intel

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 2A:
Instruction Set Reference, A-L

NOTE: The Intef® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 253666-086US
December 2024

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” nhames and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 OVERVIEW OF VOLUME 2A, 2B, 2C, AND 2D: INSTRUCTION SET REFERENCEvviti it 1-1
CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE.cvvvvnes 2-1
211 ST UCTION PrE eSS, et e e e 2-1
2.1.2 (8] 57017 2-3
213 MOAR/M ANd S B By S . . ittt ittt e e e e e 2-3
214 Displacement and IMmediate By s,t e e e 2-3
2.1.5 Addressing-Mode Encoding of MOAR/M and SIB BYTES. ovitii e 2-4
2.2 L 1] o 105 2-7
2.2.1 RE X P XS . ettt e e 2-7
2.2.1.1 3ol T 3T 2-8
22.1.2 More ON REX PrefiX FIelaS. . ..ottt e e e e e 2-8
2213 DY 0] =TT 31T P 2-11
2214 Direct MemOory-OffSet MOV e e e e 2-11
2215 L0000 = 2-11
2.2.1.6 RIP-REIGTIVE AQArESSING. . o vttt vttt et e et e e e e 2-11
2.2.1.7 Default 64-Bit Operand Size.ouit i e 2-12
2.2.2 Additional Encodings for Control and Debug Registerst et 2-12
2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX) . ettt ettt ettt e eenes 2-13
2.3.1 LISy om0 3= 1 P 2-13
23.2 VEX aNd the LOCK PrafiX. . ..ottt ittt e e et e ettt e e e ettt ettt 2-13
233 VEX and the 66H, F2H, and F3H PrefiXes ... v i e e 2-13
234 VEX aNd the REX PrafiX. o vttt e e e e e e e e e 2-13
235 TRE VB X Pr i L vttt e e e e 2-14
2.3.5.1 VEX BYTE 0, DTS 7:0] © vttt ettt e e e e e e e e 2-15
235.2 EX BYTE T, DIt [7] - R ettt ittt e e e e e e e e e 2-15
2353 3-Dyte VEX DY T, DIt B - X ottt e e e e 2-16
2354 3-byte VEX DYte T, DIt S - B ettt e e 2-16
2355 3-byte VEX DY 2, DIt 7] - W oottt e e e e 2-16
2356 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv' the Source or Dest Register Specifier. 2-16
236 Instruction Operand Encoding and VEX.WWVV, MOAR/Mot e 2-17
2.36.1 3-byte VEX byte 1, bits[4:0] - "M-MMmm”. e 2-18
23.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, DIt [2]- L ..o o 2-18
236.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “PP" .. vvvvvii e 2-19
23.7 THE OPCOOE By e .ttt e e e 2-19
238 The ModR/M, SIB, and Displacement By s ... i ittt i i e e e e s 2-19
239 The Third Source Operand (IMMediate BYte)vuit it e 2-19
23.10 Intel® AVX Instructions and the Upper 128-bits of YMM registers.ovviriiiiii i 2-19
2.3.10.1 Vector Length Transition and Programming Considerationsttt it i e 2-19
2.3.11 Intel® AVX INSTrUCHiON LENGth . oo e 2-20
23.12 Vector SIB (VSIB) Memory AdAreSSingv. ettt et et ettt 2-20
2.3.12.1 64-bit Mode VSIB Memory AdAreSSing . ..o ettt ittt ettt e e e 2-21
2.4 INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX) . . ot ve ettt et ettt aenes 2-21
2.5 INTEL® AVX AND INTEL® SSE INSTRUCTION EXCEPTION CLASSIFICATION ..o vttt e aas 2-22
2.5.1 Exceptions Type 1 (Aligned MemOry RETEMENCE). ... v .ttt ettt et e 2-26
252 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned).ovriiiiiiiiiiii e 2-27
253 Exceptions Type 3 (<16 Byte Memory ArQUMENT)t r ittt et et ettt eens 2-28
254 Exceptions Type 4 (>=16 Byte Mem Arg, No Alignment, No Floating-point Exceptions)covvvviiivinnnn. 2-29
255 Exceptions Type 5 (<16 Byte Mem Arg and NO FP EXCEPLIONS) . ..o vt v vttt 2-30
256 Exceptions Type 6 (VEX-Encoded Instructions without Legacy SSE Analogues)............ovvviiiiiiiiinennen. 2-31
257 Exceptions Type 7 (No FP EXceptions, NO MemOry ArG) . .. cvvuin ittt et eens 2-32
258 Exceptions Type 8 (AVX and NO MemOory ArQUIMENT). . .o vttt ittt e ettt et et e et et ettt e e e e 2-32
259 Exceptions Type 11 (VEX-only, Mem Arg, No AC, Floating-point EXCepLions)c.c.oovviiiiiiiiiiiiiiienn, 2-33
2.5.10 Exceptions Type 12 (VEX-only, VSIB Mem Arg, No AC, No Floating-point Exceptions)ccoovviiiiinnnn.. 2-34
2.6 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS . . . ettt ettt et et e e e et e et eanes 2-34
2.6.1 Exceptions Type 13 (VEX-Encoded GPR INSTIUCLIONS) v v vttt 2-35

Vol. 2A i

CONTENTS

26.2 EXCEPTIONS TYPE T4 (CMPCCXADD) . v vttt et e et et et e e et e e et et et et e et e en s 2-35
2.7 INTEL® AVX-5T2 ENCODING . ..ottt et e e ettt et et e e et et e e e e e e e e aas 2-36
2.7.1 INSTrUCtion FOrMAat @nd EVEXot e 2-36
27.2 Register Specifier ENcoding and EVEX i i i e 2-39
273 OpmMask ReGiSter ENCOAINGo v vttt ettt e e e e e e et et 2-40
274 MasKiNg SUP POt N BV E X oot i e e e e e e e 2-40
275 Compressed Displacement (disp8*N) SUPPOrt i EVEX ... iuiitiit e e 2-41
2.76 EVEX Encoding of Broadcast/Rounding/SAE SUPPOTT. v ettt 2-42
2.7.7 Embedded Broadcast SUPPOrt i BV EX .. .o i i e e e 2-42
278 Static RoUNding SUP PO N BV EX ... i e e 2-42
279 S SUPPOM T N BV E X, ittt e s e e e e e e 2-42
2.7.10 Vector Length Orthogonalityo i i e et s 2-42
2.7.11 HUD BQUATIONS TOT BV X ..ottt ittt ettt e et et e e e e e 2-43
27.11.1 State DEPendent HUDttt 2-43
27.11.2 Opcode INdependent HUDottt i e e e e e 2-43
27113 Opcode Dependent HUDiii it i e e e s 2-44
27.12 DEVICE NOT AVaIIaDIE . . .t e 2-45
2713 Ao 1= Ll) {1 ot o 2-45
2.8 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS. . .\ttt ittt et iaeeans 2-45
2.8.1 Exceptions Type E1 and ETNF of EVEX-Encoded INSTrUCtioNSvvvuiiii e 2-49
28.2 Exceptions Type €2 of EVEX-Encoded INStrUCTIONSo it et aenees 2-51
283 Exceptions Type €3 and E3NF of EVEX-Encoded INSTrUCtionsiiiiiii i e 2-52
284 Exceptions Type €4 and E4NF of EVEX-Encoded INSTrUCtioNSvvvuiiii it e 2-54
285 EXCepPtions Type ES and BN . .. i i i i i e e 2-56
286 EXCEPtioNs TYPE BB and EONF ittt ettt e e e 2-58
287 EXCEPTIONS TYPE E7NM Lottt e e e e e e e 2-60
288 EXCEpPtions TyPe EG and EON i i i i ittt e e e 2-61
289 Exceptions Type E10 and ETONF ittt ettt et et et 2-63
28.10 Exceptions Type E11 (EVEX-only, Mem Arg, No AC, Floating-point EXCEPtioNs)cvvviviiiiiiii i, 2-65
28.11 Exceptions Type €12 and E12NP (VSIB Mem Arg, No AC, No Floating-point Exceptions).cvvvvivnn... 2-66
2.9 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS, TYPEK20 AND TYPEKZ2T ... vvvv i 2-68
291 EXCEPTIONS TYPE K20 . vttt ittt et e e e e e e e e e 2-68
29.2 EXCEPTIONS TP K2 T ittt i i i e it e et it e e e 2-69
2.10 INTEL® AMX INSTRUCTION EXCEPTION CLASSES ...ttt ittt ettt 2-70
CHAPTER 3
INSTRUCTION SET REFERENCE, A-L
3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES ottt e e 3-1
3.1.1 LISy (T T I o 1= 3-1
3.1.11 Opcode Column in the Instruction Summary Table (Instructions without VEX Prefix)............coovvvinn. 3-2
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)........ccoovvviiiiiiiinn. 3-3
3.1.13 Instruction Column in the Opcode SUMMAry Tableovouii e 3-5
3.1.14 Operand Encoding Column in the Instruction Summary Table. e 3-8
3.1.15 64/32-bit Mode Column in the Instruction Summary Table ... e 3-8
3.1.1.6 CPUID Support Column in the Instruction Summary Tableo.vuirii e 3-9
3.1.1.7 Description Column in the Instruction Summary Table ... e 3-9
3.1.1.8 DS D ION SECTION . . .ttt s 3-9
3.1.1.9 (0] 07T 10 Y =Tt 1 o 3-9
3.1.1.10 Intel® C/C++ Compiler INtrinsics EQUIVAlENTS SECHION.ttt e e e e e it eaas 3-12
3.1.1.11 Flags AffECted SBOTION. ..ottt et e e ettt e e e e 3-14
3.1.1.12 FPU Flags Affected SBCTION . vttt e e s e e e e e e 3-15
3.1.1.13 Protected Mode EXCEPtiONS SECtIONttt i it i et e e e 3-15
3.1.1.14 Real-Address Mode EXCEPTIONS SECTION ...\ .ttt ettt e 3-16
3.1.1.15 Virtual-8086 Mode EXCEPTIONS SEBCTION ..\ttt ittt e e 3-16
3.1.1.16 Floating-Point EXCEPTIONS SECHION . ..\ttt i e i e e e e 3-16
3.1.1.17 SIMD Floating-Point EXCEPTIONS SECHION\ 't i e i e e s 3-16
3.1.1.18 Compatibility Mode EXCEPTIONS SECHION ...\t \ ittt e e e 3-17
3.1.1.19 64-Bit Mode EXCEPTIONS SECHIONttt e e e e e 3-17
3.2 INTEL® AMX CONSIDERATIONS ...ttt ettt ettt et et e e et e e e e e et aanes 3-17
3.2.1 M P MBI At 0N ParamIE O S . . ittt e e e e e e e 3-17
3.2.2 (=] =] N T oo 3-17
33 INSTRUCTIONS (AL« v ettt ettt e et e et et e e st e et e e et et e e et e e et e n e e e 3-18
AAA—ASCIL AdIUST ATter AddiTion.t e e e e e s 3-19
AAD—ASCI Adjust AX Before DiVISION v v ettt ettt 3-21

iv. Vol. 2A

CONTENTS

PAGE
AAM—ASCIL Adjust AX ATEEr MU DIY .o e ettt 3-23
AAS—ASCI Adjust AL After SUDTTACTION ..\ttt et e e e 3-25
AD A WIth CaITY v ettt ettt e et et et e et e e e e e e e 3-27
ADCX—Unsigned Integer Addition of Two Operands With Carry FIagcovvieiiii s 3-30
A D A, . .ottt e e e e 3-32
ADDPD—Add Packed Double Precision FIoating-Point ValUes.o.vviii it i i 3-34
ADDPS—Add Packed Single Precision FIoating-Point Values.oviii i i it 3-37
ADDSD—Add Scalar Double Precision Floating-Point Values.ot i 3-40
ADDSS—Add Scalar Single Precision Floating-Point Valuesot 3-42
ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract.cooviiviiiiii i 3-44
ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract. ... e 3-46
ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag ..., 3-49
AESDEC—Perform One Round of an AES Decryption FIOW.ou it et r e eaaas 3-51
AESDEC128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker Using 128-BitKey................. 3-53
AESDEC256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker Using 256-BitKey.................. 3-55
AESDECLAST—Perform Last Round of an AES Decryption FIOWo.oiriii e 3-57

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 128-Bit Key 3-59
AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 256-Bit Key . 3-61

AESENC—Perform One Round of an AES ENCryption FIOW.ovirii i e 3-63
AESENC128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker Using 128-BitKey................. 3-65
AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-BitKey.................. 3-67
AESENCLAST—Perform Last Round of an AES ENCryption FIOWovie e 3-69

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 128-Bit Key 3-71
AESENCWIDEZ256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 256-Bit Key . 3-73

AESIMC—Perform the AES InvMixColumn Transformation.vvuvi it 3-75
AESKEYGENASSIST—AES Round Key GENeration ASSiST. vvvtvtittttt it i i eaaas 3-76
AND—LOGICAl AN . oottt e e e e e e s 3-78
ANDN—LOGICAl AND NOT L.ttt ittt e et et e e e e e et e e e e 3-80
ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Valuescoovues. 3-81
ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values1. 3-84
ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values.cccoviiiiiiiiiiinnnen. 3-87
ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values.cccoviiiiiiiiiiiiiinnnn, 3-90
ARPL—Adjust RPL Field 0f SEgmMEnt SEIECTOr ...\ttt e 3-93
BEXTR—BIT FIEld EXITaCT .o\ v ittt sttt et e ettt e e et e e et et e e e e 3-95
BLENDPD—BIend Packed Double Precision Floating-Point Values. ... i 3-96
BLENDPS—BIlend Packed Single Precision Floating-Point Values. ... e 3-98
BLENDVPD—Variable Blend Packed Double Precision Floating-Point Values................cocoiiiiiiiii i, 3-100
BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values..............cocovii i, 3-102
BLSI—Extract Lowest Set Isolated Bitor i e 3-105
BLSMSK—Get Mask Up 10 LOWEST St Bit ovittt ittt e e enens 3-106
BLSR—RESET LOWEST ST Bit ...ttt e e e e e e 3-107
BNDCL—Check LOWET BOUNottt ettt e e et e e e ettt e e ettt e e r e enens 3-108
BNDCU/BNDCN—Check Upper BOUNG . .. v ittt ettt e e e e e e i e 3-110
BNDLDX—Load Extended Bounds Using Address Translationouvriiiiiiii it i 3-112
BNDMK—MaKE BOUNGS. . . ettt ettt et et e e et e et et et et et e e e 3-115
BNDMOV —MOVE BOUNAS cv ottt e et ettt e e e e 3-117
BNDSTX—Store Extended Bounds Using Address Translation. ...t e 3-120
BOUND—Check Array Index AQainSt BOUNGSuie ettt aenens 3-123
BSF—Bit SCaN FOMWANT . . vttt ettt ettt ettt et et ettt e et e e e 3-125
BSR—BIT SCaN REVEISE . .ttt ettt ettt et et e et et e e e e 3-127
B AP BY T8 S AP . . ottt e e 3-129
S I 11 =] 3-130
BTC—Bit Test and COMPIEMENTttt ettt e e et e et a e 3-132
BT R—BIt TSt ANd RESOT. . ..ttt et e e e e e e e e e 3-134
BT S Bit TSt AN ST ..ottt e e e 3-136
BZHI—Zero High Bits Starting with Specified Bit POSItion ...t i 3-138
07 B e 018 =Y = 3-139
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword. 3-156
CLAC—Clear AC FIag in EFLAGS ReGISTOr . ..ottt sttt et e 3-157

CONTENTS

vi Vol. 2A

OO 1Tl 0 [Y - T 3-158
CLD—ClEar DireCtioN FIag. . . .o v vt e sttt ettt e e e e e e e e e e e e e e 3-159
CLDEMOTE—CAChe LiNE DBMOT . . v vttt ettt ettt ettt e e e e ettt e e e e ettt e e et e e e 3-160
CLFLUSH—FIUSH CaChe LiMe . .. oottt et e e e e e e e e 3-162
CLFLUSHOPT—Flush Cache Line Optimized.ottt i e e i es 3-164
O e T Tl =T o0) o = T 3-166
CLRSSBSY—Clear Busy Flag in a Supervisor Shadow Stack ToKen.coiiiiiiiii i 3-168
CLTS—Clear Task-Switched FIagin CRO ou ittt e e e es 3-170
CLUI—Clear User INTermUPt Flag. . ..ottt e et e e e e e e es 3-171
CLWB—Cache Line WIite BatK v vttt ettt e e e e et e e 3-172
CMC—Complement Carmy Flagot e e e e e e e e 3-174
CMOVEC—CoNdItioNal MOVE. . . .ottt e e e e e 3-175
CMP—ComPare TWO OPBIanas.o vttt ettt ettt ettt e e e et e e e e e e ettt e e e e e e ie i enes 3-179
CMPccXADD—Compare and Add if Condition is MeTottt e 3-181
CMPPD—Compare Packed Double Precision Floating-Point Values ... 3-186
CMPPS—Compare Packed Single Precision Floating-Point Values ..o 3-193
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operandsov.vrve i ienenes 3-199
CMPSD—Compare Scalar Double Precision Floating-Point Value. ... e 3-203
CMPSS—Compare Scalar Single Precision Floating-Point Value. ... e 3-208
CMPXCHG—Compare and EXCNaNge. v vttt ettt ettt e et 3-213
CMPXCHG8B/CMPXCHG16B—Compare and EXChange BYtesvvii it 3-215
COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGSccovvnnt 3-218
COMISS—Compare Scalar Ordered Single Precision Floating-Point Valuesand Set EFLAGScovvnts 3-220
CPUID—CPU IdentifiCation . . o v et vt e ettt e e e e e e e e e e 3-222
CRC32—AccUMUIAtE CRCB2 ValUB . . oottt ettt et e e e e e et e es 3-271
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values 3-274
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values 3-277
CVTPD2DQ—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers 3-280
CVTPD2PI—Convert Packed Double Precision Floating-Point VValues to Packed Dword Integers.................... 3-284
CVTPD2PS—Convert Packed Double Precision Floating-Point Values to Packed Single Precision Floating-Point

VaIUBS . . e e 3-285
CVTPI2PD—Convert Packed Dword Integers to Packed Double Precision Floating-Point Values. 3-289
CVTPI2PS—Convert Packed Dword Integers to Packed Single Precision Floating-Point Values. 3-290

CVTPS2DQ—Convert Packed Single Precision Floating-Point Values to Packed Signed Doubleword Integer Values .3-291
CVTPS2PD—Convert Packed Single Precision Floating-Point VValues to Packed Double Precision Floating-Point

VaIUBS . .o e e e e e 3-294
CVTPS2PI—Convert Packed Single Precision Floating-Point Values to Packed Dword Integers..................... 3-297
CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Signed Integercoovoviiiiiinnns, 3-298
CVTSD2SS—Convert Scalar Double Precision Floating-Point Value to Scalar Single Precision Floating-Point Value. .3-300
CVTSI2SD—Convert Signed Integer to Scalar Double Precision Floating-Point Valuecoiiinat, 3-302
CVTSI2SS—Convert Signed Integer to Scalar Single Precision Floating-Point Valuecociiinas 3-305
CVTSS2SD—Convert Scalar Single Precision Floating-Point Value to Scalar Double Precision Floating-Point Value..3-307
CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Signed Integercoooviiiiiiinnnnt. 3-309
CVTTPD2DQ—Convert with Truncation Packed Double Precision Floating-Point Values to Packed Doubleword

1= =T 3-311

CVTTPD2PI—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Dword Integers ..3-315
CVTTPS2DQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Signed

DoUbIEWOrd INTEGET ValUBS .. oot e e e e e 3-316
CVTTPS2PI—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Dword Integers ...3-319
CVTTSD2SI—Convert With Truncation Scalar Double Precision Floating-Point Value to Signed Integer............. 3-320
CVTTSS2SI—Convert With Truncation Scalar Single Precision Floating-Point Value to Signed Integer.............. 3-322
CwD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword.c.covvviiinieinenn.. 3-324
DAA—Decimal Adjust AL After Additionovie e 3-325
DAS—Decimal Adjust AL After SUDTraCHiONo .ot e e e et 3-327
DEC—DECremEnt DY 1. it i e e e e e e 3-329
DIV—=UNSIGNed DiVidE . . . oottt e e e e e e e 3-331
DIVPD—Divide Packed Double Precision Floating-Point Values.coovuii i i 3-334
DIVPS—Divide Packed Single Precision Floating-Point Values.covuiiii s 3-337
DIVSD—Divide Scalar Double Precision Floating-Point Value. s 3-340

CONTENTS

PAGE
DIVSS—Divide Scalar Single Precision Floating-Point Values.ot e 3-342
DPPD—Dot Product of Packed Double Precision Floating-Point Values.oo it 3-344
DPPS—Dot Product of Packed Single Precision Floating-Point Values. ... 3-346
EMMS—EmPty MMX TeChNOIOgY State. ettt et 3-349
ENCODEKEY128—Encode 128-Bit Key With Key Locker e e 3-350
ENCODEKEY256—Encode 256-Bit Key With Key LOCKET vii i et 3-352
ENDBR32—Terminate an Indirect Branch in 32-bit and CompatibilityMode ... 3-354
ENDBR64—Terminate an Indirect Branch in 64-bit Mode.ot e 3-355
ENQCMD—ENQUEUE COMMANA. . ..ottt ettt ettt et e e et e e ettt ettt e e ettt et e e e et a e 3-356
ENQCMDS—Enqueue COMMANA SUPBIVISOT. . ..t \ vttt st e e ettt et et et e e a et ia e eeannes 3-359
ENTER—Make Stack Frame for Procedure Parameters. .. v vttt ettt 3-362
EXTRACTPS—Extract Packed Floating-Point Valueso e ettt e s 3-365
L B e 00130 = 3-367
FABS—ADSOIUTE ValUB . . . oottt ettt et e e et e e e e e e 3-369
FADD/FADDP/FIADD A . . oottt ettt e e e e 3-371
FBLD—Load Binary Coded DECiMal.o ettt e e e 3-374
FBSTP—Store BCD INtEGEr @nd PO, ...\ i ittt ettt et ettt i e 3-376
FOHS—CNange SigN . . oottt it it et e e e e e 3-378
FCLEX/FNCLEX—ClEar EXCEPTIONS . . o\ vt vttt ettt et ettt e et ettt e e e e ettt e et aenens 3-380
FCMOVcc—Floating-Point Conditional MOV et e e e e 3-382
FCOM/FCOMP/FCOMPP—Compare Floating-Point Valueso.vuiii i 3-384
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating-Point Values and Set EFLAGS ... 3-387
00 N T 01 3T 3-390
FDECSTP—Decrement Stack-Top POinter ou i i i e e ittt aes 3-392
FDIV/EDIVP/EIDIV—DIVIde. . . ottt ettt et et e et e e e e e 3-393
FDIVR/FDIVRP/FIDIVR—REVEISE DIVIAEottt ettt ettt e ettt e et a e 3-396
FFREE—Free Floating-Point REGISTOr ... vttt e e e 3-399
FICOM/FICOMP—C0mMPare IMTEOET ... v ettt ettt et ettt e et et e et r et e s 3-400
o L et W = T (=1~ 3-402
FINCSTP—Increment Stack-Top PO er. ... vttt e e ettt it i aaees 3-404
FINIT/FNINIT—Initialize Floating-Point Unit.t e e et eens 3-405
[YA 5 SR I R (o =] 1 (=T =T 3-407
FISTTP—Store Integer With TrUnCation oo vttt e e e enens 3-410
FLD—Load Floating-PoiNt ValUeo e e 3-412
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLNZ/FLDZ—L0ad CONSTaNT .. .o\ vvv it ee e in e 3-414
FLDCW—Load X87 FPU Control WOrdttt aenens 3-416
FLDENV—L0ad X87 FPU ENVITONMENT ..ttt ittt et ettt et e e et et et et e et i n e e et n e e 3-418
FMUL/FMULP/FIMUL—MURIDIY © .ottt e e s 3-420
[N0 e N (o T 0 01T 1 o 3-423
FPATAN—Partial ArCtangent. . ..ottt et e ettt et e 3-424
FPREM—Partial REMaINAErottt e e e e e e e e e 3-426
FPREMT—Partial REMaAINAETttt e e e e e e et 3-428
FP T AN—Partial Tangentttt et ettt e e e e 3-430
FRNDINT—ROUNG 10 I 00T, . ottt ettt ettt e ettt e e e et e e e e e e enens 3-432
FRSTOR—RESTONE X87 FPU STate ...ttt ettt e et e s 3-433
FSAVE/FNSAVE—STOre X87 FPU State .. v ittt ittt e ettt 3-435
F S AL E S CalE .ottt ettt e e e e 3-438
P N S I o sttt et e e e e e e e 3-440
FSINCOS—SINE AN COSIME . vttt ettt ettt e e et e et et e et n e et e et et e e 3-442
FS QR TS qUAME ROOT . .\ttt ittt e e e e e e e e e e e e 3-444
FST/FSTP—Store Floating-Point Value.o e e e 3-446
FSTCW/FNSTCW—Store x87 FPU Control WOrdvuitt ettt ettt ittt 3-448
FSTENV/ENSTENV—Store X87 FPU ENVITONMENT ...\ vvtttt ettt ettt ittt et eas 3-450
FSTSW/FNSTSW—Store X87 FPU Status WOrd vttt ettt ettt 3-452
FSUB/FSUBP/FISUB—SUDTIACT .ot v vttt et ettt e et et e e e et e et e et i e e e e n e 3-454
FSUBR/FSUBRP/FISUBR—REVETSE SUDTIACT. . .o\ttt vt ettt et et e ettt et e et et e et ia e e 3-457
L I el =5 P 3-460
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating-Point Values. ... 3-462
FXAM—Examine Floating-Point. oo e 3-465

