCES FOR HANDLERS USING NATIVEMODEc.vvv e ineiaanes D-29
D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors ...D-29
D4.2 Changes with Intel486, Pentium and Pentium Pro Processors with CRO.NE[bit 5] = 1 .D-
30
D43 Considerations When x87 FPU Shared Between Tasks Using Native Mode D-30
APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
E1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONScovviiinennn E-1
E2 SOFTWARE EXCEPTION HANDUING ... vet et €-1
E3 EXCEPTION SYNCHRONIZATION ..ttt et €-3

Xvi Vol. 1

€4
€41
€4.2
€4.2.1
€4.2.2

€4.23

€43

CONTENTS

PAGE

SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754vvnt E-4

Floating-Point EMUIBTION.o e €-4

SSE/SSE2/SSE3 Response To Floating-Point Exceptions..............ooovvvvints. E-6

NUMEMIC EXCEPLIONS ...ttt e e €-7
Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3

........................... €-7

Numeric Instructionscoovvv i e,

Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric

EXCEPLIONS . ..t
Example SIMD Floating-Point Emulation Implementation

Vol. T xvii

CONTENTS

FIGURES

Figure 1-1.
Figure 1-2.
Figure 2-1.

Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 7-1.

xviii Vol. 1

PAGE
Bitand Byte Order.oviii it 1-5
Syntax for CPUID, CR, and MSR Data Presentation.............coovvvivvnnnnnn.. 1-8
The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement 2-
8
The Intel NetBurst Microarchitecturec.covviiiiiiiiiiiii s 2-11
The Intel Core Microarchitecture Pipeline Functionality........................ 2-14
SIMD Extensions, Register Layouts,and Data Typescovvvivninennn, 2-18
Comparison of an IA-32 Processor Supporting Hyper-Threading Technology and a
Traditional Dual Processor SYStemttt i ae e 2-19
Intel 64 and IA-32 Processors that Support Dual-Coreovvutt. 2-21
Intel 64 Processors that Support Quad-Core. ..o 2-22
IA-32 Basic Execution Environment for Non-64-bit Modes. 3-4
64-Bit Mode Execution ENVIrONMENT 3-7
Three Memory ManagementModels ...t 3-9
General System and Application Programming Registers 3-15
Alternate General-Purpose Register Names ..., 3-16
Use of Segment Registers for Flat Memory Modelcoiet 3-18
Use of Segment Registers in Segmented Memory Model 3-19
EFLAGS REGISTO . v\ttt e e e e 3-21
Memory Operand AdaresS ve vt e 3-28
Memory Operand Address in 64-BitModecoviiiiiiiiiii e 3-29
Offset (or Effective Address) Computationcovviiiiiiiiiinnannnnn. 3-31
Fundamental Data TYPeS. . vttt e e 4-1
Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory 4-2
NUMEMC Data Ty PES vttt ittt aeaes 4-4
POINTEr Data TYPES . vttt ittt e e 4-9
Pointers in64-BitModeooii 4-10
Bit Field Data TyPe. oottt e e e e 4-10
64-Bit Packed SIMD Data TYPES .. vvv ittt et 4-11
128-Bit Packed SIMD Data TYPeS ..ttt ve ittt ii it 4-13
BOD Data TS .+ttt ettt it e e e e e 4-14
Binary Real Number System.........oviii e 4-17
Binary Floating-Point Format ... e e 4-17
Real Numbers and NaNS.ot 4-19
StACK SETUCTUNE . . et e 6-2
Stack on Nearand Far CallS.o ot e 6-7
ProteCtion RiNGS vttt e 6-9
Stack Switch on a Call to a Different Privilege Level........................... 6-10
Stack Usage on Transfers to Interrupt and Exception Handling Routines....... 6-16
NeSted ProCeAUIES. . ..ttt e 6-22
Stack Frame After Entering the MAIN Procedurecovviinan... 6-23
Stack Frame After Entering Procedure A. ... 6-23
Stack Frame After Entering Procedure B.............ccoiiiiiiiiii i, 6-24
Stack Frame After Entering Procedure C.........ooivv i 6-25
Operation of the PUSH INStruction............oovuiiiii s 7-8

Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-7.
Figure 7-6.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.

Figure 8-10.

Figure 8-9.

Figure 8-12.
Figure 8-11.
Figure 8-13.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.

CONTENTS

PAGE
Operation of the PUSHA Instruction............coiiiiiii i 7-8
Operation of the POP INStruction..........co.viiiiniiiii i 7-9
Operation of the POPA INStruction ..ot aeas 7-9
SIgN EXTENSION .ttt e 7-11
SHR Instruction Operationcvvriii i et 7-16
SHU/SAL Instruction Operation.ovviii i e 7-16
SAR INStruction Operationvuvuiein i 7-17
SHLD and SHRD Instruction Operations.ooivviiiiiiiiiiii i, 7-18
ROL, ROR, RCL, and RCR Instruction Operationsc.covvvivivininenennn. 7-19
Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions 7-30
x87 FPU Execution ENVIFONMENTt 8-3
x87 FPU Data Register Stackc.cooiiiii 8-4
Example x87 FPU Dot Product Computation ... 8-5
X87 FPU Status Word. oo 8-6
Moving the Condition Codes to the EFLAGS Registerccovvvivninnn 8-10
X87 FPU Control Wordot 8-11
X87 FPU TagWord . ..o 8-13
Contents of x87 FPU Opcode Registers.covviiiiiiiiiiiiii i, 8-15
Real Mode x87 FPU State Image in Memory, 32-Bit Format.................... 8-16
Protected Mode x87 FPU State Image in Memory, 32-Bit Format 8-16
Real Mode x87 FPU State Image in Memory, 16-Bit Format.................... 8-17
Protected Mode x87 FPU State Image in Memory, 16-Bit Format 8-17
X87 FPU Data Type FOrmMatsvr e 8-19
MMX Technology Execution Environment.o, 9-2
MMX REGISTE ST ..ottt e e e 9-3
Data Types Introduced with the MMX Technology...........covvviiiiiinininn 9-4
SIMD Execution Modelot 9-5
SSE EXecution ENVIFONMENT. . ..ottt 10-3
XMM REGIS OIS . vttt ettt ettt e 10-4
MXCSR Control/Status Registeroovvi i 10-6
128-Bit Packed Single-Precision Floating-Point Data Type 10-8
Packed Single-Precision Floating-Point Operationovviivnt, 10-10
Scalar Single-Precision Floating-Point Operation................cooovvvvinns. 10-10
SHUFPS Instruction, Packed Shuffle Operation...................coocivvnts 10-14
UNPCKHPS Instruction, High Unpack and Interleave Operation............... 10-15
UNPCKLPS Instruction, Low Unpack and Interleave Operation................ 10-15
Steaming SIMD Extensions 2 Execution Environment...............coiiie 11-3
Data Types Introduced with the SSE2 Extensions.............c.covvvivinnn.. 11-5
Packed Double-Precision Floating-Point Operations.covvviveinnt 11-6
Scalar Double-Precision Floating-Point Operations..................coooventt. 11-7
SHUFPD Instruction, Packed Shuffle Operation. ..o 11-11
UNPCKHPD Instruction, High Unpack and Interleave Operation............... 11-11
UNPCKLPD Instruction, Low Unpack and Interleave Operation 11-12
SSE and SSE2 Conversion INSTruCtionSo v v e 11-13
Example Masked Response for Packed Operationscovvvvvinne, 11-24
Asymmetric Processingin ADDSUBPDoviiiiiiiiiii it 12-2
Horizontal Data Movement in HADDPDvvvivi i 12-3

Vol. T Xix

CONTENTS

Figure 12-3.
Figure 12-4.
Figure 13-1.
Figure 13-2.

Figure D-1.

Figure D-2.
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.
Figure E-1.

XX Vol. 1

PAGE
Horizontal Data Movement in PHADDDoovviiiiii e 12-10
MPSADBW OPeration. vetietee e 12-25
Memory-Mapped /0. oo e 13-3
/0 Permission Bit Mapoviii e 13-6
Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handlingt D-7
Behavior of Signals During x87 FPU Exception Handling D-8
Timing of Receipt of External Interrupt ...t D-9
Arithmetic Example Using Infinity........coooiiii i e D-13
General Program Flow for DNA ExceptionHandler...................coov . D-26
Program Flow for a Numeric Exception Dispatch Routine...................... D-27
Control Flow for Handling Unmasked Floating-Point Exceptions E-6

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-10.
Table 4-9.
Table 4-11.
Table 5-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 8-1.
Table 8-2.
Table 8-3.

Table 8-4.
Table 8-5.
Table 8-6.

Table 8-7.
Table 8-8.
Table 8-9.
Table 8-10.

Table 8-11.
Table 9-1.
Table 9-2.
Table 9-3.
Table 10-1.
Table 11-1.

CONTENTS

PAGE
Key Features of Most Recent [A-32 Processorsvvvvvinirinenninenennn. 2-24
Key Features of Most Recent Intel 64 Processors.........vvvvvviiiininnnnnns. 2-24
Key Features of Previous Generations of IA-32 Processors.................... 2-28
Instruction Pointer Sizes.ovei i 3-12
Addressable General Purpose Registerscovvviiviviiiiiiiiiiiinnnenin, 3-17
Effective Operand- and Address-Size Attributescooiiiiintt. 3-25
Effective Operand- and Address-Size Attributes in 64-Bit Mode................ 3-26
Default Segment SelectionRules. ... 3-29
Signed Integer ENCOdINGS .. .ot ittt i e e e e 4-6
Length, Precision, and Range of Floating-Point Data Types 4-7
Floating-Point Number and NaN Encodings. ...t 4-8
Packed Decimal Integer ENCOdiNgS.vvvirir i 4-15
Real and Floating-Point Number Notation...........coovviiiiiiiiiiiiiiennn, 4-18
Denormalization ProCeSS. vv vt 4-21
Rules for Handling NaNs 4-23
Rounding Modes and Encoding of Rounding Control (RC) Field.................. 4-25
Masked Responses to Numeric Overflowcooiiiiiiiiiiiiinennnns. 4-30
Numeric Overflow Thresholds. e 4-30
Numeric Underflow (Normalized) Thresholds. ..o, 4-31
Instruction Groups and IA-32 ProCeSSOrSvv v vttt eiinnenanas 5-1
Exceptions and INTermUPLS. 6-14
Move Instruction Operationsovviiit i i e e 7-4
Conditional Move INSTrUCLIONS vviet e 7-6
Bit Test and Modify INStructions.t i 7-20
Conditional Jump INSTrUCTIONSottt e e 7-23
Condition Code Interpretation..........vvevuiiiii i 8-8
Precision Control Field (PC). .. .ovuvrii e 8-12
Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-
Denormals8-21
Data Transfer INSTrUCtioNS\ v ettt 8-23
Floating-Point Conditional Move Instructions.oovviiii i innnns, 8-23

Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons. 8-
27

Setting of EFLAGS Status Flags for Floating-Point Number Comparisons........ 8-28
TEST Instruction Constants for Conditional Branching 8-29
Arithmetic and Non-arithmetic Instructionsc.oooviiiiiiiininnns, 8-35

Invalid Arithmetic Operations and the
Masked Responses to Them 8-38

Divide-By-Zero Conditions and the Masked Responses to Them................ 8-40
Data Range Limits for Saturation. ... 9-6
MMX INStruction St SUMMAIY .. ovvv it e e ieaaas 9-7
Effect of Prefixes on MMX INStructions.ovviiiii i 9-15
PREFETCHh Instructions Caching Hints ... 10-20

Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic Operations
11-20

Vol. T Xxi

CONTENTS

Table 11-2.
Table 11-3.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 13-1.

Table A-1.
Table A-2.
Table B-1.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table E-1.

Table E-2.
Table E-3.
Table E-4.
Table E-5.
Table E-6.
Table E-7.

Table E-8.

Table E-9.

Table E-10.
Table E-11.
Table E-12.
Table E-13.
Table E-14.
Table E-15.
Table E-16.
Table E-17.
Table E-18.

xXii Vol. 1

PAGE
SSE and SSE2 State Following a Power-up/Resetor INIT..................... 11-30
Effect of Prefixes on SSE, SSE2, and SSE3 Instructionscovvvnes. 11-37
SIMD numeric exceptions signaled by SSE4.Tcoiiiiiiiiiii 12-15
Enhanced 32-bit SIMD Multiply Supported by SSE4.1..........coiiiiintt, 12-16
Blend Field Size and Control Modes Supported by SSE4.T 12-22
Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1 12-22
New SIMD Integer conversions supported by SSE4.1............oovvvvnints. 12-24
New SIMD Integer Conversions Supported by SSE4.1ooeet 12-24
Enhanced SIMD Pack support by SSE4.To 12-26
I/0 Instruction Serialization.vii i e 13-8
Codes Describing FIagso vvvvi it e e A-1
EFLAGS Cross-RefereNCE . ..ottt e A-1
EFLAGS Condition COAES ... ovvv it B-1
x87 FPU and SIMD Floating-Point Exceptions.coovviiiiiiiiiiiiineinnn C-1
Exceptions Generated with x87 FPU Floating-Point Instructions................. C-2
Exceptions Generated with SSE InStructions.ccoiiii it C4
Exceptions Generated with SSE2 INSTrUCtionsovvvviiiiiii s C-7
Exceptions Generated with SSE3 Instructionsccovviiiiiii i, C-11
Exceptions Generated with SSE4 Instructionsccovviiii i C-13

ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD,
SUBPD, SUBSD, MULPD, MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS,
HADDPD, HSUBPS, HSUBPDE-8

CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD,

CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORDE-9

CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ,
CMPPD.UNORD, CMPSD.UNORDE-9

CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE,
CMPSD.LEE-S

CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT,
CMPPD.NLE, CMPSD.NLEE-10

COMISS, COMISD .. e e E-10
UCOMISS, UCOMISD ..o E-10
CVTPS2PI, CVTSS2SI, CVTTPSZ2PI, CVTTSSZSI, CVTPDZ2PI, CVTSDZSI, CVTTPDZ2PI,
CVTTSD2SI, CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQE-11

MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD,MINSD E-11
SQRTPS, SQRTSS, SQRTPD, SQRTSD ... ottt E-11
CVTPS2PD, CVTSS2 D ittt ittt e E-12
CVTPD2PS, CUTSD2SS .ttt e E-12
H1-Invalid Operations. vt e E-13
HZ - Divide-DY-Zeroot E-16
H#D -Denormal OPerandc.vveie e e E-17
HO - Numeric OVerflow.ov e E-18
H#U - Numeric Underflow. ... oovee e E-20
#P - Inexact Result (Precision).ovv i it E-21

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and I1A-32 Architectures Software Developer’'s Manual, Volume 1:
Basic Architecture (order number 253665) is part of a set that describes the architec-
ture and programming environment of Intel® 64 and 1A-32 architecture processors.
Other volumes in this set are:

® The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

® The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes
3A & 3B: System Programming Guide (order number 253668 and 253669).

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and 1A-32
processors. The Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and 1A-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:

® pentium® processors

® P6 family processors

* pentium® 4 processors

* pentium® M processors

* Intel® Xeon® processors

* pentium® D processors

® Ppentium® processor Extreme Editions
® 64-bit Intel® Xeon® processors

® Intel® Core™ Duo processor

* Intel® Core™ Solo processor

Vol.1 1-1

ABOUT THIS MANUAL

® pual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

® Intel® Core™2 Extreme processor X7000 and X6800 series
® Intel® Core™2 Extreme processor QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor EB000, T9000 series

* Intel® Atom™ processor family

P6 family processors are 1A-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® 11, Pentium® IIl, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processor QX9000, X9000 series, Intel®
Core™2 processor EB000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture
and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support 1A-32 architecture. The Intel® Atom™ processor Z5xx series
support 1A-32 architecture.

1-2 Vol. 1

ABOUT THIS MANUAL

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors,
Intel Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core
processor, newer generations of Pentium 4 and Intel Xeon processor family support
Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the 1A-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and 1A-32 Architectures. Introduces the Intel 64 and
1A-32 architectures along with the families of Intel processors that are based on
these architectures. It also gives an overview of the common features found in these
processors and brief history of the Intel 64 and 1A-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory
organization and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recog-
nized by the processor; provides an overview of real numbers and floating-point
formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and 1A-32 instructions,
divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the proce-
dure stack and mechanisms provided for making procedure calls and for servicing
interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes
basic load and store, program control, arithmetic, and string instructions that
operate on basic data types, general-purpose and segment registers; also describes
system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point
unit (FPU), including floating-point registers and data types; gives an overview of the
floating-point instruction set and describes the processor's floating-point exception
conditions.

Vol.1 1-3

ABOUT THIS MANUAL

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel
MMX technology, including MMX registers and data types; also provides an overview
of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE).
Describes SSE extensions, including XMM registers, the MXCSR register, and packed
single-precision floating-point data types; provides an overview of the SSE instruc-
tion set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2).
Describes SSE2 extensions, including XMM registers and packed double-precision
floating-point data types; provides an overview of the SSE2 instruction set and gives
guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2
instructions. It also provides general guidelines for incorporating support for SSE and
SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview
of the SSE3 instruction set, Supplemental SSE3, SSE4, and guidelines for writing
code that accesses these extensions.

Chapter 13 — Input/Output. Describes the processor’s I/0 mechanism, including
1/0 port addressing, 1/0 instructions, and 1/0 protection mechanisms.

Chapter 14 — Processor ldentification and Feature Determination. Describes
how to determine the CPU type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the 1A-32 instructions
affect the flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump,
move, and ‘byte set on condition code’ instructions use condition code flags (OF, CF,
ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions
raised by the x87 FPU floating-point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes
how to design and write MS-DOS* compatible exception handling facilities for FPU
exceptions (includes software and hardware requirements and assembly-language
code examples). This appendix also describes general techniques for writing robust
FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception
Handlers. Gives guidelines for writing exception handlers for exceptions generated
by SSE/SSE2/SSE3 floating-point instructions.

1-4 Vol. 1

ABOUT THIS MANUAL

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. This notation is
described below.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and 1A-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte. See
Figure 1-1.

Data Structure

Highest
Adgdress 32 24 23 16 15 8 7 0 <« Bitoffset

28
24
20
16
12

8
4
Byte 3 Byte 2 Byte 1 ByteO | O

Lowest
Address

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable.

Software should follow these guidelines in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of
registers that contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a
register.

Vol.1 1-5

ABOUT THIS MANUAL

Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
Intel 64 and 1A-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

1.3.2.1 Instruction Operands

When instructions are represented symbolically, a subset of the 1A-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3
where:

® A label is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.

The operands argumentl, argument2, and argument3 are optional. There
may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1-6 Vol. 1

ABOUT THIS MANUAL

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, OF82EH). A hexadecimal digit is a char-
acter from the following set: O, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,and k.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:ElP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.

Vol.1 1-7

ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Input values for EAX & ECX registers;
If only one value, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output
Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some

exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown

below:

#PF(fault code)

1-8 Vol. 1

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions that produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and 1A-32 processors is listed on-line at:
http://developer.intel.com/products/processor/manuals/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
® The data sheet for a particular Intel 64 or 1A-32 processor
® The specification update for a particular Intel 64 or 1A-32 processor

* Intel®C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/end/index.htm

® Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/support/processors/sb/cs-009861.htm

® TLBs, Paging-Structure Caches, and Their Invalidation,
http://developer.intel.com/products/processor/manuals/index.htm

® Intel 64 Architecture x2APIC Specification:
http://developer.intel.com/products/processor/manuals/index.htm

® Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

¢ Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

Vol.1 1-9

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

® Intel® SSE4 Programming Reference,
http://developer.intel.com/products/processor/manuals/index.htm

® Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

® Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

® Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

® Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

® Intel 64 and 1A-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm

® Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

1-10 Vol.1

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer
one of the most important forces shaping business and society. Intel 64 and 1A-32
architectures have been at the forefront of the computer revolution and is today the
preferred computer architecture, as measured by computers in use and the total
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32
ARCHITECTURE

The following sections provide a summary of the major technical evolutions from
1A-32 to Intel 64 architecture: starting from the Intel 8086 processor to the latest
Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 5300 and 7300 series.
Object code created for processors released as early as 1978 still executes on the
latest processors in the Intel 64 and 1A-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)

The 1A-32 architecture family was preceded by 16-bit processors, the 8086 and
8088. The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit
addressing giving a 1-MByte address space. The 8088 is similar to the 8086 except it
has an 8-bit external data bus.

The 8086/8088 introduced segmentation to the 1A-32 architecture. With segmenta-
tion, a 16-bit segment register contains a pointer to a memory segment of up to

64 KBytes. Using four segment registers at a time, 8086/8088 processors are able to
address up to 256 KBytes without switching between segments. The 20-bit
addresses that can be formed using a segment register and an additional 16-bit
pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)

The Intel 286 processor introduced protected mode operation into the 1A-32 archi-
tecture. Protected mode uses the segment register content as selectors or pointers
into descriptor tables. Descriptors provide 24-bit base addresses with a physical
memory size of up to 16 MBytes, support for virtual memory management on a
segment swapping basis, and a number of protection mechanisms. These mecha-
nisms include:

® Segment limit checking

Vol.1 2-1

INTEL® 64 AND IA-32 ARCHITECTURES

® Read-only and execute-only segment options

® Four privilege levels

2.1.3 The Intel386™ Processor (1985)

The Intel386 processor was the first 32-bit processor in the 1A-32 architecture family.
It introduced 32-bit registers for use both to hold operands and for addressing. The
lower half of each 32-bit Intel386 register retains the properties of the 16-bit regis-
ters of earlier generations, permitting backward compatibility. The processor also
provides a virtual-8086 mode that allows for even greater efficiency when executing
programs created for 8086/8088 processors.

In addition, the Intel386 processor has support for:
® A 32-bit address bus that supports up to 4-GBytes of physical memory
® A segmented-memory model and a flat memory model

® Paging, with a fixed 4-KByte page size providing a method for virtual memory
management

® Support for parallel stages

2.1.4 The Intel486™ Processor (1989)

The Intel486™ processor added more parallel execution capability by expanding the
Intel386 processor’s instruction decode and execution units into five pipelined
stages. Each stage operates in parallel with the others on up to five instructions in
different stages of execution.

In addition, the processor added:

® An 8-KByte on-chip first-level cache that increased the percent of instructions
that could execute at the scalar rate of one per clock

® An integrated x87 FPU
® Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)

The introduction of the Intel Pentium processor added a second execution pipeline to
achieve superscalar performance (two pipelines, known as u and v, together can
execute two instructions per clock). The on-chip first-level cache doubled, with 8
KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses
the MESI protocol to support more efficient write-back cache in addition to the write-
through cache previously used by the Intel486 processor. Branch prediction with an
on-chip branch table was added to increase performance in looping constructs.

In addition, the processor added:

2-2 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

® Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte
as well as 4-KByte pages

® Internal data paths of 128 and 256 bits add speed to internal data transfers
® Burstable external data bus was increased to 64 bits

® An APIC to support systems with multiple processors

® A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the
Pentium Processor with MMX technology). Intel MMX technology uses the single-
instruction, multiple-data (SIMD) execution model to perform parallel computations
on packed integer data contained in 64-bit registers.

See Section 2.2.5, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)

The P6 family of processors was based on a superscalar microarchitecture that set
new performance standards; see also Section 2.2.1, “P6 Family Microarchitecture.”
One of the goals in the design of the P6 family microarchitecture was to exceed the
performance of the Pentium processor significantly while using the same 0.6-
micrometer, four-layer, metal BICMOS manufacturing process. Members of this
family include the following:

® The Intel Pentium Pro processor is three-way superscalar. Using parallel

processing techniques, the processor is able on average to decode, dispatch, and
complete execution of (retire) three instructions per clock cycle. The Pentium Pro
introduced the dynamic execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a
superscalar implementation. The processor was further enhanced by its caches.
It has the same two on-chip 8-KByte 1st-Level caches as the Pentium processor
and an additional 256-KByte Level 2 cache in the same package as the processor.

® The Intel Pentium 11 processor added Intel MMX technology to the P6 family
processors along with new packaging and several hardware enhancements. The
processor core is packaged in the single edge contact cartridge (SECC). The Level
| data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed
backside bus connects the Level 2 cache to the processor. Multiple low-power
states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to
conserve power when idling.

® The Pentium Il Xeon processor combined the premium characteristics of
previous generations of Intel processors. This includes: 4-way, 8-way (and up)
scalability and a 2 MByte 2nd-Level cache running on a full-clock speed backside
bus.

® The Intel Celeron processor family focused on the value PC market segment.
Its introduction offers an integrated 128 KBytes of Level 2 cache and a plastic pin
grid array (P.P.G.A.) form factor to lower system design cost.

Vol.1 2-3

INTEL® 64 AND IA-32 ARCHITECTURES

® The Intel Pentium lll processor introduced the Streaming SIMD Extensions
(SSE) to the 1A-32 architecture. SSE extensions expand the SIMD execution
model introduced with the Intel MMX technology by providing a new set of 128-
bit registers and the ability to perform SIMD operations on packed single-
precision floating-point values. See Section 2.2.5, “SIMD Instructions.”

® The Pentium lll Xeon processor extended the performance levels of the 1A-32
processors with the enhancement of a full-speed, on-die, and Advanced Transfer
Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006)

The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture;
see Section 2.2.2, “Intel NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see
Section 2.2.5, “SIMD Instructions.” The Intel Pentium 4 processor 3.40 GHz,
supporting Hyper-Threading Technology introduced Streaming SIMD Extensions 3
(SSE3); see Section 2.2.5, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition
supporting Hyper-Threading Technology and in the Intel Pentium 4 Processor 6xx and
5xX sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4
processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001- 2007)

Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel
Xeon processor 5100 series) are based on the Intel NetBurst microarchitecture; see
Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, this group of 1A-32
processors (more recently Intel 64 processors) is designed for use in multi-processor
server systems and high-performance workstations.

The Intel Xeon processor MP introduced support for Hyper-Threading Technology;
see Section 2.2.6, “Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to
introduce Intel 64 architecture. The Dual-Core Intel Xeon processor includes dual
core technology. The Intel Xeon processor 70xx series includes Intel Virtualization
Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance
Intel Core microarchitecture. This processor is based on Intel 64 architecture; it
includes Intel Virtualization Technology and dual-core technology. The Intel Xeon
processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon
processor 5300 series introduces four processor cores in a physical package, they are
also based on Intel Core microarchitecture.

2-4 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

2.1.9 The Intel® Pentium® M Processor (2003-Current)

The Intel Pentium M processor family is a high performance, low power mobile
processor family with microarchitectural enhancements over previous generations of
1A-32 Intel mobile processors. This family is designed for extending battery life and
seamless integration with platform innovations that enable new usage models (such
as extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
® Support for Intel Architecture with Dynamic Execution

® A high performance, low-power core manufactured using Intel’s advanced
process technology with copper interconnect

® On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache

® On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Archi-
tecture

® Advanced Branch Prediction and Data Prefetch Logic

® Support for MMX technology, Streaming SIMD instructions, and the SSE2
instruction set

® A 400 or 533 MHz, Source-Synchronous Processor System Bus
® Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007)

The Intel Pentium processor Extreme Edition introduced dual-core technology. This
technology provides advanced hardware multi-threading support. The processor is
based on Intel NetBurst microarchitecture and supports SSE, SSE2, SSE3, Hyper-
Threading Technology, and Intel 64 architecture.

See also:

® Section 2.2.2, “Intel NetBurst® Microarchitecture”
® Section 2.2.3, “Intel® Core™ Microarchitecture”

® Section 2.2.5, “SIMD Instructions”

® Section 2.2.6, “Hyper-Threading Technology”

® Section 2.2.7, “Multi-Core Technology”

® Section 2.2.8, “Intel® 64 Architecture”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors
(2006-2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a
low-power design that extends battery life. This family and the single-core Intel Core

Vol.1 2-5

INTEL® 64 AND IA-32 ARCHITECTURES

Solo processor offer microarchitectural enhancements over Pentium M processor
family.
Its enhanced microarchitecture includes:

* Intel® Smart Cache which allows for efficient data sharing between two
processor cores

® Improved decoding and SIMD execution

® Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce
power consumption

* Intel® Advanced Thermal Manager which features digital thermal sensor
interfaces

® Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as
Intel Core Duo processor, and supports 1A-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and

Intel® Core™2 Processor Family (2006-Current)
The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium
Dual-Core, Intel Core 2 Extreme, Intel Core 2 Quad processors, and Intel Core 2 Duo
processor family support Intel 64 architecture; they are based on the high-perfor-

mance, power-efficient Intel® Core microarchitecture built on 65 nm process tech-
nology. The Intel Core microarchitecture includes the following innovative features:

* Intel® Wide Dynamic Execution to increase performance and execution
throughput

* Intel® Intelligent Power Capability to reduce power consumption

® Intel® Advanced Smart Cache which allows for efficient data sharing between
two processor cores

* Intel® Smart Memory Access to increase data bandwidth and hide latency of
memory accesses

* Intel® Advanced Digital Media Boost which improves application performance
using multiple generations of Streaming SIMD extensions

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series,
and Intel Core 2 Quad processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and
Intel® Core™?2 Processor Family (2007-Current)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor
Q9000 Series, Intel Core 2 Duo processor E8000 series support Intel 64 architecture;
they are based on the Enhanced Intel® Core microarchitecture using 45 nm process

2-6 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

technology. The Enhanced Intel Core microarchitecture provides the following
improved features:

® A radix-16 divider, faster OS primitives further increases the performance of
Intel® Wide Dynamic Execution.

®* Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache
and up to 50% increase in way-set associativity.

® A 128-bit shuffler engine significantly improves the performance of Intel®
Advanced Digital Media Boost and SSEA4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series
support Intel quad-core technology. Intel Xeon processor 7400 series offers up to six
processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008-Current)

The Intel® Atom™ processors are built on 45 nm process technology. They are based
on a new microarchitecture, Intel® Atom™ microarchitecture, which is optimized for
ultra low power devices. The Intel® Atom™ microarchitecture features two in-order
execution pipelines that minimize power consumption, increase battery life, and
enable ultra-small form factors. It provides the following features:

® Enhanced Intel® SpeedStep® Technology
® Hyper-Threading Technology
® Deep Power Down Technology with Dynamic Cache Sizing

® Support for new instructions up to and including Supplemental Streaming SIMD
Extensions 3 (SSSE3).

® Support for Intel® Virtualization Technology
® Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)

2.2 MORE ON SPECIFIC ADVANCES

The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture

The Pentium Pro processor introduced a new microarchitecture commonly referred to
as P6 processor microarchitecture. The P6 processor microarchitecture was later
enhanced with an on-die, Level 2 cache, called Advanced Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way
superscalar means that by using parallel processing techniques, the processor is able
on average to decode, dispatch, and complete execution of (retire) three instructions
per clock cycle. To handle this level of instruction throughput, the P6 processor family

Vol.1 2-7

INTEL® 64 AND IA-32 ARCHITECTURES

uses a decoupled, 12-stage superpipeline that supports out-of-order instruction
execution.

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline
with the Advanced Transfer Cache enhancement.

E System Bus a

Frequently used

Busunit . Less frequently used
2nd Level Cache 1st Level Cache
On-die, 8-way 4-way, low latency
........ ~ :l\
é Front End
W
Execution
Instruction Execution
Fetch/
Decode [-% Cache > Out-of-Order =X Retirement
Microcode Core
ROM
N

Branch History Update

e« BTSs/Branch Prediction

0OM16520

Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache
Enhancement

To ensure a steady supply of instructions and data for the instruction execution pipe-
line, the P6 processor microarchitecture incorporates two cache levels. The Level 1
cache provides an 8-KByte instruction cache and an 8-KByte data cache, both closely
coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or
1-MByte static RAM that is coupled to the core processor through a full clock-speed
64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution
mechanism called dynamic execution. Dynamic execution incorporates three data-
processing concepts:

¢ Deep branch prediction allows the processor to decode instructions beyond
branches to keep the instruction pipeline full. The P6 processor family

2-8 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

implements highly optimized branch prediction algorithms to predict the direction
of the instruction.

Dynamic data flow analysis requires real-time analysis of the flow of data
through the processor to determine dependencies and to detect opportunities for
out-of-order instruction execution. The out-of-order execution core can monitor
many instructions and execute these instructions in the order that best optimizes
the use of the processor’s multiple execution units, while maintaining the data
integrity.

Speculative execution refers to the processor’s ability to execute instructions
that lie beyond a conditional branch that has not yet been resolved, and
ultimately to commit the results in the order of the original instruction stream. To
make speculative execution possible, the P6 processor microarchitecture
decouples the dispatch and execution of instructions from the commitment of
results. The processor’s out-of-order execution core uses data-flow analysis to
execute all available instructions in the instruction pool and store the results in
temporary registers. The retirement unit then linearly searches the instruction
pool for completed instructions that no longer have data dependencies with other
instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory
and/or the 1A-32 registers (the processor’s eight general-purpose registers and
eight x87 FPU data registers) in the order they were originally issued and retires
the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture

The Intel NetBurst microarchitecture provides:

The Rapid Execution Engine

— Arithmetic Logic Units (ALUS) run at twice the processor frequency
— Basic integer operations can dispatch in 1/2 processor clock tick
Hyper-Pipelined Technology

— Deep pipeline to enable industry-leading clock rates for desktop PCs and
servers

— Frequency headroom and scalability to continue leadership into the future
Advanced Dynamic Execution
— Deep, out-of-order, speculative execution engine

® Up to 126 instructions in flight

® Up to 48 loads and 24 stores in pipeline1

— Enhanced branch prediction capability

Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process
can handle more than 24 stores in flight.

Vol.1 2-9

INTEL® 64 AND IA-32 ARCHITECTURES

®* Reduces the misprediction penalty associated with deeper pipelines
®* Advanced branch prediction algorithm
®* 4K-entry branch target array
® New cache subsystem
— First level caches
* Advanced Execution Trace Cache stores decoded instructions

®* Execution Trace Cache removes decoder latency from main execution
loops

®* Execution Trace Cache integrates path of program execution flow into a
single line

®* Low latency data cache

— Second level cache
® Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache
®* Bandwidth and performance increases with processor frequency

® High-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective
speed

— Capable of delivering up to 8.5 GBytes of bandwidth per second
® Superscalar issue to enable parallelism

® Expanded hardware registers with renaming to avoid register name space
limitations

® 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitec-
ture pipeline is made up of three sections: (1) the front end pipeline, (2) the out-of-
order execution core, and (3) the retirement unit.

2-10 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

System Bus
< > —» Frequently used paths
Less frequently used
-> paths
Bus Unit
r— " - - = 1
3rd Level Cache |
| Optional
L — — — — ¢ _____ J
2nd Level Cache 1stLevel Cache
8-Way 4-way
T
& Front End X
Trace Cache =B
Fetch/Decode |===f> Microcode ROM »| Out-Of-Order > Retirement
Core
? i
Branch History Update
BTBs/Branch Prediction <

OM16521

Figure 2-2. The Intel NetBurst Microarchitecture

2.2.2.1 The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution
core. It performs a number of functions:

® Prefetches instructions that are likely to be executed

® Fetches instructions that have not already been prefetched

® Decodes instructions into micro-operations

® Generates microcode for complex instructions and special-purpose code
® Delivers decoded instructions from the execution trace cache

® Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined
microprocessors. Two of these problems contribute to major sources of delays:

® time to decode instructions fetched from the target

Vol.1 2-11

INTEL® 64 AND IA-32 ARCHITECTURES

® wasted decode bandwidth due to branches or branch target in the middle of
cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are
constantly being fetched and decoded by the translation engine (part of the
fetch/decode logic) and built into sequences of pops called traces. At any time,
multiple traces (representing prefetched branches) are being stored in the trace
cache. The trace cache is searched for the instruction that follows the active branch.
If the instruction also appears as the first instruction in a pre-fetched branch, the
fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hard-
ware. Branch targets are predicted based on their linear addresses using branch
target buffers (BTBs) and fetched as soon as possible.