Vol. 2A Vii

CONTENTS

viii Vol. 2A

PAGE
FXCH—EXChaNge Register COMteNTS ..\ttt ittt ettt e e ettt e ettt nnenanas 3-467
FXRSTOR—Restore x87 FPU, MMX, XMM, @and MXCSR Statevuvviitii e 3-469
FXSAVE—Save x87 FPU, MMX Technology, and SSE Stateoouiir i e 3-472
FXTRACT—Extract Exponent and SIgnificand.o.iiii i s 3-480
I 0T T TU) (= Al o R 3-482
FYL2XPT—ComPULE Y X 10G2(X 1) ottt ittt ettt ettt e et et e e et e et et e 3-484
GF2PBAFFINEINVQB—Galois Field Affine Transformation INVErsevvvviiiriii i 3-486
GF2PBAFFINEQB—Galois Field Affine Transformationc.ccovriiiiiii e 3-489
GF2P8MULB—Galois Field MU PlY ByteS. .o\ttt e e 3-491
HADDPD—Packed Double Precision Floating-Point Horizontal Addcooiiii s 3-493
HADDPS—Packed Single Precision Floating-Point Horizontal Add e 3-496
HUT o Halt L e e e e e e e e e e 3-499
[R Y S I o 1 (0 YA (=YY P 3-500
HSUBPD—Packed Double Precision Floating-Point Horizontal Subtract............coovviiiiiiii i 3-502
HSUBPS—Packed Single Precision Floating-Point Horizontal Subtract. ... 3-505
101Ky Fa =T I D Ta 1= 3-508
O Y g =T i U o 3-511
1N S U o 3 0 o 3-515
1NN O Yol = 3 T 1Y 3-517
INCSSPD/INCSSPQ—Increment Shadow Stack POiNter.vvuv it 3-519
INSERTPS—Insert Scalar Single Precision Floating-Point Valueo i 3-521
INS/INSB/INSW/INSD—Input from POrt t0 STriNGo v et 3-524
INT n/INTO/INT3/INTT—Call to Interrupt Procedure. . ..ot e ettt 3-527
INVD—Invalidate INternal Cathesottt e et e 3-542
INVLPG—INValidate TLB ENtries. . .ottt ettt ettt ettt et et e e et ettt et et e e e 3-544
INVPCID—Invalidate Process-Context Identifier.ouuorii e 3-546
IRET/IRETD/IRET Q—INtermUPt RE UM Lo\ttt e e e e i e 3-549
Jee—Jump i CoNditioN IS MET. ..ot e e e 3-558
1 Lo U1 TSP 3-563
KADDW/KADDB/KADDQ/KADDD—ADD TWO MasKs. . . .t vvtttttt ettt e e ettt et 3-572
KANDNW/KANDNB/KANDNQ/KANDND—Bitwise Logical AND NOT Maskscovvviiiiiiiiiiiiii i 3-574
KANDW/KANDB/KANDQ/KANDD—Bitwise Logical AND MasKsviiii it it nieiaas 3-575
KMOVW/KMOVB/KMOVQ/KMOVD—Move From and to Mask REGISTErsvvvuiriiiiiiiiiiiiiineiananns 3-576
KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask REGISTEI.ttt ttt ittt ettt ettt 3-578
KORTESTW/KORTESTB/KORTESTQ/KORTESTD—OR Masks and Set FIags. vvvvvverii it iiiini e 3-579
KORW/KORB/KORQ/KORD—Bitwise LoGiCal OR MASKS\ vvttt ettt ettt ee et e e in e inaieeneaas 3-581
KSHIFTLW/KSHIFTLB/KSHIFTLQ/KSHIFTLD—Shift Left Mask ReGiStersvvuviiiiiiii s 3-582
KSHIFTRW/KSHIFTRB/KSHIFTRQ/KSHIFTRD—Shift Right Mask Registersccoooviiiiiiiiiiiiniiiiiannns 3-584
KTESTW/KTESTB/KTESTQ/KTESTD—Packed Bit Test Masks and SET FIags.o vvvrviiii ittt 3-586
KUNPCKBW/KUNPCKWD/KUNPCKDQ—Unpack for Mask Registersoouviiiiiiiiiiniiiiiiiiiininniannns 3-588
KXNORW/KXNORB/KXNORQ/KXNORD—Bitwise Logical XNOR MaSKS.vvuvuitieii e eiineinnannns 3-589
KXORW/KXORB/KXORQ/KXORD—Bitwise Logical XOR Masksviiiiii i it 3-590
LAHF—Load Status FIags INto AH REGISTEI ittt ettt ettt iaaas 3-591
LAR—L0ad ACCESS RIGNTS BYTe ..ttt ittt e e e e e e e 3-592
LDDQU—Load Unaligned INTeger 128 Bits. ... v . vv ittt ettt e e 3-595
LDMXCSR—L0GA MXCSR RIS O o v vttt ettt ettt ettt et e et e e e e et et et et 3-597
LDS/LES/LFS/LGS/LSS—L0ad Far POINTr. . .ottt t et ettt et e e e et e 3-598
LDTILECFG—Load Tile ConfigUration\ ettt e ettt ettt ettt aenenanas 3-602
I o = Ta = = Ton 1Y /=2 o =T 3-605
LEAVE—HIgh Level Procedure EXit. ... o. vttt e e 3-608
I O S o= T = = 3-610
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.c.vvuiiii e 3-611
LLDT—Load Local Descriptor Table REGISTEr. v vttt ettt e eees 3-614
LMSW—Load Machine STatus WOrd e e 3-616
LOADIWKEY—Load Internal Wrapping Key With Key Locker ... i 3-618
LOCK—ASSert LOCKH Signal PrefixX. ..ottt ittt e et e e et e et iaaas 3-621
LODS/LODSB/LODSW/LODSD/LODSQ—L0ad STMiNG. + .+« e vt tvet et e et et et e et et e e et e et e e 3-623
LOOP/LOOPcc—Loop According 10 ECX COUMTET .t vttt ettt ettt ettt et e e e e n e 3-626
LSL—L0ad Segment LIMitttt ettt et e et e e e 3-629

CONTENTS

PAGE
LTR—L0ad Task RIS . .\ttt et e e et e e e e 3-632
LZCNT—Count the Number of Leading Zero Bitsvvviii e 3-634
CHAPTER 4
INSTRUCTION SET REFERENCE, M-U
4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI/PCMPISTRMo 4-1
4.1.1 (=T p 1= =Tt o 4-1
41.2 I o8 ol = = o 02T 1 4-2
413 LA Ya o[=TaF= 11 o T @ == o 4-2
414] 1 Y/ 4-3
415 (001001 Y= =T o 4-4
416 Valid/Invalid Override 0f COmMPariSONSttt ittt ettt et e e ettt e et e enenes 4-4
41.7 SUMMANY Of IM8 CONtrOl DY . oo ottt e e e e e e e 4-5
418 Diagram Comparison and AQgregation PrOCESS v ittt i it i e 4-6
4.2 COMMON TRANSFORMATION AND PRIMITIVE FUNCTIONS FOR SHATXXX AND SHAZS56XXX .. .vvvviiiiiiiii i 4-6
4.3 INSTRUCTIONS (M-U) .ttt e e e et et e e e et e e e et e e e et anns 4-7
MASKMOVDQU—Store Selected Bytes of Double QUadwordouiiiiii i i 4-8
MASKMOVQ—Store Selected Bytes of QUadWOordvuiiiite e et 4-10
MAXPD—Maximum of Packed Double Precision Floating-Point Values ... 4-12
MAXPS—Maximum of Packed Single Precision Floating-Point Values ...t 4-15
MAXSD—Return Maximum Scalar Double Precision Floating-Point Value............cooiii i 4-18
MAXSS—Return Maximum Scalar Single Precision Floating-Point Value..............oooiiii i 4-20
T O S =T o YA =T V= 4-22
MINPD—Minimum of Packed Double Precision Floating-Point Values. ..o 4-23
MINPS—Minimum of Packed Single Precision Floating-Point Values. ... 4-26
MINSD—Return Minimum Scalar Double Precision Floating-Point Value ... 4-29
MINSS—Return Minimum Scalar Single Precision Floating-Point Value ...t 4-31
MONITOR—Set Up MONITOT AQATESS . ..ottt ettt et e ettt 4-33
(Y i 01V 4-35
MOV—Move to/from CoNtrol REGISTrS. . ..o\ttt e et ettt ettt n e 4-39
MOV—Move to/from DebUG REGISTEIS ... ittt i e e e s 4-42
MOVAPD—Move Aligned Packed Double Precision Floating-Point Values...............ccoiiii i 4-44
MOVAPS—Move Aligned Packed Single Precision Floating-Point Values. ... 4-48
MOVBE—Move Data After SWapping BYTesSot 4-52
MOVDDUP—Replicate Double Precision Floating-Point Values. ... e i 4-55
MOVDIRB64B—MoVve 64 Bytes @S DIreCT STOMe ittt ittt i et e et ittt eans 4-58
MOVDIRI—Move Doubleword @S DiFeCt STOME vttt ettt e et 4-60
MOVD/MOVQ—Move Doubleword/Move QUadword.uuetie et 4-62
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register.ot 4-66
MOVDQA,VMOVDQA32/64—Move Aligned Packed Integer Values.covviniiiiii e 4-67
MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values. ... 4-72
MOVHLPS—Move Packed Single Precision Floating-Point Values Highto Low ... 4-80
MOVHPD—Move High Packed Double Precision Floating-Point Value. 4-82
MOVHPS—Move High Packed Single Precision Floating-Point Values. 4-84
MOVLHPS—Move Packed Single Precision Floating-Point Values Low toHigh ... 4-86
MOVLPD—Move Low Packed Double Precision Floating-Point Value ... 4-88
MOVLPS—Move Low Packed Single Precision Floating-Point Values ..o e 4-90
MOVMSKPD—Extract Packed Double Precision Floating-Point Sign Mask. ... 4-92
MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask. ... e 4-94
MOVNTDQ—Store Packed Integers Using Non-Temporal Hint i 4-96
MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint. ..o e 4-98
MOVNTI—Store Doubleword Using Non-Temporal Hint e 4-100
MOVNTPD—Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint 4-102
MOVNTPS—Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint 4-104
MOVNTQ—Store of Quadword Using Non-Temporal Hint.ou o 4-106
MOVQ—MOVE QUAAWOI . . o . ettt ettt et et et e et e e e e et et e e et e e e et et e e n e 4-107
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register.vvviiiiii i 4-110
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data From String to Stringovvvvivi e 4-112
MOVSD—Move or Merge Scalar Double Precision Floating-Point Value..............ccoooiiiii i 4-116
MOVSHDUP—Replicate Single Precision Floating-Point Values ...t 4-119

Vol. 2A iX

CONTENTS

X Vol.2A

MOVSLDUP—Replicate Single Precision Floating-Point Values e 4-122
MOVSS—Move or Merge Scalar Single Precision Floating-Point Value ..o 4-125
MOVSX/MOVSXD—Move With SIgn-EXTENSION ou e e 4-128
MOVUPD—Move Unaligned Packed Double Precision Floating-Point Values.oooiviiiiiiiiiiiiins 4-130
MOVUPS—Move Unaligned Packed Single Precision Floating-Point Values.cooii i 4-134
MOVZX—MOVE With ZEM0-EXTENA. .. .ottt ettt et ettt et e et et e ettt et e s 4-138
MPSADBW—Compute Multiple Packed Sums of Absolute Differencet 4-140
MUL—UNSIGNEA MURI DI, o« o vt e e e e e e e e e 4-148
MULPD—Multiply Packed Double Precision Floating-Point Valueso e 4-150
MULPS—Multiply Packed Single Precision Floating-Point Values ... 4-153
MULSD—Multiply Scalar Double Precision Floating-Point Value ...t e 4-156
MULSS—Multiply Scalar Single Precision Floating-Point Values ... e 4-158
MULX—Unsigned Multiply Without Affecting FIags.oviriii i et 4-160
MW AT — MO Or Wit et et e et et e e et e e 4-162
NEG—Two's Complement NeGation vttt e e e e 4-165
1[0 o N (o 10 0= 1 1 4-167
NOT—0ne's Complement NeGationt i e e i e 4-168
OR—L0GIcal INCIUSIVE OR .. oo i e e et e e e 4-170
ORPD—Bitwise Logical OR of Packed Double Precision Floating-Point Values..................ccoviiiiiiiian.t 4-172
ORPS—Bitwise Logical OR of Packed Single Precision Floating-Point Values.............ccociiiiiiiii i, 4-175
(01U 51U o (o o 4-178
OUTS/OUTSB/OUTSW/OUTSD—0utput String t0 POrt. .. .ot e 4-180
.. 4-184
PACKSSWB/PACKSSDW—Pack With Signed Saturationouvivii i 4-190
PACKUSDW—Pack With Unsigned Saturationueieiiiii et ir ettt nnenanas 4-198
PACKUSWB—Pack With Unsigned Saturationovvuvtii e aas 4-203
PADDB/PADDW/PADDD/PADDQ—AAd Packed INtEGETS vti ittt 4-208
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. ... 4-215
PADDUSB/PADDUSW—Add Packed Unsigned Integers With Unsigned Saturation................cocviiiiiiinnt, 4-219
PALIGNR—Packed AlIgn RIGNT e e e e 4-223
PAND—LOGICEI AND . . . ettt ettt et et ettt et e e e e e e e 4-227
PANDN—LOGICAI AND NO T, ..ottt e et et e et et et et et e et et et e e et 4-230
PAUSE—SPIN LOOD Hint ottt e e e s e e e e e e e e e 4-233
PAVGB/PAVGW—Average Packed INtegers. vttt e 4-234
PBLENDVB—Variable Blend Packed Bytes. ovit ittt ittt e 4-238
PBLENDW—BIENd Packed WOrdS.o v ittt ettt et e e e e e e 4-242
PCLMULQDQ—Carry-Less Multiplication QUadWOordouerit ettt et 4-245
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for EQualcoviii e 4-248
PCMPEQQ—Compare Packed Qword Data for EQUal.oouiriiii e 4-254
PCMPESTRI—Packed Compare Explicit Length Strings, Return IndeX...........c.coooveii i 4-257
PCMPESTRM—Packed Compare Explicit Length Strings, Return Maskt e 4-259
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than...............coovvivvnnn, 4-261
PCMPGTQ—Compare Packed Data for Greater Thanvuvieii it 4-267
PCMPISTRI—Packed Compare Implicit Length Strings, Return IndeXo i 4-270
PCMPISTRM—Packed Compare Implicit Length Strings, ReETUrNn Masko e 4-272
PCONFIG—PIatform Configurationouirii e et eas 4-274
PDEP—Parallel Bits DEPOSIt .ottt ittt ittt e e e 4-280
PEXT—Parallel Bits EXIratt. . .o vttt e e et e 4-282
PEXTRB/PEXTRD/PEXTRQ—Extract Byte/Dword/QWOrd.c.uieieii e eanes 4-284
PEXTRW—EXTTACT WO, . oottt et et e et e e e et e et e 4-287
PHADDSW—Packed Horizontal Add and Saturate.ovuiuiii e e 4-290
fgPHADDW/PHADDD—Packed Horizontal Addvvuiiit it 4-292
PHMINPOSUW—Packed Horizontal Word MimimUmMt e eians 4-296
PHSUBSW—Packed Horizontal Subtract and Saturate.cveirini e 4-298
PHSUBW/PHSUBD—Packed Horizontal SUDTraCTo v .ottt ettt 4-300
PINSRB/PINSRD/PINSRQ—Insert Byte/DwWord/QWOrd c.uttt et e et e et e e et in e 4-303
PINSRW—INSEIt WM . . vttt ettt et e et et e et et e e et e e 4-306
PMADDUBSW—Multiply and Add Packed Signed and Unsigned BYtescoviiriiiiiiiiiiiiiiianannes 4-308
PMADDWD—Multiply and Add Packed INTEAETS v.i ettt 4-311

CONTENTS

PAGE
PMAXSB/PMAXSW/PMAXSD/PMAXSQ—Maximum of Packed Signed INtegers.........co.vvvviiiiiiiiiniinnnennns 4-314
PMAXUB/PMAXUW—Maximum of Packed Unsigned INTEgers.vvriiit it 4-321
PMAXUD/PMAXUQ—Maximum of Packed Unsigned INtegersovriiniiiiii i ies 4-326
PMINSB/PMINSW—Minimum of Packed Signed INTEgErsSvviiii i 4-330
PMINSD/PMINSQ—Minimum of Packed Signed INtegersvvivrir et 4-335
PMINUB/PMINUW—Minimum of Packed Unsigned INtegerSuviiii ittt e et aenens 4-339
PMINUD/PMINUQ—Minimum of Packed UNSigned INtegersvuirni et eans 4-344
PMOVMSKB—MOVE BYTE Mask ...ttt ittt ettt e e e e 4-348
PMOVSX—Packed Move With Sign EXTENdottt e 4-350
PMOVZX—Packed Move With Zero EXTENAouiiiii e e 4-360
PMULDQ—Multiply Packed Doubleword INTEGEIS v ettt 4-370
PMULHRSW—Packed Multiply High WithRound and Scale ...t et e 4-373
PMULHUW—Multiply Packed Unsigned Integers and Store High Result. ... 4-377
PMULHW—Multiply Packed Signed Integers and Store High Result ... 4-381
PMULLD/PMULLQ—Multiply Packed Integers and Store LOW ReSUIT.oovvv v 4-385
PMULLW—Multiply Packed Signed Integers and Store Low Resulto e 4-389
PMULUDQ—Multiply Packed Unsigned Doubleword INtEgErso.vriririi e 4-393
POP—Pop a Value From the STackot i i e e e i e e 4-396
POPA/POPAD—Pop All General-PUrpoSe ReGISTEISvui ittt ettt eaens 4-401
POPCNT—Return the Count of Number of Bits St 10 T.....oonieii i 4-403
POPF/POPFD/POPFQ—Pop Stack INto EFLAGS ReGISTOr. ..\ v vttt eneas 4-405
POR—BItWISe LOGICAI OR. . . . oottt ettt e e et e et 4-409
PREFETCHh—Prefetch Data INTo Cathes v vttt et e e e 4-412
PREFETCHW—Prefetch Data Into Caches in Anticipationof aWrite.............co i 4-414
PSADBW—Compute Sum of Absolute DIifferenCeSottt e 4-416
PSHUFB—Packed ShUTIE BYTeS . ..\ttt ittt e e e e e e e eas 4-420
PSHUFD—Shuffle Packed DOUBIEWOIASottt et et eans 4-424
PSHUFHW—Shuffle Packed High WOrds. v vt e 4-428
PSHUFLW—Shuffle Packed LOW WIS v ettt et et 4-431
PSHUFW—ShUTflE Packed WOrdsSo v ettt et ettt e e e et 4-434
PSIGNB/PSIGNW/PSIGND—PAcKed SIGN ...ttt et e n e 4-435
PSLLDQ—Shift Double Quadword Left LogiCal.ovvuiri it e e 4-439
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical.........ovviiiii et 4-441
PSRAW/PSRAD/PSRAQ—Shift Packed Data Right ArithmetiC........oovvviii i s 4-453
PSRLDQ—Shift Double Quadword Right LOGICalvuvu ittt et 4-463
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right LOGiCalovuiui e 4-465
PSUBB/PSUBW/PSUBD—Subtract Packed INtegerst et i e 4-477
PSUBQ—Subtract Packed QUadword INTEGEISv.vii ittt e 4-485
PSUBSB/PSUBSW—Subtract Packed Signed Integers With Signed Saturationcooviiiiiiiiiiinen.s, 4-488
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers With Unsigned Saturation...............covvvvvnnnn.n. 4-492
el I S e o T = 0130 =S 4-496
PTWRITE—Write Data t0 @ Processor Trace Packet.ouvririi i et 4-498
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack HighData.oooviviiiiiiiiinenne, 4-500
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data.........covviiiiiiiiiiiiiii e 4-510
PUSH—Push Word, Doubleword, or Quadword Onto the Stack.ovuviiiii i 4-520
PUSHA/PUSHAD—Push All General-Purpose RegiSTerS.vuiri et eas 4-524
PUSHF/PUSHFD/PUSHFQ—Push EFLAGS Register Onto the Stack.ot i 4-526
PXOR—L0GICal EXCIUSIVE OR. ..ottt it e e e e e e e 4-528
RCL/RCR/ROL/ROR = RO T . .+t .ttt v ettt et ettt et et e e et e e e e et et e et et e et n e e 4-531
RCPPS—Compute Reciprocals of Packed Single Precision Floating-Point Values ..o, 4-536
RCPSS—Compute Reciprocal of Scalar Single Precision Floating-Point Valuescocoviiiiiiiiiininns, 4-538
RDFSBASE/RDGSBASE—Read FS/GS SEGMENT BASE ..t vtttt ettt st e ettt e it 4-540
RDMSR—Read From Model Specific REGISTEt e 4-542
RDMSRLIST—Read List of Model Specific RegiSters.o v et 4-544
RDPID—REAA ProCESSOT ID . . vttt ettt ettt ettt et et e e et e e e e 4-547
RDPKRU—Read Protection Key Rights for USer Pages...........viiiiiiiiii it i i 4-548
RDPMC—Read Performance-Monitoring COUNTEISvui ittt e 4-550
RDRAND—Read Random NUMDottt e e e enens 4-553
RDSEED—REad RaNdOM SEED vttt et e e e e e e e 4-555

Vol. 2A Xi

CONTENTS

Xii Vol. 2A

RDSSPD/RDSSPQ—Read Shadow STack POIMter.o vttt e et 4-557
RDTSC—Read Time-StamP COUNM O . .ttt ittt ettt e e ettt aas 4-558
RDTSCP—Read Time-Stamp Counter and Processor IDo.veer it 4-560
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation PrefiX ... 4-562
RET—RETUMN From PrOCEAUIE . ..ttt e et ettt n e 4-566
RORX — Rotate Right Logical Without Affecting Flagso e 4-579
ROUNDPD—Round Packed Double Precision Floating-Point Values.t 4-580
ROUNDPS—Round Packed Single Precision Floating-Point Values.o e 4-583
ROUNDSD—Round Scalar Double Precision FIoating-Point Values.o i 4-585
ROUNDSS—Round Scalar Single Precision Floating-Point Values. 4-587
RSM—Resume From System Management Mode.cooiii i i i e e 4-589
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values 4-591
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single Precision Floating-Point Value. 4-593
RSTORSSP—Restore Saved Shadow Stack POINTEN. vttt 4-595
SAHF—STOME AH INT0 FIagS . . o vttt et e e e e e e e e e 4-598
SAL S AR/ SHL SHR STt o 4ttt e e e e e e e e 4-600
SARX/SHLX/SHRX—Shift Without Affecting FIagsvvriiriri e 4-605
SAVEPREVSSP—Save Previous Shadow Stack POINter.ouvriiiiii e 4-607
SBB—Integer Subtraction With BomTOW. ouiui e e e e e 4-609
SCAS/SCASB/SCASW/SCASD—SCaN STIING .ottt ettt e e e et 4-612
SENDUIPI—Send User INterprocessor IMTemTUDT v vttt et aaes 4-616
SERIALIZE—Serialize INStruction EXECULION ... vttt e e e e 4-618
SETCC—Set Byte 0N Condition .. ovo ittt e e e 4-619
SETSSBSY—Mark Shadow STaCK BUSY . . .o vttt ittt e e e e e e 4-622
R R O Sy o = = ol 4-624
SGDT—Store Global Descriptor Table RegiSter. ... v vt e e e 4-625
SHATMSG1—Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords 4-627
SHATMSG2—Perform a Final Calculation for the Next Four SHAT Message Dwords.covvivviiiinnnnes, 4-628
SHATNEXTE—Calculate SHA1 State Variable E After FOUr ROUNASovuiiii i 4-629
SHATRNDS4—Perform Four Rounds of SHAT Operationo.veiiiiiii ittt e e ieees 4-630
SHA256MSG1—Perform an Intermediate Calculation for the Next Four SHA256 Message Dwords................ 4-632
SHA256MSG2—Perform a Final Calculation for the Next Four SHA256 Message Dwordscovvvvvvvnnnne, 4-633
SHA256RNDS2—Perform Two Rounds of SHAZ56 Operation.........ovuiuiriiiiiniiii it cii e 4-634
SHLD—Double Precision Shift Left.o e e e 4-636
SHRD—Double Precision Shift Right. e 4-639
SHUFPD—Packed Interleave Shuffle of Pairs of Double Precision Floating-Point Values........................... 4-642
SHUFPS—Packed Interleave Shuffle of Quadruplets of Single Precision Floating-Point Values. 4-647
SIDT—Store Interrupt Descriptor Table REGISTEr. v vttt e e 4-651
SLDT—Store Local Descriptor Table REgiSTar. ... v 'ttt e es 4-653
SMSW—Store Maching Status WOrd.vvit et e 4-655
SQRTPD—Square Root of Double Precision Floating-Point Valuesovviiiiin i 4-657
SQRTPS—Square Root of Single Precision Floating-Point Values.o 4-660
SQRTSD—Compute Square Root of Scalar Double Precision Floating-Point Value...............ccoviviiininnes, 4-663
SQRTSS—Compute Square Root of Scalar Single Precision Value ... e 4-665
STAC—Set AC FIag in EFLAGS REGISTEI. vttt vttt et e et e et e e a 4-667
ST =St CarTY Flag. . . oottt e e e e 4-668
ST DSt DIrECtION Flag. .. o i it i et e e e e e 4-669
Y I s =T o 0) = T 4-670
STMXCSR—S10re MXCSR ReGISTEr STate ...ttt t ittt e e ettt eeaes 4-672
STOS/STOSB/STOSW/STOSD/STOSQ—St0re STMNG . . .« v v ettt ettt e e e e 4-673
ST R—ST0ME TaSK REGIS O . .ottt sttt e e e e e e e e e e e e e 4-676
STTILECFG—Store Tile Configurationc.iuiii e e 4-678
STUI=Set User INTerrUPT FIag . .. oot e e e e e 4-680
B85 T 01 - on 4-681
SUBPD—Subtract Packed Double Precision Floating-Point Values. ...t e 4-683
SUBPS—Subtract Packed Single Precision Floating-Point Values. ..ot 4-686
SUBSD—Subtract Scalar Double Precision Floating-Point Value. ... e 4-689
SUBSS—Subtract Scalar Single Precision Floating-Point Value......... .o 4-691
SWAPGS—SWap GS Base ReGiSTerttt e e e 4-693

CONTENTS

PAGE

SYSCALL—Fast SYSTEM Call\ttt e et e e e e e e 4-695
SYSENTER—FASt SYSTEM Call . oottt e e e e e 4-698
SYSEXIT—Fast Return from Fast System Call oo e e 4-701
SYSRET—Return From Fast System Callooiei e 4-704
TDPBF16PS—Dot Product of BF16 Tiles Accumulated into Packed Single Precision Tile 4-707
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD—Dot Product of Signed/Unsigned Bytes with Dword Accumulation4-709
TDPFP16PS—Dot Product of FP16 Tiles Accumulated into Packed Single Precision Tileooenas 4-711
LIS e 0T [or= 0o T 1 = 4-713
TESTUI—Determine User INTermrUPt FIag. . ..o vvvi e e 4-715
TILELOADD/TILELOADD T T—L0ad Tile. . ot v vttt ettt ettt e e e e e et et e 4-716
TILERELEASE—REIEASE Tl .ttt ettt e e e 4-718
TILES T ORED =S 0ME TIB v vttt vttt ettt ettt e e e e e e e e et et e et e e 4-719
TILEZERO—ZEI0 TilB. vttt ettt ettt e e e e e e e 4-720
TPAUSE—TIMEA PAUSE. . . .ttt e e e e e e e e e 4-721
TZCNT—Count the Number of Trailing Zero Bits.vvvii i e e 4-723
UCOMISD—Unordered Compare Scalar Double Precision Floating-Point Values and Set EFLACS 4-725
UCOMISS—Unordered Compare Scalar Single Precision Floating-Point VValues and Set EFLAGS 4-727
UD—UNdefined INStrUCTIONottt e e e e e e e 4-729
UIRET—USer- I TUDT RETUI N« oottt e e e e e e et i e 4-730
UMONITOR—User Level Set Up Monitor AdAreSSvv ittt et eaaas 4-732
UMWAIT—User Level Monitor Waitooi e e e 4-734
UNPCKHPD—Unpack and Interleave High Packed Double Precision Floating-Point Values...............ovevvnvnnn 4-736
UNPCKHPS—Unpack and Interleave High Packed Single Precision Floating-Point Values.......................... 4-740
UNPCKLPD—Unpack and Interleave Low Packed Double Precision Floating-Point Values. 4-744
UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values........................... 4-748

CHAPTER 5

INSTRUCTION SET REFERENCE, V

5.1 TERNARY BIT VECTOR LOGIC TABLE. . . vttt ittt ettt et e e e e e e e et e e e 5-1

5.2 INSTRUCTIONS (V). vttt ettt ettt e e e e et e e et et e e et e e et et e e et e e e e s 5-4
VADDPH—Add Packed FPTB ValUBS\ttt ittt ettt 5-5
VADDSH—AAA SCalar FPTB ValUBSttt ettt e e et ens 5-7
VALIGND/VALIGNQ—AIign Doubleword/QUadword VECTOTSttt ettt et eneaa 5-9
VBCSTNEBF162PS—Load BF16 Element and Convert to FP32 Element With Broadcast....................c 5-12
VBCSTNESHZ2PS—Load FP16 Element and Convert to FP32 Element with Broadcast............oovvvvviivninn. 5-13
VBLENDMPD/VBLENDMPS—BIlend Float64/Float32 Vectors Using an OpMask Control..............cooovvivinnnnn, 5-14
VBROADCAST—Load with Broadcast Floating-Point Data.cooveiii e 5-17
VCMPPH—Compare Packed FP 16 ValUes.ottt ittt it e e 5-25
VCMPSH—Compare Scalar FP 1B ValUes.ottt it e et e e e ettt ae e 5-27
VCOMISH—Compare Scalar Ordered FP16 Values and Set EFLAGS. ..ottt ittt 5-29
VCOMPRESSPD—Store Sparse Packed Double Precision Floating-Point Values Into Dense Memory................. 5-31
VCOMPRESSPS—Store Sparse Packed Single Precision Floating-Point Values Into Dense Memory.................. 5-33
VCVTDQ2PH—Convert Packed Signed Doubleword Integers to Packed FP16 Valuesooovviiiiiiinnnn, 5-35
VCVTNEZPSZ2BF16—Convert Two Packed Single Data to One Packed BF16Datacoovvviiiiiinnennnt, 5-37
VCVTNEEBF162PS—Convert Even Elements of Packed BF16 Valuesto FP32 Valuescovvvvvviiiininnnn, 5-39
VCVTNEEPHZ2PS—Convert Even Elements of Packed FP16 Values to FP32 Values..........ccovvviiiiiiininnnnn, 5-40
VCVTNEOBF162PS—Convert Odd Elements of Packed BF16 Values to FP32 Valuescovvvviiiiinnn. 5-41
VCVTNEOPHZ2PS—Convert 0dd Elements of Packed FP16 Values to FP32 Values.oovviiiiiiininnn. 5-42
VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data..........covviiiiiii e 5-43
VCVTPD2PH—Convert Packed Double Precision FP Values to Packed FP16 Values.cocvviviiiiiinnn, 5-46
VCVTPD2QQ—Convert Packed Double Precision Floating-Point Values to Packed Quadword Integers............... 5-48

VCVTPD2UDQ—Convert Packed Double Precision Floating-Point Values to Packed Unsigned Doubleword Integers. . 5-50
VCVTPD2UQQ—Convert Packed Double Precision Floating-Point Values to Packed Unsigned Quadword Integers ... 5-53

VCVTPH2DQ—Convert Packed FP16 Values to Signed Doubleword INtegers.co.vvviiiiiiiiiiiiiiiiiiienns 5-56
VCVTPHZ2PD—Convert Packed FP16 Values to FPB4 ValUeSov e 5-58
VCVTPHZ2PS/VCVTPHZ2PSX—Convert Packed FP16 Values to Single Precision Floating-Point Values............... 5-60
VCVTPH2QQ—Convert Packed FP16 Values to Signed Quadword Integer Valuescooiviiiiiiiiinnnnn, 5-64
VCVTPH2UDQ—Convert Packed FP16 Values to Unsigned Doubleword INtegers.c.oovvvvviriiniiennennnnns 5-66
VCVTPH2UQQ—Convert Packed FP16 Values to Unsigned Quadword INntegers.oovvvvrviiiirniennennnenn. 5-68

Vol. 2A Xiii

CONTENTS

Xiv Vol. 2A

VCVTPH2UW—Convert Packed FP16 Values to Unsigned Word Integers.ccovvirviiiiiiiiiiiiinneiannss 5-70
VCVTPH2W—Convert Packed FP16 Values to Signed Word INtegers.ovvuiuiinin ittt ieeanens 5-72
VCVTPS2PH—Convert Single Precision FP Value to 16-bit FPValueco oo 5-74
VCVTPS2PHX—Convert Packed Single Precision Floating-Point Values to Packed FP16 Values. 5-78

VVCVTPS2QQ—Convert Packed Single Precision Floating-Point Values to Packed Signed Quadword Integer Values .. 5-80
VCVTPS2UDQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned Doubleword Integer

ValUBS ottt e e e e e e 5-83
VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned Quadword Integer

ValUBS e e e e e s 5-86
VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double Precision Floating-Point Values 5-89
VCVTQQ2PH—Convert Packed Signed Quadword Integers to Packed FP16 Values ..., 5-91
VCVTQQ2PS—Convert Packed Quadword Integers to Packed Single Precision Floating-Point Values 5-93
VCVTSD2SH—Convert Low FP64 Value to an FPTE VaIUE ... vv it 5-95
VCVTSD2USI—Convert Scalar Double Precision Floating-Point Value to Unsigned Doubleword Integer.............. 5-97
VCVTSHZ2SD—Convert Low FP16 Value to an FPBA VaIUEvv i 5-99
VCVTSHZSI—Convert Low FP16 Value to Signed INtegerovirii e 5-100
VCVTSHZ2SS—Convert Low FP16 Value to FP32 ValUe.o 5-101
VCVTSH2USI—Convert Low FP16 Value to Unsigned INteger ...t i 5-102
VCVTSI2SH—Convert a Signed Doubleword/Quadword Integertoan FP16 Valuecoovviiiiiiiinnnnn, 5-103
VCVTSS2SH—Convert Low FP32 Value to an FPT1B Value. o e 5-105
VCVTSS2USI—Convert Scalar Single Precision Floating-Point Value to Unsigned Doubleword Integer.............. 5-107
VCVTTPD2QQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Quadword

Y (=TT 5-109
VCVTTPD2UDQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Unsigned

[To TN o] (=T e Y (=T =] 5 5-111
VCVTTPD2UQQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Unsigned

LT = a1V (o a8 (=TT~] 5-113
VCVTTPH2DQ—Convert with Truncation Packed FP16 Values to Signed Doubleword Integers.................... 5-115
VCVTTPH2QQ—Convert with Truncation Packed FP16 Values to Signed Quadword Integers 5-117
VCVTTPH2UDQ—Convert with Truncation Packed FP16 Values to Unsigned Doubleword Integers................ 5-119
VCVTTPH2UQQ—Convert with Truncation Packed FP16 Values to Unsigned Quadword Integers 5-121
VCVTTPH2UW—Convert Packed FP16 Values to Unsigned Word INtegersovviiiiiiiiiiiiiiiieiinnnnes 5-123
VCVTTPH2W—Convert Packed FP16 Values to Signed Word INtegersvvvvviiiiiiiiiiiiiiiiciiiieennns 5-125
VCVTTPS2QQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Signed

QUAAWOTd INTEGET ValUBS . . . ottt e e e e e e e e e 5-127
VCVTTPS2QQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Signed

QUAdWOrd INTEGET ValUBS . . . ottt e e e e e 5-129
VCVTTPS2UDQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Unsigned

DoUbIeWOrd INTEGET ValUBS ...ttt e e e e 5-131
VCVTTSD2USI—Convert With Truncation Scalar Double Precision Floating-Point Value to Unsigned Integer 5-133
VCVTTSHZ2SI—Convert with Truncation Low FP16 Value to a Signed Integerooiiiiiiii i, 5-134
VCVTTSH2USI—Convert with Truncation Low FP16 Value toan Unsigned Integer ...t 5-135
VCVTTSS2USI—Convert With Truncation Scalar Single Precision Floating-Point Value to Unsigned Integer......... 5-136
VCVTUDQZPD—Convert Packed Unsigned Doubleword Integers to Packed Double Precision Floating-Point Values.5-138
VCVTUDQ2PH—Convert Packed Unsigned Doubleword Integers to Packed FP16 Values..............cccovvvvnnn 5-140

VCVTUDQ2PS—Convert Packed Unsigned Doubleword Integers to Packed Single Precision Floating-Point Values. .5-142
VCVTUQQ2PD—Convert Packed Unsigned Quadword Integers to Packed Double Precision Floating-Point Values ..5-145

VCVTUQQ2PH—Convert Packed Unsigned Quadword Integers to Packed FP16 Valuesccoovivinntt. 5-147
VCVTUQQ2PS—Convert Packed Unsigned Quadword Integers to Packed Single Precision Floating-Point Values ...5-149
VCVTUSI2SD—Convert Unsigned Integer to Scalar Double Precision Floating-Point Value......................... 5-151
VCVTUSI2SH—Convert Unsigned Doubleword Integer toan FPT16 Value.............cooiiiiiiiiii i 5-153
VCVTUSI2ZSS—Convert Unsigned Integer to Scalar Single Precision Floating-Point Value.......................... 5-155
VCVTUWZPH—Convert Packed Unsigned Word Integers to FP16 Values. ..o 5-157
VCVTW2PH—Convert Packed Signed Word Integers to FP16 Values. ...t 5-159
VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes............coovvvvvvnnnn. 5-161
VDIVPH—Divide Packed FPTB ValUBS\ e ettt ettt e e es 5-164
VDIVSH—Divide SCalar FPTB VAlUBSttt ettt e e e et 5-166
VDPBF16PS—Dot Product of BF16 Pairs Accumulated Into Packed Single Precision..................ccovoiiintt, 5-168
VERR/VERW—Verify a Segment for Reading or Writingvvviinii e 5-170

CONTENTS

PAGE

VEXPANDPD—Load Sparse Packed Double Precision Floating-Point Values From Dense Memory.................. 5-172
VEXPANDPS—Load Sparse Packed Single Precision Floating-Point Values From Dense Memory................... 5-174
VEXTRACTF128/VEXTRACTF32x4/VEXTRACTF64x2/VEXTRACTF32x8/VEXTRACTF64x4— Extract Packed

Floating-Point ValUS. . ..ot i e e e e e 5-176
VEXTRACTI128/VEXTRACTI32x4/VEXTRACTI64Xx2/VEXTRACTI32X8/VEXTRACTI64x4—Extract Packed Integer

ValUBS Lttt e e e 5-182
VFCMADDCPH/VFMADDCPH—Complex Multiply and Accumulate FP16 Valuesc.coviiviviiiiiiinnns, 5-188
VFCMADDCSH/VFMADDCSH—Complex Multiply and Accumulate Scalar FP16 Valuescooovvviiiiiiinnnn, 5-191
VFCMULCPH/VFMULCPH—Complex MUltiply FPTE ValUBS. v ettt et 5-193
VFCMULCSH/VFMULCSH—Complex Multiply Scalar FPTE Values. i 5-197
VFIXUPIMMPD—Fix Up Special Packed FI0atE4 ValUues.ottt 5-199
VFIXUPIMMPS—Fix Up Special Packed FI0at32 ValUESovvuiiiii ittt et e e e 5-203
VFIXUPIMMSD—Fix Up Special Scalar FIoate4 Value.oviuiii it 5-207
VFIXUPIMMSS—Fix Up Special Scalar FIOat32 ValUe . ..ottt 5-211
VFMADD132PD/VFMADD213PD/VFMADDZ231PD—Fused Multiply-Add of Packed Double Precision Floating-Point

ValUBS . . e e e e 5-215
VF[NJMADD[132,213,231]PH—Fused Multiply-Add of Packed FP16 Valuescovviiiiiiiii i, 5-222
VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single Precision Floating-Point

VAU . e e e e 5-228
VFMADD132SD/VFMADDZ213SD/VFMADD231SD—Fused Multiply-Add of Scalar Double Precision Floating-Point

ValUBS . et e e e 5-234
VF[NJMADD[132,213,231]SH—Fused Multiply-Add of Scalar FP16 Valuescoviiiiiiiiiiiiiiienn, 5-237
VFMADD132SS/VFMADD213SS/VFMADD231SS—Fused Multiply-Add of Scalar Single Precision Floating-Point

ValUBS ottt e e e e 5-240
VFMADDSUB132PD/VFMADDSUBZ213PD/VFMADDSUB231PD—Fused Multiply-Alternating Add/Subtract of

Packed Double Precision FIoating-Point Values.vu i e 5-243
VFMADDSUB132PH/VFMADDSUBZ213PH/VFMADDSUBZ231PH—Fused Multiply-Alternating Add/Subtract of

Packed FP 1B ValUBS. . . vttt e e e e e e e e 5-251
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fused Multiply-Alternating Add/Subtract of

Packed Single Precision FIoating-Point Values.voi i e 5-256
VFMSUB132PD/VFMSUB213PD/VFMSUBZ231PD—Fused Multiply-Subtract of Packed Double Precision

Floating-Point Values.o e e 5-264
VF[NJMSUB[132,213,231]PH—Fused Multiply-Subtract of Packed FP16 Values..............cvvvviiiiiinnnnn. 5-271
VFMSUB132PS/VFMSUB213PS/VFMSUB23 1PS—Fused Multiply-Subtract of Packed Single Precision

Floating-Point ValUS. . ..ot i e e e e e 5-277
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD—Fused Multiply-Subtract of Scalar Double Precision

Floating-Point Values. . .. oo e e 5-284
VF[NJMSUB[132,213,231]SH—Fused Multiply-Subtract of Scalar FP16Valuescccoviviviiiiiiiinnnnn, 5-287
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single Precision

Floating-Point ValUS. . ..ot i e i e e e e 5-290
VFMSUBADD132PD/VFMSUBADDZ213PD/VFMSUBADD231PD—Fused Multiply-Alternating Subtract/Add of

Packed Double Precision FIoating-Point Values.ot e 5-293
VFMSUBADD132PH/VFMSUBADDZ2 13PH/VFMSUBADDZ231PH—Fused Multiply-Alternating Subtract/Add of

Packed FPTB ValUBS. . .. ettt et e e 5-300
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS—Fused Multiply-Alternating Subtract/Add of

Packed Single Precision Floating-Point Values.t e et e 5-305
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD—Fused Negative Multiply-Add of Packed Double Precision

Floating-Point Values.o i e e e e 5-313
VFNMADD132PS/VFNMADDZ213PS/VFNMADD231PS—Fused Negative Multiply-Add of Packed Single Precision

Floating-Point Values.o e 5-320
VFNMADD132SD/VFNMADDZ213SD/VFNMADDZ231SD—Fused Negative Multiply-Add of Scalar Double Precision

FIoating-POINt ValUES oo e e e 5-327
VFNMADD132SS/VFNMADD213SS/VFNMADD231SS—Fused Negative Multiply-Add of Scalar Single Precision

Floating-Point Values.o i e e e 5-330
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD—Fused Negative Multiply-Subtract of Packed Double

Precision FIoating-Point ValUesouiui i e 5-333
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused Negative Multiply-Subtract of Packed Single

Precision FIoating-Point ValUESovi e 5-340

Vol. 2A Xv

CONTENTS

Xvi Vol. 2A

VFNMSUB132SD/VFNMSUBZ213SD/VFNMSUB231SD—Fused Negative Multiply-Subtract of Scalar Double

Precision FIoating-Point ValUes.ottt e e e 5-347
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of Scalar Single

Precision FIoating-Point ValUues.o i i e e 5-350
VFPCLASSPD—Tests Types of Packed FIOatB4 ValUeSoviiiii et 5-353
VFPCLASSPH—Test Types of Packed FPTE ValUBSvuiuittt ittt 5-356
VFPCLASSPS—Tests Types of Packed FI0at32 ValUES ovoviiiit et 5-359
VFPCLASSSD—Tests Type of a Scalar FIoate4 Valueoovriiii e 5-361
VFPCLASSSH—Test Types of Scalar FP1B VaAlUESoov i i 5-363
VFPCLASSSS—Tests Type of a Scalar FIoat32 Value.o. oo e 5-364
VGATHERDPD/VGATHERQPD—Gather Packed Double Precision Floating-Point Values Using Signed

DWOTd/QWOTA INAICES .+« e v e ettt ettt e e e e e e e e 5-366
VGATHERDPS/VGATHERDPD—Gather Packed Single, Packed Double with Signed Dword Indices 5-370
VGATHERDPS/VGATHERQPS—Gather Packed Single Precision Floating-Point Values Using Signed

DWOTd/ QWO NAICES .« ot vt ettt ettt et e e e e e e e e e e 5-373
VVGATHERQPS/VGATHERQPD—Gather Packed Single, Packed Double with Signed Qword Indices.................. 5-377
VGETEXPPD—Convert Exponents of Packed Double Precision Floating-Point Values to Double Precision

Floating-Point Valueso e e e 5-380
VGETEXPPH—Convert Exponents of Packed FP16 Values to FPT16Values..........ccoviiiiiiiiii i 5-384
VGETEXPPS—Convert Exponents of Packed Single Precision Floating-Point Values to Single Precision

FIoating-PoINt ValUES oo e e e e 5-387
VVGETEXPSD—Convert Exponents of Scalar Double Precision Floating-Point Value to Double Precision

Floating-Point ValUeo i i e e e e 5-391
VGETEXPSH—Convert Exponents of Scalar FP16 Values to FP16Values ...t 5-393
VGETEXPSS—Convert Exponents of Scalar Single Precision Floating-Point Value to Single Precision

Floating-Point Valueo e e 5-395
VGETMANTPD—Extract Float64 Vector of Normalized Mantissas From Float64 Vector.............cccovvvvvnnnns. 5-397
VGETMANTPH—Extract FP16 Vector of Normalized Mantissas from FP16 Vector...........covvvvviiiviiivinnns, 5-401
VGETMANTPS—Extract Float32 Vector of Normalized Mantissas From Float32 Vector............coovvvvvvnvnnnn, 5-405
VGETMANTSD—Extract Float64 of Normalized Mantissa From Float64 Scalar.............oovviiii e, 5-408
VGETMANTSH—Extract FP16 of Normalized Mantissa from FP16 Scalar...........coovieiiiiii i 5-410
VGETMANTSS—Extract Float32 Vector of Normalized Mantissa From Float32 Scalar..............coovvivnvnnns, 5-412
VINSERTF128/VINSERTF32x4/VINSERTFE64x2/VINSERTF32x8/VINSERTF64x4—Insert Packed Floating-Point

VaIUBS .. e e e 5-414
VINSERTI128/VINSERTI32x4/VINSERTI64X2/VINSERTI32X8/VINSERTI64X4—Insert Packed Integer Values 5-419
VMASKMOV—Conditional SIMD Packed Loads and STOMESovuvtiitii et e 5-424
VMAXPH—Return Maximum of Packed FPTB ValUBS.vuiii e 5-427
VMAXSH—Return Maximum of Scalar FPTO ValUBSot e 5-429
VMINPH—Return Minimum of Packed FPTE ValUESottt 5-431
VMINSH—Return Minimum Scalar FPTE ValUeo i 5-433
VMOVSH—MOVE SCalar FPTB ValUe. . ..ottt et e e 5-435
VMOVIW—MOVE WO . . ettt ettt e e e ettt et e e e 5-437
VMULPH—MUItiply Packed FP 16 ValUBS.ottt ettt e as 5-438
VMULSH—MUItIPlY SCalar FPTB ValUBS. . ..ot v ettt et e et es 5-440
VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a Pair of Mask

=0 L] =] 5-442
VPBLENDD—BIENd Packed DWOIASttt e e e e et e e e e st es 5-444
VPBLENDMB/VPBLENDMW—BIlend Byte/Word Vectors Using an Opmask Control............coviviiiiiennnnnn.. 5-446
VPBLENDMD/VPBLENDMQ—BIlend Int32/Int64 Vectors Using an OpMask Controlcoovviiiiiiinnnnnnss 5-448
VPBROADCAST—Load Integer and BroadCastvuriti ettt ettt aaes 5-451
VPBROADCASTB/W/D/Q—Load With Broadcast Integer Data From General Purpose Register 5-460
VPBROADCASTM—Broadcast Mask to Vector Registero 5-463
VPCMPB/VPCMPUB—Compare Packed Byte Values INTOMasko e 5-465
VPCMPD/VPCMPUD—Compare Packed Integer Values INtoOMask.ovviiiiii e 5-468
VPCMPQ/VPCMPUQ—Compare Packed Integer Values INTOMasKo.vvniiniii i 5-471
VPCMPW/VPCMPUW—Compare Packed Word Values INto Mask.ooviiii i 5-474
VPCOMPRESSB/VCOMPRESSW—Store Sparse Packed Byte/Word Integer Values Into Dense Memory/Register5-477
VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values Into Dense Memory/Register.................. 5-480

CONTENTS

PAGE

VPCOMPRESSQ—Store Sparse Packed Quadword Integer Values Into Dense Memory/Register 5-482
VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values Into Dense Memory/ Register. 5-484
VPDPB[SU,UU,SS]D[,S]—Multiply and Add Unsigned and Signed Bytes With and Without Saturation............... 5-487
VPDPBUSD—Multiply and Add Unsigned and Signed Bytes. ... 5-490
VVPDPBUSDS—Multiply and Add Unsigned and Signed Bytes With Saturationccoiiiiiiiiin . 5-493
VPDPWSSD—Multiply and Add Signed Word INTEGErSo.vi ittt et 5-496
VPDPWSSDS—Muiltiply and Add Signed Word Integers With Saturationcoi i 5-498
VPDPWI[SU,US,UU]D[,S]—Multiply and Add Unsigned and Signed Words With and Without Saturation.............. 5-500
VPERM2F128—Permute Floating-Point Values. . ..ot e 5-503
VPERMZI128—Permute INteger ValUES.t e e 5-505
VPERMB—Permute Packed Bytes Elementsot i et e e 5-507
VPERMD/VPERMW—Permute Packed Doubleword/Word Elements ..o 5-509
VPERMIZ2B—Full Permute of Bytes From Two Tables Overwritingthe Indexcccociiiiiiiiii e, 5-512
VPERMI2W/D/Q/PS/PD—Full Permute From Two Tables OverwritingtheIndexcccoviviiiiiiiiiinnns, 5-514
VPERMILPD—Permute In-Lane of Pairs of Double Precision Floating-Point Values..................coooiiiinns 5-520
VPERMILPS—Permute In-Lane of Quadruples of Single Precision Floating-Point Values........................... 5-526
VPERMPD—Permute Double Precision Floating-Point Elements ...t 5-531
VPERMPS—Permute Single Precision Floating-Point Elements. e 5-535
VPERMQ—Qwords Element PermULation. v.vur ettt e e e 5-538
VPERMT2B—Full Permute of Bytes From Two Tables Overwritinga Table.............cocviiiiii i, 5-542
VPERMT2W/D/Q/PS/PD—Full Permute From Two Tables OverwritingOne Table.............cooviiiiii i, 5-544
VPEXPANDB/VPEXPANDW—Expand Byte/Word ValUESc.iiuiiteitiii it 5-550
VPEXPANDD—Load Sparse Packed Doubleword Integer Values From Dense Memory/Register.................... 5-553
VPEXPANDQ—Load Sparse Packed Quadword Integer Values From Dense Memory/Register 5-555
VPGATHERDD/VPGATHERDQ—Gather Packed Dword, Packed Qword With Signed Dword Indices 5-557
VPGATHERDD/VPGATHERQD—Gather Packed Dword Values Using Signed Dword/Qword Indices................. 5-560
VPGATHERDQ/VPGATHERQQ—Gather Packed Qword Values Using Signed Dword/Qword Indices................. 5-564
VPGATHERQD/VPGATHERQQ—Gather Packed Dword, Packed Qword with Signed Qword Indices 5-568
VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values. 5-571
VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Unsigned Integers and Add High 52-Bit Products to 64-Bit

LYoo 1] =1 o] 5-574
VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the Low 52-Bit Products to Qword