2.2.2.2 Out-Of-Order Execution Core

The out-of-order execution core’s ability to execute instructions out of order is a key
factor in enabling parallelism. This feature enables the processor to reorder instruc-
tions so that if one pop is delayed, other pops may proceed around it. The processor
employs several buffers to smooth the flow of pops.

The core is designed to facilitate parallel execution. It can dispatch up to six pops per
cycle (this exceeds trace cache and retirement pop bandwidth). Most pipelines can
start executing a new pop every cycle, so several instructions can be in flight at a
time for each pipeline. A number of arithmetic logical unit (ALU) instructions can
start at two per cycle; many floating-point instructions can start once every two
cycles.

2.2.2.3 Retirement Unit

The retirement unit receives the results of the executed pops from the out-of-order
execution core and processes the results so that the architectural state updates
according to the original program order.

When a pop completes and writes its result, it is retired. Up to three pops may be
retired per cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers
completed pops, updates the architectural state in order, and manages the ordering
of exceptions. The retirement section also keeps track of branches and sends
updated branch target information to the BTB. The BTB then purges pre-fetched
traces that are no longer needed.

2.2.3 Intel® Core™ Microarchitecture

Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:

2-12 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Intel® wide Dynamic Execution enable each processor core to fetch,
dispatch, execute in high bandwidths to support retirement of up to four instruc-
tions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput
— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, and optimal performance and flexibility for single-
threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity
— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution.

— Hardware prefetchers to reduce effective latency of second-level cache
misses

— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine

Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction
with single-cycle throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions
— Up to eight floating-point operation per cycle

— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100
series implement two processor cores based on the Intel Core microarchitecture, the
functionality of the subsystems in each core are depicted in Figure 2-3.

Vol.1 2-13

INTEL® 64 AND IA-32 ARCHITECTURES

| Instruction Fetch and PreDecode I{

| Instruction Queue |
Micro- +
code _>| Decode |
ROM
I kl
4 Shared L2 Cache
| Rename/Alloc | Up to 10.7 GBJs
FSB
|
Retirement Unit
(Re-Order Buffer)
| Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB o

Figure 2-3. The Intel Core Microarchitecture Pipeline Functionality

2.2.3.1 The Front End

The front end of Intel Core microarchitecture provides several enhancements to feed

the Intel Wide Dynamic Execution engine:

® Instruction fetch unit prefetches instructions into an instruction queue to
maintain steady supply of instruction to the decode units.

® Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per

cycle with Macrofusion.

® Macrofusion fuses common sequence of two instructions as one decoded
instruction (micro-ops) to increase decoding throughput.

® Microfusion fuses common sequence of two micro-ops as one micro-ops to

improve retirement throughput.

® Instruction queue provides caching of short loops to improve efficiency.

® Stack pointer tracker improves efficiency of executing procedure/function entries

and exits.

2-14 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Branch prediction unit employs dedicated hardware to handle different types of
branches for improved branch prediction.

Advanced branch prediction algorithm directs instruction fetch unit to fetch
instructions likely in the architectural code path for decoding.

2.2.3.2 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order to increase the overall rate of instructions executed per cycle
(IPC). The execution core employs the following feature to improve execution
throughput and efficiency:

Up to six micro-ops can be dispatched to execute per cycle

Up to four instructions can be retired per cycle

Three full arithmetic logical units

SIMD instructions can be dispatched through three issue ports

Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instruc-
tions)

Up to eight floating-point operation per cycle

Many long-latency computation operation are pipelined in hardware to increase
overall throughput

Reduced exposure to data access delays using Intel Smart Memory Access

2.2.4 Intel® Atom™ Microarchitecture

Intel Atom microarchitecture maximizes power-efficient performance for single-
threaded and multi-threaded workloads by providing:

Advanced Micro-Ops Execution

— Single-micro-op instruction execution from decode to retirement, including
instructions with register-only, load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power
consumption.

— Dual pipelines to enable decode, issue, execution and retirement of two
instructions per cycle.

— Advanced stack pointer to improve efficiency of executing function
entry/returns.

Intel® Smart Cache
— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments

Vol.1 2-15

INTEL® 64 AND IA-32 ARCHITECTURES

— 256 bit internal data path between L2 and L1 data cache improves high
bandwidth.

® Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely
to be requested by processor to reduce cache miss impact.

* Intel® Digital Media Boost
— Two issue ports for dispatching SIMD instructions to execution units.
— Single-cycle throughput for most 128-bit integer SIMD instructions
— Up to six floating-point operations per cycle
— Up to two 128-bit SIMD integer operations per cycle

— Safe Instruction Recognition (SIR) to allow long-latency floating-point
operations to retire out of order with respect to integer instructions.

2.2.5 SIMD Instructions

Beginning with the Pentium Il and Pentium with Intel MMX technology processor
families, six extensions have been introduced into the Intel 64 and I1A-32 architec-
tures to perform single-instruction multiple-data (SIMD) operations. These exten-
sions include the MMX technology, SSE extensions, SSE2 extensions, SSE3
extensions, Supplemental Streaming SIMD Extensions 3, and SSE4. Each of these
extensions provides a group of instructions that perform SIMD operations on packed
integer and/or packed floating-point data elements.

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD
floating-point operations use 128-bit XMM registers. Figure 2-4 shows a summary of
the various SIMD extensions (MMX technology, SSE, SSE2, SSE3, SSSE3, and SSE4),
the data types they operate on, and how the data types are packed into MMX and
XMM registers.

The Intel MMX technology was introduced in the Pentium Il and Pentium with MMX
technology processor families. MMX instructions perform SIMD operations on packed
byte, word, or doubleword integers located in MMX registers. These instructions are
useful in applications that operate on integer arrays and streams of integer data that
lend themselves to SIMD processing.

SSE extensions were introduced in the Pentium Ill processor family. SSE instructions
operate on packed single-precision floating-point values contained in XMM registers
and on packed integers contained in MMX registers. Several SSE instructions provide
state management, cache control, and memory ordering operations. Other SSE
instructions are targeted at applications that operate on arrays of single-precision
floating-point data elements (3-D geometry, 3-D rendering, and video encoding and
decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2
instructions operate on packed double-precision floating-point values contained in

2-16 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

XMM registers and on packed integers contained in MMX and XMM registers. SSE2
integer instructions extend 1A-32 SIMD operations by adding new 128-bit SIMD
integer operations and by expanding existing 64-bit SIMD integer operations to
128-bit XMM capability. SSE2 instructions also provide new cache control and
memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-
Threading Technology (built on 90 nm process technology). SSE3 offers 13 instruc-
tions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and
Intel Core 2 processor family. SSSE3 offer 32 instructions to accelerate processing of
SIMD integer data.

SSE4 extensions offer 54 instructions. 47 of them are referred to as SSE4.1 instruc-
tions. SSE4.1 are introduced with Intel Xeon processor 5400 series and Intel Core 2
Extreme processor QX9650. The other 7 SSE4 instructions are referred to as SSE4.2
instructions.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up
to 16 XMM registers. 1A-32 architecture provides 8 XMM registers.

See also:

® Section 5.4, “MMX™ Instructions,” and Chapter 9, “Programming with Intel®
MMX™ Technology”

® Section 5.5, “SSE Instructions,” and Chapter 10, “Programming with Streaming
SIMD Extensions (SSE)”

® Section 5.6, “SSE2 Instructions,” and Chapter 11, “Programming with Streaming
SIMD Extensions 2 (SSE2)”

® Section 5.7, “SSE3 Instructions”, Section 5.8, “Supplemental Streaming SIMD
Extensions 3 (SSSE3) Instructions”, Section 5.9, “SSE4 Instructions”, and
Chapter 12, “Programming with SSE3, SSSE3, AND SSE4”

Vol.1 2-17

INTEL® 64 AND IA-32 ARCHITECTURES

SIMD Extension Register Layout Data Type

MMX Registers
MMX Technology | | | | | | | | | 8 Packed Byte Integers

| | | | | 4 Packed Word Integers

| | I 2 Packed Doubleword Integers

| | Quadword

MMX Registers
SSE | | | | | | | | | 8 Packed Byte Integers

| I I | I 4 Packed Word Integers

| | | 2 Packed Doubleword Integers

| | Quadword

XMM Registers
4 Packed Single-Precision

| | | Floating-Point Values

MMX Registers
SSE2/SSE3/SSSE3 | [| 2 Packed Doubleword Integers

[| Quadword
XMM Registers

2 Packed Double-Precision
| | | Floating-Point Values

| | | | | | | I | I | | I | | | | 16 Packed Byte Integers

| | | | | | | | | 8 Packed Word Integers

| I | | | 4 Packed Doubleword
Integers

| [| 2 Quadword Integers

| | Double Quadword

Figure 2-4. SIMD Extensions, Register Layouts, and Data Types

2-18 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

2.2.6 Hyper-Threading Technology

Hyper-Threading Technology (HT Technology) was developed to improve the perfor-
mance of 1A-32 processors when executing multi-threaded operating system and
application code or single-threaded applications under multi-tasking environments.
The technology enables a single physical processor to execute two or more separate
code streams (threads) concurrently using shared execution resources.

HT Technology is one form of hardware multi-threading capability in 1A-32 processor
families. It differs from multi-processor capability using separate physically distinct
packages with each physical processor package mated with a physical socket.

HT Technology provides hardware multi-threading capability with a single physical
package by using shared execution resources in a processor core.

Architecturally, an 1A-32 processor that supports HT Technology consists of two or
more logical processors, each of which has its own 1A-32 architectural state. Each
logical processor consists of a full set of I1A-32 data registers, segment registers,
control registers, debug registers, and most of the MSRs. Each also has its own
advanced programmable interrupt controller (APIC).

Figure 2-5 shows a comparison of a processor that supports HT Technology (imple-
mented with two logical processors) and a traditional dual processor system.

IA-32 Processor Supporting
Hyper-Threading Technology

Traditional Multiple Processor (MP) System

Processor Core Processor Core Processor Core
IA-32 processor IA-32 processor 1A-32 processor
Two logical Each processor is a
processors that share separate physical
a single core package
ya N ya N
N\ 7 N\ 7

AS = |A-32 Architectural State

OM16522

Figure 2-5. Comparison of an IA-32 Processor Supporting Hyper-Threading
Technology and a Traditional Dual Processor System

Unlike a traditional MP system configuration that uses two or more separate physical
IA-32 processors, the logical processors in an 1A-32 processor supporting HT Tech-
nology share the core resources of the physical processor. This includes the execution
engine and the system bus interface. After power up and initialization, each logical

Vol.1 2-19

INTEL® 64 AND IA-32 ARCHITECTURES

processor can be independently directed to execute a specified thread, interrupted,
or halted.

HT Technology leverages the process and thread-level parallelism found in contem-
porary operating systems and high-performance applications by providing two or
more logical processors on a single chip. This configuration allows two or more
threads? to be executed simultaneously on each a physical processor. Each logical
processor executes instructions from an application thread using the resources in the
processor core. The core executes these threads concurrently, using out-of-order
instruction scheduling to maximize the use of execution units during each clock cycle.

2.2.6.1 Some Implementation Notes

All HT Technology configurations require:

® A processor that supports HT Technology

® A chipset and BIOS that utilize the technology

® Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors
in a processor supporting HT Technology are the same as those for a traditional DP or
MP platform. The mechanisms that are described in the Multiprocessor Specification,
Version 1.4 to power-up and initialize physical processors in an MP system also apply
to logical processors in a processor that supports HT Technology.

An operating system designed to run on a traditional DP or MP platform may use
CPUID to determine the presence of hardware multi-threading support feature and
the number of logical processors they provide.

Although existing operating system and application code should run correctly on a
processor that supports HT Technology, some code modifications are recommended
to get the optimum benefit. These modifications are discussed in Chapter 7,
“Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

2.2.7 Multi-Core Technology

Multi-core technology is another form of hardware multi-threading capability in 1A-32
processor families. Multi-core technology enhances hardware multi-threading capa-
bility by providing two or more execution cores in a physical package.

The Intel Pentium processor Extreme Edition is the first member in the 1A-32
processor family to introduce multi-core technology. The processor provides hard-
ware multi-threading support with both two processor cores and Hyper-Threading

1. In the remainder of this document, the term “thread” will be used as a general term for the terms
“process” and “thread.”

2-20 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Technology. This means that the Intel Pentium processor Extreme Edition provides
four logical processors in a physical package (two logical processors for each
processor core). The Dual-Core Intel Xeon processor features multi-core, Hyper-
Threading Technology and supports multi-processor platforms.

The Intel Pentium D processor also features multi-core technology. This processor
provides hardware multi-threading support with two processor cores but does not
offer Hyper-Threading Technology. This means that the Intel Pentium D processor
provides two logical processors in a physical package, with each logical processor
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon
processor 5100 series, and Intel Core Duo processor offer power-efficient multi-core
technology. The processor contains two cores that share a smart second level cache.
The Level 2 cache enables efficient data sharing between two cores to reduce
memory traffic to the system bus.

Intel Core Duo Processor
Intel Core 2 Duo Processor

Intel Pentium dual-core Processor Pentium D Processor

Architectual State

Architectual State

Execution Engine

Execution Engine

Architectual State

Architectual State

Local APIC

Local APIC

Execution Engine

Execution Engine

Second Level Cache

Local APIC

Local APIC

Bus Interface

Bus Interface

Bus Interface

3

System Bus System Bus
Pentium Processor Extreme Edition
Architectual Architectual Architectual Architectual
State State State State

Execution Engine Execution Engine

Local APIC Local APIC Local APIC Local APIC

Bus Interface Bus Interface

OM19809

System Bus

Figure 2-6. Intel 64 and IA-32 Processors that Support Dual-Core

Vol.1 2-21

INTEL® 64 AND IA-32 ARCHITECTURES

The Pentium® dual-core processor is based on the same technology as the Intel Core
2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-
Core processor, and Intel Core 2 Quad processors support Intel quad-core tech-
nology. The Quad-core Intel Xeon processors and the Quad-Core Intel Core 2
processor family are also in Figure 2-7.

Intel Core 2 Extreme Quad-core Processor
Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State | Architectual State | Architectual State | Architectual State

Execution Engine | Execution Engine | Execution Engine | Execution Engine

Local APIC Local APIC Local APIC Local APIC
Second Level Cache Second Level Cache
Bus Interface Bus Interface
¢ 4
System Bus
OM19810

Figure 2-7. Intel 64 Processors that Support Quad-Core

2.2.8 Intel® 64 Architecture

Intel 64 architecture increases the linear address space for software to 64 bits and
supports physical address space up to 40 bits. The technology also introduces a new
operating mode referred to as 1A-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a
64-bit operating system to run most legacy 32-bit software unmodified, (2) 64-bit
mode enables a 64-bit operating system to run applications written to access 64-bit
address space.

2-22 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

In the 64-bit mode, applications may access:
® 64-bit flat linear addressing
® 8 additional general-purpose registers (GPRs)

® 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and
SSSE3)

® 64-bit-wide GPRs and instruction pointers

® uniform byte-register addressing

® fast interrupt-prioritization mechanism

® a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing 1A-32 software because it is able
to run all non-64-bit legacy modes supported by I1A-32 architecture. Most existing
1A-32 applications also run in compatibility mode.

2.2.9 Intel® Virtualization Technology (Intel® VT)

Intel® Virtualization Technology for Intel 64 and 1A-32 architectures provide exten-
sions that support virtualization. The extensions are referred to as Virtual Machine
Extensions (VMX). An Intel 64 or 1A-32 platform with VMX can function as multiple
virtual systems (or virtual machines). Each virtual machine can run operating
systems and applications in separate partitions.

VMX also provides programming interface for a new layer of system software (called
the Virtual Machine Monitor (VMM)) used to manage the operation of virtual
machines. Information on VMX and on the programming of VMMs is in Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3B. Chapter 5, “VMX
Instruction Reference,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, provides information on VMX instructions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this
observation: “... the number of transistors that would be incorporated on a silicon die
would double every 18 months for the next several years.” Over the past three and
half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per
processor) of Intel architecture processors has grown in close relation to Moore's law.
By taking advantage of new process technology and new microarchitecture designs,
each new generation of 1A-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon
processor MP, Pentium lll processor, and Pentium Ill Xeon processor with advanced

Vol.1 2-23

INTEL® 64 AND IA-32 ARCHITECTURES

transfer cache are shown in Table 2-1. Older generation 1A-32 processors, which do
not employ on-die Level 2 cache, are shown in Table 2-2.
Table 2-1. Key Features of Most Recent IA-32 Processors

Intel Date | Micro- Top-Bin Tran- | Register | Syste | Max. On-Die
Processor | Intro- | architecture | Clock Fre- | sistors | Sizes' mBus | Extern. | Caches?
duced quency at Band- | Addr.

Intro- width | Space
duction
Intel Pentium M 2004 Intel Pentium M 2.00 GHz 140 M GP:32 3.2GBIs 4GB L1: 64 KB
Processor 755 Processor FPU: 80 L2:2MB
MMX: 64
XMM: 128
Intel Core Duo 2006 Improved Intel Pentium | 2.16 GHz 152M GP: 32 5.3 GBIs 4GB L1: 64 KB
Processor M Processor FPU: 80 L2:2 MB (2MB
T2600° Microarchitecture; Dual MMX: 64 Total)
Core; XMM: 128
Intel Smart Cache,
Advanced Thermal
Manager
Intel Atom 2008 Intel Atom 1.86 GHz - 800 47M GP:32 Upto4.2 4GB L1:56 KB*
Processor Z5xx Microarchitecture; MHz FPU: 80 GB/s L2: 512KB
series Intel Virtualization MMX: 64
Technology. XMM: 128

NOTES:

1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but
does not include the trace cache.

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families.

See http://www.intel.com/products/processor_number for details.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2. Key Features of Most Recent Intel 64 Processors

Intel Date | Micro- Top-Bin Tran- | Register | System | Max. On-Die
Processor | Intro- | architec- | Clock Fre- | sistors | Sizes Bus Extern | Caches
duced | ture quency at Band- |.Addr.

Intro- width | Space

duction
64-bit Intel Xeon | 2004 Intel NetBurst 3.60 GHz 125M GP: 32, 64 6.4 GBIs 64 GB 12K pop
Processor with Microarchitecture; FPU: 80 Execution
800 MHz System Hyper-Threading MMX: 64 Trace Cache;
Bus Technology; Intel XMM: 128 16 KB L1;

64 Architecture 1MB L2
64-bit Intel Xeon | 2005 Intel NetBurst 3.33 GHz 675M GP: 32, 64 53GB/s? 1024 GB 12K pop
Processor MP Microarchitecture; FPU: 80 (17B) Execution
with 8MB L3 Hyper-Threading MMX: 64 Trace Cache;

Technology; Intel XMM: 128 16 KB L1;

64 Architecture 1MB L2,

8MB L3

2-24 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel Date | Micro- Top-Bin Tran- | Register | System | Max. On-Die
Processor | Intro- | architec- | Clock Fre- | sistors | Sizes Bus Extern | Caches
duced | ture quency at Band- |.Addr.
Intro- width | Space
duction

Intel Pentium 4 2005 Intel NetBurst 3.73GHz 164 M GP: 32, 64 85GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Edition Hyper-Threading MMX: 64 Trace Cache;
Supporting Technology; Intel XMM: 128 16 KB L1;
Hyper-Threading 64 Architecture 2MBL2
Technology
Intel Pentium 2005 Intel NetBurst 3.20 GHz 230M GP: 32, 64 6.4 GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Edition Hyper-Threading MMX: 64 Trace Cache;
840 Technology; Intel XMM: 128 16 KB L1;

64 Architecture; 1MB L2 (2MB

Dual-core Total)
Dual-Core Intel 2005 Intel NetBurst 3.00 GHz 321M GP: 32, 64 6.4 GB/s 64 GB 12K pop
Xeon Microarchitecture; FPU: 80 Execution
Processor 7041 Hyper-Threading MMX: 64 Trace Cache;

Technology; Intel XMM: 128 16 KB L1;

64 Architecture; 2MB L2 (4MB

Dual-core Total)
Intel Pentium 4 2005 Intel NetBurst 3.80 GHz 164 M GP: 32, 64 6.4 GBIs 64 GB 12K pop
Processor 672 Microarchitecture; FPU: 80 Execution

Hyper-Threading MMX: 64 Trace Cache;

Technology; Intel XMM: 128 16 KB L1;

64 Architecture; 2MB L2

Intel Virtualization

Technology.
Intel Pentium 2006 Intel NetBurst 3.46 GHz 376M GP: 32, 64 8.5GBIs 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Edition Intel 64 MMX: 64 Trace Cache;
955 Architecture; Dual XMM: 128 16 KB L1;

Core; 2MB L2

Intel Virtualization (4MB Total)

Technology.
Intel Core 2 2006 Intel Core 2.93 GHz 291M GP: 32,64 8.5GB/s 64 GB L1: 64 KB
Extreme Microarchitecture; FPU: 80 L2: 4MB (4MB
Processor Dual Core; MMX: 64 Total)
X6800 Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology.
Intel Xeon 2006 Intel Core 3.00 GHz 291M GP: 32, 64 10.6 GB/s 64 GB L1: 64 KB
Processor 5160 Microarchitecture; FPU: 80 L2: 4MB (4MB

Dual Core; MMX: 64 Total)

Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology.
Intel Xeon 2006 Intel NetBurst 3.40 GHz 13B GP: 32, 64 12.8 GB/s 64 GB L1: 64 KB
Processor 7140 Microarchitecture; FPU: 80 L2: 1MB (2MB

Dual Core; MMX: 64 Total)

Intel 64 XMM: 128 L3: 16 MB

Architecture; (16MB Total)

Intel Virtualization

Technology.
Intel Core 2 2006 Intel Core 2.66 GHz 582M GP: 32,64 8.5GB/s 64 GB L1: 64 KB
Extreme Microarchitecture; FPU: 80 L2: 4MB (4MB
Processor Quad Core; MMX: 64 Total)
QX6700 Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology.

Vol.1 2-25

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel Date | Micro- Top-Bin Tran- | Register | System | Max. On-Die
Processor | Intro- | architec- | Clock Fre- | sistors | Sizes Bus Extern | Caches
duced | ture quency at Band- |.Addr.
Intro- width | Space
duction

Quad-core Intel | 2006 Intel Core 2.66 GHz 582 M GP: 32,64 10.6 GBIs 256 GB L1: 64 KB
Xeon Microarchitecture; FPU: 80 L2:4MB (8 MB
Processor 5355 Quad Core; MMX: 64 Total)

Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology.
Intel Core 2 Duo | 2007 Intel Core 3.00 GHz 291 M GP: 32, 64 10.6 GB/s 64 GB L1:64 KB
Processor Microarchitecture; FPU: 80 L2: 4MB (4MB
E6850 Dual Core; MMX: 64 Total)

Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology;

Intel Trusted

Execution

Technology
Intel Xeon 2007 Intel Core 2.93 GHz 582 M GP: 32,64 8.5GB/s 1024 GB L1: 64 KB
Processor 7350 Microarchitecture; FPU: 80 L2: 4MB (8MB

Quad Core; MMX: 64 Total)

Intel 64 XMM: 128

Architecture;

Intel Virtualization

Technology.
Intel Xeon 2007 Enhanced Intel 3.00 GHz 820 M GP: 32, 64 12.8 GBIs 256 GB L1: 64 KB
Processor 5472 Core FPU: 80 L2: 6MB

Microarchitecture; MMX: 64 (12MB Total)

Quad Core; XMM: 128

Intel 64

Architecture;

Intel Virtualization

Technology.
Intel Atom 2008 Intel Atom 2.0-1.60 GHz 4TM GP: 32, 64 Upto4.2 Upto 64GB | L1:56 KB*
Processor Microarchitecture; FPU: 80 GB/s L2: 512KB

Intel 64 MMX: 64

Architecture; XMM: 128

Intel Virtualization

Technology.
Intel Xeon 2008 Enhanced Intel 2.67 GHz 198B GP: 32, 64 8.5GBIs 1024 GB L1: 64 KB
Processor 7460 Core FPU: 80 L2: 3MB (9MB

Microarchitecture; MMX: 64 Total)

Six Cores; XMM: 128 L3: 16MB

Intel 64

Architecture;

Intel Virtualization

Technology.

NOTES:

1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a
dual system bus; this creates a platform bandwidth with 10.6 GBytes.

2.In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The
total size of L2 in the physical package in 2 MBytes.

3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total

size of L2 in the physical package in 4 MBytes.

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

2-26 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Vol.1 2-27

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel Date | Max. Clock Tran- Register | Ext. Data | Max. Caches
Processor Intro- | Frequency/ sistors | Sizes' Bus Extern.
duced | Technology at Size? Addr.
Introduction Space
8086 1978 8 MHz 29K 16 GP 16 1MB None
Intel 286 1982 12.5 MHz 134K 16 GP 16 16 MB Note 3
Intel386 DX Processor 1985 20 MHz 275K 32GP 32 4GB Note 3
Intel486 DX Processor 1989 25 MHz 12M 32GP 32 4GB L1:8KB
80 FPU
Pentium Processor 1993 60 MHz 31M 32GP 64 4GB L1:16 KB
80 FPU
Pentium Pro Processor 1995 200 MHz 55M 32GP 64 64 GB L1: 16 KB
80 FPU L.2: 256 KB or
512 KB
Pentium 11 Processor 1997 266 MHz ™ 32GP 64 64 GB L1:32KB
80 FPU L2: 256 KB or
64 MMX 512 KB
Pentium |1l Processor 1999 500 MHz 82M 32GP 64 64 GB L1:32KB
80 FPU L2: 512 KB
64 MMX
128 XMM
Pentium Ill and Pentium | 1999 700 MHz 28M 32GP 64 64 GB L1:32KB
Il Xeon Processors 80 FPU L2: 256 KB
64 MMX
128 XMM
Pentium 4 Processor 2000 1.50 GHz, Intel NetBurst | 42 M 32GP 64 64 GB 12K pop
Microarchitecture 80 FPU Execution Trace
64 MMX Cache; L1: 8KB
128 XMM L2: 256 KB
Intel Xeon Processor 2001 1.70 GHz, Intel NetBurst | 42 M 32GP 64 64 GB 12K pop
Microarchitecture 80 FPU Execution Trace
64 MMX Cache; L1: 8KB
128 XMM L2: 512KB
Intel Xeon Processor 2002 2.20 GHz, Intel NetBurst | 55 M 32GP 64 64 GB 12K pop
Microarchitecture, 80 FPU Execution Trace
HyperThreading 64 MMX Cache; L1: 8KB
Technology 128 XMM L2: 512KB
Pentium M Processor 2003 1.60 GHz, Intel NetBurst | 77 M 32GP 64 4GB L1: 64KB
Microarchitecture 80 FPU L2:1MB
64 MMX
128 XMM
Intel Pentium 4 2004 340 GHz, Intel NetBurst | 125 M 32GP 64 64 GB 12K pop
Processor Supporting Microarchitecture, 80 FPU Execution Trace
Hyper-Threading HyperThreading 64 MMX Cache; L1: 16KB
Technology at 90 nm Technology 128 XMM L2:1MB

process

NOTE:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-
purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

2-28 Vol. 1

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or 1A-32
processor as seen by assembly-language programmers. It describes how the
processor executes instructions and how it stores and manipulates data. The execu-
tion environment described here includes memory (the address space), general-
purpose data registers, segment registers, the flag register, and the instruction
pointer register.

3.1 MODES OF OPERATION

The 1A-32 architecture supports three basic operating modes: protected mode, real-
address mode, and system management mode. The operating mode determines
which instructions and architectural features are accessible:

® Protected mode — This mode is the native state of the processor. Among the
capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is
called virtual-8086 mode, although it is not actually a processor mode. Virtual-
8086 mode is actually a protected mode attribute that can be enabled for any
task.

® Real-address mode — This mode implements the programming environment of
the Intel 8086 processor with extensions (such as the ability to switch to
protected or system management mode). The processor is placed in real-address
mode following power-up or a reset.

® System management mode (SMM) — This mode provides an operating
system or executive with a transparent mechanism for implementing platform-
specific functions such as power management and system security. The
processor enters SMM when the external SMM interrupt pin (SMI#) is activated
or an SMI is received from the advanced programmable interrupt controller
(APIC).

In SMM, the processor switches to a separate address space while saving the
basic context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the system management interrupt. SMM was
introduced with the Intel386™ SL and Intel486™ SL processors and became a
standard 1A-32 feature with the Pentium processor family.

Vol.1 3-1

BASIC EXECUTION ENVIRONMENT

3.1.1 Intel® 64 Architecture

Intel 64 architecture adds 1A-32e mode. IA-32e mode has two sub-modes.
These are:

Compatibility mode (sub-mode of 1A-32e mode) — Compatibility mode
permits most legacy 16-bit and 32-bit applications to run without re-compilation
under a 64-bit operating system. For brevity, the compatibility sub-mode is
referred to as compatibility mode in IA-32 architecture. The execution
environment of compatibility mode is the same as described in Section 3.2.
Compatibility mode also supports all of the privilege levels that are supported in
64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or
use hardware task management will not work in this mode.

Compatibility mode is enabled by the operating system (OS) on a code segment
basis. This means that a single 64-bit OS can support 64-bit applications running
in 64-bit mode and support legacy 32-bit applications (not recompiled for
64-bits) running in compatibility mode.

Compatibility mode is similar to 32-bit protected mode. Applications access only
the first 4 GByte of linear-address space. Compatibility mode uses 16-bit and 32-
bit address and operand sizes. Like protected mode, this mode allows applica-
tions to access physical memory greater than 4 GByte using PAE (Physical
Address Extensions).

64-bit mode (sub-mode of 1A-32e mode) — This mode enables a 64-bit
operating system to run applications written to access 64-bit linear address
space. For brevity, the 64-bit sub-mode is referred to as 64-bit mode in 1A-32
architecture.

64-bit mode extends the number of general purpose registers and SIMD
extension registers from 8 to 16. General purpose registers are widened to 64
bits. The mode also introduces a new opcode prefix (REX) to access the register
extensions. See Section 3.2.1 for a detailed description.

64-bit mode is enabled by the operating system on a code-segment basis. Its
default address size is 64 bits and its default operand size is 32 bits. The default
operand size can be overridden on an instruction-by-instruction basis using a REX
opcode prefix in conjunction with an operand size override prefix.

REX prefixes allow a 64-bit operand to be specified when operating in 64-bit
mode. By using this mechanism, many existing instructions have been promoted
to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION

ENVIRONMENT

Any program or task running on an 1A-32 processor is given a set of resources for
executing instructions and for storing code, data, and state information. These

3-2 Vol 1

BASIC EXECUTION ENVIRONMENT

resources (described briefly in the following paragraphs and shown in Figure 3-1)
make up the basic execution environment for an 1A-32 processor.

An Intel 64 processor supports the basic execution environment of an 1A-32
processor, and a similar environment under 1A-32e mode that can execute 64-bit
programs (64-bit sub-mode) and 32-bit programs (compatibility sub-mode).

The basic execution environment is used jointly by the application programs and the
operating system or executive running on the processor.

Address space — Any task or program running on an IA-32 processor can
address a linear address space of up to 4 GBytes (232 bytes) and a physical
address space of up to 64 GBytes (236 bytes). See Section 3.3.6, “Extended
Physical Addressing in Protected Mode,” for more information about addressing
an address space greater than 4 GBytes.

Basic program execution registers — The eight general-purpose registers,
the six segment registers, the EFLAGS register, and the EIP (instruction pointer)
register comprise a basic execution environment in which to execute a set of
general-purpose instructions. These instructions perform basic integer arithmetic
on byte, word, and doubleword integers, handle program flow control, operate on
bit and byte strings, and address memory. See Section 3.4, “Basic Program
Execution Registers,” for more information about these registers.

x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control
register, the status register, the x87 FPU instruction pointer register, the x87 FPU
operand (data) pointer register, the x87 FPU tag register, and the x87 FPU opcode
register provide an execution environment for operating on single-precision,
double-precision, and double extended-precision floating-point values, word
integers, doubleword integers, quadword integers, and binary coded decimal
(BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more
information about these registers.

MMX registers — The eight MMX registers support execution of single-
instruction, multiple-data (SIMD) operations on 64-bit packed byte, word, and
doubleword integers. See Section 9.2, “The MMX Technology Programming
Environment,” for more information about these registers.

XMM registers — The eight XMM data registers and the MXCSR register support
execution of SIMD operations on 128-bit packed single-precision and double-
precision floating-point values and on 128-bit packed byte, word, doubleword,
and quadword integers. See Section 10.2, “SSE Programming Environment,” for
more information about these registers.

Vol.1 3-3

BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
2732 -1
Eight 32-bit General-Purpose Registers
Registers
Six 16-bit ;
Registers Segment Registers
[32-bits | EFLAGS Register
[32-bits | EIP (Instruction Pointer Register)
FPU Registers
Eight 80-bit Floating-Point
Registers Data Registers 0
*The address space can be
- . flat or segmented. Using
Control Reglster the physical address
Status Register extension mechanism, a
- . physical address space of
Tag Register 2736 - 1 can be addressed.

[] Opcode Register (11-bits)
|
|

| 48 bits FPU Instruction Pointer Register
[48 bits FPU Data (Operand) Pointer Register
MMX Registers
Eight 64-bit .
Registers MMX Registers
XMM Registers
Eight 128-bit :
Registers XMM Registers
| 32-bits | MXCSR Register

Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

3-4 Vol. 1

BASIC EXECUTION ENVIRONMENT

® Stack — To support procedure or subroutine calls and the passing of parameters
between procedures or subroutines, a stack and stack management resources
are included in the execution environment. The stack (not shown in Figure 3-1) is
located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the 1A-32
architecture provides the following resources as part of its system-level architecture.
They provide extensive support for operating-system and system-development soft-
ware. Except for the 1/0 ports, the system resources are described in detail in the
Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

® 1/0 ports — The IA-32 architecture supports a transfers of data to and from
input/output (1/0) ports. See Chapter 13, “Input/Output,” in this volume.

® Control registers — The five control registers (CRO through CR4) determine the
operating mode of the processor and the characteristics of the currently
executing task. See Chapter 2, “System Architecture Overview,” in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

¢ Memory management registers — The GDTR, IDTR, task register, and LDTR
specify the locations of data structures used in protected mode memory
management. See Chapter 2, “System Architecture Overview,” in the.

® Debug registers — The debug registers (DRO through DR7) control and allow
monitoring of the processor’s debugging operations. See in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

® Memory type range registers (MTRRs) — The MTRRs are used to assign
memory types to regions of memory. See the sections on MTRRs in the .

® Machine specific registers (MSRs) — The processor provides a variety of
machine specific registers that are used to control and report on processor
performance. Virtually all MSRs handle system related functions and are not
accessible to an application program. One exception to this rule is the time-
stamp counter. The MSRs are described in Appendix B, “Model-Specific Registers
(MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

® Machine check registers — The machine check registers consist of a set of
control, status, and error-reporting MSRs that are used to detect and report on
hardware (machine) errors. See Chapter 14, “Machine-Check Architecture,” of
the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 3A.