ACCUMUIRTOTS . .« o ot e e e e e e e e 5-577
VPMASKMOV—Conditional SIMD Integer Packed Loads and STOresSoouiiriiiiiii e 5-580
VPMOVB2M/VPMOVW2M/VPMOVD2M/VPMOVQ2M—Convert a Vector RegistertoaMask 5-583
VPMOVDB/VPMOVSDB/VPMOVUSDB—Down Convert DWord to BYTe . ..o vvvivii i i 5-586
VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord toWordvvvvvvii i iienees 5-590
VPMOVM2B/VPMOVM2W/VPMOVMZ2D/VPMOVM2Q—Convert a Mask Register to a Vector Register 5-594
VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byteovvvivii i 5-598
VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to DWord..........covvvieii e 5-602
VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord toWordcovviiiiiiiiiiii s 5-606
VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word toByteoovvviiiiiiii i 5-610
VPMULTISHIFTQB—Select Packed Unaligned Bytes From QUadword SOUMCESvvvvvriieiiniiiiiainnes 5-614
VPOPCNT—Return the Count of Number of Bits Set to 1 in BYTE/WORD/DWORD/QWORD.c.vvvvvvnnn. 5-616
VPROLD/VPROLVD/VPROLQ/VPROLVQ—Bit Rotate Left ..o e 5-620
VPRORD/VPRORVD/VPRORQ/VPRORVQ—BIit Rotate Rightovii e 5-624
VPSCATTERDD/VPSCATTERDQ/VPSCATTERQD/VPSCATTERQQ—Scatter Packed Dword, Packed Qword with

Signed Dword, Signed QWOrd INGICESo e vt e e 5-628
VPSHLD—Concatenate and Shift Packed Data Left Logical..........c.vviiiiiiiii e 5-632
VPSHLDV—Concatenate and Variable Shift Packed Data Left Logicalccooviiiiiiiiiiiiiii i 5-635
VPSHRD—Concatenate and Shift Packed Data Right Logical ..ot e 5-638
VPSHRDV—Concatenate and Variable Shift Packed Data Right Logical..............coooiiiiiiii 5-641
VPSHUFBITQMB—Shuffle Bits From Quadword Elements Using Byte Indexes Into Mask 5-644
VPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logicalvvuiviiii e 5-646
VPSRAVW/VPSRAVD/VPSRAVQ—Variable Bit Shift Right Arithmetic...........coviiii i 5-651
VPSRLVW/VPSRLVD/VPSRLVQ—Variable Bit Shift Right Logicalovviiiii e 5-656
VPTERNLOGD/VPTERNLOGQ—Bitwise TerNary LOGIC. . .« v v vt ettt e ettt n i eaaas 5-661
VPTESTMB/VPTESTMW/VPTESTMD/VPTESTMQ—Logical AND and SetMaskooiiiiiiiiiii i 5-664
VPTESTNMB/W/D/Q—Logical NAND and Set oot e e e 5-667

Vol. 2A Xvii

CONTENTS

PAGE
VRANGEPD—Range Restriction Calculation for Packed Pairs of Float64 Values............cooviviiiiiiiiiinnnns, 5-671
VRANGEPS—Range Restriction Calculation for Packed Pairs of Float32 Values...........covvviviiiiiiiiiinnnn, 5-675
VRANGESD—Range Restriction Calculation From a Pair of Scalar Float64 Valuesccoovviiiiiiiiiinnnss 5-678
VRANGESS—Range Restriction Calculation From a Pair of Scalar Float32 Valuescovvviviiiiiiiinnns 5-681
VRCP14PD—Compute Approximate Reciprocals of Packed Float64 Values................cccoiiiiiiiiiiiiiinanns, 5-684
VRCP14PS—Compute Approximate Reciprocals of Packed Float32 Values..............cocoiiiiiiiiiiiii it 5-686
VRCP14SD—Compute Approximate Reciprocal of Scalar Float64 Value.............ccooi it 5-689
VRCP14SS—Compute Approximate Reciprocal of Scalar Float32 Value ..o e 5-691
VRCPPH—Compute Reciprocals of Packed FPTE ValUES.vviiit et 5-693
VRCPSH—Compute Reciprocal of Scalar FP1B Valueoveir e 5-695
VREDUCEPD—Perform Reduction Transformation on Packed Float64 Valuescovvviiiiiiiiiiiinnnnnnn, 5-696
VREDUCEPH—Perform Reduction Transformation on Packed FP16 Values.ccovviviiiiin i 5-699
VREDUCEPS—Perform Reduction Transformation on Packed Float32 Values.covviiiiiiiiiiiiinninnns, 5-702
VREDUCESD—Perform a Reduction Transformation on a Scalar Float64 Value ... e, 5-704
VREDUCESH—Perform Reduction Transformation on Scalar FPT6 Value..........covviiiiii i 5-706
VREDUCESS—Perform a Reduction Transformation on a Scalar Float32 Value ..o 5-708
VRNDSCALEPD—Round Packed Float64 Values to Include a Given Number of Fraction Bits 5-710
VRNDSCALEPH—Round Packed FP16 Values to Include a Given Number of Fraction Bitscoovvvvnns 5-713
VRNDSCALEPS—Round Packed Float32 Values to Include a Given Number of Fraction Bits 5-716
VRNDSCALESD—Round Scalar Float64 Value to Include a Given Number of FractionBits0e. 5-719
VRNDSCALESH—Round Scalar FP16 Value to Include a Given Number of Fraction Bits....................covvnet 5-722
VRNDSCALESS—Round Scalar Float32 Value to Include a Given Number of Fraction Bits.......................... 5-724
VRSQRT14PD—Compute Approximate Reciprocals of Square Roots of Packed Float64 Values.................... 5-727
VRSQRT14PS—Compute Approximate Reciprocals of Square Roots of Packed Float32 Values.................... 5-729
VRSQRT14SD—Compute Approximate Reciprocal of Square Root of Scalar Float64 Value.....................es 5-731
VRSQRT14SS—Compute Approximate Reciprocal of Square Root of Scalar Float32 Value 5-733
VRSQRTPH—Compute Reciprocals of Square Roots of Packed FP16 Values.coooiiiiiiiiiiiiiiiii s 5-735
VRSQRTSH—Compute Approximate Reciprocal of Square Root of Scalar FP16 Value............oooviiiviinennt, 5-737
VSCALEFPD—Scale Packed Floatb64 Values With FIoatb4 Values.ovvei e 5-738
VSCALEFPH—Scale Packed FP16 Values with FPTB ValUEScovii e 5-741
VSCALEFPS—Scale Packed Float32 Values With FIoat32 Values.ovvvi v 5-744
VSCALEFSD—Scale Scalar Float64 Values With FIoat64 Values.ovvri i 5-747
VSCALEFSH—Scale Scalar FP16 Values With FPTE ValUes. 5-749
VSCALEFSS—Scale Scalar Float32 Value With FIoat32 Value v v 5-751
VSCATTERDPS/VSCATTERDPD/VSCATTERQPS/VSCATTERQPD—Scatter Packed Single Precision, Packed Double
Precision Floating-Point Values with Signed Dword and Qword Indicescoovviiiiiiiiiiinnenen. 5-753

VSHA512MSG1—Perform an Intermediate Calculation for the Next Four SHA512 Message Qwords 5-757
VSHA512MSG2—Perform a Final Calculation for the Next Four SHA512 Message Qwords.covvvvvvinnnns. 5-759
VSHA512RNDS2—Perform Two Rounds of SHAST2 Operationuuvuiuiininiiiiiiiiiiiiiiiiiieiennns 5-761
VSHUFF32x4/VSHUFF64x2/VSHUFI32x4/VSHUFI64x2—Shuffle Packed Values at 128-Bit Granularity........... 5-763
VVSM3MSG1—Perform Initial Calculation for the Next Four SM3 Message Words.covvviiiiiiiiienannns. 5-768
VVSM3MSG2—Perform Final Calculation for the Next Four SM3 Message Words.coviiiiiiiiiieannns, 5-770
VSM3RNDS2—Perform Two Rounds of SM3 Operationoviiiiiiiii ittt ieees 5-772
VSM4KEY4—Perform Four Rounds of SM4 Ky EXPaNSiON vvvutin et 5-774
VSM4RNDS4—Performs Four Rounds of SM4 ENCrYPtionvuvtin e 5-776
VSQRTPH—Compute Square Root of Packed FPTE ValUESovviiii i 5-778
VSQRTSH—Compute Square Root of Scalar FPTE ValUevvvi i 5-780
VSUBPH—SUDtract Packed FPTE ValUBSttt et e et e e e 5-781
VSUBSH—SUDTract Scalar FPTB ValUeot 5-783
VTESTPD/VTESTPS—Packed Bit ToSt. .. vttt e e 5-784
VUCOMISH—Unordered Compare Scalar FP16 Values and Set EFLAGSc.vviiiiiii it 5-787
VZEROALL—Zero XMM, YMM, and ZMM REGISTETSttt ettt e es 5-789
VZEROUPPER—Zero Upper Bits of YMM and ZMM REGISTEIS ...\ vvvii ettt ieaaes 5-790

CHAPTER 6

INSTRUCTION SET REFERENCE, W-Z

6.1 INSTRUCTIONS (W) vttt ittt ettt ettt e ettt e e e e et e e e e e et e e e ety 6-1
A T AL T it ettt e et e e e e 6-2
WBINVD—Write Back and INnvalidate Cachec. vt e 6-3

Xxviii Vol. 2A

CONTENTS

PAGE
WBNOINVD—Write Back and Do Not Invalidate Cache.ovuvie e 6-5
WRFSBASE/WRGSBASE—Write FS/GS SegmMEnt Base ... vvititi i 6-7
WRMSR—Write to Model SPecific REGISTEr e 6-9
WRMSRLIST—Write List of Model Specific REGISTErSt e e 6-11
WRMSRNS—Non-Serializing Write to Model Specific RegiSter.vii i e 6-13
WRPKRU—Write Data to User Page Key REGISTEI.\ ut ittt e ettt n i eaaas 6-15
WRSSD/WRSSQ—Write 10 Shadow STaCK. . ..ttt e e 6-17
WRUSSD/WRUSSQ—Write to User Shadow Stack.ovvuii i e 6-19
XABORT—Transactional ADOmTttt ettt et et et e e e e ees 6-21
XACQUIRE/XRELEASE—Hardware Lock Elision Prefix HINtSo e 6-23
XADD—EXChaNge and Addoii i e e e 6-27
XBEGIN—Transactional BegiN v ittt it e e et et e i s 6-29
XCHG—Exchange Register/Memory With RegISter.viii i e 6-32
XEND—TransaCtional BN vttt e e e e e e 6-34
XGETBV—Get Value of Extended Control REgiSTer ... uvvuiu i e e 6-36
XLAT/XLATB—Table Look-Up TransIation. vt ees 6-38
XOR—L0GICal EXCIUSIVE DR . . ittt ettt e et e et e ettt e s 6-40
XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values.cocoiiiiiiients, 6-42
XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values. ...t 6-45
XRESLDTRK—Resume Tracking Load AdAreSSESttt et aaes 6-48
XRSTOR—Restore Processor EXtended Stateso.vui it 6-49
XRSTORS—Restore Processor Extended States SUPEIVISON. v. ettt ens 6-54
XSAVE—Save Processor EXTENAEd STatesvuiiir it 6-58
XSAVEC—Save Processor Extended States With Compaction ...t i 6-61
XSAVEOPT—Save Processor Extended States Optimizedovirir it e 6-64
XSAVES—Save Processor Extended STates SUPBIVISOT ... u vttt i aees 6-67
XSETBV—Set Extended Control REGISTEr ...\ttt e e 6-70
XSUSLDTRK—Suspend Tracking Load AdAreSSES v ittt ettt et e eens 6-72
XTEST—Test if in Transactional EXECUTION . . .\ v vttt et e e e e e 6-73
CHAPTER 7
SAFER MODE EXTENSIONS REFERENCE
7.1 OV RV B oottt et e e e e e e e e e 7-1
7.2 I U O 10 I 7-1
7.2.1 Detecting and ENabling SMX ...ttt e e 7-1
722 SMX INSTIUCTION SUMMIEIY. « ot o vt e ettt e et e e et e e et et e e et et e e e et et e e e e 7-2
7.2.2.1 GET SEC AP ABILI T ES] v vttt ettt ettt et e e et et e e et e e e e et e et 7-3
7.2.2.2 GET S B ENTERAC S - . vttt ettt et et et ettt et ettt et et et e e e 7-3
7223 L S I S0, 172 7-3
7224 GET S B SENT R .« vttt ettt ettt e ettt et et e e e et e 7-4
7.2.2.5 L0 I =101 =3 S 7-4
7226 GET S B P ARAMET ER S . vt vttt ettt ettt e e et et ettt et e e et e 7-4
7.22.7 L0 S I =0 1 (O 1 7-4
7.2.28 L I L0 2 7-4
7.2.3 Measured ENVIrONMENT @nd SMX ... e e e e 7-5
7.3 GETSEC LEAF FUNCTIONS . .« ettt ettt ettt et ettt et et e e e et e e e et et e e et e eaas 7-5
GETSEC[CAPABILITIES]—Report the SMX Capabilities. vv vt i e 7-7
GETSEC[ENTERACCS]—Execute Authenticated Chipset Code.vv vttt e 7-10
GETSEC[EXITAC]—EXxit Authenticated Code EXECUTION MOAE v v it 7-18
GETSEC[SENTER]—ENter a Measured ENVITOnmMIENt . ..ottt i e vttt i it ieaaes 7-21
GETSECISEXIT]—EXit Measured ENVITONmMIENtttt ittt ettt i ettt ae e neaees 7-30
GETSEC[PARAMETERS]—Report the SMX Parametersvuvi ittt et iaeees 7-33
GETSECISMCTRLI=SMX MO CONTIOl . .ot e vttt et ettt ettt e e e e e e ees 7-37
GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured ENVIrONMENt. iiiiineiann 7-40
CHAPTER 8
INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
PREFETCHWT 1—Prefetch Vector Data Into Caches With Intent to Writeand TTHint.............ooviiii it 8-2
V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-lterations)............... 8-4
VAFMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations) 8-6

Vol. 2A Xix

CONTENTS

PAGE
VEXP2PD—Approximation to the Exponential 2”x of Packed Double Precision Floating-Point Values With Less
Than 2723 ReIGTIVE BT 0T . ..ottt ettt e e e e e e e et e 8-8
VEXP2PS—Approximation to the Exponential 2”x of Packed Single Precision Floating-Point Values With Less
Than 27 -23 ReIatIVE B O ..\ttt e e e e e e e 8-10
VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHERPFOQPD—Sparse Prefetch Packed SP/DP
Data Values With Signed Dword, Signed Qword Indices Using TOHINt.o 8-12
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP
Data Values With Signed Dword, Signed Qword Indices Using TT Hint. 8-14
VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations).............. 8-16
VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-lterations)coocovvviiiininen. 8-18
VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less
THaN 2728 ReIGTIVE BT 0T v\ttt ettt e e e e et e 8-20
VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less
Than 27 -28 ReIaTIVE BT Or ...ttt ettt e e e e e e e 8-22
VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less
Than 27 -28 RelatiVE B 0T ...ttt e e e e e e e 8-24
VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less
BT LAl S B = Y= = o] P 8-26
VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point
Values With Less Than 27-28 Relative BrTOr v ettt e 8-28
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point
Value With Less Than 27-28 Relative ErTOr vv ettt ne e 8-30
VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point
Values With Less Than 27-28 Relative ErTOr vu ettt e et 8-32
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point
Value With Less Than 27-28 Relative ErTOrv .o v ettt 8-34
VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCATTERPFOQPD—Sparse Prefetch Packed
SP/DP Data Values with Signed Dword, Signed Qword Indices Using TO Hint With Intent to Write 8-36
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed
SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint With Intent to Write............ 8-38
APPENDIX A
OPCODE MAP
Al USING OPCODE TABLES . .ottt ittt ettt et ettt e e e e et e e e e e e e et et e A-1
A2 KEY TO ABBREVIATIONS . . . ettt ettt et et et et e et et et et et et et et et e e a e et A-1
A2 Codes for Addressing Methiodocu et e e e e A-1
A2.2 00T [T o 0= = i Ta I 5770 A-2
A23 L2 5 (= 00T [P A-3
A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodesc.vviiiiiiiiiii e A-3
A24.1 One-Byte OpCode INS UG ONS. . . ottt e e e e e e e A-3
A24.2 TWO-Byte OpCode INStUCTIONS ...ttt ittt e e e e A-4
A243 Three-Byte Opcode INSITUCTIONSo vt e e e ee s A-5
A244 VEX PrEfiX NSt UG ONS . vttt e e e e e et e e e A-5
A25 Superscripts Utilized in Opcode Tables v i e s A-6
A3 ONE, TWO, AND THREE-BYTE OPCODE MAPS . . . ottt ittt ettt et e e e e e ey A-6
A4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES.\ttt et A-17
A4 Opcode Look-up Examples Using Opcode EXTENSIONS. ... v vttt ettt iaaes A-17
A4z Opcode EXTENSION Tableso e e e e A-17
A5 ESCAPE OPCODE INSTRUCTIONS. .« ottt ettt et e e et et e e e e e e e e e e e A-20
A5.1 Opcode Look-up Examples for Escape INStruction OpPCodes vvvv it ittt A-20
A5.2 Escape Opcode INSTrUCTION TAbIES e e e e e A-20
A5.21 Escape Opcodes With DB as FIrSt By e . ..o vu ittt i e e et et it A-20
A5.2.2 Escape Opcodes With DO @s FirSt Byt ... v v vv ittt i A-21
A5.23 Escape Opcodes With DA @S FirSt By . ..o .o v et A-22
A5.24 Escape Opcodes With DB as FIrSt By e ... iv i i e e ettt i e e A-23
A5.25 Escape Opcodes With DL as FirST BYTe vuitt ittt ittt eaaas A-24
A5.26 Escape Opcodes With DD @s FirSt Bytove i e A-25
A5.2.7 Escape Opcodes With DE @S FirSt Byo iii it i i e e e e e et i eeas A-26
A5.28 Escape Opcodes With DF As FIrST By e . .. v v vv ittt ittt ettt e e aeas A-27

XX Vol. 2A

CONTENTS

PAGE
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMA T . . ittt ettt ettt e et e e e et e e e et et e e et e B-1
B.1.1 LBOACY Pl e . o ittt i e e e e B-1
B.1.2]y = 1D B-2
B.1.3] ol o L= = o B-2
B.14 1Y L=Ta = N =] £ B-2
B.1.4.1 Reg Field (reg) for NON-64-Bit MOAESottt e B-3
B.14.2 Reg Field (reg) for B4-Bit MOGe.\ .ottt et e B-4
B.1.4.3 Encoding of Operand Size (W) Bit. ... o.iri i e B-4
B.144 SIGN-EXTENA (S) BT vttt e e e B-5
B.1.4.5 Segment Register (STeQ) FIeld. vt e e B-5
B.1.4.6 Special-Purpose Register (888) FIaldttt e B-5
B.1.4.7 Condition Test (TEtN) FIEld. . .. ot e e e e e e B-6
B.1.4.8 DIrECHION () Bit ..ottt e e e B-6
B.1.5 113 T=T 01 (=T3P B-6
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FORNON-64-BITMODESovviiiiiiiiiiiiaenns B-7
B.2.1 General Purpose Instruction Formats and Encodings for 64-BitMode.coiiii it B-18
B3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS ...ttt aee s B-37
B4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONSo B-37
B5 MMX INSTRUCTION FORMATS AND ENCODINGS . . . oottt ettt e e e e e B-38
B.5.1 GranUIBMITY FIEld (GQ) « oo ve ettt et e e e e B-38
B.5.2 MMX Technology and General-Purpose Register Fields (MMXregand reg).o.vvvrvviiiiiiiireiiiiienennn. B-38
B5.3 MMX Instruction Formats and ENCodings Table.ot i i B-38
B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS. .. oo vt aeens B-41
B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS .. .ottt e e e ee s B-41
B8 SSE INSTRUCTION FORMATS AND ENCODINGSottt e e ettt e e B-42
B9 SSEZ2 INSTRUCTION FORMATS AND ENCODINGS. . . oottt et e et e e e e s B-47
B.9.1 GranUIMtY FIBIA (GQ) « v v v v vttt et e e e et e e e e e B-47
B.10 SSE3 FORMATS AND ENCODINGS TABLE. ...ttt ettt e et e e e B-57
B.11 SSSE3 FORMATS AND ENCODING TABLE. ...ttt ettt ettt et e et e ee s B-58
B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS . .. oottt e B-60
B.13 SPECIAL ENCODINGS FOR B4-BIT MODE.ttt e et ettt et et et e e e B-61
B.14 SSE4.T FORMATS AND ENCODING TABLE ...ttt ettt et e et e e e e e e e ee s B-64
B.15 SSE4.2 FORMATS AND ENCODING TABLE . ..ttt ettt e e e e e eens B-69
B.16 AVX FORMATS AND ENCODING TABLE. . . ottt ettt ettt et ety B-70
B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGSttt et et e iaaeans B-108
B.18 VMX INSTRUCTIONS . . ottt et et e et et e e e e e e et e e et e e B-112
B.19 SMX INS T RUCTIONS .ottt et ettt e e e e e e et e e e e B-113
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C1 SIMPLE INTRINSICS ottt e e e e e e e e e e e e e e e C-2
C2 COMPOSITE INTRINSICS . . vttt ettt e et et e et e e e et e e e e e e e et et e r et e e C-14

Vol. 2A XxXi

CONTENTS

PAGE

FIGURES

Figure 2-1. Intel 64 and IA-32 Architectures INStruction FOrmat.o.vu ittt e 2-1
Figure 2-2. Table Interpretation of MOAR/M Byte (CBH) vt e 2-4
Figure 2-3. Prefix Ordering in B4-Dit MOGEottt e 2-8
Figure 2-4. Memory Addressing Without an SIB Byte; REX X NOTtUSEdo.vii it 2-9
Figure 2-5. Register-Register Addressing (No Memory Operand); REXXNotUsedcoviiiiiiiii i 2-9
Figure 2-6. Memory Addressing With @ SIB By eottt e e 2-10
Figure 2-7. Register Operand Coded in Opcode Byte; REXX & REXRNoOtUSEd . ..o vviviiiiii it 2-10
Figure 2-8. Instruction Encoding Format with VEX Prefixo e 2-13
Figure 2-9. VX DIt IS, . .t s 2-15
Figure 2-10. Intel® AVX-512 Instruction Format and the EVEX PrefiX ..o e 2-37
Figure 2-11. Bit Field Layout of the EVEX PrefiX. ... e i 2-37
Figure 3-1. Bit OffSet fOr BIT RAX, 2. et ettt ettt et e ettt et ettt et ettt 3-12
Figure 3-2. MEmMOTY Bit INAEXING. . .ottt e e e e 3-12
Figure 3-3. ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract..............coviiiiiii i 3-45
Figure 3-4. ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract. ...t 3-47
Figure 3-5. Memory Layout of BNDMOV t0/fTOmM MEMOTY . ..o v ettt ettt e ettt 3-117
Figure 3-6. Version Information Returned by CPUID INEAX. e it e 3-248
Figure 3-7. Feature Information Returned in the ECX REGISTErv ittt et 3-250
Figure 3-8. Feature Information Returned in the EDX ReGISTEIo\ttt e e 3-252
Figure 3-9. Determination of Support for the Processor Brand String..........c.ovviriiiiii e 3-262
Figure 3-10. Algorithm for Extracting ProCessor FTEQUENCY uvuvrtt et et ettt et et e e ettt ettt e aeaeaaanes 3-263
Figure 3-11. CVTDQZ2PD (VEX.256 NCOAEA VEISION) . .ttt vvtt sttt ettt ettt e e e ettt e e e e e aees 3-275
Figure 3-12. VCVTPD2DQ (VEX.256 encoded VEISION).o v vttt ettt et et et e e et e e et es 3-281
Figure 3-13. VCVTPDZ2PS (VEX.256 eNCOAed VEISION) . . .o\ttt ettt e et ettt e e e e e et e e e r e ne e e eees 3-286
Figure 3-14. CVTPS2PD (VEX.256 eNCOTEA VEISION) . v\t vttt sttt e e e ettt e e e ettt e aees 3-295
Figure 3-15. VCVTTPD2DQ (VEX.256 encoded VEISION) ...t v vt e ttttt it e et et e e e e e e e e e e a e eaaees 3-312
Figure 3-16. 64-Byte Data Written 10 ENQUEUE REGISTEIS ...\ttt ittt i e it it e e aaas 3-356
Figure 3-17. HADDPD—Packed Double Precision Floating-Point Horizontal Add............c.oviiii i 3-493
FIure 3-18. VHADDPD OPeration. ... v ettt ittt ettt e et e e e e e e et e et et et 3-494
Figure 3-19. HADDPS—Packed Single Precision Floating-Point Horizontal Addt 3-497
FIgure 3-20. VHADDPS OPeration . . vttt ettt ettt et e s et e e e e et e e e e 3-497
Figure 3-21. HSUBPD—Packed Double Precision Floating-Point Horizontal Subtract. ... 3-502
FIgure 3-22. VHSUBP D 0P ation . v vttt ittt it ettt ittt e ettt ettt e e e et et e e e et e e e e e 3-503
Figure 3-23. HSUBPS—Packed Single Precision Floating-Point Horizontal Subtract.............cooii i 3-506
FIQure 3-24. VHSUBPS Operation v ettt ettt e e et e e e e e et e e et et 3-506
FIgure 3-25. INV P CI D DS P Or ottt ittt ittt e et et e e e et e e e e e e e 3-546
Figure 4-1. Operation of PCMPSTRX @nd PCOMPES TRX . .o\ttt 4-6
Figure 4-2. VMOVDDUP OPeIation . . .o v sttt et ettt et ettt e e e et et e et et e et e 4-56
Figure 4-3. L (O NY A 10 @0 1] - 11 o 3 4-120
Figure 4-4. OV A BB 11 = @ 0T = o P 4-123
Figure 4-5. 256-Dit VMPSADBW OPBIation . .o vttt vttt ettt et e e et et e e e e 4-141
Figure 4-6. Operation of the PACKSSDW Instruction Using 64-Bit Operands.oviiiiiiiiiiiiiiiiiiiiieianannss 4-191
Figure 4-7. 256-bit VPALIGN INSTruCtion OPeration vttt ittt e e et 4-224
Figure 4-8. PP EXAMIPIE. . .ottt e e e 4-280
Figure 4-9. o3 G I == 1110 (= 4-282
Figure 4-10. 256-bit VPHADDD INSTruction OPerationvvutt ettt ettt et 4-293
Figure 4-11. PMADDWD Execution Model Using 64-bit Operands.ovuiriniiei i 4-312
Figure 4-12. PMULHUW and PMULHW Instruction Operation Using 64-bit Operandsccooiiiiiiiiiiiiiiiiiiiennns 4-378
Figure 4-13. PMULLU Instruction Operation Using 64-bit Operandso.vviiiiiiiii ittt 4-390
Figure 4-14. PSADBW Instruction Operation Using 64-bit Operands.c.viriiiiiiii i 4-417
Figure 4-15. PSHUFB With 64-Bit Operands c.vitiii it i i ittt ettt i aeaaas 4-422
Figure 4-16. 256-bit VPSHUFD INSTruCtion OPerationuutt ittt e e e eaees 4-425
Figure 4-17. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operandccooviiiiiiiiiiiinnnnns, 4-444
Figure 4-18. PSRAW and PSRAD Instruction Operation Usinga 64-bit Operand ...ttt 4-455
Figure 4-19. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operandcccoviviiiiiiiiiniiiienannn, 4-468
Figure 4-20. PUNPCKHBW Instruction Operation Using 64-bit Operands.vvuiiiiriiii i 4-502
Figure 4-21. 256-bit VPUNPCKHDQ INStruction Operation.vuurirettr e ene e eees 4-502
Figure 4-22. PUNPCKLBW Instruction Operation Using 64-bit Operands............covririiiiiiiii ittt ienieianannns 4-512
Figure 4-23. 256-bit VPUNPCKLDQ INSTruction Operationu.vu'ititet ettt aees 4-512
Figure 4-24. Bit Control Fields of Immediate Byte for ROUNDXX INStructioncoiiiiiiii ittt ieieeenss 4-581
Figure 4-25. 256-bit VSHUFPD Operation of Four Pairs of Double Precision Floating-Point Values.......................... 4-643
Figure 4-26. 256-bit VSHUFPS Operation of Selection from Input Quadruplet and Pair-wise Interleaved Result 4-648