® Performance monitoring counters — The performance monitoring counters
allow processor performance events to be monitored. See Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and I1A-32 Architec-
tures Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address
space, the basic program execution registers, and addressing modes. Refer to the
following chapters in this volume for descriptions of the other program execution
resources shown in Figure 3-1:

Vol.1 3-5

BASIC EXECUTION ENVIRONMENT

x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”

MMX Registers — See Chapter 9, “Programming with Intel® MMX™
Technology.”

XMM registers — See Chapter 10, “Programming with Streaming SIMD
Extensions (SSE),” Chapter 11, “Programming with Streaming SIMD Extensions 2
(SSE2),” and Chapter 12, “Programming with SSE3, SSSE3, AND SSE4.”

Stack implementation and procedure calls — See Chapter 6, “Procedure
Calls, Interrupts, and Exceptions.”

3.2.1 64-Bit Mode Execution Environment

The execution environment for 64-bit mode is similar to that described in Section
3.2. The following paragraphs describe the differences that apply.

Address space — A task or program running in 64-bit mode on an 1A-32
processor can address linear address space of up to 264 bytes (subject to the
canonical addressing requirement described in Section 3.3.7.1) and physical
address space of up to 2*0 bytes. Software can query CPUID for the physical
address size supported by a processor.

Basic program execution registers — The number of general-purpose
registers (GPRs) available is 16. GPRs are 64-bits wide and they support
operations on byte, word, doubleword and quadword integers. Accessing byte
registers is done uniformly to the lowest 8 bits. The instruction pointer register
becomes 64 bits. The EFLAGS register is extended to 64 bits wide, and is referred
to as the RFLAGS register. The upper 32 bits of RFLAGS is reserved. The lower 32
bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

XMM registers — There are 16 XMM data registers for SIMD operations. See
Section 10.2, “SSE Programming Environment,” for more information about
these registers.

Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in
the SS descriptor (as it is in non-64-bit modes) nor can the pointer size be
overridden by an instruction prefix.

Control registers — Control registers expand to 64 bits. A new control register
(the task priority register: CR8 or TPR) has been added. See Chapter 2, “Intel®
64 and IA-32 Architectures,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A.

Debug registers — Debug registers expand to 64 bits. See Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3B.

Descriptor table registers — The global descriptor table register (GDTR) and
interrupt descriptor table register (IDTR) expand to 10 bytes so that they can

Vol. 1

BASIC EXECUTION ENVIRONMENT

hold a full 64-bit base address. The local descriptor table register (LDTR) and the

task register (TR) also expand to hold a full 64-bit base address.

Basic Program Execution Registers Address Space
2764 -1
Sixteen 64-bit General-Purpose Registers
Registers
Six 16-bit .
Registers Segment Registers
[64-bits | RFLAGS Register
[64-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floating-Point
Registers Data Registers 0

16 bits Control Register
16 bits Status Register
Tag Register
(16 bits]
[] Opcode Register (11-bits)
|
|

[64 bits FPU Instruction Pointer Register
| 64 bits FPU Data (Operand) Pointer Register
MMX Registers
Eight 64-bit .
Registers MMX Registers
XMM Registers
SixtRe:gr;ngs—bit XMM Registers

[32-bits | MXCSR Register

Figure 3-2. 64-Bit Mode Execution Environment

Vol.1 3-7

BASIC EXECUTION ENVIRONMENT

3.3 MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory.
Physical memory is organized as a sequence of 8-bit bytes. Each byte is assigned a
unique address, called a physical address. The physical address space ranges
from zero to a maximum of 236 -1 (64 GBytes) if the processor does not support
Intel 64 architecture. Intel 64 architecture introduces a changes in physical and
linear address space; these are described in Section 3.3.3, Section 3.3.4, and
Section 3.3.7.

Virtually any operating system or executive designed to work with an 1A-32 or Intel
64 processor will use the processor’'s memory management facilities to access
memory. These facilities provide features such as segmentation and paging, which
allow memory to be managed efficiently and reliably. Memory management is
described in detail in Chapter 3, “Protected-Mode Memory Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. The
following paragraphs describe the basic methods of addressing memory when
memory management is used.

3.3.1 IA-32 Memory Models

When employing the processor’s memory management facilities, programs do not
directly address physical memory. Instead, they access memory using one of three
memory models: flat, segmented, or real address mode:

® Flat memory model — Memory appears to a program as a single, continuous
address space (Figure 3-3). This space is called a linear address space. Code,
data, and stacks are all contained in this address space. Linear address space is
byte addressable, with addresses running contiguously from O to 2321 (if notin
64-bit mode). An address for any byte in linear address space is called a linear
address.

® Segmented memory model — Memory appears to a program as a group of
independent address spaces called segments. Code, data, and stacks are
typically contained in separate segments. To address a byte in a segment, a
program issues a logical address. This consists of a segment selector and an
offset (logical addresses are often referred to as far pointers). The segment
selector identifies the segment to be accessed and the offset identifies a byte in
the address space of the segment. Programs running on an 1A-32 processor can
address up to 16,383 segments of different sizes and types, and each segment
can be as large as 232 pytes.

Internally, all the segments that are defined for a system are mapped into the
processor’s linear address space. To access a memory location, the processor
thus translates each logical address into a linear address. This translation is
transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of
programs and systems. For example, placing a program’s stack in a separate

3-8 Vol 1

BASIC EXECUTION ENVIRONMENT

segment prevents the stack from growing into the code or data space and
overwriting instructions or data, respectively.

Real-address mode memory model — This is the memory model for the Intel
8086 processor. It is supported to provide compatibility with existing programs
written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of
up to 64 KBytes in size each. The maximum size of the linear address space in
real-address mode is 220 bytes.

See also: Chapter 15, “8086 Emulation,” Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3A.

Flat Model
Linear Address

>
>

Linear
Address
Space*

Segmented Model

Segments

Linear

Offset (effective address) inear
i Space*
Ab%gr'ecfs' Segment Selector I

Real-Address Mode Model

Linear Address
Offset Space Divided | — — -

Into Equal
i Sized Segments | _ _ |
Aﬁ%grgcfs' Segment Selector
L 1

!l — —
’

* The linear address space F
can be paged when using the
flat or segmented model.

Figure 3-3. Three Memory Management Models

Vol.1 3-9

BASIC EXECUTION ENVIRONMENT

3.3.2 Paging and Virtual Memory

With the flat or the segmented memory model, linear address space is mapped into
the processor’s physical address space either directly or through paging. When using
direct mapping (paging disabled), each linear address has a one-to-one correspon-
dence with a physical address. Linear addresses are sent out on the processor’s
address lines without translation.

When using the 1A-32 architecture’s paging mechanism (paging enabled), linear
address space is divided into pages which are mapped to virtual memory. The pages
of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an
application program. All that the application sees is linear address space.

In addition, 1A-32 architecture’s paging mechanism includes extensions that
support:

® Page Address Extensions (PAE) to address physical address space greater than
4 GBytes.

® Page Size Extensions (PSE) to map linear address to physical address in
4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A.

333 Memory Organization in 64-Bit Mode

Intel 64 architecture supports physical address space greater than 64 GBytes; the
actual physical address size of 1A-32 processors is implementation specific. In 64-bit
mode, there is architectural support for 64-bit linear address space. However,
processors supporting Intel 64 architecture may implement less than 64-bits (see
Section 3.3.7.1). The linear address space is mapped into the processor physical
address space through the PAE paging mechanism.

3.3.4 Modes of Operation vs. Memory Model

When writing code for an 1A-32 or Intel 64 processor, a programmer needs to know
the operating mode the processor is going to be in when executing the code and the
memory model being used. The relationship between operating modes and memory
models is as follows:

® Protected mode — When in protected mode, the processor can use any of the
memory models described in this section. (The real-addressing mode memory
model is ordinarily used only when the processor is in the virtual-8086 mode.)
The memory model used depends on the design of the operating system or
executive. When multitasking is implemented, individual tasks can use different
memory models.

3-10 Vol. 1

BASIC EXECUTION ENVIRONMENT

® Real-address mode — When in real-address mode, the processor only supports
the real-address mode memory model.

® System management mode — When in SMM, the processor switches to a
separate address space, called the system management RAM (SMRAM). The
memory model used to address bytes in this address space is similar to the real-
address mode model. See Chapter 24, “System Management,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more
information on the memory model used in SMM.

® Compatibility mode — Software that needs to run in compatibility mode should
observe the same memory model as those targeted to run in 32-bit protected
mode. The effect of segmentation is the same as it is in 32-bit protected mode
semantics.

® 64-bit mode — Segmentation is generally (but not completely) disabled,
creating a flat 64-bit linear-address space. Specifically, the processor treats the
segment base of CS, DS, ES, and SS as zero in 64-bit mode (this makes a linear
address equal an effective address). Segmented and real address modes are not
available in 64-bit mode.

3.35 32-Bit and 16-Bit Address and Operand Sizes

I1A-32 processors in protected mode can be configured for 32-bit or 16-bit address
and operand sizes. With 32-bit address and operand sizes, the maximum linear
address or segment offset is FFFFFFFFH (232—1); operand sizes are typically 8 bits or
32 bits. With 16-bit address and operand sizes, the maximum linear address or
segment offset is FFFFH (216—1); operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit
segment selector and a 32-bit offset; when using 16-bit addressing, an address
consists of a 16-bit segment selector and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand
sizes from within a program.

When operating in protected mode, the segment descriptor for the currently
executing code segment defines the default address and operand size. A segment
descriptor is a system data structure not normally visible to application code. Assem-
bler directives allow the default addressing and operand size to be chosen for a
program. The assembler and other tools then set up the segment descriptor for the
code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16
bits. An address-size override can be used in real-address mode to enable 32-bit
addressing. However, the maximum allowable 32-bit linear address is still OOOFFFFFH
(220-1).

Vol.1 3-11

BASIC EXECUTION ENVIRONMENT

3.3.6 Extended Physical Addressing in Protected Mode

Beginning with P6 family processors, the 1A-32 architecture supports addressing of
up to 64 GBytes (236 bytes) of physical memory. A program or task could not
address locations in this address space directly. Instead, it addresses individual linear
address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an oper-
ating system can enable a program to switch 4-GByte linear address spaces within
64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in
protected mode and the operating system to provide a virtual memory management
system. See “36-Bit Physical Addressing Using the PAE Paging Mechanism” in
Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A.

3.3.7 Address Calculations in 64-Bit Mode

In most cases, 64-bit mode uses flat address space for code, data, and stacks. In
64-bit mode (if there is no address-size override), the size of effective address calcu-
lations is 64 bits. An effective-address calculation uses a 64-bit base and index regis-
ters and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective
addresses because the base address is zero. In the event that FS or GS segments are
used with a non-zero base, this rule does not hold. In 64-bit mode, the effective
address components are added and the effective address is truncated (See for
example the instruction LEA) before adding the full 64-bit segment base. The base is
never truncated, regardless of addressing mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The
64-bit instruction pointer is called the RIP. Table 3-1 shows the relationship between
RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Bits 63:32 ‘ Bits 31:16 Bits 15:0
16-bit instruction pointer | Not Modified IP
32-bit instruction pointer | Zero Extension ‘ EIP
64-bit instruction pointer | RIP

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits.
They are still limited to 32 bits and sign-extended during effective-address calcula-
tions. In 64-bit mode, however, support is provided for 64-bit displacement and
immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in 1A-32e mode to form
64-bit addresses. Address calculations are first truncated to the effective address

3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT

size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.
Because of this, 16-bit and 32-bit applications running in compatibility mode can
access only the low 4 GBytes of the 64-bit mode effective addresses. Likewise, a
32-bit address generated in 64-bit mode can access only the low 4 GBytes of the
64-bit mode effective addresses.

3.3.7.1 Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63
through to the most-significant implemented bit by the microarchitecture are set to
either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support
less. The first implementation of 1A-32 processors with Intel 64 architecture supports
a 48-bit linear address. This means a canonical address must have bits 63 through 48
set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should
check bits 63 through the most-significant implemented bit to see if the address is in
canonical form. If a linear-memory reference is not in canonical form, the implemen-
tation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a
stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment
register. These include PUSH/POP-related instructions and instructions using
RSP/RBP as base registers. In these cases, the canonical fault is #SF.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to
specify a non-SS segment, a canonical fault generates a #GP (instead of an #SF). In
64-bit mode, only FS and GS segment-overrides are applicable in this situation.
Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also
means that an SS segment-override applied to a “non-stack” register reference is
ignored. Such a sequence still produces a #GP for a canonical fault (and not an #SF).

3.4 BASIC PROGRAM EXECUTION REGISTERS

IA-32 architecture provides 16 basic program execution registers for use in general
system and application programing (see Figure 3-4). These registers can be grouped
as follows:

® General-purpose registers. These eight registers are available for storing
operands and pointers.

® Segment registers. These registers hold up to six segment selectors.

Vol.1 3-13

BASIC EXECUTION ENVIRONMENT

® EFLAGS (program status and control) register. The EFLAGS register report
on the status of the program being executed and allows limited (application-
program level) control of the processor.

® EIP (instruction pointer) register. The EIP register contains a 32-bit pointer
to the next instruction to be executed.

34.1 General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP
are provided for holding the following items:

® Operands for logical and arithmetic operations

® Operands for address calculations

® Memory pointers

Although all of these registers are available for general storage of operands, results,
and pointers, caution should be used when referencing the ESP register. The ESP

register holds the stack pointer and as a general rule should not be used for another
purpose.

Many instructions assign specific registers to hold operands. For example, string
instructions use the contents of the ECX, ESI, and EDI registers as operands. When
using a segmented memory model, some instructions assume that pointers in certain
registers are relative to specific segments. For instance, some instructions assume
that a pointer in the EBX register points to a memory location in the DS segment.

3-14 Vol. 1

BASIC EXECUTION ENVIRONMENT

31 General-Purpose Registers

EAX
EBX
ECX
EDX
€Sl

DI

EBP
ESP

Segment Registers
15 0

cs
N
SS
€S
FS
GS

Program Status and Control Register
31

| | eFLAGS

31 Instruction Pointer 0
| | ep

Figure 3-4. General System and Application Programming Registers

The special uses of general-purpose registers by instructions are described in
Chapter 5, “Instruction Set Summary,” in this volume. See also: Chapter 3 and
Chapter 4 of Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B. The following is a summary of special uses:

® EAX — Accumulator for operands and results data
® EBX — Pointer to data in the DS segment

® ECX — Counter for string and loop operations

¢ EDX — I/0 pointer

® ESI — Pointer to data in the segment pointed to by the DS register; source
pointer for string operations

® EDI — Pointer to data (or destination) in the segment pointed to by the ES
register; destination pointer for string operations

® ESP — Stack pointer (in the SS segment)

Vol.1 3-15

BASIC EXECUTION ENVIRONMENT

® EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map
directly to the register set found in the 8086 and Intel 286 processors and can be
referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each of the lower two
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH,
BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL X ECX
DH DL DX EDX
BP EBP
S| Esl
DI EDI
SP ESP

Figure 3-5. Alternate General-Purpose Register Names

3.4.1.1 General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size
is 32 bits. However, general-purpose registers are able to work with either 32-bit or
64-bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX,
RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent
eight new general-purpose registers. All of these registers can be accessed at the
byte, word, dword, and qword level. REX prefixes are used to generate 64-bit
operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT

Table 3-2. Addressable General Purpose Registers

Register Type Without REX With REX
Byte Registers AL BL, CL, DL, AH,BH, CH, | AL, BL, CL, DL, DIL, SIL, BPL, SPL,
DH R8L - R15L
Word Registers AX, BX, CX, DX, DI, SI, BP, SP | AX, BX, CX, DX, DI, SI, BP, SP, R8W -
R15W
Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, | EAX, EBX, ECX, EDX, EDI, ESI, EBP,
EBP, ESP €SP, R8D - R15D
Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8 - R15

In 64-bit mode, there are limitations on accessing byte registers. An instruction
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the
new byte registers at the same time (for example: the low byte of the RAX register).
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or
DL) and new byte registers at the same time (for example: the low byte of the R8
register, or RBP). The architecture enforces this limitation by changing high-byte
references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8
bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the desti-
nation general-purpose register:

® 64-bit operands generate a 64-bit result in the destination general-purpose
register.

® 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the
destination general-purpose register.

® 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or
48 bits (respectively) of the destination general-purpose register are not be
modified by the operation. If the result of an 8-bit or 16-bit operation is intended
for 64-bit address calculation, explicitly sign-extend the register to the full
64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit
modes, the upper 32 bits of any general-purpose register are not preserved when
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility
mode). Software must not depend on these bits to maintain a value after a 64-bit to
32-bit mode switch.

3.4.2 Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors.
A segment selector is a special pointer that identifies a segment in memory. To
access a particular segment in memory, the segment selector for that segment must
be present in the appropriate segment register.

Vol.1 3-17

BASIC EXECUTION ENVIRONMENT

When writing application code, programmers generally create segment selectors
with assembler directives and symbols. The assembler and other tools then create
the actual segment selector values associated with these directives and symbols. If
writing system code, programmers may need to create segment selectors directly.
See Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A.

How segment registers are used depends on the type of memory management model
that the operating system or executive is using. When using the flat (unsegmented)
memory model, segment registers are loaded with segment selectors that point to
overlapping segments, each of which begins at address 0O of the linear address space
(see Figure 3-6). These overlapping segments then comprise the linear address
space for the program. Typically, two overlapping segments are defined: one for code
and another for data and stacks. The CS segment register points to the code
segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily
loaded with a different segment selector so that each segment register points to a
different segment within the linear address space (see Figure 3-7). At any time, a
program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load
the segment selector for the segment to be accessed into a segment register.

Linear Address
Space for Program

Segment Registers Overlapping
Segments
R of up to

Bg 4 GBytes
sS Beginning at
£S Address 0
FS —
GS —

The segment selector in

Y

each segment register
points to an overlapping
segment in the linear
address space.

Figure 3-6. Use of Segment Registers for Flat Memory Model

3-18 Vol. 1

BASIC EXECUTION ENVIRONMENT

Code
. Segment
Segment Registers
Data
cs Segment
DS Stack
SS Segment
€S ——— o All segments
FS » are mapped
Gs o to the same
- linear-address
space
Data
Segment
Data
Segment
- Data
Segment

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Each of the segment registers is associated with one of three types of storage: code,
data, or stack. For example, the CS register contains the segment selector for the
code segment, where the instructions being executed are stored. The processor
fetches instructions from the code segment, using a logical address that consists of
the segment selector in the CS register and the contents of the EIP register. The EIP
register contains the offset within the code segment of the next instruction to be
executed. The CS register cannot be loaded explicitly by an application program.
Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task
switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of
four data segments permits efficient and secure access to different types of data
structures. For example, four separate data segments might be created: one for the
data structures of the current module, another for the data exported from a higher-
level module, a third for a dynamically created data structure, and a fourth for data
shared with another program. To access additional data segments, the application
program must load segment selectors for these segments into the DS, ES, FS, and
GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the
procedure stack is stored for the program, task, or handler currently being executed.
All stack operations use the SS register to find the stack segment. Unlike the CS
register, the SS register can be loaded explicitly, which permits application programs
to set up multiple stacks and switch among them.

Vol.1 3-19

BASIC EXECUTION ENVIRONMENT

See Section 3.3, “Memory Organization,” for an overview of how the segment regis-
ters are used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment regis-
ters found in the Intel 8086 and Intel 286 processors and the FS and GS registers
were introduced into the 1A-32 Architecture with the Intel386™ family of processors.

3.4.2.1 Segment Registers in 64-Bit Mode

In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless
of the value of the associated segment descriptor base. This creates a flat address
space for code, data, and stack. FS and GS are exceptions. Both segment registers
may be used as additional base registers in linear address calculations (in the
addressing of local data and certain operating system data structures).

Even though segmentation is generally disabled, segment register loads may cause
the processor to perform segment access assists. During these activities, enabled
processors will still perform most of the legacy checks on loaded values (even if the
checks are not applicable in 64-bit mode). Such checks are needed because a
segment register loaded in 64-bit mode may be used by an application running in
compatibility mode.

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

343 EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a
group of system flags. Figure 3-8 defines the flags within this register. Following
initialization of the processor (either by asserting the RESET pin or the INIT pin), the
state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this
register are reserved. Software should not use or depend on the states of any of
these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-
purpose instructions (described in the following sections). There are no instructions
that allow the whole register to be examined or modified directly.

The following instructions can be used to move groups of flags to and from the proce-
dure stack or the EAX register: LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After
the contents of the EFLAGS register have been transferred to the procedure stack or
EAX register, the flags can be examined and modified using the processor’s bit
manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor
automatically saves the state of the EFLAGS register in the task state segment (TSS)
for the task being suspended. When binding itself to a new task, the processor loads
the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor
automatically saves the state of the EFLAGS registers on the procedure stack. When

3-20 Vol. 1

BASIC EXECUTION ENVIRONMENT

an interrupt or exception is handled with a task switch, the state of the EFLAGS
register is saved in the TSS for the task being suspended.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Vv
i
P|F

ID Flag (D) |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)
Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
1/0O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

I
AlV|R[g[N| O |O|D|1|T|s|Z|4|A|o|P|4]C
FI?IT| p |FIF F F

L

NOOLONXXOOMXXXXX XXX

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOw

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-8. EFLAGS Register

As the 1A-32 Architecture has evolved, flags have been added to the EFLAGS register,
but the function and placement of existing flags have remained the same from one
family of the 1A-32 processors to the next. As a result, code that accesses or modifies
these flags for one family of 1A-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The
status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or
a borrow out of the most-significant bit of the result; cleared

Vol.1 3-21

BASIC EXECUTION ENVIRONMENT

otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision

arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result
contains an even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry

or a borrow out of bit 3 of the result; cleared otherwise. This flag
is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag — Set equal to the most-significant bit of the result,
which is the sign bit of a signed integer. (0 indicates a positive
value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive
number or too small a negative number (excluding the sign-bit)
to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s
complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC,
and CMC instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a spec-
ified bit into the CF flag.

The status flags allow a single arithmetic operation to produce results for three
different data types: unsigned integers, signed integers, and BCD integers. If the
result of an arithmetic operation is treated as an unsigned integer, the CF flag indi-
cates an out-of-range condition (carry or a borrow); if treated as a signed integer
(two’s complement number), the OF flag indicates a carry or borrow; and if treated
as a BCD digit, the AF flag indicates a carry or borrow. The SF flag indicates the sign
of a signed integer. The ZF flag indicates either a signed- or an unsigned-integer
zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instruc-
tions to propagate a carry or borrow from one computation to the next.

The condition instructions Jcc (Jump on condition code cc), SETcc (byte set on condi-
tion code cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status
flags as condition codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2 DF Flag

The direction flag (DF, located in bit 10 of the EFLAGS register) controls string
instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the
string instructions to auto-decrement (to process strings from high addresses to low
addresses). Clearing the DF flag causes the string instructions to auto-increment
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3-22 Vol. 1

BASIC EXECUTION ENVIRONMENT

3433 System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or
executive operations. They should not be modified by application programs.
The functions of the system flags are as follows:

TF (bit 8)

IF (bit 9)

I0PL (bits 12 and

NT (bit 14)

RF (bit 16)

VM (bit 17)

AC (bit 18)

VIF (bit 19)

VIP (bit 20)

ID (bit 21)

Trap flag — Set to enable single-step mode for debugging;
clear to disable single-step mode.

Interrupt enable flag — Controls the response of the
processor to maskable interrupt requests. Set to respond to
maskable interrupts; cleared to inhibit maskable interrupts.

13)

1/0 privilege level field — Indicates the 1/0 privilege level of
the currently running program or task. The current privilege
level (CPL) of the currently running program or task must be
less than or equal to the 1/0 privilege level to access the 1/0
address space. This field can only be modified by the POPF and
IRET instructions when operating at a CPL of 0.

Nested task flag — Controls the chaining of interrupted and
called tasks. Set when the current task is linked to the previ-
ously executed task; cleared when the current task is not linked
to another task.

Resume flag — Controls the processor’s response to debug
exceptions.

Virtual-8086 mode flag — Set to enable virtual-8086 mode;
clear to return to protected mode without virtual-8086 mode
semantics.

Alignment check flag — Set this flag and the AM bit in the CRO
register to enable alignment checking of memory references;
clear the AC flag and/or the AM bit to disable alignment
checking.

Virtual interrupt flag — Virtual image of the IF flag. Used in
conjunction with the VIP flag. (To use this flag and the VIP flag
the virtual mode extensions are enabled by setting the VME flag
in control register CR4.)

Virtual interrupt pending flag — Set to indicate that an inter-
rupt is pending; clear when no interrupt is pending. (Software
sets and clears this flag; the processor only reads it.) Used in
conjunction with the VIF flag.

Identification flag — The ability of a program to set or clear
this flag indicates support for the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory
Management,” in the Intel® 64 and 1A-32 Architectures Software Developer’s

Manual, Volume 3A.

Vol.1 3-23

BASIC EXECUTION ENVIRONMENT

3434 RFLAGS Register in 64-Bit Mode

In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits
of RFLAGS register is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment
for the next instruction to be executed. It is advanced from one instruction boundary
to the next in straight-line code or it is moved ahead or backwards by a number of
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by
control-transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and
exceptions. The only way to read the EIP register is to execute a CALL instruction and
then read the value of the return instruction pointer from the procedure stack. The
EIP register can be loaded indirectly by modifying the value of a return instruction
pointer on the procedure stack and executing a return instruction (RET or IRET). See
Section 6.2.4.2, “Return Instruction Pointer.”

All 1A-32 processors prefetch instructions. Because of instruction prefetching, an
instruction address read from the bus during an instruction load does not match the
value in the EIP register. Even though different processor generations use different
prefetching mechanisms, the function of the EIP register to direct program flow
remains fully compatible with all software written to run on 1A-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode

In 64-bit mode, the RIP register becomes the instruction pointer. This register holds
the 64-bit offset of the next instruction to be executed. 64-bit mode also supports a
technique called RIP-relative addressing. Using this technique, the effective address
is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a
default operand-size attribute and address-size attribute. These attributes are
selected with the D (default size) flag in the segment descriptor for the code segment
(see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A). When the D flag is set, the
32-bit operand-size and address-size attributes are selected; when the flag is clear,
the 16-bit size attributes are selected. When the processor is executing in real-
address mode, virtual-8086 mode, or SMM, the default operand-size and address-
size attributes are always 16 bits.

3-24 Vol. 1

BASIC EXECUTION ENVIRONMENT

The operand-size attribute selects the size of operands. When the 16-bit operand-
size attribute is in force, operands can generally be either 8 bits or 16 bits, and when
the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32
bits.

The address-size attribute selects the sizes of addresses used to address memory:
16 bits or 32 bits. When the 16-bit address-size attribute is in force, segment offsets
and displacements are 16 bits. This restriction limits the size of a segment to 64
KBytes. When the 32-bit address-size attribute is in force, segment offsets and
displacements are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden
for a particular instruction by adding an operand-size and/or address-size prefix to
an instruction. See Chapter 2, “Instruction Format,” in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3A. The effect of this prefix applies
only to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in
protected mode or compatibility mode) depending on the settings of the D flag and
the operand-size and address-size prefixes.

Table 3-3. Effective Operand- and Address-Size Attributes

D Flag in Code Segment Descriptor | 0 0 0 0 1 1 1 1
Operand-Size Prefix 66H N N Y Y N N Y Y
Address-Size Prefix 67H N Y N Y N Y N Y
Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16
NOTES:

Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3.6.1 Operand Size and Address Size in 64-Bit Mode

In 64-bit mode, the default address size is 64 bits and the default operand size is 32
bits. Defaults can be overridden using prefixes. Address-size and operand-size
prefixes allow mixing of 32/64-bit data and 32/64-bit addresses on an instruction-
by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit
mode. Note that 16-bit addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the
REX prefixes is referred to as REX.W. If the REX.W field is properly set, the prefix
specifies an operand size override to 64 bits. Note that software can still use the
operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W
takes precedence over the operand-size prefix (66H) when both are used.

Vol.1 3-25

BASIC EXECUTION ENVIRONMENT

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H
prefixes are mandatory for opcode extensions. In such a case, there is no interaction
between a valid REX.W prefix and a 66H opcode extension prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’'s Manual, Volume 3A.

Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment

Descriptor 1 1 1 1 1 1 1 1
REX.W Prefix 0 0 0 0 1 1 1 1
Operand-Size Prefix 66H N N Y Y N N Y Y
Address-Size Prefix 67H N Y N Y N Y N Y
Effective Operand Size 32 32 16 16 64 64 64 64
Effective Address Size 64 32 64 32 64 32 64 32
NOTES:

Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3.7 OPERAND ADDRESSING

1A-32 machine-instructions act on zero or more operands. Some operands are spec-
ified explicitly and others are implicit. The data for a source operand can be located
in:

® the instruction itself (an immediate operand)

® aregister

® amemory location

® an /0 port

When an instruction returns data to a destination operand, it can be returned to:
® aregister

® a memory location

® an 1/0 port

3-26 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.7.1 Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand.
These operands are called immediate operands (or simply immediates). For
example, the following ADD instruction adds an immediate value of 14 to the
contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source
operand to be an immediate value. The maximum value allowed for an immediate
operand varies among instructions, but can never be greater than the maximum
value of an unsigned doubleword integer (232).

3.7.2 Register Operands

Source and destination operands can be any of the following registers, depending on
the instruction being executed:

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
® 16-bit general-purpose registers (AX, BX, CX, DX, SlI, DI, SP, or BP)

® 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)

® segment registers (CS, DS, SS, ES, FS, and GS)

® EFLAGS register

® x87 FPU registers (STO through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

® MMX registers (MMO through MM7)
® XMM registers (XMMO through XMM7) and the MXCSR register

® control registers (CRO, CR2, CR3, and CR4) and system table pointer registers
(GDTR, LDTR, IDTR, and task register)

® debug registers (DRO, DR1, DR2, DR3, DR6, and DR7)
® MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands
contained in a pair of 32-bit registers. Register pairs are represented with a colon
separating them. For example, in the register pair EDX:EAX, EDX contains the high
order bits and EAX contains the low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to
load and store the contents of the EFLAGS register or to set or clear individual flags
in this register. Other instructions (such as the Jcc instructions) use the state of the
status flags in the EFLAGS register as condition codes for branching or other decision
making operations.

The processor contains a selection of system registers that are used to control
memory management, interrupt and exception handling, task management,

Vol.1 3-27

BASIC EXECUTION ENVIRONMENT

processor management, and debugging activities. Some of these system registers
are accessible by an application program, the operating system, or the executive
through a set of system instructions. When accessing a system register with a
system instruction, the register is generally an implied operand of the instruction.

3.7.2.1 Register Operands in 64-Bit Mode

Register operands in 64-bit mode can be any of the following:

® 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or
R8-R15)

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or
R8D-R15D)

® 16-bit general-purpose registers (AX, BX, CX, DX, Sl, DI, SP, BP, or RBW-R15W)

® 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-
R15L are available using REX prefixes; AL, BL, CL, DL, AH, BH, CH, DH are
available without using REX prefixes.

® Segment registers (CS, DS, SS, ES, FS, and GS)
® RFLAGS register

® x87 FPU registers (STO through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

® MMKX registers (MMO through MM7)
® XMM registers (XMMO through XMM15) and the MXCSR register

® Control registers (CRO, CR2, CR3, CR4, and CR8) and system table pointer
registers (GDTR, LDTR, IDTR, and task register)

® Debug registers (DRO, DR1, DR2, DR3, DR6, and DR7)
® MSR registers
® RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands

Source and destination operands in memory are referenced by means of a segment
selector and an offset (see Figure 3-9). Segment selectors specify the segment
containing the operand. Offsets specify the linear or effective address of the operand.
Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented
by the notation m16:16).

15 0 31
Segment | ‘ Offset (or Linear Address)

Selector

Figure 3-9. Memory Operand Address

3-28 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.7.3.1 Memory Operands in 64-Bit Mode

In 64-bit mode, a memory operand can be referenced by a segment selector and an
offset. The offset can be 16 bits, 32 bits or 64 bits (see Figure 3-10).

15 0 63 0

‘ SSe ment | Offset (or Linear Address)
elector

Figure 3-10. Memory Operand Address in 64-Bit Mode

3.74 Specifying a Segment Selector

The segment selector can be specified either implicitly or explicitly. The most
common method of specifying a segment selector is to load it in a segment register
and then allow the processor to select the register implicitly, depending on the type
of operation being performed. The processor automatically chooses a segment
according to the rules given in Table 3-5.

When storing data in memory or loading data from memory, the DS segment default
can be overridden to allow other segments to be accessed. Within an assembler, the
segment override is generally handled with a colon “:” operator. For example, the
following MOV instruction moves a value from register EAX into the segment pointed
to by the ES register. The offset into the segment is contained in the EBX register:

MOV ES{[EBX], EAX;

Table 3-5. Default Segment Selection Rules
Reference Register | Segment

Type Used Used Default Selection Rule
Instructions | CS Code Segment | All instruction fetches.
Stack SS Stack Segment | All stack pushes and pops.

Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment | All data references, except when relative to stack or
string destination.
Destination €S Data Segment | Destination of string instructions.
Strings pointed to with
the ES register

At the machine level, a segment override is specified with a segment-override prefix,
which is a byte placed at the beginning of an instruction. The following default
segment selections cannot be overridden:

® Instruction fetches must be made from the code segment.

Vol.1 3-29

BASIC EXECUTION ENVIRONMENT

® Destination strings in string instructions must be stored in the data segment
pointed to by the ES register.

® Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these
cases, the 16-bit segment selector can be located in a memory location or in a 16-bit
register. For example, the following MOV instruction moves a segment selector
located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in
memory. Here, the first doubleword in memory contains the offset and the next word
contains the segment selector.

3.74.1 Segmentation in 64-Bit Mode

In 1A-32e mode, the effects of segmentation depend on whether the processor is
running in compatibility mode or 64-bit mode. In compatibility mode, segmentation
functions just as it does in legacy I1A-32 mode, using the 16-bit or 32-bit protected
mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The
exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calcu-
lations.

3.7.5 Specifying an Offset

The offset part of a memory address can be specified directly as a static value (called
a displacement) or through an address computation made up of one or more of the
following components:

¢ Displacement — An 8-, 16-, or 32-bit value.

® Base — The value in a general-purpose register.

® Index — The value in a general-purpose register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective
address. Each of these components can have either a positive or negative (2s
complement) value, with the exception of the scaling factor. Figure 3-11 shows all
the possible ways that these components can be combined to create an effective
address in the selected segment.

3-30 Vol. 1

BASIC EXECUTION ENVIRONMENT

Base Index Scale Displacement

EAX

EBX Eg;(1 None

= ECX 2 8-bit

esp | * EDX + '

€8P eBP | * 4 16-bit
sl

ESII €D 8 32-bit

Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restricted in
the following manner:

® The ESP register cannot be used as an index register.

® When the ESP or EBP register is used as the base, the SS segment is the default
segment. In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and
any of these components can be NULL. A scale factor may be used only when an
index also is used. Each possible combination is useful for data structures commonly
used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address
components.

® Displacement — A displacement alone represents a direct (uncomputed) offset
to the operand. Because the displacement is encoded in the instruction, this form
of an address is sometimes called an absolute or static address. It is commonly
used to access a statically allocated scalar operand.

® Base — A base alone represents an indirect offset to the operand. Since the
value in the base register can change, it can be used for dynamic storage of
variables and data structures.

® Base + Displacement — A base register and a displacement can be used
together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The
displacement component encodes the static offset to the beginning of the
array. The base register holds the results of a calculation to determine the
offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the
beginning of the record, while the displacement is a static offset to the field.

An important special case of this combination is access to parameters in a
procedure activation record. A procedure activation record is the stack frame

Vol.1 3-31

BASIC EXECUTION ENVIRONMENT

created when a procedure is entered. Here, the EBP register is the best choice for
the base register, because it automatically selects the stack segment. This is a
compact encoding for this common function.

® (Index * Scale) + Displacement — This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The
displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts
the subscript into an index by applying the scaling factor.

® Base + Index + Displacement — Using two registers together supports either
a two-dimensional array (the displacement holds the address of the beginning of
the array) or one of several instances of an array of records (the displacement is
an offset to a field within the record).

® Base + (Index * Scale) + Displacement — Using all the addressing
components together allows efficient indexing of a two-dimensional array when
the elements of the array are 2, 4, or 8 bytes in size.

3.7.5.1 Specifying an Offset in 64-Bit Mode

The offset part of a memory address in 64-bit mode can be specified directly as a
static value or through an address computation made up of one or more of the
following components:

® Displacement — An 8-bit, 16-bit, or 32-bit value.
® Base — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.

® Index — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose
register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose
registers in most cases. See Chapter 2, “Instruction Format,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A.

The following unique combination of address components is also available.

® RIP + Displacement — In 64-bit mode, RIP-relative addressing uses a signed
32-bit displacement to calculate the effective address of the next instruction by
sign-extend the 32-bit value and add to the 64-bit value in RIP.

3.7.6 Assembler and Compiler Addressing Modes

At the machine-code level, the selected combination of displacement, base register,
index register, and scale factor is encoded in an instruction. All assemblers permit a
programmer to use any of the allowable combinations of these addressing compo-
nents to address operands. High-level language compilers will select an appropriate
combination of these components based on the language construct a programmer
defines.

3-32 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.7.7 I/0 Port Addressing

The processor supports an 1/0 address space that contains up to 65,536 8-bit 1/0
ports. Ports that are 16-bit and 32-bit may also be defined in the 1/0 address space.
An 1/0 port can be addressed with either an immediate operand or a value in the DX
register. See Chapter 13, “Input/Output,” for more information about 1/0 port
addressing.

Vol.1 3-33

BASIC EXECUTION ENVIRONMENT

3-34 Vol. 1

CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and 1A-32 architectures.
A section at the end of this chapter describes the real-number and floating-point
concepts used in x87 FPU, SSE, SSE2, SSE3 and SSSE3 extensions.

4.1 FUNDAMENTAL DATA TYPES

The fundamental data types are bytes, words, doublewords, quadwords, and double
quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits), a
doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quad-
word is 16 bytes (128 bits). A subset of the 1A-32 architecture instructions operates
on these fundamental data types without any additional operand typing.

7 0
I:l Byte
N
15 87 0
lB'S‘tAé Word
N+1 N
31 16 15 0
| High Word| Low Word | Doubleword
N+2 N
63 32 31 0
| High Doubleword | Low Doubleword | Quadword
N+4 N

127 64 63

0
- Double
High Quadword | Low Quadword Quadword
N+8 N

Figure 4-1. Fundamental Data Types

The quadword data type was introduced into the 1A-32 architecture in the Intel486
processor; the double quadword data type was introduced in the Pentium Il
processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bits O through 7) of each data type
occupies the lowest address in memory and that address is also the address of the
operand.

Vol.1 4-1

DATA TYPES

4€H FH A
12H eH
7AH DH
Word at Address BH FEH CH Doubleword at Address AH
Contains FEOGH 06H BH Contains 7AFEO636H
v 36H AH
Byte at Address 9H T
. 1FH 9H
Contains 1FH Quadword at Address 6H
ﬁ A4H 8H Contains
A 7AFE06361FA4230BH
Word at Address 6H 23H /H
Contains 230BH OBH 6H
45H 5H
67H 4H
Word at Address 2H e
Contains 74CBH 1 74H 3H
Double quadword at Address OH
Word at Address 1H AN CBH 2H ccntaing
Contains CB3TH A2 31H TH | 4E127AFE06361FA4230B456774CB311;

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in
Memory

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are
even-numbered addresses, addresses evenly divisible by four, and addresses evenly
divisible by eight, respectively. However, to improve the performance of programs,
data structures (especially stacks) should be aligned on natural boundaries when-
ever possible. The reason for this is that the processor requires two memory
accesses to make an unaligned memory access; aligned accesses require only one
memory access. A word or doubleword operand that crosses a 4-byte boundary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and
requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be
aligned on a natural boundary. These instructions generate a general-protection
exception (#GP) if an unaligned operand is specified. A natural boundary for a double
quadword is any address evenly divisible by 16. Other instructions that operate on
double quadwords permit unaligned access (without generating a general-protection

4-2 Vol. 1

DATA TYPES

exception). However, additional memory bus cycles are required to access unaligned
data from memory.

4.2 NUMERIC DATA TYPES

Although bytes, words, and doublewords are fundamental data types, some instruc-
tions support additional interpretations of these data types to allow operations to be
performed on numeric data types (signed and unsigned integers, and floating-point
numbers). See Figure 4-3.

Vol.1 4-3

DATA TYPES

Byte Unsigned Integer

1

~
o

H

Word Unsigned Integer

—_
w
o

Doubleword Unsigned Integer

I Quadword Unsigned Integer

D:I Byte Signed Integer

Word Signed Integer
1514 0
Sign
I] | Doubleword Signed Integer
3130 0

Sign
| | | Quadword Signed Integer
63 62 0

Sign
‘ ‘ | Single Precision
3130357 3 Floating Point

Sign
‘ | Double Precision
Floating Point
6362 5251 0

Sign Integer Bit .
| ‘ ‘ ‘ | Double Extended Precision

Floating Point
7978 64 63 62 0

Figure 4-3. Numeric Data Types

4.2.1 Integers

The Intel 64 and 1A-32 architectures define two types of integers: unsigned and
signed. Unsigned integers are ordinary binary values ranging from O to the maximum
positive number that can be encoded in the selected operand size. Signed integers

4-4 Vol. 1

DATA TYPES

are two’s complement binary values that can be used to represent both positive and
negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions)
operate on either unsigned or signed integer operands. Other integer instructions
(such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of
integers.

4.2.1.1 Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, double-
word, and quadword. Their values range from 0 to 255 for an unsigned byte integer,
from O to 65,535 for an unsigned word integer, from O to 232 _ 1 for an unsigned
doubleword integer, and from 0 to 254 — 1 for an unsigned quadword integer.
Unsigned integers are sometimes referred to as ordinals.

4.2.1.2 Signed Integers

Signed integers are signed binary numbers held in a byte, word, doubleword, or
quadword. All operations on signed integers assume a two's complement representa-
tion. The sign bit is located in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in
a doubleword integer, and bit 63 in a quadword integer (see the signed integer
encodings in Table 4-1).

Vol.1 4-5

DATA TYPES

Table 4-1. Signed Integer Encodings

Class Two’s Complement Encoding
Sign
Positive Largest 0 11.11
Smallest 0 00..01
Zero 0 00..00
Negative Smallest 1 11.11
Largest 1 00..00
Integer indefinite 1 00..00
Signed Byte Integer: & 7 bits =
Signed Word Integer: < 15 bits —
Signed Doubleword Integer: «— 31 bits —
Signed Quadword Integer: < 63 bits =

The sign bit is set for negative integers and cleared for positive integers and zero.
Integer values range from —128 to +127 for a byte integer, from —32,768 to +32,767
for a word integer, from —231 to +231 — 1 for a doubleword integer, and from —2°3 to
+253 _ 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive
bytes; doubleword integers are stored in 4 consecutive bytes; and quadword inte-
gers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU
when operating on integer values. For more information, see Section 8.2.1, “Indefi-
nites.”

4.2.2 Floating-Point Data Types

The 1A-32 architecture defines and operates on three floating-point data types:
single-precision floating-point, double-precision floating-point, and double-extended
precision floating-point (see Figure 4-3). The data formats for these data types
correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-
Point Arithmetic.

4-6 Vol. 1

DATA TYPES

Table 4-2 gives the length, precision, and approximate normalized range that can be
represented by each of these data types. Denormal values are also supported in each
of these types.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types

Data Type Length | Precision Approximate Normalized Range
(Bits) Binary Decimal
Single Precision 32 24 2710 10 27¢7 1.18x1073%103.40 x 107°
Double Precision 64 53 27102245 21023 1223 % 10398 10 1.79 x
10308
Double Extended 80 64 2716382 49 337 x 10793210 1.18 x
Precision 216383 104932
NOTE

Section 4.8, “Real Numbers and Floating-Point Formats,” gives an
overview of the IEEE Standard 754 floating-point formats and defines
the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers,
normalized finite numbers, infinites, and NaNs for each of the three floating-point
data types. It also gives the format for the QNaN floating-point indefinite value. (See
Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the
significand is encoded. The integer is assumed to be 1 for all numbers except O and
denormalized finite numbers. For the double extended-precision format, the integer
is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to O for zero
and denormalized numbers.

Vol.1 4-7

DATA TYPES

Table 4-3. Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand
Integer’ Fraction
Positive +oo 11.11 1 00.00
+Normals 11.10 1 11.11
00..61 1 00..60
+Denormals 0 00.00 0 11.11
6 00..60 0 00..61
+Zero 0 00..00 0 00.00
Negative | -Zero 1 00.00 0 00.00
—Denormals 1 00.00 0 00.01
i 00..60 0 1 11 1
—Normals 1 00.01 1 00.00
i 1 11 0 1 1 11 1
- 1 11.11 1 00.00
NaNs SNaN X 11.11 1 0X.XX2
QNaN X 11.11 1 1X.XX
QNaN 1 11.11 1 10.00
Floating-Point
Indefinite
Single-Precision: < 8Bits = & 23 Bits >
Double-Precision: < 11Bits — < 52 Bits >
Double Extended-Precision: < 15Bits > < 63 Bits —

NOTES:

1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit O.

The exponent of each floating-point data type is encoded in biased format; see
Section 4.8.2.2, “Biased Exponent.” The biasing constant is 127 for the single-
precision format, 1023 for the double-precision format, and 16,383 for the double

extended-precision format.

4-8 Vol. 1

DATA TYPES

When storing floating-point values in memory, single-precision values are stored in 4
consecutive bytes in memory; double-precision values are stored in 8 consecutive
bytes; and double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on
by x87 FPU, and SSE/SSE2/SSE3 instructions. The double-extended-precision
floating-point format is only operated on by the x87 FPU. See Section 11.6.8,
“Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a discussion of
the compatibility of single-precision and double-precision floating-point data types
between the x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES

Pointers are addresses of locations in memory.

In non-64-bit modes, the architecture defines two types of pointers: a near pointer
and a far pointer. A near pointer is a 32-bit (or 16-bit) offset (also called an effec-
tive address) within a segment. Near pointers are used for all memory references in
a flat memory model or for references in a segmented model where the identity of
the segment being accessed is implied.

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit
(or 16-bit) offset. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be specified
explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

Near Pointer
Offset
31 0

Far Pointer or Logical Address
Segment Selector \ Offset
47 32 31 0

Figure 4-4. Pointer Data Types

4.3.1 Pointer Data Types in 64-Bit Mode

In 64-bit mode (a sub-mode of 1A-32e mode), a near pointer is 64 bits. This
equates to an effective address. Far pointers in 64-bit mode can be one of three
forms:

® 16-bit segment selector, 16-bit offset if the operand size is 32 bits
® 16-bit segment selector, 32-bit offset if the operand size is 32 bits
® 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

Vol.1 4-9

DATA TYPES

Near Pointer

64-bit Offset
63 0
Far Pointer with 64-bit Operand Size
16-bit Segment Selector 64-bit Offset
79 64 63 0
Far Pointer with 32-bit Operand Size
16-bit Segment Selector 32-bit Offset
47 32 31 0

OM17733

Figure 4-5. Pointers in 64-Bit Mode

4.4 BIT FIELD DATA TYPE

A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit
position of any byte in memory and can contain up to 32 bits.

Bit Field

| |
F Field Length «J

Least
Significant
Bit

Figure 4-6. Bit Field Data Type

4.5 STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string
can begin at any bit position of any byte and can contain up to 232_1 pits. A byte
string can contain bytes, words, or doublewords and can range from zero to 2%2_1
bytes (4 GBytes).

4-10 Vol.1

DATA TYPES

4.6 PACKED SIMD DATA TYPES

Intel 64 and 1A-32 architectures define and operate on a set of 64-bit and 128-bit
packed data type for use in SIMD operations. These data types consist of funda-
mental data types (packed bytes, words, doublewords, and quadwords) and numeric
interpretations of fundamental types for use in packed integer and packed floating-
point operations.

4.6.1 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the 1A-32 architecture in the
Intel MMX technology. They are operated on in MMX registers. The fundamental
64-bit packed data types are packed bytes, packed words, and packed doublewords
(see Figure 4-7). When performing numeric SIMD operations on these data types,
these data types are interpreted as containing byte, word, or doubleword integer
values.

Fundamental 64-Bit Packed SIMD Data Types

| | | | | | | | | Packed Bytes
63 0

| | | | | Packed Words
63 0

I | | Packed Doublewords

63 0
64-Bit Packed Integer Data Types

[T T T T T T T] Packedbyteintegers
63 0

I | I | | Packed Word Integers
63 0

| | | Packed Doubleword Integers

63 0

Figure 4-7. 64-Bit Packed SIMD Data Types

Vol.1 4-11

DATA TYPES

4.6.2 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the 1A-32 architecture in
the SSE extensions and used with SSE2, SSE3 and SSSE3 extensions. They are oper-
ated on primarily in the 128-bit XMM registers and memory. The fundamental 128-bit
packed data types are packed bytes, packed words, packed doublewords, and
packed quadwords (see Figure 4-8). When performing SIMD operations on these
fundamental data types in XMM registers, these data types are interpreted as
containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword
integer values.

4-12 Vol.1

DATA TYPES

Fundamental 128-Bit Packed SIMD Data Types

N "¢ =
127 0

| | | | | | | | | Packed Words

127 0

| | | | | Packed Doublewords
127 0

| | | Packed Quadwords
127 0

128-Bit Packed Floating-Point and Integer Data Types

| | | Packed Single Precision
Floating Point

| | | Packed Double Precision
Floating Point

| I I | I | | | | | | | | I | | |PackedByteIntegers

| | | | | | | | | Packed Word Integers

| | | | | Packed Doubleword Integers

| | | Packed Quadword Integers

Figure 4-8. 128-Bit Packed SIMD Data Types

4.7 BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid
values ranging from 0 to 9. IA-32 architecture defines operations on BCD integers
located in one or more general-purpose registers or in one or more x87 FPU registers
(see Figure 4-9).

Vol.1 4-13

DATA TYPES

BCD Integers

7 43 0

Packed BCD Integers

7 43 0

Sign 80-Bit Packed BCD Decimal Integers

[[x [p17 D16 D15 D14 D13 D12 D11,D10, D9 D8, D7 D6 D5, D4 D3 D2 D1 DO |
7978 7271 0
4 Bits = 1 BCD Digit

Figure 4-9. BCD Data Types

When operating on BCD integers in general-purpose registers, the BCD values can be
unpacked (one BCD digit per byte) or packed (two BCD digits per byte). The value of
an unpacked BCD integer is the binary value of the low half-byte (bits O through 3).
The high half-byte (bits 4 through 7) can be any value during addition and subtrac-
tion, but must be zero during multiplication and division. Packed BCD integers allow
two BCD digits to be contained in one byte. Here, the digit in the high half-byte is
more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in
an 80-bit format and referred to as decimal integers. In this format, the first 9 bytes
hold 18 BCD digits, 2 digits per byte. The least-significant digit is contained in the
lower half-byte of byte O and the most-significant digit is contained in the upper half-
byte of byte 9. The most significant bit of byte 10 contains the sign bit (O = positive
and 1 = negative; bits 0 through 6 of byte 10 are don’t care bits). Negative decimal
integers are not stored in two's complement form; they are distinguished from posi-
tive decimal integers only by the sign bit. The range of decimal integers that can be
encoded in this format is ~1018 + 1 to 1018 _1.

The decimal integer format exists in memory only. When a decimal integer is loaded
in an x87 FPU data register, it is automatically converted to the double-extended-
precision floating-point format. All decimal integers are exactly representable in
double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

4-14 Vol.1

DATA TYPES

Table 4-4. Packed Decimal Integer Encodings

Magnitude

Class | Sign digit | digit | digit | digit | .. | digit
Positive
Largest 0 0000000 1001 1001 1001 1001 1001
Smallest| O 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negative
Zero 1 0000000 0000 0000 0000 0000 0000
Smallest | 1 0000000 0000 0000 0000 0000 0001
Largest 1 0000000 1001 1001 1001 1001 1001
Packed 1 1111111 1111 1111 1100 0000 0000
BCD
Integer
Indefinit
e

<« 1 byte —> < 9 bytes —

The packed BCD integer indefinite encoding (FFFFCOO0000000000000H) is stored by
the FBSTP instruction in response to a masked floating-point invalid-operation
exception. Attempting to load this value with the FBLD instruction produces an unde-
fined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in
x87 FPU and SSE/SSE2/SSE3 floating-point instructions. It also introduces terms
such as normalized numbers, denormalized numbers, biased exponents, signed
zeros, and NaNs. Readers who are already familiar with floating-point processing
techniques and the IEEE Standard 754 for Binary Floating-Point Arithmetic may wish
to skip this section.

Vol.1 4-15

DATA TYPES

4.8.1 Real Number System

As shown in Figure 4-10, the real-number system comprises the continuum of real
numbers from minus infinity (- <) to plus infinity (+ o).

Because the size and number of registers that any computer can have is limited, only
a subset of the real-number continuum can be used in real-number (floating-point)
calculations. As shown at the bottom of Figure 4-10, the subset of real numbers that
the 1A-32 architecture supports represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the
IEEE Standard 754 floating-point formats.

4.8.2 Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and
microprocessors typically represent real numbers in a binary floating-point format.
In this format, a real number has three parts: a sign, a significand, and an exponent
(see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or nega-
tive (1). The significand has two parts: a 1-bit binary integer (also referred to as
the J-bit) and a binary fraction. The integer-bit is often not represented, but instead
is an implied value. The exponent is a binary integer that represents the base-2
power by which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored
in IEEE Standard 754 floating-point format. The table lists a progression of real
number notations that leads to the single-precision, 32-bit floating-point format. In
this format, the significand is normalized (see Section 4.8.2.1, “Normalized
Numbers”) and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For
the single-precision floating-point format, the biasing constant is +127.

4-16 Vol.1

DATA TYPES

Binary Real Number System
-100 -10 10 1 10 100
| |

¢ [! I .
- | 1 N 1 1 s>

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

.
*

HT— 10.0000000000000000000000

1.11111111111111111111111
Precision |<—24 Binary Digits ——

Numbers within this range
cannot be represented.

Figure 4-10. Binary Real Number System

Sign

H Exponent ‘ Significand |

=

| | Fraction |

Integer or J-Bit J

Figure 4-11. Binary Floating-Point Format

Vol.1 4-17

DATA TYPES

Table 4-5. Real and Floating-Point Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125€¢¢
2
Scientific Binary 1.0110010001€111
Scientific Binary 1.0110010001€,10000110
(Biased Exponent)
IEEE Single-Precision Format | Sign Biased Exponent | Normalized Significand
0 10000110 0110010001000000000000
0
1. (Implied)

4.8.2.1 Normalized Numbers

In most cases, floating-point numbers are encoded in normalized form. This means
that except for zero, the significand is always made up of an integer of 1 and the
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero elimi-
nated, the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits
that can be accommodated in a significand of a given width. To summarize, a normal-
ized real number consists of a normalized significand that represents a real number
between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2 Biased Exponent

In the 1A-32 architecture, the exponents of floating-point numbers are encoded in a
biased form. This means that a constant is added to the actual exponent so that the
biased exponent is always a positive number. The value of the biasing constant
depends on the number of bits available for representing exponents in the floating-
point format being used. The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that
the 1A-32 architecture uses for the various sizes of floating-point data-types.

4-18 Vol.1

DATA TYPES

4.8.3 Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard
754 floating-point format. These numbers and values are generally divided into the
following classes:

® Signed zeros

® Denormalized finite numbers

® Normalized finite numbers

® Signed infinities

® NaNs

® Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into
the real number continuum. The encodings shown here are for the IEEE single-preci-
sion floating-point format. The term “S” indicates the sign bit, “E” the biased expo-
nent, and “Sig” the significand. The exponent values are given in decimal. The
integer bit is shown for the significands, even though the integer bit is implied in
single-precision floating-point format.

NaN NaN
— Denormalized Finite + Denormalized Finite

oo - Normalized Finite n O|+ (I) . + Normalized Finite +|°°|
T T T T

Real Number and NaN Encodings For 32-Bit Floating-Point Format

s E Sig* s E Sig!
[1] o [o0.000..]|-o0 +o[o] o [o0.000.]
- i D lized
[1[0 [oxxx.Z| ~[Benormalized +Denormalized 675770 xxx 7|
[1]1-254] 1xxx... | ~hormalized +Normalized o T1 7284 1 XXX
[1] 255 [1.000.. | - +o [0] 255 [1.000..]
[x§ 255 | 1.0xX..2 | SNaN sNaN [xJ 255 [1.0xX..% |
[x3 255 | L.1XX... | QNaN ONaN [x§ 255 | LIXX.. |

NOTES:

1. Integer bit of fraction implied for
single-precision floating-point format.

2. Fraction must be non-zero.
3. Sign bit ignored.

Figure 4-12. Real Numbers and NaNs

Vol.1 4-19

DATA TYPES

An 1A-32 processor can operate on and/or return any of these values, depending on
the type of computation being performed. The following sections describe these
number and non-number classes.

4.8.3.1 Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings
are equal in value. The sign of a zero result depends on the operation being
performed and the rounding mode being used. Signed zeros have been provided to
aid in implementing interval arithmetic. The sign of a zero may indicate the direction
from which underflow occurred, or it may indicate the sign of an « that has been
reciprocated.

4.8.3.2 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized.
The normalized finite numbers comprise all the non-zero finite values that can be
encoded in a normalized real number format between zero and . In the single-preci-
sion floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 254, (unbiased, the exponent
range is from -126,g to +1274¢).

When floating-point numbers become very close to zero, the normalized-number
format can no longer be used to represent the numbers. This is because the range of
the exponent is not large enough to compensate for shifting the binary point to the
right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by
making the integer bit (and perhaps other leading bits) of the significand zero. The
numbers in this range are called denormalized (or tiny) numbers. The use of
leading zeros with denormalized numbers allows smaller numbers to be represented.
However, this denormalization causes a loss of precision (the number of significant
bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an 1A-32 processor
normally operates on normalized numbers and produces normalized numbers as
results. Denormalized numbers represent an underflow condition. The exact condi-
tions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow.
Table 4-6 gives an example of gradual underflow in the denormalization process.
Here the single-precision format is being used, so the minimum exponent (unbiased)
is -1261q. The true result in this example requires an exponent of -129,q in order to
have a normalized number. Since -129,q is beyond the allowable exponent range,
the result is denormalized by inserting leading zeros until the minimum exponent of
-126,¢ is reached.

4-20 Vol.1

DATA TYPES

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100000..00
Denormalize 0 -128 0.10101110000..00
Denormalize 0 =127 0.01010111000...00
Denormalize 0 -126 0.00101011100..00
Denormal Result 0 -126 0.00101011100..00

* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading
zeros, creating a zero result.

The Intel 64 and 1A-32 architectures deal with denormal values in the following ways:
® It avoids creating denormals by normalizing numbers whenever possible.

® It provides the floating-point underflow exception to permit programmers to
detect cases when denormals are created.

® It provides the floating-point denormal-operand exception to permit procedures
or programs to detect when denormals are being used as source operands for
computations.

4.8.3.3 Signed Infinities

The two infinities, + « and — -, represent the maximum positive and negative real
numbers, respectively, that can be represented in the floating-point format. Infinity
is always represented by a significand of 1.00...00 (the integer bit may be implied)
and the maximum biased exponent allowed in the specified format (for example,
255, for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are
always interpreted in the affine sense; that is, —- is less than any finite number and
+ is greater than any finite number. Arithmetic on infinities is always exact. Excep-
tions are generated only when the use of an infinity as a source operand constitutes
an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two «
numbers may represent the result of an overflow condition. Here, the normalized
result of a computation has a biased exponent greater than the largest allowable

exponent for the selected result format.

4.8.3.4 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In
Figure 4-12, the encoding space for NaNs in the floating-point formats is shown

Vol.1 4-21

DATA TYPES

above the ends of the real number line. This space includes any value with the
maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored
for NaNs).

The 1A-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and
signaling NaNs (SNaNs). A QNaN is a NaN with the most significant fraction bit set;
an SNaN is a NaN with the most significant fraction bit clear. QNaNs are allowed to
propagate through most arithmetic operations without signaling an exception.
SNaNs generally signal a floating-point invalid-operation exception whenever they
appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be
inserted by software; that is, the processor never generates an SNaN as a result of a
floating-point operation.

4.8.3.5 Operating on SNaNs and QNaNs

When a floating-point operation is performed on an SNaN and/or a QNaN, the result
of the operation is either a QNaN delivered to the destination operand or the genera-
tion of a floating-point invalid operating exception, depending on the following rules:

® If one of the source operands is an SNaN and the floating-point invalid-operating
exception is not masked (see Section 4.9.1.1, “Invalid Operation Exception
(#1)"), the a floating-point invalid-operation exception is signaled and no result is
stored in the destination operand.

® If either or both of the source operands are NaNs and floating-point invalid-
operation exception is masked, the result is as shown in Table 4-7. When an
SNaN is converted to a QNaN, the conversion is handled by setting the most-
significant fraction bit of the SNaN to 1. Also, when one of the source operands is
an SNaN, the floating-point invalid-operation exception flag it set. Note that for
some combinations of source operands, the result is different for x87 FPU
operations and for SSE/SSE2/SSE3 operations.

® When neither of the source operands is a NaN, but the operation generates a
floating-point invalid-operation exception (see Tables 8-10 and 11-1), the result
is commonly an SNaN source operand converted to a QNaN or the QNaN floating-
point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section
8.5.1.2, “Invalid Arithmetic Operand Exception (#1A),” and Section 11.5.2.1, “Invalid
Operation Exception (#1).”

4-22 Vol.1

DATA TYPES

Table 4-7. Rules for Handling NaNs

Source Operands Result’

SNaN and QNaN x87 FPU — QNaN source operand.
SSE/SSEZ2/SSE3 — First operand (if this operand is
an SNaN, it is converted to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger
significand, converted into a QNaN
SSE/SSE2/SSE3 — First operand converted to a
QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand
SSE/SSEZ2/SSE3 — First operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one SNaN source operand, converted into a QNaN

operand)

QNaN (for instructions that take only one QNaN source operand

operand)

NOTE:

1. For SSE/SSE2/SSE3 instructions, the first operand is generally a source operand that becomes
the destination operand. Within the Result column, the x87 FPU notation also applies to the
FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instructions.

4.8.3.6 Using SNaNs and QNaNs in Applications

Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding
SNaNs and QNaNs, software is free to use the bits in the significand of a NaN for any
purpose. Both SNaNs and QNaNs can be encoded to carry and store data, such as
diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling
NaNs to trap to the exception handler. The generality of this approach and the large
number of NaN values that are available provide the sophisticated programmer with
a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real)
array elements. The compiler can preinitialize each array element with a signaling
NaN whose significand contained the index (relative position) of the element. Then,
if an application program attempts to access an element that it had not initialized, it
can use the NaN placed there by the compiler. If the invalid operation exception is
unmasked, an interrupt will occur, and the exception handler will be invoked. The
exception handler can determine which element has been accessed, since the

Vol.1 4-23

DATA TYPES

operand address field of the exception pointer will point to the NaN, and the NaN will
contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler can be written to save
diagnostic information in memory whenever it was invoked. After storing the diag-
nostic data, it can supply a quiet NaN as the result of the erroneous instruction, and
that NaN can point to its associated diagnostic area in memory. The program will
then continue, creating a different NaN for each error. When the program ends, the
NaN results can be used to access the diagnostic data saved at the time the errors
occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an
undetected QNaN can invalidate all subsequent results. Such applications should
therefore periodically check for QNaNs and provide a recovery mechanism to be used
if a QNaN result is detected.

4.8.3.7 QNaN Floating-Point Indefinite

For the floating-point data type encodings (single-precision, double-precision, and
double-extended-precision), one unique encoding (a QNaN) is reserved for repre-
senting the special value QNaN floating-point indefinite. The x87 FPU and the
SSE/SSE2/SSE3 extensions return these indefinite values as responses to some
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN
floating-point indefinite.

4.8.4 Rounding

When performing floating-point operations, the processor produces an infinitely
precise floating-point result in the destination format (single-precision, double-preci-
sion, or double extended-precision floating-point) whenever possible. However,
because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infi-
nitely precise result cannot be encoded exactly in the format of the destination
operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of
this fraction (the underlined bit) cannot be encoded exactly in the single-precision
format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E, 101

To round this result (a), the processor first selects two representable fractions b and
¢ that most closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 O11E, 101
(c) 1.0001 0000 1000 0011 1001 100E, 101

4-24 Vol.1

DATA TYPES

The processor then sets the result to b or to ¢ according to the selected rounding
mode. Rounding introduces an error in a result that is less than one unit in the last
place (the least significant bit position of the floating-point value) to which the result
is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to
nearest, round up, round down, and round toward zero. The default rounding mode
(for the Intel 64 and 1A-32 architectures) is round to nearest. This mode provides the
most accurate and statistically unbiased estimate of the true result and is suitable for
most applications.

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding RC Field Description
Mode Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two
nearest (even) values are equally close, the result is the even value (that is, the
one with the least-significant bit of zero). Default
Round down 01B Rounded result is closest to but no greater than the infinitely
(toward —) precise result.
Round up 10B Rounded result is closest to but no less than the infinitely precise
(toward +<o) result.
Round toward | 11B Rounded result is closest to but no greater in absolute value than
zero (Truncate) the infinitely precise result.

The round up and round down modes are termed directed rounding and can be
used to implement interval arithmetic. Interval arithmetic is used to determine upper
and lower bounds for the true result of a multistep computation, when the interme-
diate results of the computation are subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used
when performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an
inexact result, the floating-point precision (inexact) flag (PE) is set (see Section
4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that
produce exact results, or operations that produce NaN results.

4.8.4.1 Rounding Control (RC) Fields

In the Intel 64 and 1A-32 architectures, the rounding mode is controlled by a 2-bit
rounding-control (RC) field (Table 4-8 shows the encoding of this field). The RC field
is implemented in two different locations:

® x87 FPU control register (bits 10 and 11)

Vol.1 4-25

DATA TYPES

® The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for
different execution environments within the processor. The RC field in the x87 FPU
control register controls rounding for computations performed with the x87 FPU
instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions

The following SSE/SSE?2 instructions automatically truncate the results of conver-
sions from floating-point values to integers when the result it inexact: CVTTPD2DQ,
CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation
means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their
handling in the 1A-32 architecture. For information specific to the x87 FPU and to the
SSE/SSE2/SSE3 extensions, refer to the following sections:

® Section 8.4, “x87 FPU Floating-Point Exception Handling”
® Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the 1A-32 architecture recognizes and
detects six classes of exception conditions:

® Invalid operation (#1)

® Divide-by-zero (#2)

® Denormalized operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is
used in this manual to indicate exception conditions. It is merely a short-hand form
and is not related to assembler mnemonics.

NOTE

All of the exceptions listed above except the denormal-operand
exception (#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-
computation exceptions (that is, they are detected before any arithmetic operation

4-26 Vol.1

DATA TYPES

occurs). The numeric-underflow, numeric-overflow and precision exceptions are
post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or
PE) and mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point
exception conditions are detected, the processor sets the appropriate flag bits, then
takes one of two possible courses of action, depending on the settings of the corre-
sponding mask bits:

® Mask bit set. Handles the exception automatically, producing a predefined (and
often times usable) result, while allowing program execution to continue undis-
turbed.

® Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reason-
able result for each exception condition and are generally satisfactory for most
floating-point applications. By masking or unmasking specific floating-point excep-
tions, programmers can delegate responsibility for most exceptions to the processor
and reserve the most severe exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the
exceptions that have occurred since they were last cleared. A programmer can thus
mask all exceptions, run a calculation, and then inspect the exception flags to see if
any exceptions were detected during the calculation.

In the 1A-32 architecture, floating-point exception flag and mask bits are imple-
mented in two different locations:

® x87 FPU status word and control word. The flag bits are located at bits O through
5 of the x87 FPU status word and the mask bits are located at bits O through 5 of
the x87 FPU control word (see Figures 8-4 and 8-6).

® MXCSR register. The flag bits are located at bits O through 5 of the MXCSR
register and the mask bits are located at bits 7 through 12 of the register (see
Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report
on and control exceptions for different execution environments within the processor.
The flag and mask bits in the x87 FPU status and control words control exception
reporting and masking for computations performed with the x87 FPU instructions;
the companion bits in the MXCSR register control exception reporting and masking
for SIMD floating-point computations performed with the SSE/SSE2/SSE3 instruc-
tions.

Note that when exceptions are masked, the processor may detect multiple excep-
tions in a single instruction, because it continues executing the instruction after
performing its masked response. For example, the processor can detect a denormal-
ized operand, perform its masked response to this exception, and then detect
numeric underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for
exception precedence when more than one floating-point exception condition is
detected for an instruction.

Vol.1 4-27

DATA TYPES

4.9.1 Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point
exception to be generated and the masked response of the processor when these
conditions are detected. The Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for
each floating-point instruction.

4.9.1.1 Invalid Operation Exception (#l)

The processor reports an invalid operation exception in response to one or more
invalid arithmetic operands. If the invalid operation exception is masked, the
processor sets the IE flag and returns an indefinite value or a QNaN. This value over-
writes the destination register specified by the instruction. If the invalid operation
exception is not masked, the IE flag is set, a software exception handler is invoked,
and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about
the result returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded
in a program. These operations generally indicate a programming error, such as
dividing - by « . See the following sections for information regarding the invalid-
operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3
instructions:

® x87 FPU; Section 8.5.1, “Invalid Operation Exception”

® SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception
(#I)"

49.1.2 Denormal Operand Exception (#D)

The processor reports the denormal-operand exception if an arithmetic instruction
attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and
Denormalized Finite Numbers”). When the exception is masked, the processor sets
the DE flag and proceeds with the instruction. Operating on denormal numbers will
produce results at least as good as, and often better than, what can be obtained
when denormal numbers are flushed to zero. Programmers can mask this exception
so that a computation may proceed, then analyze any loss of accuracy when the final
result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software
exception handler is invoked, and the operands remain unaltered. When denormal
operands have reduced significance due to loss of low-order bits, it may be advisable
to not operate on them. Precluding denormal operands from computations can be
accomplished by an exception handler that responds to unmasked denormal-
operand exceptions.

4-28 Vol. 1

DATA TYPES

See the following sections for information regarding the denormal-operand exception
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:

® x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”

® SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception
#D)”

49.1.3 Divide-By-Zero Exception (#2)

The processor reports the floating-point divide-by-zero exception whenever an
instruction attempts to divide a finite non-zero operand by 0. The masked response
for the divide-by-zero exception is to set the ZE flag and return an infinity signed with
the exclusive OR of the sign of the operands. If the divide-by-zero exception is not
masked, the ZE flag is set, a software exception handler is invoked, and the operands
remain unaltered.