XXxii Vol. 2A

CONTENTS

PAGE
Figure 4-27. VUNPCKHPS OPBIation v vttt ettt et et ettt e e et ettt e e e e ettt e e aees 4-741
Figure 4-28. VUNPCKLPS OPErationttt et e sttt et e et e e e et e e et et e e et e e e e 4-749
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded VErSION) ... vvueei et ieaenens 5-19
Figure 5-2. VBROADCASTSS Operation (VEX.128-Dit VEISION) . ..o v v vttt ettt e 5-19
Figure 5-3. VBROADCASTSD Operation (VEX.256-Dit VErSion).euvui e 5-19
Figure 5-4. VBROADCASTF128 Operation (VEX.256-bit VEISION)v vt e 5-19
Figure 5-5. VBROADCASTF64X4 Operation (512-bit version with writemask all 1S)........coooviiiii i 5-20
Figure 5-6. VCVTPHZPS (128-Dit VEISION) .+ vttt ettt ettt e e e et e ettt e e e et e e e 5-61
Figure 5-7. VCVTPSZ2PH (128-Dit VEISION) .« vt vttt ettt ettt et e e et e et et e et et e et 5-75
Figure 5-8. 64-bit Super Block of SAD Operation in VDBPSADBW.iuititi et 5-162
Figure 5-9. VFIXUPIMMPD Immediate Control DesCription vttt ieaees 5-201
Figure 5-10. VFIXUPIMMPS Immediate Control Descriptionottt et ettt aeas 5-205
Figure 5-11. VFIXUPIMMSD Immediate Control DesCriptionovuvr ittt et ieaes 5-209
Figure 5-12. VFIXUPIMMSS Immediate Control DesCriptionvu ettt aees 5-213
Figure 5-13. Imm8 Byte Specifier of Special Case Floating-Point Values for VFPCLASSPD/SD/PS/SS. ... vvviiiinn.t. 5-353
Figure 5-14. VGETEXPPS Functionality On Normal INput Values.ouiii e 5-388
Figure 5-15. Imm8 Controls for VGETMANT PD/SD/PS/SS. ... e 5-397
Figure 5-16. VPBROADCASTD Operation (VEX.256 encoded VErsion)uuuirvrereiiii it nenneieieaenes 5-453
Figure 5-17. VPBROADCASTD Operation (128-Dit VErSiON) vv ittt 5-453
Figure 5-18. VPBROADCASTQ Operation (256-Dit VErSION) v vttt 5-454
Figure 5-19. VBROADCASTI128 Operation (256-Dit VErSion)vviriri i e 5-454
Figure 5-20. VBROADCASTIZ256 Operation (512-Dit VErSiON) ... vvveui et 5-454
Figure 5-27. VPERMZF T 28 O ation . .. vttt vttt ettt e et e e e e ettt e e e et e 5-503
Figure 5-22. VPERMZIT 28 OPBration ... vttt ittt ittt ettt et ettt e e 5-505
Figure 5-23. VPERMILPD ODBration . . vttt ittt ettt ettt ettt e e e ettt e e e e e 5-521
Figure 5-24. VPERMILPD ShUffle Control. . ..ottt e e e e e e e e 5-521
Figure 5-25. VPERMILPS OpBration ..ottt i it ittt ettt e e et e ettt e e e e e 5-527
Figure 5-26. VPERMILPS ShUffle Control vttt e e e e 5-527
Figure 5-27. Imm8 Controls for VRANGEPD/SD/PS/SS. . ..ot e e 5-672
Figure 5-28. Imm8 Controls for VREDUCEPD/SD/PS/SS.t et e ettt a et 5-697
Figure 5-29. Imm8 Controls for VRNDSCALEPD/SD/PS/SSottt et 5-711
Figure 8-1. Register Source-Block Dot Product of Two Signed Word Operands With Doubleword Accumulation 8-18
Figure A-1. ModR/M Byte nnn Field (BitS 5,4, and 3).o e e A-17
Figure B-1. General Machine INStrUCTION FOMmMatottt s e ettt enens B-1
Figure B-2. Hybrid Notation of VEX-Encoded Key INStruction Bytesvvviii i B-70

Vol. 2A XXxiii

CONTENTS

PAGE

TABLES

Table 2-1. 16-Bit Addressing Forms with the MOdR/M BYTeoviiiii i e 2-5
Table 2-2. 32-Bit Addressing Forms with the MOdR/M BYTecv i e 2-6
Table 2-3. 32-Bit Addressing Forms with the SIB Byte 2-7
Table 2-4. REX Prefix Fields [BITS: OTOOWRXBIo vttt ettt ittt et e et e e 2-9
Table 2-5. Special Cases 0f REX ENCOGINGS ...\ vvii ittt ettt et e e e e ettt e e ettt n e neneanas 2-10
Table 2-6. Direct Memory Offset FOrm 0f MOV ... i i e e e ettt aaas 2-11
Table 2-7. RIP-REIGTIVE AQArESSING. .« . vttt ettt et e sttt e e et e e e e 2-12
Table 2-8. VEX.VUVV 10 Register Name MapPing . ..o vvvitit ittt ettt e e 2-17
Table 2-9. Instructions With @ VEX.WVVV DeStiNationoviut e e 2-17
Table 2-10. VX M-MIMMIM e DI atiON ..ot e e e e 2-18
Table 2-11. RV O I Ty (=0 =1 = 1 o 2-19
Table 2-12. VEX PP Nt DI ation. . oottt e et e e s 2-19
Table 2-13. 32-Bit VSIB Addressing FOrms 0f the SIB BYteoviiiiir i e 2-21
Table 2-14. EXCEPTION Class DS CIiPTiON .ottt ettt et e e e e e 2-22
Table 2-15. Instructions in Each EXCEPLION CIaSS v ettt e 2-23
Table 2-16. #UD Exception and VEXW=T ENCOING . ..ottt ittt e e i e 2-24
Table 2-17. #UD Exception and VEX.L Field ENCOdING.o oottt e it e e i s 2-25
Table 2-18. Type 1 Class EXCePTion ConditionsS.outtt ittt e e et e et aees 2-26
Table 2-19. Type 2 Class EXCePTioN CoNitionS. . ..o\ vvt ittt e e e et 2-27
Table 2-20. Type 3 Class EXCePTioN CoNitionS. . ..o v vttt e e e 2-28
Table 2-21. Type 4 Class EXCeption CONAItIONS.o\ v ittt ettt aenas 2-29
Table 2-22. Type 5 Class EXCOPTION CONAitioNS. . .. v ittt ittt e ettt ettt et i 2-30
Table 2-23. Type 6 Class EXCOPTION CONAitioNS. v vttt ittt e ettt e ettt e et i 2-31
Table 2-24. Type 7 Class EXCePtion ConditionS.ouuu it e et e e et aeas 2-32
Table 2-25. Type 8 Class EXCePtion ConitionS. vttt e e e 2-32
Table 2-26. Type 11 Class EXCePtion CoNAITioNS uuviut ettt e e e 2-33
Table 2-27. Type 12 Class EXception CONAItIONS ouit e e e e 2-34
Table 2-28. VEX-Encoded GPR INSTIUCTIONSottt ettt et et e e e et et enees 2-35
Table 2-29. Type 13 Class EXCeption CoNAitioNSottt it ittt ettt aaees 2-35
Table 2-30. EXCEPLIONS TYPE T4 INStTUCTIONS ..o\ttt ittt e ettt et e et ettt n e aaeas 2-36
Table 2-31. Type 14 Class EXCePLion CoNAITiONS vvuiut it e e 2-36
Table 2-32. EVEX Prefix Bit Field FUNCTIONAl GrOUPING. . ..ottt ettt ettt ettt e e e aaas 2-38
Table 2-33. 32-Register Support in 64-bit Mode Using EVEX with Embedded REXBitS...........covviiiiiiiiiiiiiint, 2-39
Table 2-34. EVEX Encoding Register Specifiers in 32-bit Mode.t e 2-39
Table 2-35. Opmask Register Specifier ENCOdINGovitt i it ettt e 2-40
Table 2-36. Compressed Displacement (DISP8*N) Affected by Embedded Broadcastoovvvviiiiiiiiiiii e 2-41
Table 2-37. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast...........covviviiiiiiiniiiiiinnenns 2-41
Table 2-38. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructionscccovvvvvnnn. 2-43
Table 2-39. OS XSAVE Enabling Requirements of Instruction Categoriesc.vvrviiiiii i 2-43
Table 2-40. Opcode Independent, State Dependent EVEX Bit Fieldsccoviriiii i e i 2-43
Table 2-41. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields ... i 2-44
Table 2-42. #UD Conditions of Opmask Related Encoding Field.t et 2-44
Table 2-43. #UD Conditions Dependent on EVEX D ConteXt. . .o v ittt e 2-45
Table 2-44. EVEX-Encoded Instruction EXception Class SUMMAIYovuet it e i aaas 2-46
Table 2-45. EVEX Instructions in Each EXCEPLION Classvriii e i 2-46
Table 2-46. Type E1 Class EXCEPtion CONAItIONS.ttt e e e e et nees 2-49
Table 2-47. Type ETNF Class EXCEption CONAitioNS. v ettt et aeaenes 2-50
Table 2-48. Type E2 Class EXCEPtion CONAitionS.outtt ettt e ettt e e eaees 2-51
Table 2-49. Type E3 Class EXCEPLioN CONAitionS.o vttt e e e e 2-52
Table 2-50. Type E3NF Class EXCEPtion CoNditionS. . ..o vvu ittt e e e aeas 2-53
Table 2-51. Type €4 Class EXCepion CONITIONS. v ettt et a e 2-54
Table 2-52. Type E4ANF Class EXCeption CONAItIONSo v vttt e e aenas 2-55
Table 2-53. Type E5 Class EXCePtion Conditions.o.u it it e ittt e s 2-56
Table 2-54. Type ESNF Class EXception CoNditionS. ouu it e e e e et aes 2-57
Table 2-55. Type E6 Class EXCePtion CoNditionsS.outtt ettt e et n et aes 2-58
Table 2-56. Type EGNF Class EXCEPtion CoNditionS. vttt e e e 2-59
Table 2-57. Type E7NM Class EXception CONAItIONSottt e e eaenns 2-60

XXiv Vol. 2A

CONTENTS

PAGE
Table 2-58. Type E9 Class EXCEPtion CONAItioNSuvti ittt et et e et eeees 2-61
Table 2-59. Type EINF Class EXCEPtioN CoNditionsS.\ vv ettt e e i 2-62
Table 2-60. Type ET10 Class EXCeption CONAItIONS v .o vttt e e e e e eenas 2-63
Table 2-61. Type ETONF Class EXception CONAItiONSuie it 2-64
Table 2-62. Type ETT Class EXCePtion Conditions uvi it i i i e ettt i 2-65
Table 2-63. Type E12 Class EXCEPtioN CONAitioNS\ vi ittt e et e e et i et aeaes 2-66
Table 2-64. Type E12NP Class EXCeption CoONAiTioNS v ittt e i e ettt aeaens 2-67
Table 2-65. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).......covvvvvnvnnnnennnns 2-68
Table 2-66. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory).........coocovvvvvvninn. 2-69
Table 2-67. INtel® AMX EXCOPTION ClaSSES. . . .ottt ettt ettt e et et e e e e 2-70
Table 3-1. Register Codes Associated With +rb, +rW, +1d, F10 . ..ottt i i e ettt i e 3-2
Table 3-2. Range of Bit Positions Specified by Bit Offset Operands............ooviriiiiiii it 3-12
Table 3-3. Standard and Non-STandard Data Ty S ... v v ettt ettt et e e ettt e 3-14
Table 3-4. Intel 64° and IA-32 GENEral EXCEPTIONS . . o\ttt ettt e et 3-15
Table 3-5. X87 FPU Floating-Point EXCOPTIONS . . . vttt ettt ettt e e e e 3-16
Table 3-6. SIMD Floating-Point EXCEPLIONSttt e e e e 3-17
Table 3-7. DeCision Table fOr CLI RESUIS . ..o\ttt ettt e e e e e e 3-166
Table 3-8. Comparison Predicate for CMPPD and CMPPS INSTrUCtiONSovivieit it i i i e ee s 3-187
Table 3-9. Pseudo-Op and CMPPD IMplementation.ttt et 3-188
Table 3-10. Pseudo-Op and VCMPPD IMplementation vt 3-189
Table 3-11. Pseudo-Op and CMPPS ImMplementation vttt e e e 3-194
Table 3-12. Pseudo-Op and VCMPPS IMplementation.ovuiui e 3-195
Table 3-13. Pseudo-Op and CMPSD Implementation. o.o i e e i e 3-204
Table 3-14. Pseudo-Op and VCMPSD Implementationouiii i i i e e e e e 3-204
Table 3-15. Pseudo-Op and CMPSS Implementation vttt e et e ettt 3-209
Table 3-16. Pseudo-Op and VCMPSS Implementation. 3-209
Table 3-17. Information Returned by CPUID INSTrUCTION ...\ v vttt e eae e 3-223
Table 3-18. ProcesSOr TYPE FIeld . ..o e e e e 3-248
Table 3-19. Feature Information Returned in the ECX REGISTETo\ttt i 3-251
Table 3-20. More on Feature Information Returned in the EDX Registeroviiiiii i 3-253
Table 3-21. Encoding of CPUID Leaf 2 DeSCriPtOrS « v vttt ettt et e ettt ettt eeeaes 3-255
Table 3-22. Processor Brand String Returned with Pentium 4 Processor.v.vuir vttt 3-262
Table 3-23. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings.cocovvviviiiiiiiiiininnnnn, 3-264
TabIE 3-24. DIV ACT 0N .ttt ettt e e e e e 3-331
Table 3-25. Results Obtained from F2 XM L.ttt e e e e e 3-367
Table 3-26. Results ObTained from FABS ittt e e e e e e e 3-369
Table 3-27. FADD/FADDP/FIADD RESUITS . v v vttt ettt ettt e e et e et et e e et e et e e e 3-372
Table 3-28. FB S TP RESUILS .\ttt ettt et ettt e e et et e e e e e 3-376
Table 3-29. 8 R =1 £ 3-378
Table 3-30. FCOM/FCOMP/FCOMPP RESURS. . .. ittt ettt et et e e e e e e e 3-384
Table 3-31. FCOMI/FCOMIP/ FUCOMI/FUCOMIP RESUIS .« v vt ettt et et et e et et et et e et e an s 3-387
TaDIE 3-32. FCOS RESUNS. . vttt ettt ittt ettt et e e e et e e et e e e e 3-390
Table 3-33. FDIV/FDIVP/FIDIV RESUITS. . . .ttt it ettt et ettt et e et e e e et e et e en s 3-394
Table 3-34. FDIVR/FDIVRP/FIDIVR RESUILS ...ttt ettt et et e e et et e et e e e en s 3-397
Table 3-35. FICOM/FICOMP RESUILS. . . . vttt ettt ettt e ettt e e e e e e e en s 3-400
TablE 3-36. B ST /R ST P RESUIS .t vttt ettt ettt ettt e e et e e e e e e e e e 3-407
TaADIE 3-37. B ST TP RESUIS . . ottt ettt ettt et et e e et e e e e e e 3-410
Table 3-38. FMUL/FMULP/FIMUL RESUIS . vttt ettt ettt et e et et e et et e e et e e e ee s 3-421
Table 3-39. FPATAN RESURS. . vttt ettt et e e et e e e e e e 3-424
Table 3-40. FPREM RESURS . . . ettt e e e e e e e e 3-426
Table 3-41. FPREM T RESUNS. . vttt ettt e e e et e e e et e e e e e 3-428
Table 3-42. PP T AN RESUNS .. ittt ittt et e e e 3-430
TabIE 3-43. FSCALE RESUIS .ttt ittt ittt ittt et et et e e et e e e e e e 3-438
TabIE 3-44. FSIN RESUNS vttt ittt ittt et e e e e et e e e e 3-440
Table 3-45. FSINCOS RESUIS ..ttt ittt ittt ettt et e et et e et e et et e et et e 3-442
Table 3-46. FSQRT RESUIS .ttt ettt ettt et et et e e e e e e 3-444
Table 3-47. FSUB/FSUBP/FISUB RESUITS. . ..ottt ettt ettt et e et et e e et e e e ee s 3-455
Table 3-48. FSUBR/FSUBRP/FISUBR RESUITS. . . .« vttt tt ettt ittt et e ettt e e e et e e e et e ee s 3-458
TaADIE 3-40. FT ST RESUNS. . ittt ittt et ettt ettt e e e et e e et e e e e e 3-460

Vol. 2A XXV

CONTENTS

Table 3-50.
Table 3-51.
Table 3-52.
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.
Table 3-57.
Table 3-58.
Table 3-59.
Table 3-60.
Table 3-61.
Table 3-62.
Table 3-63.
Table 3-64.
Table 3-65.
Table 3-66.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 4-16.
Table 4-17.
Table 4-18.
Table 4-19.
Table 4-20.
Table 4-21.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-15.
Table 5-16.
Table 5-17.
Table 5-18.
Table 5-19.
Table 5-20.
Table 5-21.

XXvi Vol. 2A

FUCOM/FUCOMP/FUCOMPP RESUIS. . . v vttt ettt e et et e et e e e e 3-462
X AM RESUIES vttt ettt et e e e e e e e 3-465
Non-64-Bit-Mode Layout of FXSAVE and FXRSTOR Memory Region...........ooviiiiiiiii e 3-472
L (= o =Y T T o 3-473
Recreating FSAVE FOmmat. . ..ottt e e e 3-475
Layout of the 64-Bit Mode FXSAVEG4 Map (Requires REXW = T) .o vviiviii i 3-476
Layout of the 64-Bit Mode FXSAVE Map (REXMW = 0) ..o uiiii et en 3-477
FY 2K RESUIES. . .\ttt e ettt ettt et e e et et e e e e e e e 3-482
FYL2XP T RESUIS . .ottt ettt et e e e et e e et e et e e e 3-484
INVEISE BYTe LISTiNGS ... v ettt ettt et e et e e 3-487
DI RESUIES . ettt ettt s et e e e e e e e e e e 3-508
DECISION TaDIE . . vttt e e e e e 3-528
SEgMENT AN QAT Ty P .+t ittt ittt ettt ettt ettt ettt e e e e e e et e 3-593
L T= T Y AN =T T = o TU P 3-602
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes............cccoviviiiiii it 3-605
64-bit Mode LEA Operation with Address and Operand Size Attributes ... 3-605
Segment and Gate DESCri PO Ty DS . . vttt ittt ittt et ettt et e et e 3-630
Yo LU ol= =) = I o 02 1 4-2
FAYa o[=Ta = o T =T = | o 4-2
AGGregation OPEIatiON. . .ottt sttt ettt e e e e e e 4-2
POy L vt e e e 4-3
O 110U | AY=11= Ty o o 4-4
0T Y=Y =Tou o 4-4
Comparison Result for Each Element Pair BOOIRES[ij] vvovoriiii i i ens 4-4
Summary of IMMB CoNtrOl BYTe ...\ttt e e e et e et e 4-5
MUL RESUIS . ettt e ettt et e e e 4-148
MWAIT EXTENSION ReGISTEI (ECX) ..ttt ittt et e e e e e e 4-163
MW AIT HINTS REGISTEI (EAX). o vttt ettt e e e e e e e et e e e e e 4-163
Recommended Multi-Byte Sequence of NOP INStruCtioncoiviiiii it i e ieeeas 4-167
PCLMULQDQ Quadword Selection of Immediate BYteovvvvr it 4-246
Pseudo-Op and PCLMULQDQ IMplementation.uvueee ettt e et e en 4-246
MKTME_KEY_PROGRAM_STRUCT FOMM@t. . ettt ettt ettt e et e e et et e e e e 4-274
Effect of POPF/POPFD on the EFLAGS REGISTET ... v vttt e 4-406
REPEAt PrE IXES . .ttt e 4-563
Rounding Modes and Encoding of Rounding Control (RC) Field........covvvuiiiii e 4-581
DeCiSioN Table FOr STl RESUIS . . vttt ettt e e e e e e e e 4-670
TPAUSE Input Register Bit Definitionsot i i i e e 4-721
UMWAIT Input Register Bit Defimitions.ovvu e e 4-734
Lower 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations..........covvvvirviviiiniinenennns 5-2
Upper 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operationsovvvireiiiriinninannann. 5-3
Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions.ccociiiiiiiiianns. 5-75
NaN Propagation Priorities . .. vttt e e e e e 5-168
VF[N]JMADD[132,213,231]PH Notation for Operandscuuuiuiiiiiiiiiiiiiiiiieiiiieieanannens 5-223
VF[N]JMADD[132,213,231]SH Notation for Operandsuuvuiuniiniiiiiiiiiiei e 5-237
VFMADDSUB[132,213,231]PH Notation for Odd and Even Elements ..., 5-252
VF[NJMSUB[132,213,231]PH Notation for Operands.o.uuiriiriiei i eenaens 5-272
VF[NJMSUB[132,213,231]SH Notation for Operands.cuouiuiiiiiiii it i i eieieeeaens 5-287
VFMSUBADD[132,213,231]PH Notation for Odd and Even Elementsccoviiiiiiiiiiiiieieeneenn, 5-301
Classifier Operations for VFPCLASSPD/SD/PS/SS e e e 5-354
Classifier Operations for VFPCLASSPH/VFPCLASSSHt e 5-356
VGETEXPPD/SD SPECIAI CaSBS v v vttt vttt vttt ettt et ettt e e e e et e e e 5-381
VGETEXPPH/VGETEXPSH SPECIAI CaSES. v vttt vttt ettt ettt ettt ettt et 5-384
VGETEXPPS/SS SPECIAI CBSES . . vttt ettt et ettt ettt et e e 5-388
GetMant() Special Float Values BEhavior 5-398
imm8 Controls for VGETMANTPH/VGETMANT SHttt e 5-401
GetMant() Special Float Values Behaviorouou e 5-402
Pseudo-0p and VPCMP* Implementation vttt e e 5-466
Examples of VPTERNLOGD/Q Imm8 Boolean Function and Input Index Values. ..o, 5-662
Signaling of Comparison Operation of One or More NaN Input Values and Effect of Imm8[3:2] 5-672

CONTENTS

PAGE
Table 5-22. Comparison Result for Opposite-Signed Zero Cases for MIN, MIN_ABS, and MAX, MAX_ABS 5-672
Table 5-23. Comparison Result of Equal-Magnitude Input Cases for MIN_ABS and MAX_ABS, (Ja| = |b], a>0, b<0)............ 5-672
Table 5-24. VRCPTAPD/VRCPT4SD SPECIAl CaSES . v vttt vttt ettt ettt ettt it et et e e et e an s 5-685
Table 5-25. VRCPTAPS/VRCPTASS SPECIAI CaSBS ..ttt ittt ittt ittt et ettt et a e 5-687
Table 5-26. VRCPPH/VRCPSH SPECIAI CaSES . vttt vttt et ettt e ettt e e et e e a e 5-693
Table 5-27. VREDUCEPD/SD/PS/SS SPECIal CaSES . vt v ettt ettt et ettt e e e ee s 5-697
Table 5-28. VREDUCEPH/VREDUCESH SPCial CaSES . ..ttt vt ettt ettt e e e e e e et nen s 5-700
Table 5-29. VRNDSCALEPD/SD/PS/SS SPECIAI CaSES. .+t vttt vttt ettt ettt et et e e nens 5-711
Table 5-30. Imm8 Controls for VRNDSCALEPH/VRNDSCALESHt 5-714
Table 5-31. VRNDSCALEPH/VRNDSCALESH SPCIal @SS . v vttt vttt ittt ettt ettt e e e ea s 5-714
Table 5-32. VRSQRTTAPD SPECIal C@SES ..ttt ettt et ettt et e e e ettt e et ettt e e nenens 5-728
Table 5-33. VRSQRTTAPS SPECIal (@SS . . v vttt ettt ettt e e ettt e e e nenens 5-730
Table 5-34. VRSQRTTASD SPCIAI CaSES. . v vttt ettt ettt ettt et e ettt e e e et e e e e e e 5-732
Table 5-35. VRSQRT T4SS SPBCIAI CaSBS . o v vttt ittt ettt ettt ettt ettt e e e e e e e e 5-734
Table 5-36. VRSQRTPH/VRSQRTSH SPCIal CaSES vt vttt ittt ettt ettt ettt e nens 5-735
Table 5-37. VSCALEFPD/SD/PS/SS SPECIal CaSES. ettt et ettt e et e e ee s 5-739
Table 5-38. Additional VSCALEFPD/SD SPeCial Cases . . vttt ittt et et i i 5-739
Table 5-39. VSCALEFPH/VSCALEFSH SPECIal CaSBS . . o v vttt ettt ettt ettt e e e et e s 5-742
Table 5-40. Additional VSCALEFPH/VSCALEFSH SPECial (@SSt v vttt tttte ettt ettt ettt et e e 5-742
Table 5-41. Additional VSCALEFPS/SS SPECIal LSS . ..\t vvv ittt ettt ettt e e 5-744
Table 7-1. Layout Of IA32_FEATURE _CONTROL . .o u ittt ettt s e e e e e st e eas 7-1
Table 7-2. [I O =Y) T oo L 7-3
Table 7-3. GETSEC Capability Result ENcoding (EBX = 0) .. vvvieiieie ettt e e 7-7
Table 7-4. Register State Initialization After GETSECIENTERACCS] ... v it ettt 7-12
Table 7-5. IA32_MISC_ENABLE MSR Initialization by ENTERACCS and SENTERot 7-13
Table 7-6. Register State Initialization After GETSEC[SENTER] and GETSEC[WAKEUP]coviiiiiiiiiii i 7-24
Table 7-7. SMX RepOrting Parameters FOMmMat. ... v vttt ettt ettt e e e e 7-33
Table 7-8. TXT Feature EXTENSIONS FIAQSttt e e e e e e e 7-33
Table 7-9. External Memory Types UsiNg Parameter 3.ot i it ettt 7-34
Table 7-10. DEfaUI Parameter ValUBS ... v ittt ettt e e e e e e 7-35
Table 7-11. Supported Actions for GETSECISMCTRL(D)] .. vttt ettt ettt e e e e 7-37
Table 7-12. RLP MVMM JOIN Data StrUCTUNE .« v vttt ettt ettt e ettt e ettt et ettt et enans 7-40
Table 8-1. SPECIAl ValUBS BENAVIO . . .ttt ettt et e e e e e e e e 8-9
Table 8-2. SpeCial Values BehaVior. 8-11
Table 8-3. RV e S o I o =T = | = T = 8-21
Table 8-4. VR CP 28BS D SPECIAl CaSES v vttt ittt ittt ettt ettt e e e e e e e e 8-23
Table 8-5. VRCPZ2BPS SPECIAl LSS, . .« vttt ettt ettt e e ettt e e e et ettt e e 8-25
Table 8-6. VRCP 2BSS SPECIAI a5, . v vttt ettt ettt e et e et et et e e e e e 8-27
Table 8-7. VRSQRTZ28PD SPECIAI CASES .« vttt vttt ettt ettt s ettt e e e ettt e e e e st 8-29
Table 8-8. VRSQRT2BSD SPECIAl CaSES. .« . o vttt ettt ettt ettt et e et et e et 8-31
Table 8-9. VRSQRTZ8BPS SPECIAI CaSES. .+ v ettt t ettt e et ettt e e et e et e e e e r e et e e e 8-33
Table 8-T0. VRSQRT 28SS SPBCIAI CaSBS . . vt vttt ettt ettt e e e e et e e e e e e ettt e n e n et aenenes 8-35
Table A-1. Superscripts Utilized in Opcode Tables. . .. o.iviiit i e e A-6
Table A-2. One-byte Opcode Map: (O0H — F7H) X ..ottt e e e e A-7
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is OFH) *. ..o e A-9
Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytesare OF 38H) *...... ..ot A-13
Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *ot e A-15
Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *covviii i A-18
Table A-7. D8 Opcode Map When ModR/M Byte is Within OOH to BFH *o A-20
Table A-8. D8 Opcode Map When ModR/M Byte is Outside OOH to BFH *o A-21
Table A-S. D9 Opcode Map When ModR/M Byte is Within OOH to BFH *t A-21
Table A-10. D9 Opcode Map When ModR/M Byte is Outside O0H to BFH *o e A-22
Table A-11. DA Opcode Map When ModR/M Byte is Within O0H to BFH * e A-22
Table A-12. DA Opcode Map When ModR/M Byte is Outside OOH to BFH *o e A-23
Table A-13. DB Opcode Map When ModR/M Byte is Within OOH to BFH *o e A-23
Table A-14. DB Opcode Map When ModR/M Byte is Outside OOH to BFH *t i A-24
Table A-15. DC Opcode Map When ModR/M Byte is Within OOH to BFH *. i A-24
Table A-16. DC Opcode Map When ModR/M Byte is Outside OOH to BFH *o e A-25
Table A-17. DD Opcode Map When ModR/M Byte is Within O0H to BFH * e A-25

Vol. 2A XXvii

CONTENTS

Table A-18.
Table A-19.
Table A-20.
Table A-21.
Table A-22.
Table B-1.

Table B-2.

Table B-3.

Table B-4.

Table B-5.

Table B-6.

Table B-7.

Table B-8.

Table B-9.

Table B-10.
Table B-11.
Table B-13.
Table B-12.
Table B-14.
Table B-15.
Table B-16.
Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
Table B-23.
Table B-25.
Table B-24.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table B-36.
Table B-37.
Table B-38.
Table B-39.
Table B-40.
Table B-41.
Table C-1.

Table C-2.

Xxviii Vol. 2A

DD Opcode Map When ModR/M Byte is Outside OOH to BFH *o e A-26
DE Opcode Map When ModR/M Byte is Within O0H to BFH *.o e A-26
DE Opcode Map When ModR/M Byte is Outside O0H to BFH * ... A-27
DF Opcode Map When ModR/M Byte is Within O0H to BFH *.o A-27
DF Opcode Map When ModR/M Byte is Outside OOH To BFH * i e e A-28
Special Fields Within InStruction ENCOGINGSo v ittt e e e et it ae e B-2
Encoding of reg Field When w Field is Not Present in Instruction ... B-3
Encoding of reg Field When w Field is Present in INStruCtiono e nens B-3
Encoding of reg Field When w Field is Not Present in INStruction ... e B-4
Encoding of reg Field When w Field is Present in INStruction ..o B-4
Encoding of Operand Size (W) Bit e it e B-4
Encoding of SigN-EXTENA (S) Bit. ... u 'ttt e B-5
Encoding of the Segment Register (sreg) Fieldo.ieri i e B-5
Encoding of Special-Purpose Register (8e€) Fieldo.iriiiit i e B-5
Encoding of Conditional Test (TTtN) Field ot e e e B-6
Encoding of Operation Direction (d) Bit.ouiiii e B-6
General Purpose Instruction Formats and Encodings for Non-64-BitModescoovviiiiiiii i, B-7
Notes on INSTrUCtION ENCOAING.o\ it i e e e et e e ettt i e B-7
PGl SYMIDOIS . . ittt e e B-18
General Purpose Instruction Formats and Encodings for 64-BitMode.............coiiiii i B-18
Pentium® Processor Family Instruction Formats and Encodings, Non-64-BitModescovviiiinnnnn. B-37
Pentium® Processor Family Instruction Formats and Encodings, 64-BitMode............c..coviiiviiiiininns B-37
Encoding of Granularity of Data Field (GQ)o v vvte et e B-38
MMX Instruction FOrmats and ENCOdINGSot vttt et et et B-38
Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV INStructions.ccovviiiviiiiiiiiieiannnns B-41
Formats and Encodings of P6 Family INSTrUCTIONS. vu vttt e e B-41
Formats and Encodings of SSE Floating-Point INSTrUCtioNS vi i e B-42
Formats and Encodings of SSE Integer INSTTUCTIONS v v et e B-46
Encoding of Granularity of Data Field (GQ) . ..« v v vvit ettt e B-47
Format and Encoding of SSE Cacheability & Memory Ordering Instructions. ..o, B-47
Formats and Encodings of SSE2 Floating-Point INSTructionso e B-48
Formats and Encodings of SSE2 Integer INSTrUCtioNSv vt e B-52
Format and Encoding of SSE2 Cacheability INSTIUCTIONSo vttt e e B-56
Formats and Encodings of SSE3 Floating-Point INStructions . ..o B-57
Formats and Encodings for SSE3 Event Management INSTrUCtionSooii it e i e eaens B-57
Formats and Encodings for SSE3 Integer and Move INStructions.ccovii i et B-57
Formats and Encodings Tor SSSE3 INSTTUCTIONSot ittt e ettt i e aeas B-58
Formats and Encodings of AESNI and PCLMULQDQ INSTrUCTIONS ... vvvvvtitie e v e i eieieaaas B-61
Special Case Instructions Promoted Using REXW i e B-61
ENCodings OF SSEA. T INSITUCTIONSottt B-64
ENCOdINGS OF SSEZ.2 INSTTUCTIONS . ..o\ttt ettt et et e e e ettt ittt e e aeas B-69
ENCOINGS OF AV X IS rUCTIONS. . .o\ttt et e ettt et et ettt et e ettt ettt B-71
General Floating-Point INSTruction FOMMats. . ..o iu ittt it eeas B-108
Floating-Point Instruction Formats and ENCOINGSo v vv vttt e e e B-108
ENCOINGS TOr VMX INStrUCTIONS .ttt ettt ettt e e B-112
ENCOdiNgs fOr SMX INSTTUCTIONS. . . . oottt e e e e e e ee s B-113
Y {10 N 3 (o C-2
(000 3]0 To R = T ok C-14

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018, and 334569), is part of a set that describes the architecture
and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:

* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order
Number 253665).

* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D: System
Programming Guide (order numbers 253668, 253669, 326019, and 332831).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describes the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describes
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 OVERVIEW OF VOLUME 2A, 2B, 2C, AND 2D: INSTRUCTION SET
REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D,
content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, with chapter-specific details for the current volume.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and

the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-U. Continues the description of Intel 64 and IA-32 instructions
started in Chapter 3. It starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

Chapter 5 — Instruction Set Reference, V. Continues the description of Intel 64 and IA-32 instructions started
in chapters 3 and 4. This chapter starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2C.

Chapter 6 — Instruction Set Reference, W-Z. Continues the description of Intel 64 and IA-32 instructions
started in chapters 3, 4, and 5. It provides the balance of the alphabetized list of instructions and starts Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2D.

Chapter 7 — Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions.

Vol.2A 1-1

ABOUT THIS MANUAL

Chapter 8— Instruction Set Reference Unique to Intel® Xeon Phi™ Processors. Describes the instruction
set that is unique to Intel® Xeon Phi™ processors based on the Knights Landing and Knights Mill microarchitec-
tures. The set is not supported in any other Intel processors.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

Vol.2A 1-2

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE,
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

2.1

Instruction ; ;
Prefixes Opcode ModR/M SIB Displacement Immediate
Prefixes of 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
1 byte each opcode (if required) (if required) displacement data of
of 1,2, 0r4 1,2,0r4

(optional)’ 2

bytes or none®

bytes or none®

/

7 65 32 0 7 6 5 32 0

Reg/
Mod Opcode R/M

Index Base

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” for additional information.

2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)”.

3. Some rare instructions can take an 8B immediate or 8B displacement.

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4
may be placed in any order relative to each other.

® Groupl
— Lock and repeat prefixes:
* LOCK prefix is encoded using FOH.

* REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

* REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output
instructions. (F3H is also used as a mandatory prefix for some instructions.)

Vol. 2A 2-1

INSTRUCTION FORMAT

— BND prefix is encoded using F2H if the following conditions are true:
* CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.
e BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

* When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction
(see Appendix E, “Intel® Memory Protection Extensions,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1).

® Group 2
— Segment override prefixes:
¢ 2EH—CS segment override (use with any branch instruction is reserved).
* 36H—SS segment override prefix (use with any branch instruction is reserved).
* 3EH—DS segment override prefix (use with any branch instruction is reserved).
* 26H—ES segment override prefix (use with any branch instruction is reserved).
* 64H—FS segment override prefix (use with any branch instruction is reserved).
* 65H—GS segment override prefix (use with any branch instruction is reserved).
— Branch hints!:
* 2EH—Branch not taken (used only with Jcc instructions).
* 3EH—Branch taken (used only with Jcc instructions).
® Group3
* Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).
* Group4
* 67H—Address-size override prefix.

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See "LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description
of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/0O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H or F3H as a mandatory prefix to express distinct functionality.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for
a branch when used on conditional branch instructions (Jcc).

The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes
may use 66H as a mandatory prefix to express distinct functionality.

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size

can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Microarchitectural behavior varies; refer to the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

2-2 Vol.2A

INSTRUCTION FORMAT

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
® An escape opcode byte OFH as the primary opcode and a second opcode byte.

®* A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous
bullet).

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte is a mandatory prefix (it is not
considered as a repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
®* An escape opcode byte OFH as the primary opcode, plus two additional opcode bytes.

®* A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as
previous bullet).

For example, PHADDW for XMM registers consists of the following sequence: 66 OF 38 01. The first byte is the
mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M
byte) following the primary opcode. The ModR/M byte contains three fields of information:

®* The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.

®* The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose
of the reg/opcode field is specified in the primary opcode.

®* The r/m field can specify a register as an operand or it can be combined with the mod field to encode an
addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:

® The scale field specifies the scale factor.

®* The index field specifies the register number of the index register.
®* The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is
present). If a displacement is required, it can be 1, 2, or 4 bytes.

If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.

Vol.2A 2-3

INSTRUCTION FORMAT

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX
technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M =
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MMO; or XMM
register XMMO. The register used is determined by the opcode byte and the operand-size attribute.

Now look at the seventh row in either table (labeled “REG ="). This row specifies the use of the 3-bit Reg/Opcode
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six
are represented in decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4, and 5 are specified by the

column of the table in which a byte resides. The row specifies bits 0, 1, and 2; and bits 6 and 7. The figure below

demonstrates interpretation of one table value.

Mod 11

RM 000
/digit (Opcode); REG= 001

C8H 11001000

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

2-4 Vol.2A

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

INSTRUCTION FORMAT

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP! S| DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MMO MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMMO | XMM1 | XMM2 |XMM3 |XMM4 |XMM5 |XMM6 |XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111
Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)
BX+SI] 00 000 00 08 10 18 20 28 30 38
BX+DI] 001 01 09 11 19 21 29 31 39
BP+SI] 010 02 0A 12 1A 22 2A 32 3A
BP+DI] 011 03 0B 13 1B 23 2B 33 3B
SI] 100 04 0C 14 1C 24 2C 34 3C
DI] 101 05 oD 15 1D 25 2D 35 3D
disp162 110 06 0t 16 1€ 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
BX+SI]+disp83 01 000 40 48 50 58 60 68 70 78
BX+DI]+disp8 001 41 49 51 59 61 69 71 79
BP+SI]+disp8 010 42 4A 52 5A 62 6A 72 7A
BP+DI]+disp8 011 43 4B 53 5B 63 6B 73 7B
Sl]+disp8 100 44 4C 54 5C 64 6C 74 7C
DI}+disp8 101 45 4D 55 5D 65 6D 75 7D
BP]+disp8 110 46 4€ 56 5€ 66 6E 76 7€
BX]+disp8 111 47 4F 57 5F 67 6F 77 7F
BX+SI]+disp16 10 000 80 88 0 98 AO A8 BO B8
BX+DI]+disp16 001 81 89 91 99 Al A9 B1 B9
BP+SI]+disp16 010 82 8A 92 9A A2 AA B2 BA
BP+DI]+disp16 011 83 8B 93 9B A3 AB B3 BB
Sll+disp16 100 84 8C 94 9C A4 AC B4 BC
DI}+disp16 101 85 8D 95 D A5 AD B5 BD
BP]+disp16 110 86 8E 96 9€ A6 AE B6 BE
BX]+disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO 11 000 co c8 DO D8 €0 €8 FO F8
ECX/CX/CL/MMT/XMM1 001 C1 9 D1 D9 €1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB €3 €B F3 FB
ESP/SP/AHMM4/XMM4 100 c4 cC D4 DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 C5 CD D5 DD €5 €D F5 FD
ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE
€DI/DI/BH/MM7/XMM7 111 c7 CF D7 DF €7 EF F7 FF
NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index.

Vol.2A 2-5

INSTRUCTION FORMAT

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MMO MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMMO | XMM1 | XMM2 |XMM3 |XMM4 |XMM5 |XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111
Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
-1~ 100 04 0oC 14 1C 24 2C 34 3C
disp322 101 05 oD 15 1D 25 2D 35 3D
[ESI] 110 06 0E 16 1€ 26 2€ 36 3€E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
EAX]+disp83 01 000 40 48 50 58 60 68 70 78
ECX]+disp8 001 41 49 51 59 61 69 71 79
€EDX]+disp8 010 42 4A 52 5A 62 6A 72 7A
EBX]+disp8 011 43 4B 53 5B 63 6B 73 7B
--][--]+disp8 100 44 4C 54 5C 64 6C 74 7C
EBP+disp8 101 45 4D 55 5D 65 6D 75 7D
€SI]+disp8 110 46 4€ 56 5€ 66 6E 76 7€
EDI]+disp8 111 47 4F 57 5F 67 6F 77 7F
EAX]+disp32 10 000 80 88 90 98 A0 A8 BO B8
ECX]+disp32 001 81 89 91 99 Al A9 B1 B9
EDX]+disp32 010 82 8A 92 9A A2 AA B2 BA
EBX]+disp32 011 83 8B 93 9B A3 AB B3 BB
--][--]+disp32 100 84 8C 94 9C A4 AC B4 BC
EBPJ+disp32 101 85 8D 95 D A5 AD B5 BD
ESI]+disp32 110 86 8E 96 9€ A6 AE B6 BE
EDI+disp32 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO 11 000 co 8 DO D8 €0 €8 FO F8
ECX/CX/CL/MM/XMM1 001 C1 9 D1 D9 €1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 C2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 3 CB D3 DB €3 EB F3 FB
ESP/SP/AH/MM4/XMM4 100 4 cC D4 DC €4 eC F4 FC
EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD €5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 6 CE D6 DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 111 c7 CF D7 DF €7 EF F7 FF
NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is
sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field.
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4, and 5) and the scaling
factor (determined by SIB byte bits 6 and 7).

2-6 Vol.2A

INSTRUCTION FORMAT

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32 EAX ECX EDX EBX ESP [*1 €Sl EDI
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)
EAX] 00 000 00 01 02 03 04 05 06 07
ECX] 001 08 09 0A 0B ocC 0D 0E OF
EDX] 010 10 11 12 13 14 15 16 17
EBX] 011 18 19 1A 1B 1C 1D 1€ 1F
none 100 20 21 22 23 24 25 26 27
EBP] 101 28 29 2A 2B 2C 2D 2E 2F
ESI] 110 30 31 32 33 34 35 36 37
€DI] 111 38 39 3A 3B 3C 3D 3E 3F
EAX*2] 01 000 40 41 42 43 44 45 46 47
ECX*2] 001 48 49 4A 4B 4C 4D 4€ 4F
EDX*2] 010 50 51 52 53 54 55 56 57
EBX*2] 011 58 59 5A 5B 5C 5D 5€ 5F
none 100 60 61 62 63 64 65 66 67
EBP*2] 101 68 69 6A 6B 6C 6D 6€E 6F
€SI*2] 110 70 71 72 73 74 75 76 77
EDI*2] 111 78 79 7A 7B 7C 7D 7€ 7F
EAX*4] 10 000 80 81 82 83 84 85 86 87
ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
EDX*4] 010 0 91 92 93 94 95 96 97
EBX*4] 011 98 99 9A 9B 9C 9D 9€ 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
EBP*4] 101 A8 A9 AA AB AC AD AE AF
ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7
EDI*4] 111 B8 B9 BA BB BC BD BE BF
EAX*8] 11 000 Co C1 c2 c3 C4 C5 C6 c7
ECX*8] 001 C8 C9 CA CB CC CD CE CF
EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 €0 E1 €2 €3 €4 €5 €6 €7
EBP*8] 101 €8 €9 EA €B €C €D EE EF
€SI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
EDI*8] 111 F8 F9 FA FB FC FD FE FF
NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the
following address modes:

MOD bits Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2.2 IA-32€ MODE

IA-32e mode has two sub-modes. These are:

* Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software
unmodified.

® 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space.

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
®* Specify GPRs and SSE registers.

Vol.2A 2-7

INSTRUCTION FORMAT

® Specify 64-bit operand size.
® Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A REX prefix is necessary only if an instruction references
one of the extended registers or one of the byte registers SPL, BPL, SIL, DIL; or uses a 64-bit operand. A REX prefix
is ignored, as are its individual bits, when it is not needed for an instruction or when it does not immediately
precede the opcode byte or the escape opcode byte (OFH) of an instruction for which it is needed. This has the
implication that only one REX prefix, properly located, can affect an instruction.

When a REX prefix is used in conjunction with an instruction containing a mandatory prefix, the mandatory prefix
must come before the REX so the REX prefix can immediately precede the opcode or the escape byte. For example,
CVTDQ2PD with a REX prefix should have REX placed between F3 and OF E6. Other placements are ignored. The
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See Figure 2-3.

E?gﬁ;&és Pﬁgzi(x Opcode ModR/M SIB Displacement Immediate
Grp1,Grp (optional) 1-,2-,0r 1 byte 1 byte Address Immediate data
2,Grp3, 3-byte (ifrequired) (ifrequired) displacementof of 1,2,0r4
Grp 4 opcode 1,2,0r4 bytes bytesornone

(optional)

Figure 2-3. Prefix Ordering in 64-bit Mode

2.2.1.1 Encoding

Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending
on the format:

® ModR/M: the reg and r/m fields of the ModR/M byte.

®* ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base)
byte.

® Instructions without ModR/M: the reg field of the opcode.

In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the
addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:

® Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like
the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations.

®* For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored.
® If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

®* REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is
ignored when ModR/M specifies other registers or defines an extended opcode.

® REX.X bit modifies the SIB index field.

2-8 Vol.2A

INSTRUCTION FORMAT

REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field
used for accessing GPRs.

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition
- 7:4 0100
W 3 0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R 2 Extension of the ModR/M reg field
Extension of the SIB index field
B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field
ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WROI? #11 rrr ‘bt‘>b‘
*]
ier‘:r' Bbbb
OM17xfigi-3

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

ModRM Byte

REX PREFIX Opcode mod reg r/m
0100WR0B 1 rrr bbb
| L]
‘ J J J

ivvv J
Rrrr Bbbb

OM17Xfig1-4

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

Vol.2A 2-9

INSTRUCTION FORMAT

ModRM Byte SIB Byte
REX PREFIX Opcode mod reg r/m scale index | base
0100WRXB +#11 rrr 100 ss XXX bbb
| 1]
L
LVVV \AAL l
Rrrr Xxxx Bbbb
OM17Xfig1-5

Figure 2-6. Memory Addressing With a SIB Byte

REX PREFIX

0100W00B
|

Opcode

reg

bbb
|

il

Bbbb

OM17Xfig1-6

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each

case behaves.

Table 2-5. Special Cases of REX Encodings

ModR/M or Sub-flgld Compafublllty Mode Com.patl.blllty Mode Additional Implications
SiB Encodings Operation Implications
ModR/M Byte | mod ? 11 SIB byte present. SIB byte required for | REX prefix adds a fourth bit (b) which is not decoded
_ ESP-based (don't care).
r/m= :
b*100(ESP) addressing. SIB byte also required for R12-based addressing.
ModR/M Byte | mod =0 Base register not EBP without a REX prefix adds a fourth bit (b) which is not decoded
o/m = used. displacement must be | (don't care).
b*101(EBP) done using Using RBP or R13 without displacement must be
mod = 01 with done using mod = 01 with a displacement of 0.
displacement of 0.
SIB Byte index = Index register not ESP cannot be used REX prefix adds a fourth bit (b) which is decoded.
O0T00(ESP) used. as an index register.

There are no additional implications. The expanded
index field allows distinguishing RSP from R12,
therefore R12 can be used as an index.

2-10 Vol. 2A

INSTRUCTION FORMAT

Table 2-5. Special Cases of REX Encodings (Contd.)

ModR/M or Sub-fl_eld Compapblllty Mode Com_patl_blllty Mode Additional Implications
SIB Encodings Operation Implications
SIB Byte base = Base register is Base register REX prefix adds a fourth bit (b) which is not decoded.
0101(EBP) | unusedif mod =0. | depends on mod This requires explicit displacement to be used with
encoding. EBP/RBP or R13.
NOTES:

* Don't care about value of REX.B

2.2.1.3 Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2214 Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See
Table 2-6.

Table 2-6. Direct Memory Offset Form of MOV

Opcode Instruction

AO MOV AL, moffset
A1 MOV EAX, moffset
A2 MOV moffset, AL
A3 MOV moffset, EAX

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the
processor sign-extends all immediates to 64 bits prior to their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV
reg, imm16/32) instructions. These instructions (opcodes B8H - BFH) move 16-bits or 32-bits of immediate data
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to
a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of £2GB from the RIP. Table 2-7 shows the ModR/M and SIB
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative
addressing is encoded using a redundant form.

Vol.2A 2-11

INSTRUCTION FORMAT

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than
displacement-only. See Table 2-7.