See the following sections for information regarding the divide-by-zero exception
when detected while executing x87 FPU or SSE/SSE2 instructions:

® x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#2)”

® SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception
#2)"

49.1.4 Numeric Overflow Exception (#0)

The processor reports a floating-point numeric overflow exception whenever the
rounded result of an instruction exceeds the largest allowable finite value that will fit
into the destination operand. Table 4-9 shows the threshold range for numeric over-
flow for each of the floating-point formats; overflow occurs when a rounded result
falls at or outside this threshold range.

Vol.1 4-29

DATA TYPES

Table 4-9. Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds
Single Precision |x|>1.0%2128
Double Precision |x]|>1.03% 21024
Double Extended Precision |x]>1.0% 216384

When a numeric-overflow exception occurs and the exception is masked, the
processor sets the OE flag and returns one of the values shown in Table 4-10,
according to the current rounding mode. See Section 4.8.4, “Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked,
the OE flag is set, a software exception handler is invoked, and the source and desti-
nation operands either remain unchanged or a biased result is stored in the destina-
tion operand (depending whether the overflow exception was generated during an
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result | Result
To nearest + +oo
Toward - + Largest finite positive number
Toward +e + +oo
- Largest finite negative number
Toward zero + Largest finite positive number
- Largest finite negative number

See the following sections for information regarding the numeric overflow exception
when detected while executing x87 FPU instructions or while executing
SSE/SSE2/SSES3 instructions:

® x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#0)”

® SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception
(#0)”

49.1.5 Numeric Underflow Exception (#U)

The processor detects a floating-point numeric underflow condition whenever the
result of rounding with unbounded exponent (taking into account precision control
for x87) is tiny; that is, less than the smallest possible normalized, finite value that
will fit into the destination operand. Table 4-11 shows the threshold range for

4-30 Vol.1

DATA TYPES

numeric underflow for each of the floating-point formats (assuming normalized
results); underflow occurs when a rounded result falls strictly within the threshold
range. The ability to detect and handle underflow is provided to prevent a vary small
result from propagating through a computation and causing another exception (such
as overflow during division) to be generated at a later time.

Table 4-11. Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*
Single Precision [x|<1.0%2716
Double Precision |x|<1.0%2°1022
Double Extended Precision |x|<1.0% 2716382

* Where ‘X’ is the result rounded to destination precision with an unbounded exponent range.

How the processor handles an underflow condition, depends on two related condi-
tions:

® creation of a tiny result

® creation of an inexact result; that is, a result that cannot be represented exactly
in the destination format

Which of these events causes an underflow exception to be reported and how the
processor responds to the exception condition depends on whether the underflow
exception is masked:

® Underflow exception masked — The underflow exception is reported (the UE
flag is set) only when the result is both tiny and inexact. The processor returns a
denormalized result to the destination operand, regardless of inexactness.

® Underflow exception not masked — The underflow exception is reported
when the result is tiny, regardless of inexactness. The processor leaves the
source and destination operands unaltered or stores a biased result in the
designating operand (depending whether the underflow exception was generated
during an SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and
invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception
when detected while executing x87 FPU instructions or while executing
SSE/SSE2/SSES3 instructions:

® x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”

® SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception
#U)”

4.9.1.6 Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result
of an operation is not exactly representable in the destination format. For example,
the fraction 1/3 cannot be precisely represented in binary floating-point form. This

Vol.1 4-31

DATA TYPES

exception occurs frequently and indicates that some (normally acceptable) accuracy
will be lost due to rounding. The exception is supported for applications that need to
perform exact arithmetic only. Because the rounded result is generally satisfactory
for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and
a numeric overflow or underflow condition has not occurred, the processor sets the
PE flag and stores the rounded result in the destination operand. The current
rounding mode determines the method used to round the result. See Section 4.8.4,
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and
numeric overflow or underflow has not occurred, the PE flag is set, the rounded result
is stored in the destination operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of
the following operations is carried out:

® If an inexact result occurs along with masked overflow or underflow, the OE flag
or UE flag and the PE flag are set and the result is stored as described for the
overflow or underflow exceptions; see Section 4.9.1.4, “Numeric Overflow
Exception (#0),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the
inexact result exception is unmasked, the processor also invokes a software
exception handler.

® If an inexact result occurs along with unmasked overflow or underflow and the
destination operand is a register, the OE or UE flag and the PE flag are set, the
result is stored as described for the overflow or underflow exceptions, and a
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination
operand is a memory location (which can happen only for a floating-point store), the
inexact-result condition is not reported and the C1 flag is cleared.

See the following sections for information regarding the inexact-result exception
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:

® x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”

® SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception
#2)"

4.9.2 Floating-Point Exception Priority

The processor handles exceptions according to a predetermined precedence. When
an instruction generates two or more exception conditions, the exception precedence
sometimes results in the higher-priority exception being handled and the lower-
priority exceptions being ignored. For example, dividing an SNaN by zero can poten-
tially signal an invalid-operation exception (due to the SNaN operand) and a divide-
by-zero exception. Here, if both exceptions are masked, the processor handles the
higher-priority exception only (the invalid-operation exception), returning a QNaN to
the destination. Alternately, a denormal-operand or inexact-result exception can

4-32 Vol.1

DATA TYPES

accompany a numeric underflow or overflow exception with both exceptions being
handled.

The precedence for floating-point exceptions is as follows:
1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the
double extended-precision floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand
has precedence over lower-priority exceptions. For example, a QNaN divided by
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero
exception.

4. Denormal-operand exception. If masked, then instruction execution continues
and a lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the
inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before
a floating-point operation begins. Overflow, underflow, and precision exceptions are
not detected until a true result has been computed. When an unmasked pre-opera-
tion exception is detected, the destination operand has not yet been updated, and
appears as if the offending instruction has not been executed. When an unmasked
post-operation exception is detected, the destination operand may be updated with
a result, depending on the nature of the exception (except for SSE/SSE2/SSE3
instructions, which do not update their destination operands in such cases).

49.3 Typical Actions of a Floating-Point Exception Handler

After the floating-point exception handler is invoked, the processor handles the
exception in the same manner that it handles non-floating-point exceptions. The
floating-point exception handler is normally part of the operating system or execu-
tive software, and it usually invokes a user-registered floating-point exception
handle.

A typical action of the exception handler is to store state information in memory.
Other typical exception handler actions include:

¢ Examining the stored state information to determine the nature of the error

® Taking actions to correct the condition that caused the error

Vol.1 4-33

DATA TYPES

® Clearing the exception flags

® Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:
® Increment in software an exception counter for later display or printing

® Print or display diagnostic information (such as the state information)

® Halt further program execution

4-34 Vol.1

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and 1A-32 instructions.
Instructions are divided into the following groups:

General purpose

x87 FPU

x87 FPU and SIMD state management
Intel MMX technology

SSE extensions

SSE2 extensions

SSE3 extensions

SSSE3 extensions

SSE4 extensions

System instructions

IA-32e mode: 64-bit mode instructions
VMX instructions

SMX instructions

Table 5-1 lists the groups and 1A-32 processors that support each group. Within
these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups and IA-32 Processors

Instruction Set

Architecture Intel 64 and IA-32 Processor Support
General Purpose All Intel 64 and |A-32 processors
x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium

Pro, Pentium 11, Pentium |1 Xeon, Pentium Ill, Pentium Ill Xeon,
Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core
Duo, Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State | Pentium I, Pentium Il Xeon, Pentium llI, Pentium Ill Xeon, Pentium 4,
Management Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel

Core 2 Duo processors, Intel Atom processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium 11, Pentium Il Xeon,

Pentium Ill, Pentium Ill Xeon, Pentium 4, Intel Xeon processors,
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

Vol.1 5-1

INSTRUCTION SET SUMMARY

Table 5-1. Instruction Groups and IA-32 Processors (Contd.)

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

SSE Extensions Pentium IlI, Pentium Ill Xeon, Pentium 4, Intel Xeon processors,
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core
Duo, Intel Core 2 Duo processors, Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process
technology), Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core
2 Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2
Quad processors, Intel Pentium Dual-Core processors, Intel Atom
processors

SSE4.1 Extensions Intel Xeon processor 5200, 5400 series, Intel Core 2 Extreme
processors QX9000 series, Intel Core 2 Quad processor Q9000 series,
Intel Core 2 Duo processors 8000 series, T9000 series.

IA-32e mode: 64-bit Intel 64 processors

mode instructions

System Instructions Intel 64 and IA-32 processors

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization
Technology

SMX Instructions Intel Core 2 Duo processor E6Ex50, E8xxXx; Intel Core 2 Quad processor
Q9xxx

The following sections list instructions in each major group and subgroup. Given for
each instruction is its mnemonic and descriptive names. When two or more
mnemonics are given (for example, CMOVA/CMOVNBE), they represent different
mnemonics for the same instruction opcode. Assemblers support redundant
mnemonics for some instructions to make it easier to read code listings. For instance,
CMOVA (Conditional move if above) and CMOVNBE (Conditional move if not below or
equal) represent the same condition. For detailed information about specific instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A & 3B.

5.1 GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic,
program flow, and string operations that programmers commonly use to write appli-

5-2 Vol 1

INSTRUCTION SET SUMMARY

cation and system software to run on Intel 64 and 1A-32 processors. They operate on
data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address
information contained in memory, the general-purpose registers, and the segment
registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic,
decimal arithmetic, logic operations, shift and rotate, bit and byte operations,
program control, string, flag control, segment register operations, and miscellaneous
subgroups. The sections that following introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7,
“Programming With General-Purpose Instructions.”

5.1.1

Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose
and segment registers. They also perform specific operations such as conditional
moves, stack access, and data conversion.

MOV

CMOVE/CMOVZ
CMOVNE/CMOVNZ
CMOVA/CMOVNBE

CMOVAE/CMOVNB

CMOVB/CMOVNAE

CMOVBE/CMOVNA

CMOVG/CMOVNLE
CMOVGE/CMOVNL
CMOVL/CMOVNGE
CMOVLE/CMOVNG
CMOVvC

CMOVNC

CMOVO

CMOVNO

CMOVS

CMOVNS
CMOVP/CMOVPE

Move data between general-purpose registers; move data
between memory and general-purpose or segment registers;
move immediates to general-purpose registers

Conditional move
Conditional move

Conditional move
equal
Conditional move
below
Conditional move
equal
Conditional move
above

if equal/Conditional move if zero
if not equal/Conditional move if not zero
if above/Conditional move if not below or

if above or equal/Conditional move if not
if below/Conditional move if not above or

if below or equal/Conditional move if not

Conditional move if greater/Conditional move if not less or equal

Conditional move if greater or equal/Conditional move if not less

Conditional move if less/Conditional move if not greater or equal

Conditional move if less or equal/Conditional move if not greater

Conditional move
Conditional move
Conditional move
Conditional move
Conditional move
Conditional move
Conditional move

if carry

if not carry

if overflow

if not overflow

if sign (negative)

if not sign (non-negative)

if parity/Conditional move if parity even

Vol.1 5-3

INSTRUCTION SET SUMMARY

CMOVNP/CMOVPO

XCHG
BSWAP
XADD
CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD
CWD/CDQ
CBW/CWDE

MOVSX
MOVZX

5.1.2

Conditional move if not parity/Conditional move if parity odd
Exchange

Byte swap

Exchange and add

Compare and exchange

Compare and exchange 8 bytes

Push onto stack

Pop off of stack

Push general-purpose registers onto stack

Pop general-purpose registers from stack

Convert word to doubleword/Convert doubleword to quadword

Convert byte to word/Convert word to doubleword in EAX
register

Move and sign extend
Move and zero extend

Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on
byte, word, and doubleword integers located in memory and/or the general purpose

registers.
ADD
ADC
SuB
SBB
IMUL
MUL
IDIV
DIV
INC
DEC
NEG
CMP

5.1.3

Integer add

Add with carry

Subtract

Subtract with borrow
Signed multiply
Unsigned multiply
Signed divide
Unsigned divide
Increment
Decrement

Negate

Compare

Decimal Arithmetic Instructions

The decimal arithmetic instructions perform decimal arithmetic on binary coded

decimal (BCD) data.

5-4 Vol.1

INSTRUCTION SET SUMMARY

DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition

AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.14 Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on
byte, word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT

5.1.5 Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword
operands.

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left
SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands.
Byte instructions set the value of a byte operand to indicate the status of flags in the
EFLAGS register.

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

Vol.1 5-5

INSTRUCTION SET SUMMARY

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not
carry

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow

SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare

5.1.7 Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and
return operations to control program flow.

JMP Jump

JE/J)Z Jump if equal/Jump if zero

JNE/INZ Jump if not equal/Jump if not zero
JA/INBE Jump if above/Jump if not below or equal
JAE/INB Jump if above or equal/Jump if not below
JB/INAE Jump if below/Jump if not above or equal
JBE/JNA Jump if below or equal/Jump if not above
JG/INLE Jump if greater/Jump if not less or equal
JGE/INL Jump if greater or equal/Jump if not less
JL/INGE Jump if less/Jump if not greater or equal
JLE/ING Jump if less or equal/Jump if not greater
JC Jump if carry

JNC Jump if not carry

5-6 Vol.1

JO

JNO

JS

JINS

JPO/INP
JPE/JIP
JCXZ/IJECXZ
LOOP
LOOPZ/LOOPE
LOOPNZ/LOOPNE
CALL

RET

IRET

INT

INTO

BOUND
ENTER

LEAVE

5.1.8

INSTRUCTION SET SUMMARY

Jump if overflow

Jump if not overflow

Jump if sign (negative)

Jump if not sign (non-negative)

Jump if parity odd/Jump if not parity

Jump if parity even/Jump if parity

Jump register CX zero/Jump register ECX zero
Loop with ECX counter

Loop with ECX and zero/Loop with ECX and equal
Loop with ECX and not zero/Loop with ECX and not equal
Call procedure

Return

Return from interrupt

Software interrupt

Interrupt on overflow

Detect value out of range

High-level procedure entry

High-level procedure exit

String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and

from memory.
MOVS/MOVSB
MOVS/MOVSW
MOVS/MOVSD
CMPS/CMPSB
CMPS/CMPSW
CMPS/CMPSD
SCAS/SCASB
SCAS/SCASW
SCAS/SCASD
LODS/LODSB
LODS/LODSW
LODS/LODSD
STOS/STOSB
STOS/STOSW
STOS/STOSD

Move string/Move byte string

Move string/Move word string

Move string/Move doubleword string
Compare string/Compare byte string
Compare string/Compare word string
Compare string/Compare doubleword string
Scan string/Scan byte string

Scan string/Scan word string

Scan string/Scan doubleword string
Load string/Load byte string

Load string/Load word string

Load string/Load doubleword string
Store string/Store byte string

Store string/Store word string

Store string/Store doubleword string

Vol.1 5-7

INSTRUCTION SET SUMMARY

REP Repeat while ECX not zero
REPE/REPZ Repeat while equal/Repeat while zero
REPNE/REPNZ Repeat while not equal/Repeat while not zero

5.1.9 I1/0 Instructions

These instructions move data between the processor’s 1/0 ports and a register or
memory.

IN Read from a port

ouT Write to a port

INS/INSB Input string from port/Input byte string from port
INS/INSW Input string from port/Input word string from port
INS/INSD Input string from port/Input doubleword string from port
OUTS/OUTSB Output string to port/Output byte string to port
OUTS/OUTSW Output string to port/Output word string to port
OUTS/OUTSD Output string to port/Output doubleword string to port

5.1.10 Enter and Leave Instructions

These instructions provide machine-language support for procedure calls in block-
structured languages.
ENTER High-level procedure entry

LEAVE High-level procedure exit

5.1.11 Flag Control (EFLAG) Instructions

The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag
CLD Clear the direction flag
STD Set direction flag

LAHF Load flags into AH register
SAHF Store AH register into flags
PUSHF/PUSHFD Push EFLAGS onto stack
POPF/POPFD Pop EFLAGS from stack
STI Set interrupt flag

CLI Clear the interrupt flag

5-8 Vol.1

INSTRUCTION SET SUMMARY

5.1.12 Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be
loaded into the segment registers.

LDS Load far pointer using DS
LES Load far pointer using ES
LFS Load far pointer using FS
LGS Load far pointer using GS
LSS Load far pointer using SS

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective
address, executing a “no-operation,” and retrieving processor identification informa-
tion.

LEA Load effective address

NOP No operation

ub2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor identification

MOVBE Move data after swapping data bytes

5.2 X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions
operate on floating-point, integer, and binary-coded decimal (BCD) operands. For
more detail on x87 FPU instructions, see Chapter 8, “Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load
constants, and FPU control instructions. The sections that follow introduce each
subgroup.

5.2.1 x87 FPU Data Transfer Instructions

The data transfer instructions move floating-point, integer, and BCD values between
memory and the x87 FPU registers. They also perform conditional move operations
on floating-point operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop
FILD Load integer

Vol.1 5-9

INSTRUCTION SET SUMMARY

FIST
FISTP!
FBLD
FBSTP
FXCH
FCMOVE
FCMOVNE
FCMOVB
FCMOVBE
FCMOVNB
FCMOVNBE
FCMOVU
FCMOVNU

5.2.2

Store integer

Store integer and pop

Load BCD

Store BCD and pop

Exchange registers

Floating-point conditional move if equal
Floating-point conditional move if not equal
Floating-point conditional move if below
Floating-point conditional move if below or equal
Floating-point conditional move if not below
Floating-point conditional move if not below or equal
Floating-point conditional move if unordered
Floating-point conditional move if not unordered

x87 FPU Basic Arithmetic Instructions

The basic arithmetic instructions perform basic arithmetic operations on floating-
point and integer operands.

FADD
FADDP
FIADD
FSUB
FSUBP
FISUB
FSUBR
FSUBRP
FISUBR
FMUL
FMULP
FIMUL
FDIV
FDIVP
FIDIV
FDIVR
FDIVRP
FIDIVR

Add floating-point

Add floating-point and pop

Add integer

Subtract floating-point

Subtract floating-point and pop
Subtract integer

Subtract floating-point reverse
Subtract floating-point reverse and pop
Subtract integer reverse

Multiply floating-point

Multiply floating-point and pop
Multiply integer

Divide floating-point

Divide floating-point and pop

Divide integer

Divide floating-point reverse

Divide floating-point reverse and pop
Divide integer reverse

1. SSE3 provides an instruction FISTTP for integer conversion.

5-10 Vol.1

FPREM
FPREM1
FABS
FCHS
FRNDINT
FSCALE
FSQRT
FXTRACT

5.2.3

INSTRUCTION SET SUMMARY

Partial remainder

IEEE Partial remainder

Absolute value

Change sign

Round to integer

Scale by power of two

Square root

Extract exponent and significand

x87 FPU Comparison Instructions

The compare instructions examine or compare floating-point or integer operands.

FCOM
FCOMP
FCOMPP
FUCOM
FUCOMP
FUCOMPP
FICOM
FICOMP
FCOMI
FUCOMI
FCOMIP
FUCOMIP
FTST
FXAM

5.2.4

Compare floating-point

Compare floating-point and pop

Compare floating-point and pop twice

Unordered compare floating-point

Unordered compare floating-point and pop
Unordered compare floating-point and pop twice
Compare integer

Compare integer and pop

Compare floating-point and set EFLAGS
Unordered compare floating-point and set EFLAGS
Compare floating-point, set EFLAGS, and pop
Unordered compare floating-point, set EFLAGS, and pop
Test floating-point (compare with 0.0)

Examine floating-point

x87 FPU Transcendental Instructions

The transcendental instructions perform basic trigonometric and logarithmic opera-
tions on floating-point operands.

FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X

Sine

Cosine

Sine and cosine
Partial tangent
Partial arctangent
2X-1

y*logox

Vol.1 5-11

INSTRUCTION SET SUMMARY

FYL2XP1

y*loga(x+1)

5.2.5 x87 FPU Load Constants Instructions

The load constants instructions load common constants, such as =, into the x87
floating-point registers.

FLD1
FLDZ
FLDPI
FLDL2E
FLDLN2
FLDL2T
FLDLG2

Load +1.0
Load +0.0
Load n

Load log,e
Load loge2
Load log,10
Load log;n2

5.2.6 x87 FPU Control Instructions

The x87 FPU control instructions operate on the x87 FPU register stack and save and

restore the x87 FPU state.

FINCSTP
FDECSTP
FFREE
FINIT
FNINIT
FCLEX

FNCLEX

FSTCW
FNSTCW
FLDCW
FSTENV
FNSTENV
FLDENV
FSAVE
FNSAVE
FRSTOR
FSTSW
FNSTSW
WAIT/FWAIT
FNOP

5-12 Vol. 1

Increment FPU register stack pointer
Decrement FPU register stack pointer

Free floating-point register

Initialize FPU after checking error conditions
Initialize FPU without checking error conditions

Clear floating-point exception flags after checking for error
conditions

Clear floating-point exception flags without checking for error

conditions

Store FPU control word after checking error conditions
Store FPU control word without checking error conditions
Load FPU control word

Store FPU environment after checking error conditions
Store FPU environment without checking error conditions
Load FPU environment

Save FPU state after checking error conditions

Save FPU state without checking error conditions
Restore FPU state

Store FPU status word after checking error conditions
Store FPU status word without checking error conditions
Wait for FPU

FPU no operation

INSTRUCTION SET SUMMARY

53 X87 FPU AND SIMD STATE MANAGEMENT
INSTRUCTIONS

Two state management instructions were introduced into the 1A-32 architecture with
the Pentium Il processor family:

FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to
perform a fast save and restore, respectively, of the x87 FPU and MMX state. With the
introduction of SSE extensions in the Pentium Il processor family, these instructions
were expanded to also save and restore the state of the XMM and MXCSR registers.
Intel 64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

54 MMX™ INSTRUCTIONS

Four extensions have been introduced into the 1A-32 architecture to permit 1A-32
processors to perform single-instruction multiple-data (SIMD) operations. These
extensions include the MMX technology, SSE extensions, SSE2 extensions, and SSE3
extensions. For a discussion that puts SIMD instructions in their historical context,
see Section 2.2.5, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer
operands contained in memory, in MMX registers, and/or in general-purpose regis-
ters. For more detail on these instructions, see Chapter 9, “Programming with Intel®
MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and 1A-32 processors that support
the MMX technology. Support for these instructions can be detected with the CPUID
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction
Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion,
packed arithmetic, comparison, logical, shift and rotate, and state management
instructions. The sections that follow introduce each subgroup.

5.4.1 MMX Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between
MMX registers and between MMX registers and memory.

MOVD Move doubleword
MOVQ Move quadword

Vol.1 5-13

INSTRUCTION SET SUMMARY

5.4.°2 MMX Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords

PACKSSWB
PACKSSDW
PACKUSWB

PUNPCKHBW
PUNPCKHWD

PUNPCKHDQ
PUNPCKLBW
PUNPCKLWD
PUNPCKLDQ

Pack words into bytes with signed saturation

Pack doublewords into words with signed saturation
Pack words into bytes with unsigned saturation.
Unpack high-order bytes

Unpack high-order words

Unpack high-order doublewords

Unpack low-order bytes

Unpack low-order words

Unpack low-order doublewords

5.4.3 MMX Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed
byte, word, and doubleword integers.

PADDB
PADDW
PADDD
PADDSB
PADDSW
PADDUSB
PADDUSW
PSUBB
PSUBW
PSUBD
PSUBSB
PSUBSW
PSUBUSB
PSUBUSW

PMULHW
PMULLW
PMADDWD

Add packed byte integers

Add packed word integers

Add packed doubleword integers

Add packed signed byte integers with signed saturation

Add packed signed word integers with signed saturation

Add packed unsigned byte integers with unsigned saturation
Add packed unsigned word integers with unsigned saturation
Subtract packed byte integers

Subtract packed word integers

Subtract packed doubleword integers

Subtract packed signed byte integers with signed saturation
Subtract packed signed word integers with signed saturation
Subtract packed unsigned byte integers with unsigned saturation

Subtract packed unsigned word integers with unsigned
saturation

Multiply packed signed word integers and store high result
Multiply packed signed word integers and store low result
Multiply and add packed word integers

544 MMX Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB

5-14 Vol. 1

Compare packed bytes for equal

INSTRUCTION SET SUMMARY

PCMPEQW Compare packed words for equal

PCMPEQD Compare packed doublewords for equal

PCMPGTB Compare packed signed byte integers for greater than
PCMPGTW Compare packed signed word integers for greater than
PCMPGTD Compare packed signed doubleword integers for greater than

5.4.5 MMX Logical Instructions

The logical instructions perform AND, AND NOT, OR, and XOR operations on quad-
word operands.

PAND Bitwise logical AND

PANDN Bitwise logical AND NOT
POR Bitwise logical OR

PXOR Bitwise logical exclusive OR

5.4.6 MMX Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or double-
words, or quadwords in 64-bit operands.

PSLLW Shift packed words left logical

PSLLD Shift packed doublewords left logical
PSLLQ Shift packed quadword left logical

PSRLW Shift packed words right logical

PSRLD Shift packed doublewords right logical
PSRLQ Shift packed quadword right logical
PSRAW Shift packed words right arithmetic
PSRAD Shift packed doublewords right arithmetic

5.4.7 MMX State Management Instructions

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state

5.5 SSE INSTRUCTIONS

SSE instructions represent an extension of the SIMD execution model introduced
with the MMX technology. For more detail on these instructions, see Chapter 10,
“Programming with Streaming SIMD Extensions (SSE).”

Vol.1 5-15

INSTRUCTION SET SUMMARY

SSE instructions can only be executed on Intel 64 and 1A-32 processors that support
SSE extensions. Support for these instructions can be detected with the CPUID
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction
Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has
subordinate subgroups of its own):

® SIMD single-precision floating-point instructions that operate on the XMM
registers

® MXSCR state management instructions
® 64-bit SIMD integer instructions that operate on the MMX registers
® Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions

These instructions operate on packed and scalar single-precision floating-point
values located in XMM registers and/or memory. This subgroup is further divided into
the following subordinate subgroups: data transfer, packed arithmetic, comparison,
logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions

SSE data transfer instructions move packed and scalar single-precision floating-point
operands between XMM registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values
between XMM registers or between and XMM register and
memory

MOVUPS Move four unaligned packed single-precision floating-point
values between XMM registers or between and XMM register and
memory

MOVHPS Move two packed single-precision floating-point values to an
from the high quadword of an XMM register and memory

MOVHLPS Move two packed single-precision floating-point values from the
high quadword of an XMM register to the low quadword of
another XMM register

MOVLPS Move two packed single-precision floating-point values to an
from the low quadword of an XMM register and memory

MOVLHPS Move two packed single-precision floating-point values from the
low quadword of an XMM register to the high quadword of
another XMM register

5-16 Vol. 1

INSTRUCTION SET SUMMARY

MOVMSKPS Extract sign mask from four packed single-precision floating-
point values

MOVSS Move scalar single-precision floating-point value between XMM
registers or between an XMM register and memory

5.5.1.2 SSE Packed Arithmetic Instructions

SSE packed arithmetic instructions perform packed and scalar arithmetic operations
on packed and scalar single-precision floating-point operands.

ADDPS Add packed single-precision floating-point values

ADDSS Add scalar single-precision floating-point values

SUBPS Subtract packed single-precision floating-point values

SUBSS Subtract scalar single-precision floating-point values

MULPS Multiply packed single-precision floating-point values

MULSS Multiply scalar single-precision floating-point values

DIVPS Divide packed single-precision floating-point values

DIVSS Divide scalar single-precision floating-point values

RCPPS Compute reciprocals of packed single-precision floating-point
values

RCPSS Compute reciprocal of scalar single-precision floating-point
values

SQRTPS Compute square roots of packed single-precision floating-point
values

SQRTSS Compute square root of scalar single-precision floating-point
values

RSQRTPS Compute reciprocals of square roots of packed single-precision
floating-point values

RSQRTSS Compute reciprocal of square root of scalar single-precision
floating-point values

MAXPS Return maximum packed single-precision floating-point values

MAXSS Return maximum scalar single-precision floating-point values

MINPS Return minimum packed single-precision floating-point values

MINSS Return minimum scalar single-precision floating-point values

5.5.1.3 SSE Comparison Instructions

SSE compare instructions compare packed and scalar single-precision floating-point
operands.
CMPPS Compare packed single-precision floating-point values

CMPSS Compare scalar single-precision floating-point values

Vol.1 5-17

INSTRUCTION SET SUMMARY

COMISS Perform ordered comparison of scalar single-precision floating-
point values and set flags in EFLAGS register

UCOMISS Perform unordered comparison of scalar single-precision
floating-point values and set flags in EFLAGS register

5.5.1.4 SSE Logical Instructions

SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on
packed single-precision floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-
point values

ANDNPS Perform bitwise logical AND NOT of packed single-precision
floating-point values

ORPS Perform bitwise logical OR of packed single-precision floating-

point values

XORPS Perform bitwise logical XOR of packed single-precision floating-
point values

5.5.1.5 SSE Shuffle and Unpack Instructions

SSE shuffle and unpack instructions shuffle or interleave single-precision floating-
point values in packed single-precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point
operands
UNPCKHPS Unpacks and interleaves the two high-order values from two

single-precision floating-point operands

UNPCKLPS Unpacks and interleaves the two low-order values from two
single-precision floating-point operands

5.5.1.6 SSE Conversion Instructions

SSE conversion instructions convert packed and individual doubleword integers into
packed and scalar single-precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision
floating-point values

CVTSI2SS Convert doubleword integer to scalar single-precision floating-
point value

CVTPS2PI Convert packed single-precision floating-point values to packed
doubleword integers

CVTTPS2PI Convert with truncation packed single-precision floating-point

values to packed doubleword integers

CVTSs2sI Convert a scalar single-precision floating-point value to a
doubleword integer

5-18 Vol. 1

INSTRUCTION SET SUMMARY

CVTTSS2SI Convert with truncation a scalar single-precision floating-point
value to a scalar doubleword integer

5.5.2 SSE MXCSR State Management Instructions

MXCSR state management instructions allow saving and restoring the state of the
MXCSR control and status register.

LDMXCSR Load MXCSR register

STMXCSR Save MXCSR register state

5.5.3 SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integer instructions perform additional operations on packed
bytes, words, or doublewords contained in MMX registers. They represent enhance-
ments to the MMX instruction set described in Section 5.4, “MMX™ Instructions.”

PAVGB Compute average of packed unsigned byte integers
PAVGW Compute average of packed unsigned word integers
PEXTRW Extract word

PINSRW Insert word

PMAXUB Maximum of packed unsigned byte integers
PMAXSW Maximum of packed signed word integers
PMINUB Minimum of packed unsigned byte integers
PMINSW Minimum of packed signed word integers
PMOVMSKB Move byte mask

PMULHUW Multiply packed unsigned integers and store high result
PSADBW Compute sum of absolute differences

PSHUFW Shuffle packed integer word in MMX register

554 SSE Cacheability Control, Prefetch, and Instruction Ordering
Instructions

The cacheability control instructions provide control over the caching of non-
temporal data when storing data from the MMX and XMM registers to memory. The
PREFETCHh allows data to be prefetched to a selected cache level. The SFENCE
instruction controls instruction ordering on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into
memory

MOVNTQ Non-temporal store of quadword from an MMX register into
memory

Vol.1 5-19

INSTRUCTION SET SUMMARY

MOVNTPS Non-temporal store of four packed single-precision floating-
point values from an XMM register into memory

PREFETCHh Load 32 or more of bytes from memory to a selected level of the
processor’s cache hierarchy

SFENCE Serializes store operations

5.6 SSEZ INSTRUCTIONS

SSE2 extensions represent an extension of the SIMD execution model introduced
with MMX technology and the SSE extensions. SSE2 instructions operate on packed
double-precision floating-point operands and on packed byte, word, doubleword, and
quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

SSE2 instructions can only be executed on Intel 64 and 1A-32 processors that
support the SSE2 extensions. Support for these instructions can be detected with the
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is
further divided into subordinate subgroups):

® Packed and scalar double-precision floating-point instructions
® Packed single-precision floating-point conversion instructions
® 128-bit SIMD integer instructions

® Cacheability-control and instruction ordering instructions

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point
Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into

the following subordinate subgroups: data movement, arithmetic, comparison,

conversion, logical, and shuffle operations on double-precision floating-point oper-
ands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data
between XMM registers and between XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values
between XMM registers or between and XMM register and
memory

5-20 Vol.1

MOVUPD

MOVHPD

MOVLPD

MOVMSKPD

MOVSD

5.6.1.2

INSTRUCTION SET SUMMARY

Move two unaligned packed double-precision floating-point
values between XMM registers or between and XMM register and
memory

Move high packed double-precision floating-point value to an
from the high quadword of an XMM register and memory

Move low packed single-precision floating-point value to an from
the low quadword of an XMM register and memory

Extract sign mask from two packed double-precision floating-
point values

Move scalar double-precision floating-point value between XMM
registers or between an XMM register and memory

SSE2 Packed Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiply, divide, square
root, and maximum/minimum operations on packed and scalar double-precision
floating-point operands.

ADDPD
ADDSD
SUBPD
SUBSD
MULPD
MULSD
DIVPD
DIVSD
SQRTPD

SQRTSD

MAXPD
MAXSD
MINPD
MINSD

5.6.1.3

Add packed double-precision floating-point values
Add scalar double precision floating-point values
Subtract scalar double-precision floating-point values
Subtract scalar double-precision floating-point values
Multiply packed double-precision floating-point values
Multiply scalar double-precision floating-point values
Divide packed double-precision floating-point values
Divide scalar double-precision floating-point values

Compute packed square roots of packed double-precision
floating-point values

Compute scalar square root of scalar double-precision floating-
point values

Return maximum packed double-precision floating-point values
Return maximum scalar double-precision floating-point values
Return minimum packed double-precision floating-point values
Return minimum scalar double-precision floating-point values

SSEZ2 Logical Instructions

SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values.

ANDPD

Perform bitwise logical AND of packed double-precision floating-
point values

Vol.1 5-21

INSTRUCTION SET SUMMARY

ANDNPD Perform bitwise logical AND NOT of packed double-precision
floating-point values

ORPD Perform bitwise logical OR of packed double-precision floating-
point values

XORPD Perform bitwise logical XOR of packed double-precision floating-
point values

5.6.1.4 SSE2 Compare Instructions

SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination
operand or to the EFLAGS register.

CMPPD Compare packed double-precision floating-point values
CMPSD Compare scalar double-precision floating-point values
COMISD Perform ordered comparison of scalar double-precision floating-

point values and set flags in EFLAGS register

UCOMISD Perform unordered comparison of scalar double-precision
floating-point values and set flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions

SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-
point values in packed double-precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point
operands
UNPCKHPD Unpacks and interleaves the high values from two packed

double-precision floating-point operands

UNPCKLPD Unpacks and interleaves the low values from two packed
double-precision floating-point operands

5.6.1.6 SSE?2 Conversion Instructions

SSE2 conversion instructions convert packed and individual doubleword integers into
packed and scalar double-precision floating-point values and vice versa. They also
convert between packed and scalar single-precision and double-precision floating-
point values.

CVTPD2PI Convert packed double-precision floating-point values to packed
doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point
values to packed doubleword integers

CVTPI2PD Convert packed doubleword integers to packed double-precision
floating-point values

5-22 Vol. 1

CVTPD2DQ

CVTTPD2DQ

CVTDQ2PD

CVTPS2PD

CVTPD2PS

CVTSS2SD

CVTSD2SS

CvTSD2sSI

CVTTSD2SI

CVTSI2SD

INSTRUCTION SET SUMMARY

Convert packed double-precision floating-point values to packed
doubleword integers

Convert with truncation packed double-precision floating-point
values to packed doubleword integers

Convert packed doubleword integers to packed double-precision
floating-point values

Convert packed single-precision floating-point values to packed
double-precision floating-point values

Convert packed double-precision floating-point values to packed
single-precision floating-point values

Convert scalar single-precision floating-point values to scalar
double-precision floating-point values

Convert scalar double-precision floating-point values to scalar
single-precision floating-point values

Convert scalar double-precision floating-point values to a
doubleword integer

Convert with truncation scalar double-precision floating-point
values to scalar doubleword integers

Convert doubleword integer to scalar double-precision floating-
point value

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions

SSE2 packed single-precision floating-point instructions perform conversion opera-
tions on single-precision floating-point and integer operands. These instructions
represent enhancements to the SSE single-precision floating-point instructions.

CVTDQ2PS

CVTPS2DQ

CVTTPS2DQ

Convert packed doubleword integers to packed single-precision
floating-point values

Convert packed single-precision floating-point values to packed
doubleword integers

Convert with truncation packed single-precision floating-point
values to packed doubleword integers

5.6.3 SSEZ2 128-Bit SIMD Integer Instructions

SSE2 SIMD integer instructions perform additional operations on packed words,
doublewords, and quadwords contained in XMM and MMX registers.

MOVDQA
MOVDQU

MOVQ2DQ
MOVDQ2Q

Move aligned double quadword.

Move unaligned double quadword

Move quadword integer from MMX to XMM registers
Move quadword integer from XMM to MMX registers

Vol.1 5-23

INSTRUCTION SET SUMMARY

PMULUDQ Multiply packed unsigned doubleword integers
PADDQ Add packed quadword integers

PSUBQ Subtract packed quadword integers

PSHUFLW Shuffle packed low words

PSHUFHW Shuffle packed high words

PSHUFD Shuffle packed doublewords

PSLLDQ Shift double quadword left logical

PSRLDQ Shift double quadword right logical
PUNPCKHQDQ Unpack high quadwords

PUNPCKLQDQ Unpack low quadwords

5.6.4 SSE2 Cacheability Control and Ordering Instructions

SSE2 cacheability control instructions provide additional operations for caching of
non-temporal data when storing data from XMM registers to memory. LFENCE and
MFENCE provide additional control of instruction ordering on store operations.

CLFLUSH Flushes and invalidates a memory operand and its associated
cache line from all levels of the processor’s cache hierarchy

LFENCE Serializes load operations

MFENCE Serializes load and store operations

PAUSE Improves the performance of “spin-wait loops”

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into
memory

MOVNTPD Non-temporal store of two packed double-precision floating-

point values from an XMM register into memory

MOVNTDQ Non-temporal store of double quadword from an XMM register
into memory

MOVNTI Non-temporal store of a doubleword from a general-purpose
register into memory

5.7 SSE3 INSTRUCTIONS

The SSE3 extensions offers 13 instructions that accelerate performance of Streaming
SIMD Extensions technology, Streaming SIMD Extensions 2 technology, and x87-FP
math capabilities. These instructions can be grouped into the following categories:

® One x87FPU instruction used in integer conversion

® One SIMD integer instruction that addresses unaligned data loads
® Two SIMD floating-point packed ADD/SUB instructions

® Four SIMD floating-point horizontal ADD/SUB instructions

5-24 Vol. 1

INSTRUCTION SET SUMMARY

® Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions
® Two thread synchronization instructions

SSE3 instructions can only be executed on Intel 64 and I1A-32 processors that
support SSE3 extensions. Support for these instructions can be detected with the
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction

FISTTP Behaves like the FISTP instruction but uses truncation, irrespec-
tive of the rounding mode specified in the floating-point control
word (FCW)

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction

LDDQU Special 128-bit unaligned load designed to avoid cache line
splits

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions

ADDSUBPS Performs single-precision addition on the second and fourth
pairs of 32-bit data elements within the operands; single-preci-
sion subtraction on the first and third pairs

ADDSUBPD Performs double-precision addition on the second pair of quad-
words, and double-precision subtraction on the first pair

5.74 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions

HADDPS Performs a single-precision addition on contiguous data
elements. The first data element of the result is obtained by
adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the
first operand; the third by adding the first and second elements
of the second operand; and the fourth by adding the third and
fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data
elements. The first data element of the result is obtained by
subtracting the second element of the first operand from the
first element of the first operand; the second element by
subtracting the fourth element of the first operand from the third
element of the first operand; the third by subtracting the second

Vol.1 5-25

INSTRUCTION SET SUMMARY

HADDPD

HSUBPD

5.75

MOVSHDUP
MOVSLDUP

MOVDDUP

5.7.6

MONITOR
MWAIT

5.8

element of the second operand from the first element of the
second operand; and the fourth by subtracting the fourth
element of the second operand from the third element of the
second operand.

Performs a double-precision addition on contiguous data
elements. The first data element of the result is obtained by
adding the first and second elements of the first operand; the
second element by adding the first and second elements of the
second operand.

Performs a double-precision subtraction on contiguous data
elements. The first data element of the result is obtained by
subtracting the second element of the first operand from the
first element of the first operand; the second element by
subtracting the second element of the second operand from the
first element of the second operand.

SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE
Instructions

Loads/moves 128 bits; duplicating the second and fourth 32-bit
data elements

Loads/moves 128 bits; duplicating the first and third 32-bit data
elements

Loads/moves 64 bits (bits[63:0] if the source is a register) and
returns the same 64 bits in both the lower and upper halves of
the 128-bit result register; duplicates the 64 bits from the
source

SSE3 Agent Synchronization Instructions

Sets up an address range used to monitor write-back stores

Enables a logical processor to enter into an optimized state while
waiting for a write-back store to the address range set up by the
MONITOR instruction

SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3
(SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate compu-
tations on packed integers. These include:

® Twelve instructions that perform horizontal addition or subtraction operations.

5-26 Vol. 1

INSTRUCTION SET SUMMARY

® Six instructions that evaluate absolute values.

® Two instructions that perform multiply and add operations and speed up the
evaluation of dot products.

® Two instructions that accelerate packed-integer multiply operations and produce
integer values with scaling.

® Two instructions that perform a byte-wise, in-place shuffle according to the
second shuffle control operand.

® Six instructions that negate packed integers in the destination operand if the
signs of the corresponding element in the source operand is less than zero.

® Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and 1A-32 processors that
support SSSE3 extensions. Support for these instructions can be detected with the
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1
PHADDW

PHADDSW

PHADDD

PHSUBW

PHSUBSW

PHSUBD

Horizontal Addition/Subtraction

Adds two adjacent, signed 16-bit integers horizontally from the
source and destination operands and packs the signed 16-bit
results to the destination operand.

Adds two adjacent, signed 16-bit integers horizontally from the
source and destination operands and packs the signed, satu-
rated 16-bit results to the destination operand.

Adds two adjacent, signed 32-bit integers horizontally from the
source and destination operands and packs the signed 32-bit
results to the destination operand.

Performs horizontal subtraction on each adjacent pair of 16-bit
signed integers by subtracting the most significant word from
the least significant word of each pair in the source and destina-
tion operands. The signed 16-bit results are packed and written
to the destination operand.

Performs horizontal subtraction on each adjacent pair of 16-bit
signed integers by subtracting the most significant word from
the least significant word of each pair in the source and destina-
tion operands. The signed, saturated 16-bit results are packed
and written to the destination operand.

Performs horizontal subtraction on each adjacent pair of 32-bit
signed integers by subtracting the most significant doubleword
from the least significant double word of each pair in the source
and destination operands. The signed 32-bit results are packed
and written to the destination operand.

Vol.1 5-27

INSTRUCTION SET SUMMARY

5.8.2 Packed Absolute Values

PABSB Computes the absolute value of each signed byte data element.

PABSW Computes the absolute value of each signed 16-bit data
element.

PABSD Computes the absolute value of each signed 32-bit data
element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes

PMADDUBSW Multiplies each unsigned byte value with the corresponding
signed byte value to produce an intermediate, 16-bit signed
integer. Each adjacent pair of 16-bit signed values are added
horizontally. The signed, saturated 16-bit results are packed to
the destination operand.

5.84 Packed Multiply High with Round and Scale

PMULHRSW Multiplies vertically each signed 16-bit integer from the destina-
tion operand with the corresponding signed 16-bit integer of the
source operand, producing intermediate, signed 32-bit integers.
Each intermediate 32-bit integer is truncated to the 18 most
significant bits. Rounding is always performed by adding 1 to the
least significant bit of the 18-bit intermediate result. The final
result is obtained by selecting the 16 bits immediately to the
right of the most significant bit of each 18-bit intermediate
result and packed to the destination operand.

5.8.5 Packed Shuffle Bytes

PSHUFB Permutes each byte in place, according to a shuffle control
mask. The least significant three or four bits of each shuffle
control byte of the control mask form the shuffle index. The
shuffle mask is unaffected. If the most significant bit (bit 7) of a
shuffle control byte is set, the constant zero is written in the
result byte.

5.8.6 Packed Sign

PSIGNB/W/D Negates each signed integer element of the destination operand
if the sign of the corresponding data element in the source
operand is less than zero.

5-28 Vol. 1

INSTRUCTION SET SUMMARY

5.8.7 Packed Align Right

PALIGNR Source operand is appended after the destination operand
forming an intermediate value of twice the width of an operand.
The result is extracted from the intermediate value into the
destination operand by selecting the 128 bit or 64 bit value that
are right-aligned to the byte offset specified by the immediate
value.

5.9 SSE4 INSTRUCTIONS

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of
the SSE4 instructions are referred to as SSE4.1 in this document, 7 new SSE4
instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D work-

loads. SSE4.1 adds instructions that improve compiler vectorization and significantly
increase support for packed dword computation. The technology also provides a hint
that can improve memory throughput when reading from uncacheable WC memory

type.

The 47 SSE4.1 instructions include:

® Two instructions perform packed dword multiplies.

® Two instructions perform floating-point dot products with input/output selects.
® One instruction performs a load with a streaming hint.

® Six instructions simplify packed blending.

® Eight instructions expand support for packed integer MIN/MAX.

® Four instructions support floating-point round with selectable rounding mode and
precision exception override.

® Seven instructions improve data insertion and extractions from XMM registers

® Twelve instructions improve packed integer format conversions (sign and zero
extensions).

® One instruction improves SAD (sum absolute difference) generation for small
block sizes.

® One instruction aids horizontal searching operations.

® One instruction improves masked comparisons.

® One instruction adds qword packed equality comparisons.

® One instruction adds dword packing with unsigned saturation.
The seven SSE4.2 instructions include:

® String and text processing that can take advantage of single-instruction multiple-
data programming techniques.

Vol.1 5-29

INSTRUCTION SET SUMMARY

® Application-targeted accelerator (ATA) instructions.

® A SIMD integer instruction that enhances the capability of the 128-bit integer
SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS

SSEA4.1 instructions can use an XMM register as a source or destination. Program-
ming SSE4.1 is similar to programming 128-bit Integer SIMD and floating-point
SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does not provide any 64-bit
integer SIMD instructions operating on MMX registers. The sections that follow
describe each subgroup.

5.10.1 Dword Multiply Instructions

PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit
integer multiplies.

PMULDQ Returns two 64-bit signed result of signed 32-bit integer multi-
plies.

5.10.2 Floating-Point Dot Product Instructions

DPPD Perform double-precision dot product for up to 2 elements and
broadcast.

DPPS Perform single-precision dot products for up to 4 elements and
broadcast

5.10.3 Streaming Load Hint Instruction

MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte
items within an aligned 64-byte region (a streaming line) to be
fetched and held in a small set of temporary buffers (“streaming
load buffers”). Subsequent streaming loads to other aligned 16-
byte items in the same streaming line may be supplied from the
streaming load buffer and can improve throughput.

5.10.4 Packed Blending Instructions

BLENDPD Conditionally copies specified double-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an immediate byte control.

5-30 Vol.1

BLENDPS

BLENDVPD

BLENDVPD

PBLENDVB

PBLENDW

5.10.5
PMINUW
PMINUD
PMINSB
PMINSD
PMAXUW
PMAXUD
PMAXSB
PMAXSD

5.10.6

ROUNDPS
ROUNDPD
ROUNDSS

ROUNDSD

INSTRUCTION SET SUMMARY

Conditionally copies specified single-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an immediate byte control.

Conditionally copies specified double-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an implied mask.
Conditionally copies specified single-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an implied mask.

Conditionally copies specified byte elements in the source
operand to the corresponding elements in the destination, using
an implied mask.

Conditionally copies specified word elements in the source
operand to the corresponding elements in the destination, using
an immediate byte control.

Packed Integer MIN/MAX Instructions

Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.
Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.

Floating-Point Round Instructions with Selectable Rounding

Mode

Round packed single precision floating-point values into integer
values and return rounded floating-point values.

Round packed double precision floating-point values into integer
values and return rounded floating-point values.

Round the low packed single precision floating-point value into
an integer value and return a rounded floating-point value.

Round the low packed double precision floating-point value into
an integer value and return a rounded floating-point value.

Vol.1 5-31

INSTRUCTION SET SUMMARY

5.10.7
EXTRACTPS

INSERTPS

PINSRB
PINSRD
PINSRQ
PEXTRB
PEXTRW
PEXTRD

PEXTRQ

5.10.8
PMOVSXBW

PMOVZXBW
PMOVSXBD
PMOVZXBD
PMOVSXWD
PMOVZXWD
PMOVSXBQ

PMOVZXBQ

5-32 Vol. 1

Insertion and Extractions from XMM Registers

Extracts a single-precision floating-point value from a specified
offset in an XMM register and stores the result to memory or a
general-purpose register

Inserts a single-precision floating-point value from either a 32-
bit memory location or selected from a specified offset in an
XMM register to a specified offset in the destination XMM
register. In addition, INSERTPS allows zeroing out selected data
elements in the destination, using a mask.

Insert a byte value from a register or memory into an XMM
register

Insert a dword value from 32-bit register or memory into an
XMM register

Insert a gword value from 64-bit register or memory into an
XMM register

Extract a byte from an XMM register and insert the value into a
general-purpose register or memory

Extract a word from an XMM register and insert the value into a
general-purpose register or memory

Extract a dword from an XMM register and insert the value into a
general-purpose register or memory

Extract a gqword from an XMM register and insert the value into a
general-purpose register or memory

Packed Integer Format Conversions

Sign extend the lower 8-bit integer of each packed word
element into packed signed word integers.

Zero extend the lower 8-bit integer of each packed word
element into packed signed word integers.

Sign extend the lower 8-bit integer of each packed dword
element into packed signed dword integers.

Zero extend the lower 8-bit integer of each packed dword
element into packed signed dword integers.

Sign extend the lower 16-bit integer of each packed dword
element into packed signed dword integers.

Zero extend the lower 16-bit integer of each packed dword
element into packed signed dword integers..

Sign extend the lower 8-bit integer of each packed qword
element into packed signed qword integers.

Zero extend the lower 8-bit integer of each packed qword
element into packed signed qword integers.

INSTRUCTION SET SUMMARY

PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword
element into packed signed qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword
element into packed sighed qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword
element into packed sighed qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword

element into packed sighed qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte
Blocks

MPSADBW Performs eight 4-byte wide Sum of Absolute Differences opera-
tions to produce eight word integers.

5.10.10 Horizontal Search

PHMINPOSUW Finds the value and location of the minimum unsigned word
from one of 8 horizontally packed unsigned words. The resulting
value and location (offset within the source) are packed into the
low dword of the destination XMM register.

5.10.11 Packed Test

PTEST Performs a logical AND between the destination with this mask
and sets the ZF flag if the result is zero. The CF flag (zero for
TEST) is set if the inverted mask AND’d with the destination is all
zero

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation

5.11 SSE4.2 INSTRUCTION SET

Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-

Vol.1 5-33

INSTRUCTION SET SUMMARY

word compare SIMD instruction. Programming these five SSE4.2 instructions is
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not
provide any 64-bit integer SIMD instructions.

The remaining two SSE4.2 instructions uses general-purpose registers to perform
accelerated processing functions in specific application areas.

The sections that follow describe each subgroup.

5.11.1 String and Text Processing Instructions

PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX
PCMPESTRM Packed compare explicit-length strings, return mask in XMMO
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX
PCMPISTRM Packed compare implicit-length strings, return mask in XMMO

5.11.2 Packed Comparison SIMD integer Instruction

PCMPGTQ Performs logical compare of greater-than on packed integer
quadwords.

5.11.3 Application-Targeted Accelerator Instructions

CRC32 Provides hardware acceleration to calculate cyclic redundancy
checks for fast and efficient implementation of data integrity
protocols.

POPCNT This instruction calculates of number of bits set to 1 in the

second operand (source) and returns the count in the first
operand (a destination register)

5.12 SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor
that are provided to support for operating systems and executives.

LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register

STR Store task register

LIDT Load interrupt descriptor table (IDT) register
SIDT Store interrupt descriptor table (IDT) register

5-34 Vol.1

INSTRUCTION SET SUMMARY

MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word

CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, no writeback

WBINVD Invalidate cache, with writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SMM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter

SYSENTER Fast System Call, transfers to a flat protected mode kernel at
CPL=0

SYSEXIT Fast System Call, transfers to a flat protected mode kernel at
CPL=3

XSAVE Save processor extended states to memory

XRSTOR Restore processor extended states from memory

XGETBV Reads the state of an extended control register

XSETBV Writes the state of an extended control register

5.13 64-BIT MODE INSTRUCTIONS

The following instructions are introduced in 64-bit mode. This mode is a sub-mode of
1A-32e mode.

CDQE Convert doubleword to quadword
CMPSQ Compare string operands

CMPXCHG16B Compare RDX:RAX with m128

LODSQ Load gword at address (R)SI into RAX
MOVSQ Move gword from address (R)SI to (R)DI

Vol.1 5-35

INSTRUCTION SET SUMMARY

MOVZX (64-bits)
STOSQ
SWAPGS

SYSCALL
SYSRET

Move doubleword to quadword, zero-extension
Store RAX at address RDI

Exchanges current GS base register value with value in MSR
address CO0O00102H

Fast call to privilege level O system procedures
Return from fast system call

5.14 VIRTUAL-MACHINE EXTENSIONS

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD

VMPTRST

VMCLEAR

VMREAD

VMWRITE

Takes a single 64-bit source operand in memory. It makes the
referenced VMCS active and current.

Takes a single 64-bit destination operand that is in memory.
Current-VMCS pointer is stored into the destination operand.

Takes a single 64-bit operand in memory. The instruction sets
the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for
the VMCS have been written to the VMCS-data area in the refer-
enced VMCS region.

Reads a component from the VMCS (the encoding of that field is
given in a register operand) and stores it into a destination
operand.

Writes a component to the VMCS (the encoding of that field is
given in a register operand) from a source operand.

The behavior of the VMX management instructions is summarized below:

VMCALL

VMLAUNCH

VMRESUME

VMXOFF
VMXON

INVEPT

INVVPID

5-36 Vol. 1

Allows a guest in VMX non-root operation to call the VMM for
service. A VM exit occurs, transferring control to the VMM.

Launches a virtual machine managed by the VMCS. A VM entry
occurs, transferring control to the VM.

Resumes a virtual machine managed by the VMCS. A VM entry
occurs, transferring control to the VM.

Causes the processor to leave VMX operation.

Takes a single 64-bit source operand in memory. It causes a

logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

Invalidate cached Extended Page Table (EPT) mappings in the
processor to synchronize address translation in virtual machines
with memory-resident EPT pages.

Invalidate cached mappings of address translation based on the
Virtual Processor ID (VPID).

INSTRUCTION SET SUMMARY

5.15 SAFER MODE EXTENSIONS

The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX)
are summarized below:

GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruc-
tion.

GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters
authenticated code execution mode.

GETSEC[EXITAC] Exits authenticated code execution mode.

GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has
its dynamic root of trust anchored to a chipset supporting Intel
Trusted Execution Technology.

GETSEC[SEXIT] Exits the MLE.

GETSEC[PARAMETERS]Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.

GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

Vol.1 5-37

INSTRUCTION SET SUMMARY

5-38 Vol. 1

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and 1A-32 architectures for
executing calls to procedures or subroutines. It also describes how interrupts and
exceptions are handled from the perspective of an application programmer.

6.1 PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:
® CALL and RET instructions.

¢ ENTER and LEAVE instructions, in conjunction with the CALL and RET
instructions.

Both of these procedure call mechanisms use the procedure stack, commonly
referred to simply as “the stack,” to save the state of the calling procedure, pass
parameters to the called procedure, and store local variables for the currently
executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those
used by the CALL and RET instructions.

6.2 STACKS

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained
in a segment and identified by the segment selector in the SS register. When using
the flat memory model, the stack can be located anywhere in the linear address
space for the program. A stack can be up to 4 GBytes long, the maximum size of a
segment.

Items are placed on the stack using the PUSH instruction and removed from the
stack using the POP instruction. When an item is pushed onto the stack, the
processor decrements the ESP register, then writes the item at the new top of stack.
When an item is popped off the stack, the processor reads the item from the top of
stack, then increments the ESP register. In this manner, the stack grows down in
memory (towards lesser addresses) when items are pushed on the stack and shrinks
up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in
multitasking systems, each task can be given its own stack. The number of stacks in
a system is limited by the maximum number of segments and the available physical
memory.

Vol.2 6-1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When a system sets up many stacks, only one stack—the current stack—is avail-
able at a time. The current stack is the one contained in the segment referenced by
the SS register.

Stack Segment

Bottom of Stack
(Initial ESP Value)

Local Variables

g).—ggg(ljl:;nr% The Stack Can Be
| 16 or 32 Bits Wide
Parameters
Passed to The EBP register is
Called typically set to point
Procedure

to the return
instruction pointer.

Return Instruction ;
Pointer 4—‘ EBP Register |

<—‘ ESP Register |
Top of Stack

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to

Lower Addresses Higher Addresses

Frame Boundary I

Figure 6-1. Stack Structure

The processor references the SS register automatically for all stack operations. For
example, when the ESP register is used as a memory address, it automatically points
to an address in the current stack. Also, the CALL, RET, PUSH, POP, ENTER, and
LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating
system/executive must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a
MOV, POP, or LSS instruction.

6-2 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or
LSS instruction. The LSS instruction can be used to load the SS and ESP registers
in one operation.

See “Segment Descriptors” in of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A, for information on how to set up a segment
descriptor and segment limits for a stack segment.

6.2.2 Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit
(double-word) boundaries, depending on the width of the stack segment. The D flag
in the segment descriptor for the current code segment sets the stack-segment width
(see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
The PUSH and POP instructions use the D flag to determine how much to decrement
or increment the stack pointer on a push or pop operation, respectively. When the
stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit
increments; when the width is 32 bits, the stack pointer is incremented or decre-
mented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide stack can
result in stack misaligned (that is, the stack pointer is not aligned on a doubleword
boundary). One exception to this rule is when the contents of a segment register (a
16-bit segment selector) are pushed onto a 32-bit wide stack. Here, the processor
automatically aligns the stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the
programs, tasks, and system procedures running on the processor to maintain
proper alignment of stack pointers. Misaligning a stack pointer can cause serious
performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions)
have two address-size attributes each of either 16 or 32 bits. This is because they
always have the implicit address of the top of the stack, and they may also have an
explicit memory address (for example, PUSH Arrayl[EBX]). The attribute of the
explicit address is determined by the D flag of the current code segment and the
presence or absence of the 67H address-size prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is
used for the stack access. Stack operations with an address-size attribute of 16 use
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH;
stack operations with an address-size attribute of 32 bits use the 32-bit ESP register
and can use a maximum address of FFFFFFFFH. The default address-size attribute for
data segments used as stacks is controlled by the B flag of the segment’s descriptor.
When this flag is clear, the default address-size attribute is 16; when the flag is set,
the address-size attribute is 32.

Vol.2 6-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.2.4 Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base
pointer and the return instruction pointer. When used in conjunction with a standard
software procedure-call technique, these pointers permit reliable and coherent
linking of procedures.

6.2.4.1 Stack-Frame Base Pointer

The stack is typically divided into frames. Each stack frame can then contain local
variables, parameters to be passed to another procedure, and procedure linking
information. The stack-frame base pointer (contained in the EBP register) identifies a
fixed reference point within the stack frame for the called procedure. To use the
stack-frame base pointer, the called procedure typically copies the contents of the
ESP register into the EBP register prior to pushing any local variables on the stack.
The stack-frame base pointer then permits easy access to data structures passed on
the stack, to the return instruction pointer, and to local variables added to the stack
by the called procedure.

Like the ESP register, the EBP register automatically points to an address in the
current stack segment (that is, the segment specified by the current contents of the
SS register).

6.2.4.2 Return Instruction Pointer

Prior to branching to the first instruction of the called procedure, the CALL instruction
pushes the address in the EIP register onto the current stack. This address is then
called the return-instruction pointer and it points to the instruction where execution
of the calling procedure should resume following a return from the called procedure.
Upon returning from a called procedure, the RET instruction pops the return-instruc-
tion pointer from the stack back into the EIP register. Execution of the calling proce-
dure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It
is thus up to the programmer to insure that stack pointer is pointing to the return-
instruction pointer on the stack, prior to issuing a RET instruction. A common way to
reset the stack pointer to the point to the return-instruction pointer is to move the
contents of the EBP register into the ESP register. If the EBP register is loaded with
the stack pointer immediately following a procedure call, it should point to the return
instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the
calling procedure. Prior to executing the RET instruction, the return instruction
pointer can be manipulated in software to point to any address in the current code
segment (near return) or another code segment (far return). Performing such an
operation, however, should be undertaken very cautiously, using only well defined
code entry points.

6-4 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.2.5 Stack Behavior in 64-Bit Mode

In 64-bit mode, address calculations that reference SS segments are treated as if the
segment base is zero. Fields (base, limit, and attribute) in segment descriptor regis-
ters are ignored. SS DPL is modified such that it is always equal to CPL. This will be
true even if it is the only field in the SS descriptor that is modified.

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP,
and RBP respectively. Some forms of segment load instructions are invalid (for
example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When
the contents of a segment register is pushed onto 64-bit stack, the pointer is auto-
matically aligned to 64 bits (as with a stack that has a 32-bit width).

6.3 CALLING PROCEDURES USING CALL AND RET

The CALL instruction allows control transfers to procedures within the current code
segment (near call) and in a different code segment (far call). Near calls usually
provide access to local procedures within the currently running program or task. Far
calls are usually used to access operating system procedures or procedures in a
different task. See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference,
A-M,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far
versions of the CALL instruction. In addition, the RET instruction allows a program to
increment the stack pointer on a return to release parameters from the stack. The
number of bytes released from the stack is determined by an optional argument (n)
to the RET instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction
Set Reference, N-Z,” of the Intel® 64 and I1A-32 Architectures Software Developer’s
Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation

When executing a near call, the processor does the following (see Figure 6-2):

1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register.

3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack.

3. Resumes execution of the calling procedure.

Vol.2 6-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.3.2 Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):

1.
2.
3.

4.
5.

Pushes the current value of the CS register on the stack.
Pushes the current value of the EIP register on the stack.

Loads the segment selector of the segment that contains the called procedure in
the CS register.

Loads the offset of the called procedure in the EIP register.

Begins execution of the called procedure.

When executing a far return, the processor does the following:

1.
2.

Pops the top-of-stack value (the return instruction pointer) into the EIP register.

Pops the top-of-stack value (the segment selector for the code segment being
returned to) into the CS register.

If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack.

Resumes execution of the calling procedure.

6-6 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack During Stack During
Far Call
E?g(r:]lq(e Near Call Stack
Before Egg}g
Call Param 1 Call Param 1
Param 2 Param 2
Param 3 ~<— ESP Before Call Param 3 ~«— ESP Before Call
Stack Calling EIP ~— ESP After Call Calling CS
Framej Stack Calling EIP | <— ESP After Call
After Frame
Call After
. Call
Stack During Stack During
Near Return Far Return
<<— ESP After Return ~<—ESP After Return
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3
Calling EIP |<«—ESP Before Return Calling CS
—>»| Calling EIP [<—ESP Before Return
Note: On a near or far return, parameters are
released from the stack based on the
optional n operand in the RET n instruction.
Figure 6-2. Stack on Near and Far Calls
6.3.3 Parameter Passing

Parameters can be passed between procedures in any of three ways: through
general-purpose registers, in an argument list, or on the stack.

6.3.3.1

Passing Parameters Through the General-Purpose Registers

The processor does not save the state of the general-purpose registers on procedure
calls. A calling procedure can thus pass up to six parameters to the called procedure
by copying the parameters into any of these registers (except the ESP and EBP regis-
ters) prior to executing the CALL instruction. The called procedure can likewise pass
parameters back to the calling procedure through general-purpose registers.

6.3.3.2

To pass a large number of parameters to the called procedure, the parameters can be
placed on the stack, in the stack frame for the calling procedure. Here, it is useful to

Passing Parameters on the Stack

Vol.2 6-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

use the stack-frame base pointer (in the EBP register) to make a frame boundary for
easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the
calling procedure.

6.3.3.3 Passing Parameters in an Argument List

An alternate method of passing a larger number of parameters (or a data structure)
to the called procedure is to place the parameters in an argument list in one of the
data segments in memory. A pointer to the argument list can then be passed to the
called procedure through a general-purpose register or the stack. Parameters can
also be passed back to the calling procedure in this same manner.

6.3.4 Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment
registers, or the EFLAGS register on a procedure call. A calling procedure should
explicitly save the values in any of the general-purpose registers that it will need
when it resumes execution after a return. These values can be saved on the stack or
in memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the
general-purpose registers. PUSHA pushes the values in all the general-purpose
registers on the stack in the following order: EAX, ECX, EDX, EBX, ESP (the value
prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction
pops all the register values saved with a PUSHA instruction (except the ESP value)
from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it
should restore them to their former values before executing a return to the calling
procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save
and restore all or part of the register using the PUSHF/PUSHFD and POPF/POPFD
instructions. The PUSHF instruction pushes the lower word of the EFLAGS register on
the stack, while the PUSHFD instruction pushes the entire register. The POPF instruc-
tion pops a word from the stack into the lower word of the EFLAGS register, while the
POPFD instruction pops a double word from the stack into the register.

6.3.5 Calls to Other Privilege Levels

The 1A-32 architecture’s protection mechanism recognizes four privilege levels,
numbered from O to 3, where a greater number mean less privilege. The reason to
use privilege levels is to improve the reliability of operating systems. For example,
Figure 6-3 shows how privilege levels can be interpreted as rings of protection.

6-8 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Protection Rings

Operating
System
Kernel

Operating System
Services (Device ~—\
Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

Figure 6-3. Protection Rings

In this example, the highest privilege level O (at the center of the diagram) is used for
segments that contain the most critical code modules in the system, usually the
kernel of an operating system. The outer rings (with progressively lower privileges)
are used for segments that contain code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at
higher privilege segments by means of a tightly controlled and protected interface
called a gate. Attempts to access higher privilege segments without going through a
protection gate and without having sufficient access rights causes a general-protec-
tion exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call
to a procedure that is in a more privileged protection level than the calling procedure
is handled in a similar manner as a far call (see Section 6.3.2, “Far CALL and RET
Operation”). The differences are as follows:

® The segment selector provided in the CALL instruction references a special data
structure called a call gate descriptor. Among other things, the call gate
descriptor provides the following:

— access rights information
— the segment selector for the code segment of the called procedure

— an offset into the code segment (that is, the instruction pointer for the called
procedure)

Vol.2 6-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

® The processor switches to a new stack to execute the called procedure. Each
privilege level has its own stack. The segment selector and stack pointer for the
privilege level 3 stack are stored in the SS and ESP registers, respectively, and
are automatically saved when a call to a more privileged level occurs. The
segment selectors and stack pointers for the privilege level 2, 1, and O stacks are

stored in a system segment called the task state segment (TSS).

The use of a call gate and the TSS during a stack switch are transparent to the calling
procedure, except when a general-protection exception is raised.

6.3.6

CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the

following (see Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP
registers.

Stack Frame
Before Call

]

Stack for

Calling Procedure

Stack for

Called Procedure

Calling SS

Param 1

Calling ESP

Param 2

Param 1

Param 3

Param 2

<<—ESP Before Call

Param 3

Calling CS

ESP After Call—>

Calling EIP

Calling SS

<€— ESP After Return

Param 1

Calling ESP

Param 2

Param 1

Param 3

Param 2

Param 3

Calling CS

ESP Before Return—>»|

Calling EIP

Note: On a return, parameters are

released on both stacks based on the
optional n operand in the RET n instruction.

Stack Frame
After Call

Figure 6-4. Stack Switch on a Call to a Different Privilege Level

6-10 Vol.2

8.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Loads the segment selector and stack pointer for the new stack (that is, the stack
for the privilege level being called) from the TSS into the SS and ESP registers
and switches to the new stack.

Pushes the temporarily saved SS and ESP values for the calling procedure’s stack
onto the new stack.

Copies the parameters from the calling procedure’s stack to the new stack. A
value in the call gate descriptor determines how many parameters to copy to the
new stack.

Pushes the temporarily saved CS and EIP values for the calling procedure to the
new stack.

Loads the segment selector for the new code segment and the new instruction
pointer from the call gate into the CS and EIP registers, respectively.

Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs
these actions:

1.
2.
3.

6.

Performs a privilege check.
Restores the CS and EIP registers to their values prior to the call.

If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack. If the call gate descriptor specifies that one or more parameters be
copied from one stack to the other, a RET n instruction must be used to release
the parameters from both stacks. Here, the n operand specifies the number of
bytes occupied on each stack by the parameters. On a return, the processor
increments ESP by n for each stack to step over (effectively remove) these
parameters from the stacks.

Restores the SS and ESP registers to their values prior to the call, which causes a
switch back to the stack of the calling procedure.

If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack (see explanation in step 3).

Resumes execution of the calling procedure.

See Chapter 4, “Protection,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for detailed information on calls to privileged levels
and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode

The 64-bit extensions expand branching mechanisms to accommodate branches in
64-bit linear-address space. These are:

Near-branch semantics are redefined in 64-bit mode

Vol.2 6-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

® In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls
are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP,
and LOOP) is forced to 64 bits. These instructions update the 64-bit RIP without the
need for a REX operand-size prefix.

The following aspects of near branches are controlled by the effective operand size:
® Truncation of the size of the instruction pointer

® Size of a stack pop or push, due to a CALL or RET

® Size of a stack-pointer increment or decrement, due to a CALL or RET

® Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand
size prefixes (operand size prefixes are silently ignored). However, the displacement
field for relative branches is still limited to 32 bits and the address size for near
branches is not forced in 64-bit mode.

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the
address calculation for memory indirect branches. Such addresses are 64 bits by
default; but they can be overridden to 32 bits by an address size prefix.

Software typically uses far branches to change privilege levels. The legacy 1A-32
architecture provides the call-gate mechanism to allow software to branch from one
privilege level to another, although call gates can also be used for branches that do
not change privilege levels. When call gates are used, the selector portion of the
direct or indirect pointer references a gate descriptor (the offset in the instruction is
ignored). The offset to the destination’s code segment is taken from the call-gate
descriptor.