Table 2-7. RIP-Relative Addressing
Compatibility Mode | 64-bit Mode

ModR/M and SIB Sub-field Encodings Additional Implications in 64-bit mode

Operation Operation
ModR/M Byte | mod =00 Disp32 RIP + Disp32 In 64-bit mode, if one wants to use a Disp32
#m=101 ore) e e et e e
as described in the next row.
SIB Byte base = 101 (none) If mod = 00, Disp32 | Same as legacy | None
index = 100 (none)
scale=0,1,2,4

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting
R13 (REX.B =1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode
R13 + 0 using a 1-byte displacement of zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the
computed effective address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this
operand size). These are:

®* Near branches.
® All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8
becomes the Task Priority Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access
unimplemented registers results in an invalid-opcode exception (#UD).

2-12 Vol.2A

INSTRUCTION FORMAT

2.3 INTEL®* ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field,
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:

® Instruction syntax support for three operands and up-to four operands when necessary. For example, the third
source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.

®* Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
®* Encoding support for instruction syntax of non-destructive source operands.

®* Elimination of escape opcode byte (0OFH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-
tation within the VEX prefix.

®* Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-
R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).

®* Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by
REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a
subset of SIMD instructions need them.

®* Extensibility for future instruction extensions without significant instruction length increase.

Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax.
VEX prefix is not a constant-valued, “single-purpose” byte like OFH, 66H, F2H, F3H in legacy SSE instructions. VEX
prefix provides substantially richer capability than the REX prefix.

Bytes 2,3 1 1 0,1 0,1,2,4 0,1

[Prefixes] [VEX] OPCODE| [ModrR/M| | [SIB] [DISP] | |[IMM]

Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

234 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

Vol.2A 2-13

INSTRUCTION FORMAT

2.3.5 The VEX Prefix

The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields
providing specific capability, they are shown in Figure 2-9.

The bit fields of the VEX prefix can be summarized by its functional purposes:

®* Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source
operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s
complement form (inverted form), i.e., XMM0O/YMMO/RO is encoded as 1111B, XMM15/YMM15/R15 is encoded
as 00008B.

®* \Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to
distinguish encoded values of other VEX bit fields.

®* REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e., XMM0/YMMO/RO is
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1's complement
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

®* Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

®* Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two
and three-byte opcode. The one or two leading bytes are: OFH, and OFH 3AH/OFH 38H. The one-byte escape
(OFH) and two-byte escape (OFH 3AH, OFH 38H) can also be interpreted as an opcode extension field. The
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant
byte sequence, OFH, OFH 3AH, OFH 38H. These VEX-encoded instruction may have 128 bit vector length or 256
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other
prefixes. If VEX prefix is present a REX prefix is not supported.

The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are
reclaimed for future use.

VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by
one byte. This may be helpful in some situations for code alignment.

The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain
new instruction functionality can only be encoded with the VEX prefix.

The VEX prefix will #UD on any instruction containing MMX register sources or destinations.

2-14 Vol. 2A

INSTRUCTION FORMAT

Byte 0 Byte 1 Byte 2
(Bit Position) 7 0 7 654 0 6 3210
3-byte VEX 11000100 RXB| m-mmmm ww | L| pp
7 07 6 3210
2-byte VEX 11000101 R vww |L| pp

R: REX.R in I’s complement (inverted) form

1: Same as REX.R=0 (must be 1 in 32-bit mode)

0: Same as REX.R=1 (64-bit mode only)
X: REX.X in 1’s complement (inverted) form

1: Same as REX.X=0 (must be 1 in 32-bit mode)

0: Same as REX.X=1 (64-bit mode only)
B: REX.B in 1’s complement (inverted) form

1: Same as REX.B=0 (Ignored in 32-bit mode).

0: Same as REX.B=1 (64-bit mode only)

W: opcode specific (use like REX.W, or used for opcode
extension, or ignored, depending on the opcode byte)

m-mmimim:

00000: Reserved for future use (will #UD)
00001: implied OF leading opcode byte
00010: implied OF 38 leading opcode bytes
00011: implied OF 3A leading opcode bytes

00100-11111: Reserved for future use (will #UD)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

L: Vector Length

0: scalar or 128-bit vector
1: 256-bit vector

pp: opcode extension providing equivalent functionality of a SIMD prefix

00: None
01: 66
10: F3
11: F2

Figure 2-9. VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1 VEX Byte 0, bits[7:0]

VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h
first byte, while the 2-byte VEX uses the C5h first byte.

2.35.2 VEXByte 1, bit[7]- R’

VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit
must be set to ‘1’ otherwise the instruction is LES or LDS.

Vol.2A 2-15

INSTRUCTION FORMAT

This bit is present in both 2- and 3-byte VEX prefixes.

The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’'s manual, Volume 2A.

This bit is stored in bit inverted format.

2.35.3 3-byte VEX byte 1, bit[6] - X’

Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.

This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2354 3-byte VEX byte 1, bit[5] - 'B’

Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.

This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2355 3-byte VEX byte 2, bit[7] - ‘W’

Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending

on the specific opcode.

e For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a
general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently
ignored.

e For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

e For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and
setting to other than zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘'vvvv' the Source or Dest
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with

existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to

place only inverted, 64-bit valid fields (extended register selectors) in these upper bits.

The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that

for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source

register specifier stored in inverted (1's complement) form.

VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with

no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b

otherwise instruction will #UD.

In 64-bit mode all 4 bits may be used. See Table for the encoding of the XMM or YMM registers. In 32-bit and 16-

bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte VEX

version will ignore this bit).

2-16 Vol. 2A

INSTRUCTION FORMAT

Table 2-8. VEX.vvvv to Register Name Mapping

VEXVVWY Dest Register General-::;ﬁgzglzﬁgister (If | Validin Legac#&ggggtibility 32-bit
1111B XMM0/YMMO RAX/EAX Valid
1110B XMM1/YMM1 RCX/ECX Valid
1101B XMM2/YMM2 RDX/EDX Valid
11008 XMM3/YMM3 RBX/EBX Valid
1011B XMM4/YMM4 RSP/ESP Valid
1010B XMM5/YMM5 RBP/EBP Valid
1001B XMM6/YMM6 RSI/ESI Valid
1000B XMM7/YMM7 RDI/EDI Valid
0111B XMM8/YMM8 R8/R8D Invalid
01108B XMM9/YMM9 R9/RID Invalid
01018B XMM10/YMM10 R10/R10D Invalid
01008B XMM11/YMM11 R11/R11D Invalid
0011B XMM12/YMM12 R12/R12D Invalid
00108B XMM13/YMM13 R13/R13D Invalid
0001B XMM14/YMM14 R14/R14D Invalid
0000B XMM15/YMM15 R15/R15D Invalid

NOTES:

1. See Section 2.6, “VEX Encoding Support for GPR Instructions” for additional details.

2. Only the first eight General-Purpose Registers are accessible/encodable in 16/32b modes.

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M

VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded
instructions have syntax with less than three operands, e.g., VEX-encoded pack shift instructions support one

source operand and one destination operand).

The roles of VEX.vvvy, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with
respect to encoding destination and source operands vary with different type of instruction syntax.

The role of VEX.vvvv can be summarized to three situations:
®* VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for

instructions with 2 or more source operands.

®* VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts.
The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “"Opcode”
column in Table 2-9 is described in detail in section 3.1.1.

®* VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.

Table 2-9. Instructions with a VEX.vvvv Destination

Opcode

Instruction mnemonic

VEX.128.66.0F 73 /7 ib

VPSLLDQ xmm1, xmmZ2, imm8

VEX.128.66.0F 73 /3 ib

VPSRLDQ xmm1, xmmz2, imm8

Vol.2A 2-17

INSTRUCTION FORMAT

Table 2-9. Instructions with a VEX.vvvv Destination (Contd.)

Opcode Instruction mnemonic
VEX.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8
VEX.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8
VEX.128.66.0F 73 /2 ib VPSRLQ xmm1, xmmZ2, imm8
VEX.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8
VEX.128.66.0F 72 /4 ib VPSRAD xmm1, xmmZ2, imm8
VEX.128.66.0F 71 /6 ib VPSLLW xmm1, xmmZ2, imm8
VEX.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8
VEX.128.66.0F 73 /6 ib VPSLLQ xmm1, xmmZ2, imm8

The role of ModR/M.r/m field can be summarized to two situations:
® ModR/M.r/m encodes the instruction operand that references a memory address.

® For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the
destination register operand or a source register operand.

The role of ModR/M.reg field can be summarized to two situations:
® ModR/M.reg encodes either the destination register operand or a source register operand.

®* For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction
operand.

For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four
operands. The role of bits 7:4 of the immediate byte serves the following situation:

® Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”

Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (OF, OF 38, or OF 3A). Several bits are
reserved for future use and will #UD unless 0.

Table 2-10. VEX.m-mmmm Interpretation

VEX.m-mmmm Implied Leading Opcode Bytes
00000B Reserved
00001B OF
00010B OF 38
00011B OF 3A
00100-11111B Reserved
(2-byte VEX) OF

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading OFh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”

The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If "VEX.L = 1”, it indicates 256-bit vector operation. “"VEX.L = 0” indicates scalar and 128-bit vector
operations.

The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits
255:128 of all YMM registers accessible in the current operating mode. See Table 2-11.

2-18 Vol. 2A

INSTRUCTION FORMAT

Table 2-11. VEX.L Interpretation

VEX.L Vector Length
0 128-bit (or 32/64-bit scalar)
1 256-bit

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix
behaves as if it was encoded prior to VEX, but after all other encoded prefixes. See Table 2-12.

Table 2-12. VEX.pp Interpretation

b)) Implies this prefix after other prefixes but before VEX
00B None

01B 66

10B F3

11B F2

2.3.7 The Opcode Byte

One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color.
Any instruction that uses illegal opcode will #UD.

2.3.8 The ModR/M, SIB, and Displacement Bytes

The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)

VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and
PBLENDVB use imm8[7:4] to encode one of the source registers.

2.3.10 Intel®* AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations

An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
® Data is loaded into bits 127:0 of the register

®* Bits above bit 127 in the register are cleared.

Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register
operand.)

Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any
future extensions to the vector registers. A calling function that uses such extensions should save their state before
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is

Vol.2A 2-19

INSTRUCTION FORMAT

recommended that software handling involuntary calls accommodate this by not executing instructions encoded
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions,
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector
registers.

Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits
for all vector-register extensions that are enabled in XCRO0.) Saving and restoring state with instructions other than
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported
extensions to the vector registers.)

2.3.11 Intel® AVX Instruction Length

The Intel AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing

In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is
supported only with VEX prefix.

In VSIB memory addressing, the SIB byte consists of:
®* The scale field (bit 7:6) specifies the scale factor.

®* The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector
register specifies an index.

®* The base field (bits 2:0) specifies the register number of the base register.

Table 2-13 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8D-R15D applicable only in 64-bit
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-13). In 32-bit
mode, R8D-R15D does not apply.

Table rows in the body of the table indicate the vector index register used as the index field and each supported
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e., XMM8/YMM8-XMM15/YMM15), which are only available in
64-bit mode and does not apply if encoding in 32-bit mode.

2-20 Vol. 2A

INSTRUCTION FORMAT

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte

r32 EAX/ ECX/ EDX/ EBX/ ESP/ EBP/ esl/ enl/
R8D RID R10D R11D R12D R13D' |R14D R15D
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)
VRO/VR8 *1 00 000 00 01 02 03 04 05 06 07
VR1/VR9 001 08 09 0A 0B oC oD 0E OF
VR2/VR10 010 10 11 12 13 14 15 16 17
VR3/VR11 011 18 19 1A 1B 1C 1D 1€ 1F
VR4/VR12 100 20 21 22 23 24 25 26 27
VR5/VR13 101 28 29 2A 2B 2C 2D 2E 2F
VR6/VR14 110 30 31 32 33 34 35 36 37
VR7/VR15 111 38 39 3A 3B 3C 3D 3E 3F
VRO/VR8 *2 101 000 40 41 42 43 44 45 46 47
VR1/VR9 001 48 49 4A 4B 4C 4D 4€ 4F
VR2/VR10 010 50 51 52 53 54 55 56 57
VR3/VR11 011 58 59 5A 5B 5C 5D 5€ 5F
VR4/VR12 100 60 61 62 63 64 65 66 67
VR5/VR13 101 68 69 6A 6B 6C 6D 6E 6F
VR6/VR14 110 70 71 72 73 74 75 76 77
VR7/VR15 111 78 79 7A 7B 7C 7D 7€ 7F
VRO/VR8 *4 10 000 80 81 82 83 84 85 86 87
VR1/VR9 001 88 89 8A 8B 8C 8D 8€E 8F
VR2/VR10 010 90 91 92 93 94 95 96 97
VR3/VR11 011 98 89 9A 9B 9C D 9€ 9F
VR4/VR12 100 A0 Al A2 A3 A4 A5 A6 A7
VR5/VR13 101 A8 A9 AA AB AC AD AE AF
VR6/VR14 110 BO B1 B2 B3 B4 B5 B6 B7
VR7/VR15 111 B8 B9 BA BB BC BD BE BF
VRO/VR8 *8 11 000 co C1 C2 C3 Cc4 c5 C6 C7
VR1/VR9 001 C8 C9 CA (B CC CD CE CF
VR2/VR10 010 DO D1 D2 D3 D4 D5 D6 D7
VR3/VR11 011 D8 D9 DA DB DC DD DE DF
VR4/VR12 100 €0 E1 €2 €3 €4 ES E6 €7
VR5/VR13 101 €8 €9 EA EB €C ED EE EF
VR6/VR14 110 FO F1 F2 F3 F4 F5 F6 F7
VR7/VR15 111 F8 F9 FA FB FC FD FE FF
NOTES:

1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the
base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address

00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

2.3.12.1 64-bit Mode VSIB Memory Addressing

In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one
of the 16 vector registers as the vector index register.

In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register.

2.4 INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Intel® AMX instructions follow the general documentation convention established in previous sections. Additionally,
Intel® Advanced Matrix Extensions use notation conventions as described below.

In the instruction encoding boxes, sibmem is used to denote an encoding where a ModR/M byte and SIB byte are
used to indicate a memory operation where the base and displacement are used to point to memory, and the index

Vol. 2A 2-21

INSTRUCTION FORMAT

register (if present) is used to denote a stride between memory rows. The index register is scaled by the sib.scale
field as usual. The base register is added to the displacement, if present.

In the instruction encoding, the ModR/M byte is represented several ways depending on the role it plays. The
ModR/M byte has 3 fields: 2-bit ModR/M.mod field, a 3-bit ModR/M.reg field and a 3-bit ModR/M.r/m field. When all
bits of the ModR/M byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the ModR/M byte
must contain fixed values, those values are specified as follows:

® If only the ModR/M.mod must be 0b11, and ModR/M.reg and ModR/M.r/m fields are unrestricted, this is
denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the ModR/M.reg field and the bbb correspond to the
3-bits of the ModR/M.r/m field.

* If the ModR/M.mod field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then the notation !(11) is used.

* If the ModR/M.reg field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb.

NOTE

Historically this document only specified the ModR/M.reqg field restrictions with the notation /0 ... /7
and did not specify restrictions on the ModR/M.mod and ModR/M.r/m fields in the encoding boxes.

2.5 INTEL® AVX AND INTEL® SSE INSTRUCTION EXCEPTION CLASSIFICATION

To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table summarizes the exception behavior into separate classes, with detailed exception
conditions defined in sub-sections 2.5.1 through 2.6.1. For example, ADDPS contains the entry:

“See Exceptions Type 2.”
In this entry, "Type 2” can be looked up in Table 2-19.

The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.

Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

NOTE

Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the
exception classes defined in this section. For instructions that operate on MMX registers, see
Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 2-14. Exception Class Description

Exception Class Instruction Set Mem Arg Floating-Point Exceptions
(#XM)
AVX, L .
Type 1 Legacy SSE 16/32 byte explicitly aligned No
AVX, 16/32 byte not explicitly
Type 2 Legacy SSE aligned Yes
AVX,
Type 3 Legacy SSE <16 byte Yes
AVX, 16/32 byte not explicitly
Type 4 Legacy SSE aligned No
AVX,
Type 5 Legacy SSE <16 byte No
Type 6 AVX (no Legacy SSE) Varies (At present, none do)

2-22 Vol.2A

Table 2-14. €xception Class Description (Contd.)

INSTRUCTION FORMAT

Exception Class Instruction Set Mem Arg Floating-Point Exceptions
(#XM)
AVX,
Type 7 Legacy SSE None No
Type 8 AVX None No
F16C 8 or 16 byte, Not explicitly Yes
Type 11 aligned, no AC#
Type 12 AVX2 Gathers Not explicitly aligned, no AC# No

See Table 2-15 for lists of instructions in each exception class.

Table 2-15. Instructions in Each Exception Class

Exception Class

Instruction

Type 1

(V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB2 13PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VENMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD,
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2S!, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSIZSS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD1325D, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, (V)PBLENDW,
(V)PCMP(E/)STRI/M***, (\)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW,
(V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW,
(V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, (V)PMAXSW, (V)PMAXSD,
(V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW, (V)PMINUD,
(V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR,
(V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD,
(V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PUNPCKHBW, (V)PUNPCKHWD,
(V)PUNPCKHDAQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR,
(V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS,
(V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, VPSLLVD, VPSLLVQ, VPSRAVD,
VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F 128

Vol.2A 2-23

INSTRUCTION FORMAT

Table 2-15. Instructions in Each Exception Class (Contd.)

Exception Class Instruction
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
Tvoe 5 (V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
yp (V)PINSRD, (V)PINSRW, (V)PINSRQ, PMOVSXBW, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*,
VSTMXCSR
VEXTRACTF128/VEXTRACTFxxxx, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128,
Type 6 VMASKMOVPS**, VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB,
VPBROADCASTD, VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM21128
Tvpe 7 (V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
yp (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ
Type 8 VZEROALL, VZEROUPPER
Type 11 VCVTPHZPS, VCVTPS2PH
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
Typel2 | \pGaTHERQQ

(*) - Additional exception restrictions are present - see the Instruction description for details

(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e., no
alignment checks are performed.

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM, and LDDQU instructions do not cause #GP if the memory operand is not
aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for Intel AVX instructions. Within each class of exception conditions that
are listed in Table 2-18 through Table 2-27, certain subsets of Intel AVX instructions may be subject to #UD excep-
tion depending on the encoded value of the VEX.L field. Table 2-16 and Table 2-17 provide supplemental informa-
tion of Intel AVX instructions that may be subject to #UD exception if encoded with incorrect values in the VEX.W
or VEX.L field.

Table 2-16. #UD Exception and VEX.W=1 Encoding

#UD If VEX.W =1 in

Exception Class #UD If VEX.W = 1 in All Modes Non-64-Bit Modes

Type 1

Type 2

Type 3

VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD,

Type 4 VPERMPS, VPERM21128, VPSRAVD, VPERMILPD, VPERMILPS, VPERMZ2F128

Type 5

VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128,
Type 6 VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128,
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8
Type 11 VCVTPHZ2PS, VCVTPS2PH
Type 12

2-24 Vol. 2A

Table 2-17. #UD Exception and VEX.L Field Encoding

INSTRUCTION FORMAT

Exception

#UD If (VEX.L = 1 && AVX2

#UDIfVEX.L=0 #UD If (VEX.L = 1 && AVX2 not present && AVX present)
Class present)
Type 1 VMOVNTDQA
Type 2 \VDPPD \VDPPD
Type 3
VMASKMOVDQU, VMPSADBW, VPABSB/W/D, VPCMP(E/N)STRI/M,
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D, VPADDQ, | PHMINPOSUW
VVPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND, VPANDN,
VPAVGB/W, VPBLENDVB, VPBLENDW, VPCMP(E/I)STRI/M,
VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q, VPHADDW/D,
VPHADDSW, VPHMINPOSUW, VPHSUBD/W, VPHSUBSW,
Tvpe 4 VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
yp VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, VPMULHUW,
VPMULHRSW, VPMULHW/LW, VPMULLD, VPMULUDQ,
VPMULDQ, VPOR, VPSADBW, VPSHUFB/D, VPSHUFHW/LW,
VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, VPSRLW/D/Q,
VPSUBB/W/D/Q, VPSUBSB/W, VPUNPCKHBW/WD/DQ,
VPUNPCKHQDQ, VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ,
VPXOR
VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, Same as column 3
Tvpe 5 VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD,
yp VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW,
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR
VEXTRACTF128,
VPERM2F128,
Type 6 VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, VPSRLDQ, | VMOVLHPS, VMOVHLPS
Type 7 VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, VPSRLW,
VPSRLD, VPSRLQ
Type 8
Type 11
Type 12

Vol.2A 2-25

INSTRUCTION FORMAT

2.5.1 Exceptions Type 1 (Aligned Memory Reference)

Table 2-18. Type 1 Class Exception Conditions

o B2
oo} m =
— 8 vo|x
Exception o | = |2%| 2 Cause of Exception
(-2 S 82| 3
E |8§
S |£8
X X VEX prefix.
VEX prefix:
X X | If XCRO[2:1] ? “11b".
If CR4.0SXSAVE[bit 18]=0.
Invalid Opcode, Legacy SSE instruction:
#UD X X X X | If CRO.EM[bit 2] =1.
If CR4.0SFXSR[bit 9] = 0.
X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘O".
Device Not Avail- o
able, #NM X X X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, #SS(0) 9 . g — -
X | If amemory address referencing the SS segment is in a non-canonical form.
X X VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.
X X X X | Legacy SSE: Memory operand is not 16-byte aligned.
General Protec- - . -
. For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
tion, #GP(0) X
ments.
X | If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to FFFFH.
Page Fault
H#PF(fault-code) X X X | For a page fault.

2-26 Vol. 2A

INSTRUCTION FORMAT

2.5.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
Table 2-19. Type 2 Class Exception Conditions
©
8 5E
- | 8 o5 |l=x
Exception 3 | = &% 2 Cause of Exception
x S |18ald
E |5 E
S £S8
X X VEX prefix.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
VEX prefix:
X X | FXCRO[2:1]1?"11b".
. If CR4.0SXSAVE[bit 18]=0.
Invalid Opcode, - :
#UD Legacy SSE instruction:
X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘O".
Device Not Avail- o
able, #NM X X X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, #SS(0) , — .
X | If amemory address referencing the SS segment is in a non-canonical form.
X X X X | Legacy SSE: Memory operand is not 16-byte aligned.
General Protec- X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
tion, #GP(0) X | If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to FFFFH.
Page Fault
#PF(fault-code) X X X | For a page fault.
SIMD Floating-
point Exception, X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 1.

#XM

Vol.2A 2-27

INSTRUCTION FORMAT

2.5.3 Exceptions Type 3 (<16 Byte Memory Argument)
Table 2-20. Type 3 Class Exception Conditions
g 82
- S |lvd| &
Exception 3 | = 2% 2 Cause of Exception
o 5 | g- 5
i =
S |28
X X VEX prefix.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
VEX prefix:
X X | fXCRO[2:1]1?"11b'".
If CR4.0SXSAVE[bit 18]=0.
Invalid Opcode, #UD Legacy SSE instruction:
X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘O".
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X For an illegal address in the SS segment.
Stack, #SS(0) , — .
X | If amemory address referencing the SS segment is in a non-canonical form.
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
) ments.
ggg%e)‘l Protection, X | If the memory address is in a non-canonical form.
If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault
HPF(fault-code) X X X | For a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.
SIMD Floating-point |y |y |y | ¥ | |t an unmasked SIMD floating-point exception and CR4.0SXMMEXCPTbit 10] = 1.

Exception, #XM

2-28 Vol. 2A

INSTRUCTION FORMAT

254 Exceptions Type 4 (>=16 Byte Mem Arg, No Alignment, No Floating-point Exceptions)

Table 2-21. Type 4 Class Exception Conditions

8 52
. 5 & |33 = .
Exception 3 = &% 'q_‘r" Cause of Exception
@ 3 oo 3
£ 5§
S |£8
X X VEX prefix.
VEX prefix:

X X | fXCRO[2:1]1?"11b.
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
If any corresponding CPUID feature flag is ‘0".

Invalid Opcode, #UD

Device Not Available,

#NM If CRO.TS[bit 3]=1.

>

>
x| X | X| X| X
X | X| X| X

Stack, #55(0) For an illegal address in the SS segment.

X | If a memory address referencing the SS segment is in a non-canonical form.
X X X X | Legacy SSE: Memory operand is not 16-byte aligned.’
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
General Protection, ments.
#GP(0) X | If the memory address is in a non-canonical form.
If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault
#PF(fault-code) X X X | For a page fault.
NOTES:

1. LDDQU, MOVUPD, MOVUPS, PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory
operand is not aligned to 16-Byte boundary.

Vol.2A 2-29

INSTRUCTION FORMAT

2.5.5 Exceptions Type 5 (<16 Byte Mem Arg and No FP Exceptions)

Table 2-22. Type 5 Class Exception Conditions

8 52
. 5 & 98| B .
Exception 3 | = 2% 2 Cause of Exception
(-2 S 82| &
E 5E
s £8
X X VEX prefix.
VEX prefix:

X X | If XCRO[2:1] ? “11b'.
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

Invalid Opcode, #UD

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

If any corresponding CPUID feature flag is ‘0".

Device Not Available,

#NM If CRO.TS[bit 3]=1.

>

>
X| X | X| X| X
X | X| X| X

Stack, #55(0) For an illegal address in the SS segment.

X | If amemory address referencing the SS segment is in a non-canonical form.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
) ments.

ggr;?(r)a)nl Protection, X | If the memory address is in a non-canonical form.

If any part of the operand lies outside the effective address space from O to

X X

FFFFH.
Page Fault
#PF(fault-code) X X X | For a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.

2-30 Vol.2A

2.5.6

INSTRUCTION FORMAT

Exceptions Type 6 (VEX-Encoded Instructions without Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23. Type 6 Class Exception Conditions

g 82
— 8 oo | X
Exception e | 5 8% % Cause of Exception
o S |8 a g
£ 5 E
s £8
X X VEX prefix.
X X If XCRO[2:1]? "11Db'.
invalid Oncode. #UD If CR4.0SXSAVE[bit 18]=0.
nvalid “pcoce. X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, v
#NM X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, #SS(0) n — .
X | If a memory address referencing the SS segment is in a non-canonical form.
. For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
General Protection, X ments
#GP(O :
© X | If the memory address is in a non-canonical form.
Page Fault
H#PF(fault-code) X X | For a page fault.
Alignment Check X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

#AC(0)

unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-31

INSTRUCTION FORMAT

2.5.7 Exceptions Type 7 (No FP Exceptions, No Memory Arg)

Table 2-24. Type 7 Class Exception Conditions

8 52
. 5 & 98| B .
Exception 3 | = 2% 2 Cause of Exception
(-3 S 82| &
E 5E
s £8
X X VEX prefix.
VEX prefix:

X X | fXCRO[2:1]? 11D,
If CR4.0SXSAVE[bit 18]=0.