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit
call gate descriptor and expands the size of the 64-bit descriptor to hold a 64-bit
offset. The 64-bit mode call-gate descriptor allows far branches that reference any
location in the supported linear-address space. These call gates also hold the target
code selector (CS), allowing changes to privilege level and default size as a result of
the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a
full 64-bit absolute RIP in 64-bit mode is with an indirect branch. For this reason,
direct far branches are eliminated from the instruction set in 64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions
so that the instructions operate within a 64-bit memory space. The mode also intro-
duces two new instructions: SYSCALL and SYSRET (which are valid only in 64-bit
mode). For details, see “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return
from Fast System Call” in Chapter 4, “Instruction Set Reference, N-Z,” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

6-12 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.4 INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution, inter-
rupts and exceptions:

® Aninterrupt is an asynchronous event that is typically triggered by an 1/0
device.

® An exception is a synchronous event that is generated when the processor
detects one or more predefined conditions while executing an instruction. The
1A-32 architecture specifies three classes of exceptions: faults, traps, and aborts.

The processor responds to interrupts and exceptions in essentially the same way.
When an interrupt or exception is signaled, the processor halts execution of the
current program or task and switches to a handler procedure that has been written
specifically to handle the interrupt or exception condition. The processor accesses
the handler procedure through an entry in the interrupt descriptor table (IDT). When
the handler has completed handling the interrupt or exception, program control is
returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts
and exceptions independently from application programs or tasks. Application
programs can, however, access the interrupt and exception handlers incorporated in
an operating system or executive through assembly-language calls. The remainder
of this section gives a brief overview of the processor’s interrupt and exception
handling mechanism. See Chapter 5, “Interrupt and Exception Handling,” in the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, for a
description of this mechanism.

The 1A-32 Architecture defines 18 predefined interrupts and exceptions and 224 user
defined interrupts, which are associated with entries in the IDT. Each interrupt and
exception in the IDT is identified with a number, called a vector. Table 6-1 lists the
interrupts and exceptions with entries in the IDT and their respective vector
numbers. Vectors 0 through 8, 10 through 14, and 16 through 19 are the predefined
interrupts and exceptions, and vectors 32 through 255 are the user-defined inter-
rupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to
entries in the IDT; the most notable of these interrupts is the SMI interrupt. See
Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’'s Manual, Volume 3B, for more information about the
interrupts and exceptions.

When the processor detects an interrupt or exception, it does one of the following
things:

® Executes an implicit call to a handler procedure.
® Executes an implicit call to a handler task.

Vol.2 6-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.4.1 Call and Return Operation for Interrupt or Exception

Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to
another protection level (see Section 6.3.6, “CALL and RET Operation Between Privi-
lege Levels”). Here, the interrupt vector references one of two kinds of gates: an
interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in
that they provide the following information:

® Access rights information
® The segment selector for the code segment that contains the handler procedure
® An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt
or exception handler is called through an interrupt gate, the processor clears the
interrupt enable (IF) flag in the EFLAGS register to prevent subsequent interrupts
from interfering with the execution of the handler. When a handler is called through
a trap gate, the state of the IF flag is not changed.

Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
#DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (UnDefined UD2 instruction or reserved opcode.!
Opcode)
7 #NM Device Not Available (No Math | Floating-point or WAIT/FWAIT
Coprocessor) instruction.
8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.
9 #MF CoProcessor Segment Overrun | Floating-point instruction.?
(reserved)
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing
system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other
protection checks.

6-14 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 6-1. Exceptions and Interrupts (Contd.)

Vector No. | Mnemonic Description Source
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Any data reference in memory.3
18 #MC Machine Check Error codes (if any) and source are model
dependent.?
19 #XM SIMD Floating-Point Exception | SIMD Floating-Point Instruction®
20-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT n
instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.

2. 1A-32 processors after the Intel386 processor do not generate this exception.

3. This exception was introduced in the Intel486 processor.

4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium Ill processor.

If the code segment for the handler procedure has the same privilege level as the
currently executing program or task, the handler procedure uses the current stack; if
the handler executes at a more privileged level, the processor switches to the stack
for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt
or exception handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order)
on the stack.

Pushes an error code (if appropriate) on the stack.

Loads the segment selector for the new code segment and the new instruction
pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

Vol.2 6-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler's Stack

~<«— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code «——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Stack Handler’s Stack
<«——ESP Before
Transfer to Handler sS
ESP
EFLAGS
CS
EIP
ESP After——>» Error Code
Transfer to Handler

Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines

If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS,
and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack
for the privilege level being called) from the TSS into the SS and ESP registers
and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the
interrupted procedure’s stack onto the new stack.

Pushes an error code on the new stack (if appropriate).

Loads the segment selector for the new code segment and the new instruction
pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

Begins execution of the handler procedure at the new privilege level.

6-16 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

A return from an interrupt or exception handler is initiated with the IRET instruction.
The IRET instruction is similar to the far RET instruction, except that it also restores
the contents of the EFLAGS register for the interrupted procedure. When executing a
return from an interrupt or exception handler from the same privilege level as the
interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or
exception.

2. Restores the EFLAGS register.
3. Increments the stack pointer appropriately.
4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different priv-
ilege level than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or
exception.

Restores the EFLAGS register.

Restores the SS and ESP registers to their values prior to the interrupt or
exception, resulting in a stack switch back to the stack of the interrupted
procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task.
Here, an interrupt or exception causes a task switch to a handler task. The handler
task is given its own address space and (optionally) can execute at a higher protec-
tion level than application programs or tasks.

The switch to the handler task is accomplished with an implicit task call that refer-
ences a task gate descriptor. The task gate provides access to the address space
for the handler task. As part of the task switch, the processor saves complete state
information for the interrupted program or task. Upon returning from the handler
task, the state of the interrupted program or task is restored and execution
continues. See Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3B, for more information
on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or
exception with an implicit far call to an interrupt or exception handler. The processor
uses the interrupt or exception vector number as an index into an interrupt table. The

Vol.2 6-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

interrupt table contains instruction pointers to the interrupt and exception handler
procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS
register, and an optional error code on the stack before switching to the handler
procedure.

A return from the interrupt or exception handler is carried out with the IRET
instruction.

See Chapter 15, “8086 Emulation,” in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for more information on handling interrupts
and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions

The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly
call an interrupt or exception handler. The INT n instruction uses an interrupt vector
as an argument, which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#0F) handler if the over-
flow flag (OF) in the EFLAGS register is set. The OF flag indicates overflow on arith-
metic instructions, but it does not automatically raise an overflow exception. An
overflow exception can only be raised explicitly in either of the following ways:

® Execute the INTO instruction.

® Test the OF flag and execute the INT n instruction with an argument of 4 (the
vector number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for
overflow at specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR)
handler if an operand is found to be not within predefined boundaries in memory.
This instruction is provided for checking references to arrays and other data struc-
tures. Like the overflow exception, the BOUND-range exceeded exception can only
be raised explicitly with the BOUND instruction or the INT n instruction with an argu-
ment of 5 (the vector number of the bounds-check exception). The processor does
not implicitly perform bounds checks and raise the BOUND-range exceeded excep-
tion.

6.4.5 Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the 1A-32 architecture
supports a set of six floating-point exceptions. These exceptions can be generated
during operations performed by the x87 FPU instructions or by SSE/SSE2/SSE3
instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3)
generates one or more of these exceptions, it in turn generates floating-point error

6-18 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

exception (#MF); when an SSE/SSE2/SSE3 instruction generates a floating-point
exception, it in turn generates SIMD floating-point exception (#XM).

See the following sections for further descriptions of the floating-point exceptions,
how they are generated, and how they are handled:

® Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical
Actions of a Floating-Point Exception Handler”

® Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87
FPU Floating-Point Exception Conditions”

® Section 11.5.1, “SIMD Floating-Point Exceptions”
® Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode

64-bit extensions expand the legacy IA-32 interrupt-processing and exception-
processing mechanism to allow support for 64-bit operating systems and applica-
tions. Changes include:

® Allinterrupt handlers pointed to by the IDT are 64-bit code (does not apply to the
SMI handler).

® The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte,
zero extended stores.

® The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy
environments, this push is conditional and based on a change in current privilege
level (CPL).

® The new SS is set to NULL if there is a change in CPL.
® IRET behavior changes.

® There is a new interrupt stack-switch mechanism.

® The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The 1A-32 architecture supports an alternate method of performing procedure calls
with the ENTER (enter procedure) and LEAVE (leave procedure) instructions. These
instructions automatically create and release, respectively, stack frames for called
procedures. The stack frames have predefined spaces for local variables and the
necessary pointers to allow coherent returns from called procedures. They also allow
scope rules to be implemented so that procedures can access their own local vari-
ables and some number of other variables located in other stack frames.

Vol.2 6-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

ENTER and LEAVE offer two benefits:

® They provide machine-language support for implementing block-structured
languages, such as C and Pascal.

® They simplify procedure entry and exit in compiler-generated code.

6.5.1 ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically
used in block-structured languages. In block-structured languages, the scope of a
procedure is the set of variables to which it has access. The rules for scope vary
among languages. They may be based on the nesting of procedures, the division of
the program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on
the stack for dynamic storage for the procedure being called. Dynamic storage is the
memory allocated for variables created when the procedure is called, also known as
automatic variables. The second parameter is the lexical nesting level (from O to 31)
of the procedure. The nesting level is the depth of a procedure in a hierarchy of
procedure calls. The lexical level is unrelated to either the protection privilege level or
to the 1/0 privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack
and sets up pointers to two previous stack frames in the stack frame for this proce-
dure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into
the new stack frame from the preceding frame. A stack frame pointer is a doubleword
used to access the variables of a procedure. The set of stack frame pointers used by
a procedure to access the variables of other procedures is called the display. The first
doubleword in the display is a pointer to the previous stack frame. This pointer is
used by a LEAVE instruction to undo the effect of an ENTER instruction by discarding
the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the
dynamic local variables for the procedure by decrementing the contents of the ESP
register by the number of bytes specified in the first parameter. This new value in the
ESP register serves as the initial top-of-stack for all PUSH and POP operations within
the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down,
this is actually the doubleword with the highest address in the display. Data manipu-
lation instructions that specify the EBP register as a base register automatically
address locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is O, the non-nested form is used. The non-nested form pushes the contents of

6-20 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

the EBP register on the stack, copies the contents of the ESP register into the EBP
register, and subtracts the first operand from the contents of the ESP register to allo-
cate dynamic storage. The non-nested form differs from the nested form in that no
stack frame pointers are copied. The nested form of the ENTER instruction occurs
when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction.
STORAGE is the number of bytes of dynamic storage to allocate for local variables,
and LEVEL is the lexical nesting level.

PUSH EBP;
FRAME_PTR « ESP;
IFLEVEL>O
THEN
DO (LEVEL - 1) times
EBP « EBP - 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)
0D;

PUSH FRAME_PTR;
Fl;
EBP « FRAME_PTR;
ESP « ESP — STORAGE;

The main procedure (in which all other procedures are nested) operates at the
highest lexical level, level 1. The first procedure it calls operates at the next deeper
lexical level, level 2. A level 2 procedure can access the variables of the main
program, which are at fixed locations specified by the compiler. In the case of level 1,
the ENTER instruction allocates only the requested dynamic storage on the stack
because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called
procedure access to the variables of the caller. The ENTER instruction provides this
access by placing a pointer to the calling procedure's stack frame in the display.

A procedure that calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures
operating at higher lexical levels. The new stack frame does not include the pointer
for addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure
can address only its own variables and the variables of the procedures within which it
is nested. A re-entrant procedure always can address its own variables; it does not
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of
higher lexical levels, not those at parallel lexical levels (see Figure 6-6).

Vol.2 6-21

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

| Procedure B (Lexical Level 3) |

Procedure C (Lexical Level 3)

| Procedure D (Lexical Level 4) |

Figure 6-6. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control
access to the variables of nested procedures. In Figure 6-6, for example, if procedure
A calls procedure B which, in turn, calls procedure C, then procedure C will have
access to the variables of the MAIN procedure and procedure A, but not those of
procedure B because they are at the same lexical level. The following definition
describes the access to variables for the nested procedures in Figure 6-6.

1. MAIN has variables at fixed locations.
2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B
cannot access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C
cannot access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN.
Procedure D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates
three doublewords of dynamic storage for MAIN, but copies no pointers from other
stack frames. The first doubleword in the display holds a copy of the last value in the
EBP register before the ENTER instruction was executed. The second doubleword
holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register points to the first doubleword pushed on
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see
Figure 6-8). The first doubleword is the last value held in MAIN's EBP register. The
second doubleword is a pointer to MAIN's stack frame which is copied from the
second doubleword in MAIN's display. This happens to be another copy of the last
value held in MAIN’s EBP register. Procedure A can access variables in MAIN because
MAIN is at level 1.

6-22 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Therefore the base address for the dynamic storage used in MAIN is the current
address in the EBP register, plus four bytes to account for the saved contents of

MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

Old EBP <— EBP
Display ;
Main’'s EBP
Dynamic
Storage
< ESP

Figure 6-7. Stack Frame After Entering the MAIN Procedure

Old EBP
Main's EBP
. Main’s EBP -<— EBP
Display -
Main’'s EBP
Procedure A's EBP

Dynamic
Storage

< ESP

Figure 6-8. Stack Frame After Entering Procedure A

When procedure A calls procedure B, the ENTER instruction creates a new display
(see Figure 6-9). The first doubleword holds a copy of the last value in procedure A’'s
EBP register. The second and third doublewords are copies of the two stack frame

pointers in procedure A’s display. Procedure B can access variables in procedure A
and MAIN by using the stack frame pointers in its display.

Vol.2 6-23

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When procedure B calls procedure C, the ENTER instruction creates a new display for
procedure C (see Figure 6-10). The first doubleword holds a copy of the last value in
procedure B’s EBP register. This is used by the LEAVE instruction to restore procedure
B’s stack frame. The second and third doublewords are copies of the two stack frame
pointers in procedure A’s display. If procedure C were at the next deeper lexical level
from procedure B, a fourth doubleword would be copied, which would be the stack

frame pointer to procedure B’s local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not
intended to access procedure B’s variables. This does not mean that procedure C is
completely isolated from procedure B; procedure C is called by procedure B, so the
pointer to the returning stack frame is a pointer to procedure B’s stack frame. In
addition, procedure B can pass parameters to procedure C either on the stack or
through variables global to both procedures (that is, variables in the scope of both

procedures).

Display

Dynamic
Storage

Old EBP

Main's EBP

Main's EBP

Main's EBP

Procedure A's EBP

Procedure A's EBP

Main's EBP

Procedure A's EBP

Procedure B's EBP

< EBP

-<— ESP

Figure 6-9. Stack Frame After Entering Procedure B

6-24 Vol.2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP

Main's EBP

Main's EBP

Main’s EBP

Procedure A's EBP

Procedure A's EBP

Main's EBP

Procedure A's EBP

Procedure B's EBP

N Procedure B's EBP
. Main’s EBP
Display
Procedure A's EBP
L Procedure C's EBP
Dynamic
Storage

<— EBP

-<«— ESP

Figure 6-10. Stack Frame After Entering Procedure C

6.5.2 LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the
previous ENTER instruction. The LEAVE instruction copies the contents of the EBP
register into the ESP register to release all stack space allocated to the procedure.
Then it restores the old value of the EBP register from the stack. This simultaneously
restores the ESP register to its original value. A subsequent RET instruction then can
remove any arguments and the return address pushed on the stack by the calling

program for use by the procedure.

Vol.2 6-25

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6-26 Vol.2

CHAPTER 7
PROGRAMMING WITH
GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the 1A-32 instructions that repre-
sent the fundamental instruction set for the Intel 1A-32 processors. These instruc-
tions were introduced into the 1A-32 architecture with the first 1A-32 processors (the
Intel 8086 and 8088). Additional instructions were added to the general-purpose
instruction set in subsequent families of 1A-32 processors (the Intel 286, Intel386,
Intel486, Pentium, Pentium Pro, and Pentium Il processors).

Intel 64 architecture further extends the capability of most general-purpose instruc-
tions so that they are able to handle 64-bit data in 64-bit mode. A small number of
general-purpose instructions (still supported in non-64-bit modes) are not supported
in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing,
arithmetic and logical, program flow control, input/output, and string operations on a
set of integer, pointer, and BCD data types. This chapter provides an overview of the
general-purpose instructions. See Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volumes 3A & 3B, for detailed descriptions of individual instruc-
tions.

7.1 PROGRAMMING ENVIRONMENT FOR GP
INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the
set of registers and address space. The environment includes the following items:

® General-purpose registers — Eight 32-bit general-purpose registers (see
Section 3.4.1, “General-Purpose Registers”) are used in non-64-bit modes to
address operands in memory. These registers are referenced by the names EAX,
EBX, ECX, EDX, EBP, ESI EDI, and ESP.

® Segment registers — The six 16-bit segment registers contain segment
pointers for use in accessing memory (see Section 3.4.2, “Segment Registers”).
These registers are referenced by the names CS, DS, SS, ES, FS, and GS.

® EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”)
is used to provide status and control for basic arithmetic, compare, and system
operations.

® EIP register — This 32-bit register contains the current instruction pointer (see
Section 3.4.3, “EFLAGS Register”).

General-purpose instructions operate on the following data types. The width of valid
data types is dependent on processor mode (see Chapter 4):

Vol.1 7-1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

® Bytes, words, doublewords

® Signed and unsigned byte, word, doubleword integers
® Near and far pointers

® Bit fields

® BCD integers

7.2 PROGRAMMING ENVIRONMENT FOR GP
INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is
similar to that described in Section 7.1.

® General-purpose registers — In 64-bit mode, sixteen general-purpose
registers available. These include the eight GPRs described in Section 7.1 and
eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX prefix. All
sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as
RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP and R8-R15 (see Section 3.4.1.1,
“General-Purpose Registers in 64-Bit Mode”). Promotion to 64-bit operand
requires REX prefix encodings.

® Segment registers — In 64-bit mode, segmentation is available but it is set up
uniquely (see Section 3.4.2.1, “Segment Registers in 64-Bit Mode”).

® Flags and Status register — When the processor is running in 64-bit mode,
EFLAGS becomes the 64-bit RFLAGS register (see Section 3.4.3, “EFLAGS
Register”).

® Instruction Pointer register — In 64-bit mode, the EIP register becomes the
64-bit RIP register (see Section 3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The
width of valid data types is dependent on default operand size, address size, or a
prefix that overrides the default size:

® Bytes, words, doublewords, quadwords

® Signed and unsigned byte, word, doubleword, quadword integers
® Near and far pointers

® Bit fields

See also:

® Chapter 3, “Basic Execution Environment,” for more information about 1A-32e
modes.

® Chapter 2, “Instruction Format,” in the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 2A, for more detailed information about
REX prefixes.

7-2 Vol.1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B for a complete listing of all instructions. This information documents the
behavior of individual instructions in the 64-bit mode context.

7.3 SUMMARY OF GP INSTRUCTIONS

General purpose instructions are divided into the following subgroups:
® Data transfer

® Binary arithmetic
® Decimal arithmetic
® Logical

® Shift and rotate

¢ Bit and byte

® Control transfer

® String

®* 1/0

® Enter and Leave

® Flag control

® Segment register

® Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-
64-bit mode operation first. Changes in 64-bit mode beyond those affected by the
use of the REX prefixes are discussed in separate sub-sections within each subgroup.
For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions

The data transfer instructions move bytes, words, doublewords, or quadwords both
between memory and the processor’s registers and between registers. For the
purpose of this discussion, these instructions are divided into subordinate subgroups
that provide for:

® General data movement
¢ Exchange
® Stack manipulation

® Type conversion

Vol.1 7-3

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.1.1 General Data Movement Instructions

Move instructions — The MOV (move) and CMOVcc (conditional move) instructions
transfer data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between
memory and the processor’s registers and data movement operations between regis-
ters. It handles data transfers along the paths listed in Table 7-1. (See “MOV—Move
to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volume 2A, for information on moving data to and from the
control and debug registers.)

The MOV instruction cannot move data from one memory location to another or from
one segment register to another segment register. Memory-to-memory moves are
performed with the MOVS (string move) instruction (see Section 7.3.9, “String Oper-
ations”).

Conditional move instructions — The CMOVcc instructions are a group of instruc-
tions that check the state of the status flags in the EFLAGS register and perform a
move operation if the flags are in a specified state. These instructions can be used to
move a 16-bit or 32-bit value from memory to a general-purpose register or from
one general-purpose register to another. The flag state being tested is specified with
a condition code (cc) associated with the instruction. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcc instruction.

Table 7-1. Move Instruction Operations
Type of Data Movement Source — Destination

From memory to a register Memory location — General-purpose register
Memory location — Segment register

From a register to memory General-purpose register — Memory location
Segment register — Memory location

Between registers General-purpose register — General-purpose register
General-purpose register — Segment register
Segment register — General-purpose register
General-purpose register — Control register

Control register — General-purpose register
General-purpose register — Debug register

Debug register — General-purpose register

Immediate data to a register Immediate — General-purpose register

Immediate data to memory Immediate — Memory location

7-4 Vol.1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested
for each instruction. The condition code mnemonics are appended to the letters
“CMOV” to form the mnemonics for CMOVcc instructions. The instructions listed in
Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the
same instruction. The assembler provides these alternate names to make it easier to
read program listings.

CMOVcec instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF statements and the possibility of branch mispre-
dictions by the processor.

These conditional move instructions are supported in the P6 family, Pentium 4, and
Intel Xeon processors. Software can check if CMOVcc instructions are supported by
checking the processor’s feature information with the CPUID instruction.

73.1.2 Exchange Instructions

The exchange instructions swap the contents of one or more operands and, in some
cases, perform additional operations such as asserting the LOCK signal or modifying
flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruc-
tion takes the place of three MOV instructions and does not require a temporary loca-
tion to save the contents of one operand location while the other is being loaded.
When a memory operand is used with the XCHG instruction, the processor’s LOCK
signal is automatically asserted. This instruction is thus useful for implementing
semaphores or similar data structures for process synchronization. See “Bus
Locking” in Chapter 7, “Multiple-Processor Management,” of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A, for more information on bus
locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register
operand. Bit positions 0 through 7 are exchanged with 24 through 31, and bit posi-
tions 8 through 15 are exchanged with 16 through 23. Executing this instruction
twice in a row leaves the register with the same value as before. The BSWAP instruc-
tion is useful for converting between “big-endian” and “little-endian” data formats.
This instruction also speeds execution of decimal arithmetic. (The XCHG instruction
can be used to swap the bytes in a word.)

Vol.1 7-5

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Table 7-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description
Unsigned Conditional Moves
CMOVA/CMOVNBE (CForzF)=0 Above/not below or equal
CMOVAE/CMOVNB CF=0 Above or equal/not below
CMOVNC CF=0 Not carry
CMOVB/CMOVNAE CF=1 Below/not above or equal
cMoVC CF=1 Carry
CMOVBE/CMOVNA (CForzF)=1 Below or equal/not above
CMOvVe/CMOVZ ZF=1 Equal/zero
CMOVNE/CMOVNZ ZF=0 Not equal/not zero
CMOVP/CMOVPE PF=1 Parity/parity even
CMOVNP/CMOVPO PF=0 Not parity/parity odd
Signed Conditional Moves
CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less
CMOVL/CMOVNGE (SF xor OF) =1 Less/not greater or equal
CMOVLE/CMOVNG ((SF xor OF) or ZF) =1 Less or equal/not greater
CMOVO OF =1 Overflow
CMOVNO OF=0 Not overflow
CMOovsS SF=1 Sign (negative)
CMOVNS SF=0 Not sign (non-negative)

The XADD (exchange and add) instruction swaps two operands and then stores the
sum of the two operands in the destination operand. The status flags in the EFLAGS
register indicate the result of the addition. This instruction can be combined with the
LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set
Reference, A-M,” of the Intel® 64 and I1A-32 Architectures Software Developer’s
Manual, Volume 2A) in a multiprocessing system to allow multiple processors to
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange
8 bytes) instructions are used to synchronize operations in systems that use
multiple processors. The CMPXCHG instruction requires three operands: a source
operand in a register, another source operand in the EAX register, and a destination
operand. If the values contained in the destination operand and the EAX register are
equal, the destination operand is replaced with the value of the other source
operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS

7-6 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

register reflect the result that would have been obtained by subtracting the destina-
tion operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores.
It checks to see if a semaphore is free. If the semaphore is free, it is marked allo-
cated; otherwise it gets the ID of the current owner. This is all done in one uninter-
ruptible operation. In a single-processor system, the CMPXCHG instruction
eliminates the need to switch to protection level O (to disable interrupts) before
executing multiple instructions to test and modify a semaphore.

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to
perform the compare and exchange operation atomically. (See “Locked Atomic Oper-
ations” in Chapter 7, “Multiple-Processor Management,” of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A, for more information on
atomic operations.)

The CMPXCHGS8B instruction also requires three operands: a 64-bit value in
EDX:EAX, a 64-bit value in ECX:EBX, and a destination operand in memory. The
instruction compares the 64-bit value in the EDX:EAX registers with the destination
operand. If they are equal, the 64-bit value in the ECX:EBX register is stored in the
destination operand. If the EDX:EAX register and the destination are not equal, the
destination is loaded in the EDX:EAX register. The CMPXCHGS8B instruction can be
combined with the LOCK prefix to perform the operation atomically.

73.1.3 Exchange Instructions in 64-Bit Mode

The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of
the functionality provided by CMPXCHGS8B that operates on 128-bits of data.

73.14 Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions
move data to and from the stack. The PUSH instruction decrements the stack pointer
(contained in the ESP register), then copies the source operand to the top of stack
(see Figure 7-1). It operates on memory operands, immediate operands, and
register operands (including segment registers). The PUSH instruction is commonly
used to place parameters on the stack before calling a procedure. It can also be used
to reserve space on the stack for temporary variables.

Vol.1 7-7

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Stack
Before Pushing Doubleword After Pushing Doubleword
Gsrtc?v(\:/'t(h 31 0 31 0
J n ~<—ESP
n-4 Doubleword Value |<—ESP
n-8

Figure 7-1. Operation of the PUSH Instruction

The PUSHA instruction saves the contents of the eight general-purpose registers on
the stack (see Figure 7-2). This instruction simplifies procedure calls by reducing the
number of instructions required to save the contents of the general-purpose regis-
ters. The registers are pushed on the stack in the following order: EAX, ECX, EDX,
EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI.

Stack
Before Pushing Registers After Pushing Registers
Stack 31 0 31 0
n

n-4 - ESP

n-8 EAX
n-12 ECX
n-16 EDX
n-20 EBX
n-24 Old ESP
n-28 EBP
n-32 ESI
n-36 EDI < ESP

Figure 7-2. Operation of the PUSHA Instruction

The POP instruction copies the word or doubleword at the current top of stack (indi-
cated by the ESP register) to the location specified with the destination operand. It
then increments the ESP register to point to the new top of stack (see Figure 7-3).
The destination operand may specify a general-purpose register, a segment register,
or a memory location.

7-8 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Stack
Before Popping Doubleword After Popping Doubleword
Stack 31 0 31 0
n
l n-4 << ESP
n-8 Doubleword Value -~ ESP

Figure 7-3. Operation of the POP Instruction

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top
eight words or doublewords from the top of the stack into the general-purpose regis-
ters, except for the ESP register (see Figure 7-4). If the operand-size attribute is 32,
the doublewords on the stack are transferred to the registers in the following order:
EDI, ESI, EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is
restored by the action of popping the stack. If the operand-size attribute is 16, the
words on the stack are transferred to the registers in the following order: DI, Sl, BP,
ignore word, BX, DX, CX, and AX.

Stack
Before Popping Registers After Popping Registers
Stack 0 31 0 31
Growth
l n-4 ~<—ESP
n-8 EAX

n-12 ECX

n-16 EDX

n-20 EBX

n-24 Ignored

n-28 EBP

n-32 ESI

n-36 EDI < ESP

Figure 7-4. Operation of the POPA Instruction

73.15 Stack Manipulation Instructions in 64-Bit Mode

In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an
instruction prefix. In implicit stack references, address-size overrides are ignored.
Pushes and pops of 32-bit values on the stack are not possible in 64-bit mode. 16-bit

Vol.1 7-9

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

pushes and pops are supported by using the 66H operand-size prefix. PUSHA,
PUSHAD, POPA, and POPAD are not supported.

73.1.6 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords,
and doublewords into quadwords. These instructions are especially useful for
converting integers to larger integer formats, because they perform sign extension
(see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move
and convert.

7-10 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

15 0
s/ NI NN NN N N N] (| | BeTore Sign
Extension
31 15 o
[s|s/s|s/s|s|s]s]s|s|s]s|s]s]s]s] || |nIn]n]n]n]w]n] I o] e 00
Extension

Figure 7-5. Sign Extension

Simple conversion — The CBW (convert byte to word), CWDE (convert word to
doubleword extended), CWD (convert word to doubleword), and CDQ (convert
doubleword to quadword) instructions perform sign extension to double the size of
the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit
position of the upper byte of the AX register. The CWDE instruction copies the sign
(bit 15) of the word in the AX register into every bit position of the high word of the
EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every
bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the
doubleword in the EAX register into every bit position in the EDX register. The CWD
instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from
a doubleword before doubleword division.

Move with sign or zero extension — The MOVSX (move with sign extension) and
MOVZX (move with zero extension) instructions move the source operand into a
register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit
value to a 32-bit value by sign extending the source operand, as shown in Figure 7-5.
The MOVZX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit
value to a 32-bit value by zero extending the source operand.

73.1.7 Type Conversion Instructions in 64-Bit Mode

The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64
bits. This instruction is not encodable in non-64-bit modes.

Vol.1 7-11

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.2 Binary Arithmetic Instructions

Binary arithmetic instructions operate on 8-, 16-, and 32-bit nhumeric data encoded
as signed or unsigned binary integers. The binary arithmetic instructions may also be
used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided subordinate
subgroups of instructions that:

® Add and subtract

® Increment and decrement
® Compare and change signs
® Multiply and divide

7.3.2.1 Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and
SBB (subtract integers with borrow) instructions perform addition and subtraction
operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag
is set. This instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the
CF flag is set. This instruction is used to propagate a borrow when subtracting
numbers in stages.

7.3.2.2 Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from
an unsigned integer operand, respectively. A primary use of these instructions is for
implementing counters.

7.3.2.3 Increment and Decrement Instructions in 64-Bit Mode

The INC and DEC instructions are supported in 64-bit mode. However, some forms of
INC and DEC (the register operand being encoded using register extension field in
the MOD R/M byte) are not encodable in 64-bit mode because the opcodes are
treated as REX prefixes.

73.24 Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer oper-
ands and updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The

7-12 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

source operands are not modified, nor is the result saved. The CMP instruction is
commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition)
instruction, with the latter instructions performing an action based on the result of a
CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The
effect of the NEG instruction is to change the sign of a two's complement operand
while keeping its magnitude.

73.25 Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL
signed multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed
divide).

The MUL instruction multiplies two unsigned integer operands. The result is
computed to twice the size of the source operands (for example, if word operands are
being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed
to twice the size of the source operands; however, in some cases the result is trun-
cated to the size of the source operands (see “IMUL—Signed Multiply” in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

The DIV instruction divides one unsigned operand by another unsigned operand and
returns a quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a
signed division.

7.3.3 Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions
ADD, SUB, MUL, and DIV (discussed in Section 7.3.2, “Binary Arithmetic Instruc-
tions”) with the decimal arithmetic instructions. The decimal arithmetic instructions
are provided to carry out the following operations:

® To adjust the results of a previous binary arithmetic operation to produce a valid
BCD result.

® To adjust the operands of a subsequent binary arithmetic operation so that the
operation will produce a valid BCD result.

These instructions operate on both packed and unpacked BCD values. For the
purpose of this discussion, the decimal arithmetic instructions are divided subordi-
nate subgroups of instructions that provide:

® Packed BCD adjustments
® Unpacked BCD adjustments

Vol.1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.3.1 Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction)
instructions adjust the results of operations performed on packed BCD integers
(see Section 4.7, “BCD and Packed BCD Integers”). Adding two packed BCD values
requires two instructions: an ADD instruction followed by a DAA instruction. The ADD
instruction adds (binary addition) the two values and stores the result in the AL
register. The DAA instruction then adjusts the value in the AL register to obtain a
valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as
the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction
followed by a DAS instruction. The SUB instruction subtracts (binary subtraction) one
BCD value from another and stores the result in the AL register. The DAS instruction
then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value
and sets the CF flag if a decimal borrow occurred as the result of the subtraction.

73.3.2 Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM
(ASCII adjust after multiplication), and AAD (ASCII adjust before division) instruc-
tions adjust the results of arithmetic operations performed in unpacked BCD
values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions
assume that the value to be adjusted is stored in the AL register or, in one instance,
the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of
two unpacked BCD values. It converts the binary value in the AL register into a
decimal value and stores the result in the AL register in unpacked BCD format (the
decimal number is stored in the lower 4 bits of the register and the upper 4 bits are
cleared). If a decimal carry occurred as a result of the addition, the CF flag is set and
the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction
of two unpacked BCD values. Here again, a binary value is converted into an
unpacked BCD value. If a borrow was required to complete the decimal subtract, the
CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication
of two unpacked BCD values. It converts the binary value in the AL register into a
decimal value and stores the least significant digit of the result in the AL register (in
unpacked BCD format) and the most significant digit, if there is one, in the AH
register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided
with the DIV instruction, a valid unpacked BCD result is obtained. The instruction
converts the BCD value in registers AH (most significant digit) and AL (least signifi-
cant digit) into a binary value and stores the result in register AL. When the value in
AL is divided by an unpacked BCD value, the quotient and remainder will be automat-
ically encoded in unpacked BCD format.

7-14 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode

Decimal arithmetic instructions are not supported in 64-bit mode, They are either
invalid or not encodable.

7.3.5 Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard
Boolean operations for which they are named. The AND, OR, and XOR instructions
require two operands; the NOT instruction operates on a single operand.

7.3.6 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. For the
purpose of this discussion, these instructions are further divided subordinate
subgroups of instructions that:

® Shift bits
® Double-shift bits (move them between operands)
® Rotate bits

7.3.6.1 Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right),
SHR (shift logical right) instructions perform an arithmetic or logical shift of the bits
in a byte, word, or doubleword.

The SAL and SHL instructions perform the same operation (see Figure 7-6). They
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are
cleared. The CF flag is loaded with the last bit shifted out of the operand.

Vol.1 7-15

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Initial State
CE Operand

10001000100010001000100010001111|

After 1-bit SHL/SAL Instruction

00010001000100010001000100011110|¢0

After 10-bit SHL/SAL Instruction

Izl‘—{00100010001000100011110000000000|<70

Figure 7-6. SHL/SAL Instruction Operation

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see
Figure 7-7). As with the SHL/SAL instruction, the empty bit positions are cleared and
the CF flag is loaded with the last bit shifted out of the operand.

Initial State Operand CF

|10001000100010001000100010001111|
After 1-bit SHR Instruction

0—>|01000l00010001000100010001000111|—>

After 10-bit SHR Instruction

0—>»{00000000001000100010001000100010 0

Figure 7-7. SHR Instruction Operation

7-16 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see
Figure 7-8). This instruction differs from the SHR instruction in that it preserves the
sign of the source operand by clearing empty bit positions if the operand is positive or
setting the empty bits if the operand is negative. Again, the CF flag is loaded with the
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of

2 (see “SAL/SAR/SHL/SHR—ShiIft Instructions” in Chapter 4, “Instruction Set Refer-
ence, N-Z,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2B).

Initial State (Positive Operand) Operand CE

01000100010001000100010001000111

After 1-bit SAR Instruction

\—i(fOlOOOlOOOlOOOlOOOlOOO1000100011

Initial State (Negative Operand) CF

‘11000100010001000100010001000111|—>

After 1-bit SAR Instruction

dl100010001000100010001000100011

Figure 7-8. SAR Instruction Operation

7.3.6.2 Double-Shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a speci-

fied number of bits from one operand to another (see Figure 7-9). They are provided
to facilitate operations on unaligned bit strings. They can also be used to implement a
variety of bit string move operations.

Vol.1 7-17

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

SHLD Instruction
31 0

4—{ Destination (Memory or Register) |<—‘

31 0

Source (Register) |

SHRD Instruction

| Source (Register) |—

31 0
| Destination (Memory or Register) |—>

Figure 7-9. SHLD and SHRD Instruction Operations

The SHLD instruction shifts the bits in the destination operand to the left and fills the
empty bit positions (in the destination operand) with bits shifted out of the source
operand. The destination and source operands must be the same length (either
words or doublewords). The shift count can range from O to 31 bits. The result of this
shift operation is stored in the destination operand, and the source operand is not
modified. The CF flag is loaded with the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are
shifted to the right in the destination operand, with the empty bit positions filled with
bits shifted out of the source operand.

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR
(rotate through carry right) instructions rotate the bits in the destination operand out
of one end and back through the other end (see Figure 7-10). Unlike a shift, no bits
are lost during a rotation. The rotate count can range from 0 to 31.

7-18 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

ROL Instruction
31 0

A

CF|= Destination (Memory or Register)

31 ROR Instruction 0

Y
@

Destination (Memory or Register)

Y

31 RCL Instruction 0

4— Destination (Memory or Register)

A

31 RCR Instruction 0

4>| Destination (Memory or Register) }—»

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

The ROL instruction rotates the bits in the operand to the left (toward more signifi-
cant bit locations). The ROR instruction rotates the operand right (toward less signif-
icant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag.
This instruction treats the CF flag as a one-bit extension on the upper end of the
operand. Each bit that exits from the most significant bit location of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the least signif-
icant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit
rotated out of the operand, even if the instruction does not use the CF flag as an
extension of the operand. The value of this flag can then be tested by a conditional
jump instruction (JC or JNC).

Vol.1 7-19

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.7 Bit and Byte Instructions

These instructions operate on bit or byte strings. For the purpose of this discussion,
they are further divided subordinate subgroups that:

® Test and modify a single bit

® Scan a bit string

® Set a byte given conditions

® Test operands and report results

7.3.7.1 Bit Test and Modify Instructions

The bit test and modify instructions (see Table 7-3) operate on a single bit, which can
be in an operand. The location of the bit is specified as an offset from the least signif-
icant bit of the operand. When the processor identifies the bit to be tested and modi-
fied, it first loads the CF flag with the current value of the bit. Then it assigns a new
value to the selected bit, as determined by the modify operation for the instruction.

Table 7-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag « Selected Bit No effect

BTS (Bit Test and Set) CF flag « Selected Bit Selected Bit « 1

BTR (Bit Test and Reset) CF flag « Selected Bit Selected Bit < 0

BTC (Bit Test and CF flag « Selected Bit Selected Bit « NOT (Selected Bit)
Complement)

7.3.7.2 Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in
a source operand for a set bit and store the bit index of the first set bit found in a
destination register. The bit index is the offset from the least significant bit (bit 0) in
the bit string to the first set bit. The BSF instruction scans the source operand low-to-
high (from bit O of the source operand toward the most significant bit); the BSR
instruction scans high-to-low (from the most significant bit toward the least signifi-
cant bit).

7.3.7.3 Byte Set on Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to O or
1, depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the
EFLAGS register. The suffix (cc) added to the SET mnemonic determines the condi-
tion being tested for.

For example, the SETO instruction tests for overflow. If the OF flag is set, the desti-
nation byte is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B,

7-20 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

“EFLAGS Condition Codes,” lists the conditions it is possible to test for with this
instruction.

73.74 Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and
PF flags according to the results. The flags can then be tested by the conditional jump
or loop instructions or the SETcc instructions. The TEST instruction differs from the
AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instruc-
tions to direct the flow of program execution. Conditional transfers are taken only for
specified states of the status flags in the EFLAGS register. Unconditional control
transfers are always executed.

For the purpose of this discussion, these instructions are further divided subordinate
subgroups that process:

® Unconditional transfers
® Conditional transfers

® Software interrupts

7.3.8.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another
location (destination address) in the instruction stream. The destination can be
within the same code segment (near transfer) or in a different code segment (far
transfer).

Jump instruction — The JMP (jump) instruction unconditionally transfers program
control to a destination instruction. The transfer is one-way; that is, a return address
is not saved. A destination operand specifies the address (the instruction pointer) of
the destination instruction. The address can be a relative address or an absolute
address.

A relative address is a displacement (offset) with respect to the address in the EIP
register. The destination address (a near pointer) is formed by adding the displace-
ment to the address in the EIP register. The displacement is specified with a signed
integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in
either of the following ways:

® An addressin a general-purpose register — This address is treated as a near
pointer, which is copied into the EIP register. Program execution then continues at
the new address within the current code segment.

Vol.1 7-21

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

® An address specified using the standard addressing modes of the
processor — Here, the address can be a near pointer or a far pointer. If the
address is for a near pointer, the address is translated into an offset and copied
into the EIP register. If the address is for a far pointer, the address is translated
into a segment selector (which is copied into the CS register) and an offset
(which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate,
and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from
procedure) instructions allow a jump from one procedure (or subroutine) to another
and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling proce-
dure) to another procedure (the called procedure). To allow a subsequent return to
the calling procedure, the CALL instruction saves the current contents of the EIP
register on the stack before jumping to the called procedure. The EIP register (prior
to transferring program control) contains the address of the instruction following the
CALL instruction. When this address is pushed on the stack, it is referred to as the
return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the proce-
dure being jumped to) is specified in a CALL instruction the same way as it is in a JMP
instruction (see “Jump instruction” on page 7-21). The address can be specified as a
relative address or an absolute address. If an absolute address is specified, it can be
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being
executed (the called procedure) back to the procedure that called it (the calling
procedure). Transfer of control is accomplished by copying the return instruction
pointer from the stack into the EIP register. Program execution then continues with
the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the
contents of the ESP register as part of the return operation. This operand allows the
stack pointer to be incremented to remove parameters from the stack that were
pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on
the mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it
performs an implicit call to an interrupt-handling procedure. The IRET (return from
interrupt) instruction returns program control from an interrupt handler to the inter-
rupted procedure (that is, the procedure that was executing when the interrupt
occurred). The IRET instruction performs a similar operation to the RET instruction
(see “Call and return instructions” on page 7-22) except that it also restores the
EFLAGS register from the stack. The contents of the EFLAGS register are automati-
cally stored on the stack along with the return instruction pointer when the processor
services an interrupt.

7-22 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.8.2 Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program
control to another instruction in the instruction stream if specified conditions are
met. The conditions for control transfer are specified with a set of condition codes
that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS
register.

Conditional jJump instructions — The Jcc (conditional) jump instructions transfer
program control to a destination instruction if the conditions specified with the condi-
tion code (cc) associated with the instruction are satisfied (see Table 7-4). If the
condition is not satisfied, execution continues with the instruction following the Jcc
instruction. As with the JMP instruction, the transfer is one-way; that is, a return
address is not saved.

Table 7-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description
Unsigned Conditional Jumps
JA/INBE (CForzF)=0 Above/not below or equal
JAE/|NB CF=0 Above or equal/not below
JB/INAE CF=1 Below/not above or equal
JBE/INA (CForzF)=1 Below or equal/not above
JC CF=1 Carry
JE/|Z ZF=1 Equal/zero
JNC CF=0 Not carry
JNE/JNZ ZF=0 Not equal/not zero
JNP/JPO PF=0 Not parity/parity odd
JP/)PE PF=1 Parity/parity even
JCXZ CX=0 Register CX is zero
JECXZ ECX=0 Register ECX is zero
Signed Conditional Jumps
JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less or equal
JGE/JNL (SF xor OF)=0 Greater or equal/not less
JU/INGE (SF xor OF) =1 Less/not greater or equal
JLE/JNG ((SF xor OF) or ZF) =1 Less or equal/not greater
JNO OF=0 Not overflow
JNS SF=0 Not sign (non-negative)
JO OF =1 Overflow
N SF=1 Sign (negative)

Vol.1 7-23

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The destination operand specifies a relative address (a signed offset with respect to
the address in the EIP register) that points to an instruction in the current code
segment. The Jcc instructions do not support far transfers; however, far transfers can
be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being
tested for each instruction. The condition code mnemonics are appended to the letter
“J” to form the mnemonic for a Jcc instruction. The instructions are divided into two
groups: unsigned and signed conditional jumps. These groups correspond to the
results of operations performed on unsigned and signed integers respectively. Those
instructions listed as pairs (for example, JA/JNBE) are alternate names for the same
instruction. Assemblers provide alternate names to make it easier to read program
listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead
of one or more status flags. See “Jump if zero instructions” on page 7-25 for more
information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are
conditional jump instructions that use the value of the ECX register as a count for the
number of times to execute a loop. All the loop instructions decrement the count in
the ECX register each time they are executed and terminate a loop when zero is
reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also accept the ZF
flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register,
if the address-size attribute is 16), then tests the register for the loop-termination
condition. If the count in the ECX register is non-zero, program control is transferred
to the instruction address specified by the destination operand. The destination
operand is a relative address (that is, an offset relative to the contents of the EIP
register), and it generally points to the first instruction in the block of code that is to
be executed in the loop. When the count in the ECX register reaches zero, program
control is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH,
causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are
mnemonics for the same instruction). These instructions operate the same as the
LOOP instruction, except that they also test the ZF flag.

If the count in the ECX register is not zero and the ZF flag is set, program control is

transferred to the destination operand. When the count reaches zero or the ZF flag is
clear, the loop is terminated by transferring program control to the instruction imme-
diately following the LOOPE/LOOPZ instruction.

7-24 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate
the same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if
the ZF flag is set.

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the
location specified in the destination operand if the ECX register contains the value
zero. This instruction can be used in combination with a loop instruction (LOOP,
LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a
loop. As described in “Loop instructions on page 7-24, the loop instructions decre-
ment the contents of the ECX register before testing for zero. If the value in the ECX
register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ
instruction can be inserted at the beginning of the code block for the loop, causing a
jump out the loop if the EAX register count is initially zero. When used with repeated
string scan and compare instructions, the JECXZ instruction can determine whether
the loop terminated because the count reached zero or because the scan or compare
conditions were satisfied.

The JCXZ (Jump if CX is zero) instruction operates the same as the JECXZ instruction
when the 16-bit address-size attribute is used. Here, the CX register is tested for
zero.

7.3.8.3 Control Transfer Instructions in 64-Bit Mode

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP,
and LOOP) is forced to 64 bits. The listed instructions update the 64-bit RIP without
need for a REX operand-size prefix.

Near branches in the following operations are forced to 64-bits (regardless of
operand size prefixes):

® Truncation of the size of the instruction pointer

® Size of a stack pop or push, due to CALL or RET

® Size of a stack-pointer increment or decrement, due to CALL or RET
® Indirect-branch operand size

Note that the displacement field for relative branches is still limited to 32 bits and the
address size for near branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOORP. It
also impacts the address calculation for memory indirect branches. Addresses size is
64 bits by default, although it can be over-ridden to 32 bits (using a prefix).

7.3.8.4 Software Interrupt Instructions

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect
value out of range) instructions allow a program to explicitly raise a specified inter-
rupt or exception, which in turn causes the handler routine for the interrupt or excep-
tion to be called.

Vol.1 7-25

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The INT n instruction can raise any of the processor’s interrupts or exceptions by
encoding the vector number or the interrupt or exception in the instruction. This
instruction can be used to support software generated interrupts or to test the oper-
ation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure. The IRET instruction performs a similar
operation to the RET instruction.

The CALL (call procedure) and RET (return from procedure) instructions allow a jump
from one procedure to another and a subsequent return to the calling procedure.
EFLAGS register contents are automatically stored on the stack along with the return
instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is
clear, execution continues without raising the exception. This instruction allows soft-
ware to access the overflow exception handler explicitly to check for overflow condi-
tions.

The BOUND instruction compares a signed value against upper and lower bounds,

and raises the “BOUND range exceeded” exception if the value is less than the lower
bound or greater than the upper bound. This instruction is useful for operations such
as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5 Software Interrupt Instructions in 64-bit Mode and Compatibility
Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the
stack. SS:RSP pops unconditionally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load
string), and STOS (Store string) instructions permit large data structures, such as
alphanumeric character strings, to be moved and examined in memory. These
instructions operate on individual elements in a string, which can be a byte, word, or
doubleword. The string elements to be operated on are identified with the ESI
(source string element) and EDI (destination string element) registers. Both of these
registers contain absolute addresses (offsets into a segment) that point to a string
element.

By default, the ESI register addresses the segment identified with the DS segment
register. A segment-override prefix allows the ESI register to be associated with the
CS, SS, ES, FS, or GS segment register. The EDI register addresses the segment
identified with the ES segment register; no segment override is allowed for the EDI
register. The use of two different segment registers in the string instructions permits
operations to be performed on strings located in different segments. Or by associ-
ating the ESI register with the ES segment register, both the source and destination

7-26 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

strings can be located in the same segment. (This latter condition can also be
achieved by loading the DS and ES segment registers with the same segment
selector and allowing the ESI register to default to the DS register.)

The MOVS instruction moves the string element addressed by the ESI register to the
location addressed by the EDI register. The assembler recognizes three “short forms”
of this instruction, which specify the size of the string to be moved: MOVSB (move
byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string
element and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS
register according to the results. Neither string element is written back to memory.
The assembler recognizes three “short forms” of the CMPS instruction: CMPSB
(compare byte strings), CMPSW (compare word strings), and CMPSD (compare
doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of
the EAX, AX, or AL register (depending on operand length) and updates the status
flags according to the results. The string element and register contents are not modi-
fied. The following “short forms” of the SCAS instruction specify the operand length:
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword
string).

The LODS instruction loads the source string element identified by the ESI register
into the EAX register (for a doubleword string), the AX register (for a word string), or
the AL register (for a byte string). The “short forms” for this instruction are LODSB
(load byte string), LODSW (load word string), and LODSD (load doubleword string).
This instruction is usually used in a loop, where other instructions process each
element of the string after they are loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword
string), AX (word string), or AL (byte string) register into the memory location iden-
tified with the EDI register. The “short forms” for this instruction are STOSB (store
byte string), STOSW (store word string), and STOSD (store doubleword string). This
instruction is also normally used in a loop. Here a string is commonly loaded into
the register with a LODS instruction, operated on by other instructions, and then
stored again in memory with a STOS instruction.

The 1/0 instructions (see Section 7.3.11, “1/0 Instructions”) also perform operations
on strings in memory.

7.3.9.1 Repeating String Operations

The string instructions described in Section 7.3.9, “String Operations”, perform one
iteration of a string operation. To operate strings longer than a doubleword, the
string instructions can be combined with a repeat prefix (REP) to create a repeating
instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incre-
mented or decremented after each iteration of an instruction to point to the next
element (byte, word, or doubleword) in the string. String operations can thus begin

Vol.1 7-27

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

at higher addresses and work toward lower ones, or they can begin at lower
addresses and work toward higher ones. The DF flag in the EFLAGS register controls
whether the registers are incremented (DF = 0) or decremented (DF = 1). The STD
and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX
register to cause a string instruction to repeat:

® REP — Repeat while the ECX register not zero.
® REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
® REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied. The REPE/REPZ and
REPNE/REPNZ prefixes are used only with the CMPS and SCAS instructions. Also,
note that a REP STOS instruction is the fastest way to initialize a large block of
memory.

7.3.10 String Operations in 64-Bit Mode

The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string),
LODS (Load string), and STOS (Store string) instructions in 64-bit mode is similar to
their behavior in non-64-bit modes, with the following differences:

® The source operand is specified by RSI or DS:ESI, depending on the address size
attribute of the operation.

® The destination operand is specified by RDI or DS:EDI, depending on the address
size attribute of the operation.

® Operation on 64-bit data is supported by using the REX.W prefix.

7.3.10.1 Repeating String Operations in 64-bit Mode

When using REP prefixes for string operations in 64-bit mode, the repeat count is
specified by RCX or ECX (depending on the address size attribute of the operation).
The default address size is 64 bits.

7.3.11 I1/0 Instructions

The IN (input from port to register), INS (input from port to string), OUT (output
from register to port), and OUTS (output string to port) instructions move data
between the processor’s 1/0 ports and either a register or memory.

The register 1/0 instructions (IN and OUT) move data between an 1/0 port and the
EAX register (32-bit 1/0), the AX register (16-bit 1/0), or the AL (8-bit 1/0) register.
The 1/0 port being read or written to is specified with an immediate operand or an
address in the DX register.

7-28 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The block 1/0 instructions (INS and OUTS) instructions move blocks of data (strings)
between an 1/0 port and memory. These instructions operate similar to the string
instructions (see Section 7.3.9, “String Operations”). The ESI and EDI registers are
used to specify string elements in memory and the repeat prefixes (REP) are used to
repeat the instructions to implement block moves. The assembler recognizes the
following alternate mnemonics for these instructions: INSB (input byte), INSW (input
word), and INSD (input doubleword), and OUTB (output byte), OUTW (output word),
and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the 1/0
port to be read or written to.

7.3.12 I/0 Instructions in 64-Bit Mode

For 1/0 instructions to and from memory, the differences in 64-bit mode are:

® The source operand is specified by RSl or DS:ESI, depending on the address size
attribute of the operation.

® The destination operand is specified by RDI or DS:EDI, depending on the address
size attribute of the operation.

® Operation on 64-bit data is not encodable and REX prefixes are silently ignored.

7.3.13 Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure
calls in block-structured languages, such as C and Pascal. These instructions and the
call and return mechanism that they support are described in detail in Section 6.5,
“Procedure Calls for Block-Structured Languages”.

7.3.14 Flag Control (EFLAG) Instructions

The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS
register to be read or modified. For the purpose of this discussion, these instructions
are further divided subordinate subgroups of instructions that manipulate:

® Carry and direction flags
® The EFLAGS register
® Interrupt flags

7.3.14.1 Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag)
instructions allow the CF flags in the EFLAGS register to be modified directly. They
are typically used to initialize the CF flag to a known state before an instruction that

Vol.1 7-29

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

uses the flag in an operation is executed. They are also used in conjunction with the
rotate-with-carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF
flag in the EFLAGS register to be modified directly. The DF flag determines the direc-
tion in which index registers ESI and EDI are stepped when executing string
processing instructions. If the DF flag is clear, the index registers are incremented
after each iteration of a string instruction; if the DF flag is set, the registers are
decremented.

7.3.14.2 EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be
copied to a register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on
five of the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies
the status flags to bits 7, 6, 4, 2, and O of the AH register, respectively. The contents
of the remaining bits in the register (bits 5, 3, and 1) are undefined, and the contents
of the EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4,
2, and O from the AH register into the SF, ZF, AF, PF, and CF flags, respectively in the
EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD
(pop flags double) instructions copy the flags in the EFLAGS register to and from the
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the
stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register
onto the stack (with the RF and VM flags read as clear).

PUSHFD/POPFD

A

PUSHF/POPF

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

I

|\|’\|’AVR N| © |ojp|1|T[s|z|,|Alo|P]1]C

D cim[F|®[T] P |F|F|F[F|F|F[°|F[C|F|L|F
P|F L

Figure 7-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits
11, 10, 8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this
instruction. If the current privilege level (CPL) of the current code segment is O (most
privileged), the IOPL bits (bits 13 and 12) also are affected. If the 1/0 privilege level
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is
affected.

7-30 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction
can change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits
affected by a POPF instruction. The restrictions for changing the IOPL bits and the IF
flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.14.3 Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the inter-
rupt IF flag in the EFLAGS register to be modified directly. The IF flag controls the
servicing of hardware-generated interrupts (those received at the processor’s INTR
pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is
clear, hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to
execute these instructions.

7.3.15 Flag Control (RFLAG) Instructions in 64-Bit Mode

In 64-bit mode, the LAHF and SAHF instructions are supported if
CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD
always pushes 64-bit RFLAGS onto the stack (with the RF and VM flags read as clear).
POPFD always pops a 64-bit value from the top of the stack and loads the lower 32
bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.16 Segment Register Instructions

The processor provides a variety of instructions that address the segment registers
of the processor directly. These instructions are only used when an operating system
or executive is using the segmented or the real-address mode memory model.

For the purpose of this discussion, these instructions are divided subordinate
subgroups of instructions that allow:

® Segment-register load and store
® Far control transfers

® Software interrupt calls

® Handling of far pointers

7.3.16.1 Segment-Register Load and Store Instructions

The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement
Instructions”) and the PUSH and POP instructions (introduced in Section 7.3.1.4,
“Stack Manipulation Instructions”) can transfer 16-bit segment selectors to and from

Vol.1 7-31

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or
from a segment register and a general-purpose register or memory. Transfers
between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far
control-transfer versions of the JMP, CALL, and RET instructions (see Section
7.3.16.2, “Far Control Transfer Instructions”) affect the CS register directly.

7.3.16.2 Far Control Transfer Instructions

The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”)
both accept a far pointer as a source operand to transfer program control to a
segment other than the segment currently being pointed to by the CS register. When
a far call is made with the CALL instruction, the current values of the EIP and CS
registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-22) can be used to
execute a far return. Here, program control is transferred from a code segment that
contains a called procedure back to the code segment that contained the calling
procedure. The RET instruction restores the values of the CS and EIP registers for the
calling procedure from the stack.

7.3.16.3 Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and IRET (see Section
7.3.8.4, “Software Interrupt Instructions”) can also call and return from interrupt
and exception handler procedures that are located in a code segment other than the
current code segment. With these instructions, however, the switching of code
segments is handled transparently from the application program.

7.3.16.4 Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far
pointer using ES), LFS (load far pointer using FS), LGS (load far pointer using GS),
and LSS (load far pointer using SS) load a far pointer from memory into a segment
register and a general-purpose general register. The segment selector part of the far
pointer is loaded into the selected segment register and the offset is loaded into the
selected general-purpose register.

7.3.17 Miscellaneous Instructions

The following instructions perform operations that are of interest to applications
programmers. For the purpose of this discussion, these instructions are further
divided into subordinate subgroups of instructions that provide for:

® Address computations
® Table lookup

7-32 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

® Processor identification
® NOP and undefined instruction entry

7.3.17.1 Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in
memory (offset within a segment) of a source operand and places it in a general-
purpose register. This instruction can interpret any of the processor’s addressing
modes and can perform any indexing or scaling that may be needed. It is especially
useful for initializing the ESI or EDI registers before the execution of string instruc-
tions or for initializing the EBX register before an XLAT instruction.

7.3.17.2 Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL
register with a byte read from a translation table in memory. The initial value in the
AL register is interpreted as an unsigned index into the translation table. This index
is added to the contents of the EBX register (which contains the base address of the
table) to calculate the address of the table entry. These instructions are used for
applications such as converting character codes from one alphabet into another (for
example, an ASCII code could be used to look up its EBCDIC equivalent in a table).

7.3.17.3 Processor Identification Instruction

The CPUID (processor identification) instruction returns information about the
processor on which the instruction is executed.

7.3.17.4 No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next
instruction, but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel
reserves the opcode for this instruction for this function. The instruction is provided
to allow software to test an invalid opcode exception handler.

Vol.1 7-33

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7-34 Vol.1

CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point
processing capabilities for use in graphics processing, scientific, engineering, and
business applications. It supports the floating-point, integer, and packed BCD integer
data types and the floating-point processing algorithms and exception handling
architecture defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It
also provides exception handling information that is specific to the x87 FPU. Refer to
the following chapters or sections of chapters for additional information about x87
FPU instructions and floating-point operations:

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B, provide detailed descriptions of x87 FPU instructions.

® Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,”
and Section 4.7, “BCD and Packed BCD Integers,” describe the floating-point,
integer, and BCD data types.

® Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-
Point Exception Conditions,” and Section 4.9.2, “Floating-Point Exception
Priority,” give an overview of the floating-point exceptions that the x87 FPU can
detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the 1A-32 architec-
ture (see Figure 8-1). This execution environment consists of eight data registers
(called the x87 FPU data registers) and the following special-purpose registers:

® Status register

® Control register

® Tag word register

® Last instruction pointer register

® Last data (operand) pointer register

® Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream.
The state of the x87 FPU is independent from the state of the basic execution envi-
ronment and from the state of SSE/SSE2/SSE3 extensions.

However, the x87 FPU and Intel MMX technology share state because the MMX regis-
ters are aliased to the x87 FPU data registers. Therefore, when writing code that uses

Vol.1 8-1

PROGRAMMING WITH THE X87 FPU

x87 FPU and MMX instructions, the programmer must explicitly manage the x87 FPU
and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode

In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in
protected mode. Memory operands are specified using the ModR/M, SIB encoding
that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers.
Values are stored in these registers in the double extended-precision floating-point
format shown in Figure 4-3. When floating-point, integer, or packed BCD integer
values are loaded from memory into any of the x87 FPU data registers, the values are
automatically converted into double extended-precision floating-point format (if they
are not already in that format). When computation results are subsequently trans-
ferred back into memory from any of the x87 FPU registers, the results can be left in
the double extended-precision floating-point format or converted back into a shorter
floating-point format, an integer format, or the packed BCD integer format. (See
Section 8.2, “x87 FPU Data Types,” for a description of the data types operated on by
the x87 FPU.)

8-2 Vol. 1

PROGRAMMING WITH THE X87 FPU

Data Registers

Sign\J 978 64 63 0
R7 | | Exponent Significand
R6
R5
R4
R3
R2
R1
RO
15 0 47 0
gé’é}tsrgr Last Instruction Pointer
Status .
Register Last Data (Operand) Pointer
Tag 10 0
Register opcode

Figure 8-1. x87 FPU Execution Environment

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see
Figure 8-2). All addressing of the data registers is relative to the register on the top of
the stack. The register number of the current top-of-stack register is stored in the
TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by
one and load a value into the new top-of-stack register, and store operations store
the value from the current TOP register in memory and then increment TOP by one.
(For the x87 FPU, a load operation is equivalent to a push and a store operation is
equivalent to a pop.) Note that load and store operations are also available that do
not push and pop the stack.

Vol.1 8-3

PROGRAMMING WITH THE X87 FPU

FPU Data Register Stack

7
6

G s ST@)
4 ST(1) Top

1 3 ST(0)

2
1
0

Figure 8-2. x87 FPU Data Register Stack

If a load operation is performed when TOP is at O, register wraparound occurs and
the new value of TOP is set to 7. The floating-point stack-overflow exception indicates
when wraparound might cause an unsaved value to be overwritten (see Section
8.5.1.1, “Stack Overflow or Underflow Exception (#1S)”).

Many floating-point instructions have several addressing modes that permit the
programmer to implicitly operate on the top of the stack, or to explicitly operate on
specific registers relative to the TOP. Assemblers support these register addressing
modes, using the expression ST(0), or simply ST, to represent the current stack top
and ST(i) to specify the ith register from TOP in the stack (0 <i < 7). For example, if
TOP contains 011B (register 3 is the top of the stack), the following instruction would
add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and
instructions are typically used to perform a series of computations. Here, a two-
dimensional dot product is computed, as follows:

1. The first instruction (FLD valuel) decrements the stack register pointer (TOP)
and loads the value 5.6 from memory into ST(0). The result of this operation is
shown in snap-shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from
memory and stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

The fourth instruction multiplies the value in ST(0) by the value 10.3 from
memory and stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in
ST(0), shown in snap-shot (d).

8-4 Vol. 1

PROGRAMMING WITH THE X87 FPU

Computation
Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:

FLD valuel ; (a) valuel = 5.6
FMUL value2 ; (b) value2 = 2.4
FLD value3 ; value3 = 3.8
FMUL value4 ; (c)value4 = 10.3

FADD ST (1) ;(d)

@) (b) (©) (d)
R7 R7 R7 R7
R6 R6 R6 R6
R5 R5 R5 R5
R4 5.6 ST(0) R4| 1344 |ST(O) R4| 1344 |[ST(1) R4| 1344 |ST
R3 R3 R3 39.14 ST(0) R3 52.58 ST
R2 R2 R2 R2
R1 R1 R1 R1
RO RO RO RO

Figure 8-3. Example x87 FPU Dot Product Computation

The style of programming demonstrated in this example is supported by the floating-
point instruction set. In cases where the stack structure causes computation bottle-
necks, the FXCH (exchange x87 FPU register contents) instruction can be used to
streamline a computation.

8.1.2.1 Parameter Passing With the x87 FPU Register Stack

Like the general-purpose registers, the contents of the x87 FPU data registers are
unaffected by procedure calls, or in other words, the values are maintained across
procedure boundaries. A calling procedure can thus use the x87 FPU data registers
(as well as the procedure stack) for passing parameter between procedures. The
called procedure can reference parameters passed through the register stack using
the current stack register pointer (TOP) and the ST(0) and ST(i) nomenclature. It is
also common practice for a called procedure to leave a return value or result in
register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences,
the programmer is responsible for maintaining the integrity of parameters being
passed in the x87 FPU data registers. If an MMX instruction is executed before the
parameters in the x87 FPU data registers have been passed to another procedure,
the parameters may be lost (see Section 9.5, “Compatibility with x87 FPU Architec-
ture”).

Vol.1 8-5

PROGRAMMING WITH THE X87 FPU

8.1.3 x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the
x87 FPU. The flags in the x87 FPU status register include the FPU busy flag, top-of-

stack (TOP) pointer, condition code flags, error summary status flag, stack fault flag,
and exception flags. The x87 FPU sets the flags in this register to show the results of

operations.
FPU Busy
’7 Top of Stack Pointer

151413 11109 8 7 6 5 43210

C
3

C|C|C|E|S|P|U|O|Z|D|!I
2|1|0|S|F|E|E|E|E|E|E

B TOP

Condition
Code
Error Summary Status
Stack Fault
Exception Flags
Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

Figure 8-4. x87 FPU Status Word

The contents of the x87 FPU status register (referred to as the x87 FPU status word)
can be stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENYV,
FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX register of
the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1 Top of Stack (TOP) Pointer

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU
register stack is contained in bits 11 through 13 of the x87 FPU status word. This
pointer, which is commonly referred to as TOP (for top-of-stack), is a binary value
from O to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information
about the TOP pointer.

8.1.3.2 Condition Code Flags

The four condition code flags (CO through C3) indicate the results of floating-point
comparison and arithmetic operations. Table 8-1 summarizes the manner in which
the floating-point instructions set the condition code flags. These condition code bits

8-6 Vol. 1

PROGRAMMING WITH THE X87 FPU

are used principally for conditional branching and for storage of information used in
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condi-
tion Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions.
When both the IE and SF flags in the x87 FPU status word are set, indicating a stack
overflow or underflow exception (#1S), the C1 flag distinguishes between overflow
(C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indi-
cating an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the
instruction was upward. The FXAM instruction sets C1 to the sign of the value being
examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate
an incomplete reduction (or partial remainder). When a successful reduction has
been completed, the CO, C3, and C1 condition code flags are set to the three least-
significant bits of the quotient (Q2, Q1, and QO, respectively). See “FPREM1—Partial
Remainder” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2A, for more information
on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate
that the source operand is beyond the allowable range of +253 and clear the C2 flag
if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do
not rely on any specific value in these flags.

8.1.3.3 x87 FPU Floating-Point Exception Flags

The six x87 FPU floating-point exception flags (bits O through 5) of the x87 FPU
status word indicate that one or more floating-point exceptions have been detected
since the bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE,
and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception
Handling.” Each of the exception flags can be masked by an exception mask bit in the
x87 FPU control word (see Section 8.1.5, “x87 FPU Control Word”). The exception
summary status flag (ES, bit 7) is set when any of the unmasked exception flags are
set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of
the techniques described in Section 8.7, “Handling x87 FPU Exceptions in Software.”
(Note that if an exception flag is masked, the x87 FPU will still set the appropriate
flag if the associated exception occurs, but it will not set the ES flag.)

The exception flags are “sticky” bits (once set, they remain set until explicitly
cleared). They can be cleared by executing the FCLEX/FNCLEX (clear exceptions)
instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE
instructions, or by overwriting the flags with an FRSTOR or FLDENYV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of
the ES flag.

Vol.1 8-7

PROGRAMMING WITH THE X87 FPU

Table 8-1. Condition Code Interpretation

Instruction co | 3 2 c1
FCOM, FCOMP, FCOMPP, Result of Comparison Operands Oor #IS
FICOM, FICOMP, FTST, are not
FUCOM, FUCOMP, FUCOMPP Comparable
FCOMI, FCOMIP, FUCOMLI, Undefined. (These instructions set the #IS
FUCOMIP status flags in the EFLAGS register.)
FXAM Operand class Sign
FPREM, FPREM1 Q2 Q1 0 = reduction QO or #IS
complete
1 = reduction
incomplete
F2XM1, FADD, FADDP, Undefined Roundup or #IS
FBSTP, FCMOVCcc, FIADD,
FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, FIDIVR, FIMUL, FIST,
FISTP, FISUB, FISUBR,FMUL,
FMULP, FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB,
FSUBP, FSUBR,
FSUBRP,FSQRT, FYLZX,
FYL2XP1
FCOS, FSIN, FSINCOS, Undefined 0 = source Roundup or #IS
FPTAN operand (Undefined if
withinrange |C2=1)
1 = source
operand out
of range
FABS, FBLD, FCHS, Undefined 0 or #IS
FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. prec.), FXCH, FXTRACT
FLDENV, FRSTOR Each bit loaded from memory
FFREE, FLDCW,
FCLEX/FNCLEX, FNOP, Undefined
FSTCW/FNSTCW,
FSTENV/FNSTENV,
FSTSW/FNSTSW,
FINIT/ENINIT, 0 0 0 0
FSAVE/FNSAVE

8-8 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.1.3.4 Stack Fault Flag

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or
stack underflow has occurred with data in the x87 FPU data register stack. The x87
FPU explicitly sets the SF flag when it detects a stack overflow or underflow condi-
tion, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition.

When this flag is set, the condition code flag C1 indicates the nature of the fault:

overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning
that after it is set, the processor does not clear it until it is explicitly instructed to do
so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction).

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for
branching and performing conditional moves according to comparisons of two
floating-point values. These mechanism are referred to here as the “old mechanism”
and the “new mechanism.”

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in
P6 family processors. This mechanism uses the floating-point compare instructions
(FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two
floating-point values and set the condition code flags (CO through C3) according to
the results. The contents of the condition code flags are then copied into the status
flags of the EFLAGS register using a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional
jumps or conditional moves can be performed based on the new settings of the
status flags in the EFLAGS register.

Vol.1 8-9

PROGRAMMING WITH THE X87 FPU

15 x87 FPU Status Word 0
Condition Status c clele
Code Flag 3 51116
Cco CF l
C1 (none))
c2 PE FSTSW AX Instruction
C3 ZF 15 AX Register 0
c clclc
3 2|10
SAHF Instruction
31 EFLAGS Register 7 0
z Pl,|C
F FILIF

Figure 8-5. Moving the Condition Codes to the EFLAGS Register

The new mechanism is available beginning with the P6 family processors. Using this
mechanism, the new floating-point compare and set EFLAGS instructions (FCOMI,
FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF,
PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the
three instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow
conditional moves of floating-point values (values in the x87 FPU data registers)
based on the setting of the status flags (ZF, PF, and CF) in the EFLAGS register. These
instructions eliminate the need for an IF statement to perform conditional moves of
floating