. Legacy SSE instruction:
Invalid Opcode, #UD |y | v | x | x | f CRO.EM[bit2] = 1.

If CR4.0SFXSR[bit 9] = 0.

X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0’.
Device Not Available, X | X | If CROTS[bit 3]=1.

#NM

2.5.8 Exceptions Type 8 (AVX and No Memory Argument)

Table 2-25. Type 8 Class Exception Conditions

g 52
— S |vE8| &
Exception 3 | 5 €% 3 Cause of Exception
[S 1 8a I
E 5§
S |£8
Invalid Opcode, #UD | X X Always in Real or Virtual-8086 mode.

>
>

If XCRO[2:1] ? “11b".

If CR4.0SXSAVE[bit 18]=0.

If CPUID.OTH.ECX.AVX[bit 28]=0.
If VEX.vwwv ? 1111B.

X X X X If proceeded by a LOCK prefix (FOH).

Device Not Available, X X If CRO.TS[bit 3]=1.
#NM

2-32 Vol.2A

INSTRUCTION FORMAT

2.5.9 Exceptions Type 11 (VEX-only, Mem Arg, No AC, Floating-point Exceptions)

Table 2-26. Type 11 Class Exception Conditions

o 22
[0} m =
. — 8 oo | X .
Exception o = 2% 2 Cause of Exception
(-2 S 8| &
= = E
= O o
]
Invalid Opcode, #UD | X X VEX prefix.
X X VEX prefix:
If XCRO[2:1]? 11D,
If CR4.0SXSAVE[bit 18]=0.
X X X X If preceded by a LOCK prefix (FOH).
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X X If any corresponding CPUID feature flag is 0".
Device Not Avail- X X X X If CRO.TS[bit 3]=1.
able, #NM
Stack, #SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH.
Page Fault #PF X X X For a page fault.
(fault-code)
SIMD Floating-Point X X X X If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 1.

Exception, #XM

Vol.2A 2-33

INSTRUCTION FORMAT

2.5.10 Exceptions Type 12 (VEX-only, VSIB Mem Arg, No AC, No Floating-point Exceptions)

Table 2-27. Type 12 Class Exception Conditions

g |52
— S |va| &
. m ® |las| B .
Exception Q = |88 ¢ Cause of Exception
o S |gal &
E |55
S |£8
Invalid Opcode, #UD | X X VEX prefix.
X X VEX prefix:
If XCRO[2:1]? "11b'.
If CR4.0SXSAVE[bit 18]=0.
X X X If preceded by a LOCK prefix (FOH).
X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X NA | If address size attribute is 16 bit.
X X X X If ModR/M.mod = "11b".
X X X X If ModR/M.rm ? “100b'.
X X X X If any corresponding CPUID feature flag is ‘0".
X X X X If any vector register is used more than once between the destination register,

mask register and the index register in VSIB addressing.

Device Not Available, | X X X X If CRO.TS[bit 3]=1.

#NM
Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
#GP(0) ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from O to
FFFFH.

Page Fault #PF (fault- X X X For a page fault.
code)

2.6 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS

The VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded
general-purpose-register instructions have the following properties:

® Instruction syntax support for three encodable operands.

®* Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via
VEX.vvvy, and destructive three-operand syntax.

®* Elimination of escape opcode byte (OFH), two-byte escape via a compact bit field representation within the VEX
prefix.

®* Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15)
for direct register access or memory addressing.

®* Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by
REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only.

® VEX-encoded GPR instructions are encoded with VEX.L=0.

2-34 Vol. 2A

INSTRUCTION FORMAT

Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD.
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.6.1 Exceptions Type 13 (VEX-Encoded GPR Instructions)

The exception conditions applicable to VEX-encoded GPR instructions differ from those of legacy GPR instructions.
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GPR instructions are
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is
not encodable.

Table 2-28. VEX-Encoded GPR Instructions
Exception Class Instruction

Type 13 ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

(*) - Additional exception restrictions are present - see the Instruction description for details.

Table 2-29. Type 13 Class Exception Conditions

g |52
— S |v5| &
. o ® |as| B .
Exception O = |0 & Cause of Exception
(-2 S |8a &
E |5 E
s |g£8
Invalid Opcode, #UD | X X X X If BMI1/BMI2 CPUID feature flag is ‘0.
X X If a VEX prefix is present.
X X X X If VEX.L=1.
X X X X If preceded by a LOCK prefix (FOH).
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
Stack, #SS(0) X X X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
If the DS, €S, FS, or GS register is used to access memory and it contains a null
segment selector.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH.
Page Fault #PF(fault- X X X For a page fault.
code)
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.

2.6.2 Exceptions Type 14 (CMPCCXADD)

The exception conditions applicable to the CMPCCXADD instruction differ from those of other VEX-encoded GPR
instructions. The exception conditions for the CMPCCXADD instruction are found in Table 2-31.

Vol.2A 2-35

INSTRUCTION FORMAT

Table 2-30. Exceptions Type 14 Instructions

Exception Class Instruction
Type 14 CMPCCXADD
Table 2-31. Type 14 Class Exception Conditions
8 B2
— Q |va| =
. © © Os| B .
Exception Q = |80 ¢ Cause of Exception
(-4 S |8al
E |56
> g0
X X X Only supported in 64-bit mode.
Invalid Opcode, #UD X | If any LOCK, REX, F2, F3, or 66 prefixes precede a VEX prefix.
X | If any corresponding CPUID feature flag is ‘0'.
Stack, #5S(0) X | If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X If the memory address is in a non-canonical form.
#GP(0)
Page Fault, #PF(fault- X If a page fault occurs.
code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference is made
#AC(0) while the current privilege level is 3.

2.7 INTEL® AVX-512 ENCODING

The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands)
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using
the VEX prefix, and many other capabilities not available with the VEX prefix.

The significant feature differences between EVEX and VEX are summarized below.
® EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte

(C4H is the first byte) prefix.

® EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.

® EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded
vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.

EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding
density of the instruction byte stream.

®* EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).

2.7.1 Instruction Format and EVEX

The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10. Note that the values contained
within brackets are optional.

2-36 Vol.2A

INSTRUCTION FORMAT

of bytes: 4 1 1 1 2,4 1

| [Prefixes]| | EVEX | | Opcode | | ModR/M | | [SIB] | |[Disp16,32] | | [Immediate]
1

[Disp8*N]

Figure 2-10. Intel® AVX-512 Instruction Format and the EVEX Prefix

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed
by three payload bytes, denoted as PO, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Evex |eeH | [po | [P | [p2 |
7 6 5 4 3 2 1 0
PO (R x[B][RrR[O] m][m][m|] Pro
7 6 5 4 3 2 1 0
P1 | w | v | v | v | v | 1 | P | b | P[15:8]
7 6 5 4 3 2 1 0
P2 [z v o] v]a]alal P[23:16]

Figure 2-11. Bit Field Layout of the EVEX Prefix’
NOTES:
1. See Table 2-32 for additional details on bit fields.

Vol.2A 2-37

INSTRUCTION FORMAT

Table 2-32. EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

EVEX.mmm Access to up to eight decoding maps P[2:0] Currently, only the following decoding maps are supported: 1,
2,3,5,and 6.

- Reserved P[3] Must be 0.

EVEXR’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.req. This bit is stored in
inverted format.

EVEX.RXB Next-8 register specifier modifier P[7:5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx). This
field is encoded in bit inverted format.

EVEX.X High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.pp Compressed legacy prefix P[9:8] Identical to VEX.pp.

- Fixed Value P[10] Must be 1.

EVEX.vvvv VVVV register specifier P[14:11] | Same as VEX.vvvv. This field is encoded in bit inverted format.

EVEX.W Operand size promotion/Opcode P[15]

extension

EVEX.aaa Embedded opmask register specifier P[18:16]

EVEX.V' High-16 VVVV/VIDX register specifier | P[19] Combine with EVEX.vvvv or when VSIB present. This bit is
stored in inverted format.

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L'L Vector length/RC P[22:21]

EVEX.z Zeroing/Merging P[23]

The bit fields in P[23:0] are divided into the following functional groups (Table 2-32 provides a tabular summary):

Reserved bits: P[3] must be 0, otherwise #UD.
Fixed-value bit: P[10] must be 1, otherwise #UD.

Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is
identical to VEX.pp.

EVEX.mmm: P[2:0] provides access to up to eight decoding maps. Currently, only the following decoding maps
are supported: 1, 2, 3, 5, and 6. Map ids 1, 2, and 3 are denoted by OF, OF38, and OF3A, respectively, in the
instruction encoding descriptions.

Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows
access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.

Operand specifier modifier bit for vector register: P[4] (or EVEX.R") allows access to the high 16 vector register
set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.

Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].

Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector
registers.

EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.

Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.

Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L'L). The functionality for the
following instruction classes are:

2-38 Vol. 2A

INSTRUCTION FORMAT

— Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+0Op semantic where one of the source operand is from memory.

— Redirect L'L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
® Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.

2.7.2 Register Specifier Encoding and EVEX

EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 2-33. Opmask register encoding is described in
Section 2.7.3.

Table 2-33. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

4 3 [2:0] Reg. Type Common Usages
REG EVEXR’ REXR modrm.reg GPR, Vector Destination or Source
VVVV EVEX.V' EVEX.vvvv GPR, Vector 2ndSource or Destination
RM EVEX.X EVEXB modrm.r/m GPR, Vector 1st Source or Destination
BASE 0 EVEX.B modrm.r/m GPR memory addressing
INDEX 0 EVEX.X sib.index GPR memory addressing
VIDX EVEX.V' EVEX.X sib.index Vector VSIB memory addressing

NOTES:
1. Not applicable for accessing general purpose registers.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 2-34.

Table 2-34. EVEX Encoding Register Specifiers in 32-bit Mode

[2:0] Reg. Type Common Usages
REG modrm.reg GPR, Vector Destination or Source
VVVV EVEX.vwv GPR, Vector 2nd Source or Destination
RM modrm.r/m GPR, Vector 1st Source or Destination
BASE modrm.r/m GPR Memory Addressing
INDEX sib.index GPR Memory Addressing
VIDX sib.index Vector VSIB Memory Addressing

Vol.2A 2-39

INSTRUCTION FORMAT

2.7.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:

®* Opmask registers that are the source or destination operands of an instruction treating the content of opmask
register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support
conditional update of the destination operand.

®* An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 2.7.4).

®* An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.

Table 2-35. Opmask Register Specifier Encoding

[2:0] Register Access Common Usages
REG modrm.reg k0-k7 Source
VVVV VEX.vvvv kO-k7 2nd Source
RM modrm.r/m kO-7 1st Source
{k1} EVEX.aaa k01«7 Opmask

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using kO as the embedded mask.

2.7.4 Masking Support in EVEX

EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. kO can be used as a regular source or destination but cannot be encoded as a predicate operand.

AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:

®* Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old
value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.

® Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.

AVX-512 Foundation instructions can be divided into the following groups:
® Instructions which support “zeroing-masking”.
— Also allow merging-masking.
® Instructions which require aaa = 000.
— Do not allow any form of masking.
® Instructions which allow merging-masking but do not allow zeroing-masking.
— Require EVEX.z to be set to 0.
— This group is mostly composed of instructions that write to memory.
® Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.
— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

2-40 Vol. 2A

INSTRUCTION FORMAT

2.7.5 Compressed Displacement (disp8*N) Support in EVEX

For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-36 and Table 2-37 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.

Table 2-36 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or gqword (see Section 2.7.11).

EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-37. Table 2-37
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-37. Instruc-
tion classified in Table 2-37 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.

The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.

Note that the disp8*N rules still apply when using 16b addressing.

Table 2-36. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType | EVEX.b | InputSize | EVEX.W | Broadcast | N (VL=128) | N (VL=256) | N (VL=512) Comment
0 32bit 0 none 16 32 64
1 32bit 0 {1tox} 4 4 4 Load+Op (Full Vector
Full
0 64bit 1 none 16 32 64 Dword/Qword)
1 64bit 1 {1tox} 8 8 8
0 32bit 0 none 8 16 32
Half - Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-37. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize | EVEX.W | N (VL=128) | N (VL= 256) | N (VL=512) Comment
Full Mem N/A N/A 16 32 64 Load/store or subDword full vector
8bit N/A 1 1 1
16bit N/A 2 2 2
Tuple1 Scalar 1Tuple
32bit 0 4 4 4
64bit 1 8 8 8
32bit N/A 4 4 4 i
Tuple1 Fixed . 1 Tuple, memsize not affected by
64bit N/A 8 8 8 EVEXW
32bit 0 8 8 8
Tuple2 Broadcast (2 elements)
64bit 1 NA 16 16
32bit 0 NA 16 16
Tuple4 - Broadcast (4 elements)
64bit 1 NA NA 32
Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)
Half Mem N/A N/A 8 16 32 SubQword Conversion
Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Vol. 2A 2-41

INSTRUCTION FORMAT

Table 2-37. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast (Contd.)

TupleType InputSize | EVEX.W | N (VL=128) | N (VL=256) | N (VL= 512) Comment

Eighth Mem N/A N/A 2 4 8 SubWord Conversion
Mem128 N/A N/A 16 16 16 Shift count from memory
MOVDDUP N/A N/A 8 32 64 VMOVDDUP

2.7.6 EVEX Encoding of Broadcast/Rounding/SAE Support

EVEX.b can provide three types of encoding context, depending on the instruction classes:

®* Embedded broadcasting of one data element from a source memory operand to the destination for vector
instructions with “load+op” semantic.

® Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.

® “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that
do not have rounding semantic.

2.7.7 Embedded Broadcast Support in EVEX

EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.

The following instruction classes do not support embedded broadcasting:

® Instructions with only one scalar result is written to the vector destination.
* Instructions with explicit broadcast functionality provided by its opcode.

* Instruction semantic is a pure load or a pure store operation.

2.7.8 Static Rounding Support in EVEX

Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both
cases, the field EVEX.L'L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.7.9 SAE Support in EVEX

The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set.

2.7.10 Vector Length Orthogonality

The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L'L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L'L bits. When EVEX is used to encode scalar instructions, L'L is generally ignored.

When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L'L fields are summarized in
Table 2-38.

2-42 Vol. 2A

INSTRUCTION FORMAT

Table 2-38. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]
Broadcast/Rounding/SAE Context EVEX.b EVEX.L'L EVEX.RC
Reg-reg, FP Instructions w/ rounding semantic or SAE Enable static rounding Vector length Implied 00b: SAE + RNE
control (SAE implied) (512 bit or scalar) 01b: SAE +RD
10b: SAE + RU
11b: SAE + RZ
Load+op Instructions w/ memory source Broadcast Control 00b: 128-bit NA
. . 01b: 256-bit
Other Instructions (Must be O (otherwise 10b: 51 2-bit NA

Explicit Load/Store/Broadcast/Gather/Scatter)

#UD)

11b: Reserved (#UD)

2.7.11 #UD Equations for EVEX

Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and

opcode dependent.

2.7.11.1 State Dependent #UD

In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-39 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCRO shown in Table 2-39 will cause #UD.

Table 2-39. 0S XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCRO Bit Vector [7:0]
Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b
VEX-encoded instructions operating on YMM YMM xxxxx111b
EVEX-encoded 128-bit instructions ZMM 111xx111b
EVEX-encoded 256-bit instructions ZMM 111xx111b
EVEX-encoded 512-bit instructions ZMM 111xx111b
VEX-encoded instructions operating on opmask k-reg 111xxx11b

2.7.11.2 Opcode Independent #UD

A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns

listed in Table 2-40.

Table 2-40. Opcode Independent, State Dependent EVEX Bit Fields'

Position Notation 64-bit #UD Non-64-bit #UD
PI3] - if>0 if>0
P[10] -- if 0 if 0
P[2:0] EVEX.mmm if 000b, 100b, or 111b if 000b, 100b, or 111b
P[7:6] EVEX.RX None (valid) None (BOUND if EVEX.RX = 11b)
NOTES:

1. This table is also representative of VEX restrictions. For VEX operations, use the Notation field.

Vol.2A 2-43

INSTRUCTION FORMAT

2.7.11.3 Opcode Dependent #UD

This section describes legal values for the rest of the EVEX bit fields. Table 2-41 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.

Table 2-41. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields'

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEXR P[7] ModRM.reg encodes k-reg If EVEXR=0 None (BOUND if
ModRM.reg is opcode extension None (ignored) EVEXRX 1= 11b)
ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)
ModRM.r/m encodes k-reg or GPR None (ignored)
ModRM.r/m without SIB/VSIB None (ignored)
ModRM.r/m with SIB/VSIB None (valid)

EVEXB P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)
ModRM.r/m encodes other registers None (valid)
ModRM.r/m base present None (valid)
ModRM.r/m base not present None (ignored)

EVEXR’ P[4] ModRM.reg encodes k-reg or GPR If0 None (ignored)
ModRM.reg is opcode extension None (ignored)
ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvwv P[14:11] | vvvv encodes ZMM/YMM/XMM None (valid) None (valid)

P[14] ignored

Otherwise If1=1111b If1=1111b

EVEX.V' P[19] Encodes ZMM/YMM/XMM None (valid) If0
Otherwise IfO If O

NOTES:

1. This table also represents VEX restrictions.

Table 2-42 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-42. #UD Conditions of Opmask Related Encoding Field

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.aaa P[18:16] | Instructions do not use opmask for conditional processing’. | If aaa != 000b If aaa != 000b
Opmask used as conditional processing mask and updated | If aaa = 000b If aaa = 000b;
at completion?.
Opmask used as conditional processing. None (valid3) None (valid")
EVEX.z P[23] Vector instruction using opmask as source or destination®. | If EVEX.z = 0 If EVEX.z!=0
Store instructions or gather/scatter instructions. If EVEXz!=0 If EVEX.z!=0
Instructions with EVEX.aaa = 000b. If EVEXz!=0 If EVEXz!=0
VEX.vvwv Varies K-regs are instruction operands not mask control. If vuvv = Oxxxb None
NOTES:

1. €.g., VPBROADCASTMxxx, VPMOVM2x, VPMOVx2M.
2. E.g., Gather/Scatter family.

2-44 Vol. 2A

INSTRUCTION FORMAT

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in KO.
4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

Table 2-43 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

Table 2-43. #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.L'Lb P[22 :20] | Reg-reg, FP instructions with rounding semantic. None (valid1) None (valid1)
Other reg-reg, FP instructions that can cause #XM. None (valid?) None (valid?)
Other reg-mem instructions in Table 2-36. None (valid?) None (valid3)
Other instruction classes* in Table 2-37. If EVEXb =1 If EVEXDb =1
NOTES:

1. L'L specifies rounding control, see Table 2-38, supports {er} syntax.

2.L'Lis ignored.
3. L'L specifies vector length, see Table 2-38, supports embedded broadcast syntax

4. L'L specifies either vector length or ignored.

2.7.12 Device Not Available

EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CRO.TS[bit 3]= 1.

2.7.13 Scalar Instructions

EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support
masking (using the least significant bit of the opmask register), but broadcasting is not supported.

2.8 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS

The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of

“E##" or with a suffix "E##XX". The “##" designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named
“E##NF"”. A summary table of exception classes by class names are shown below.

Vol.2A 2-45

INSTRUCTION FORMAT

Table 2-44. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)
Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None
Type ETNF Vector Non-temporal Stores Explicitly aligned, no fault suppression None
Type E2 FP Vector Load+op Support fault suppression Yes
Type E2NF FP Vector Load+op No fault suppression Yes
Type E3 FP Scalar/Partial Vector, Load+0p Support fault suppression Yes
Type E3NF FP Scalar/Partial Vector, Load+0p No fault suppression Yes
Type €4 Integer Vector Load+op Support fault suppression No
Type E4NF Integer Vector Load+op No fault suppression No
Type €5 Legacy-like Promotion Varies, Support fault suppression No
Type ESNF Legacy-like Promotion Varies, No fault suppression No
Type €6 Post AVX Promotion Varies, w/ fault suppression No
Type EGNF Post AVX Promotion Varies, no fault suppression No
Type E7NM Register-to-register op None None
Type EONF Miscellaneous 128-bit Vector-length Specific, no fault suppression None
Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None
Type ET10ONF Non-XF Scalar Vector Length ignored, no fault suppression None
Type E11 VCVTPHZPS, VCVTPSZ2PH Half Vector Length, w/ fault suppression Yes
Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None
Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-45 lists EVEX-encoded instruction mnemonic by exception classes.

Table 2-45. EVEX Instructions in Each Exception Class

Exception Class

Instruction

Type E1

VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQAG4

Type ETNF

VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPH, VADDPS, VCMPPD, VCMPPH, VCMPPS, VCVTDQ2PH, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PH,
VCVTPD2PS, VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPH2DQ, VCVTPH2PD, VCVTPH2QQ, VCVTPH2UDQ,
VCVTPH2UQQ, VCVTPH2UW, VCVTPH2W, VCVTPS2DQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PH, VCVTQQ2PS,
VCVTTPD2DQ, VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPH2DQ, VCVTTPH2QQ, VCVTTPH2UDQ,
VCVTTPH2UQQ, VCVTTPH2UW, VCVTTPH2W, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PH, VCVTUDQ2PS,
VCVTUQQ2PD, VCVTUQQ2PH, VCVTUQQ2PS, VCVTUW2PH, VCVTW2PH, VDIVPD, VDIVPH, VDIVPS, VEXP2PD,
VEXP2PS, VFIXUPIMMPD, VFIXUPIMMPS, VFMADDXXXPD, VFMADDxxxPH, VFMADDXXxPS, VFMADDSUBXxXPD,
VFMADDSUBXXXPH, VFMADDSUBxXxxPS, VFMSUBADDxxXPD, VFMSUBADDxxxPH, VFMSUBADDXXXPS,
VFMSUBxxxPD, VFMSUBXxXPH, VFMSUBXxXPS, VFNMADDxxxPD, VFNMADDxxxPH, VFNMADDXXXPS,
VFNMSUBXxxPD, VFNMSUBxxxPH, VFNMSUBxxxPS, VGETEXPPD, VGETEXPPH, VGETEXPPS, VGETMANTPD,
VGETMANTPH, VGETMANTPS, VGETMANTSH, VMAXPD, VMAXPH, VMAXPS, VMINPD, VMINPH, VMINPS, VMULPD,
VMULPH, VMULPS, VRANGEPD, VRANGEPS, VREDUCEPD, VREDUCEPH, VREDUCEPS, VRNDSCALEPD,
VRNDSCALEPH, VRNDSCALEPS, VRCP28PD, VRCP28PS, VRSQRT28PD, VRSQRT28PS, VSCALEFPD, VSCALEFPS,
VSQRTPD, VSQRTPH, VSQRTPS, VSUBPD, VSUBPH, VSUBPS

2-46 Vol. 2A

INSTRUCTION FORMAT

Table 2-45. EVEX Instructions in Each Exception Class (Contd.)

Exception Class

Instruction

Type E3

VADDSD, VADDSH, VADDSS, VCMPSD, VCMPSH, VCMPSS, VCVTPS2QQ, VCVTPS2UQQ, VCVTPS2PD, VCVTSD2SH,
VCVTSDZ2SS, VCVTSH2SD, VCVTSHZSS, VCVTSS2SD, VCVTSS2SH, VCVTTPS2QQ, VCVTTPS2UQQ, VDIVSD, VDIVSH,
VDIVSS, VFMADDxxxSD, VFMADDxxxSH, VFMADDxxxSS, VFMSUBxxxSD, VFMSUBxxxSH, VFMSUBxxxSS,
VFNMADDxxxSD, VFNMADDxxxSH, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSH, VFNMSUBxxxSS,
VFIXUPIMMSD, VFIXUPIMMSS, VGETEXPSD, VGETEXPSH, VGETEXPSS, VGETMANTSD, VGETMANTSH,
VGETMANTSS, VMAXSD, VMAXSH, VMAXSS, VMINSD, VMINSH, VMINSS, VMULSD, VMULSH, VMULSS, VRANGESD,
VRANGESS, VREDUCESD, VREDUCESH, VREDUCESS, VRNDSCALESD, VRNDSCALESH, VRNDSCALESS, VSCALEFSD,
VSCALEFSH, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD, VRSQRT28SS, VSQRTSD, VSQRTSH, VSQRTSS,
VSUBSD, VSUBSH, VSUBSS

Type E3NF

VCOMISD, VCOMISH, VCOMISS, VCVTSD2SI, VEVTSD2USI, VCVTSHZSI, VCVTSH2USI, VCVTSIZSD, VCVTSIZSH,
VCVTSIZSS, VCVTSS2SI, VEVTSS2USI, VEVTTSDZSI, VEVTTSD2USI, VEVTTSHZSI, VEVTTSH2USI, VCVTTSS2SI,
VCVTTSS2USI, VCVTUSIZSD, VCVTUSIZSH, VCVTUSIZSS, VUCOMISD, VUCOMISH, VUCOMISS

Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VBLENDMPD, VBLENDMPS, VFCMADDCPH, VFCMULCPH, VFMADDCPH,
VFMULCPH, VFPCLASSPD, VFPCLASSPH, VFPCLASSPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ,
VPANDD, VPANDQ, VPANDND, VPANDNQ, VPBLENDMB, VPBLENDMD, VPBLENDMQ, VPBLENDMW, VPCMPD,
VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPCMPQ, VPCMPUD, VPCMPUQ, VPLZCNTD, VPLZCNTQ,
VPMADD52LUQ, VPMADD52HUQ, VPMAXSD, VPMAXSQ, VPMAXUD, VPMAXUQ, VPMINSD, VPMINSQ, VPMINUD,
VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ, VPROLD, VPROLQ, VPROLVD, VPROLVQ,
VPRORD, VPRORQ, VPRORVD, VPRORVQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRAVW, VPSRAVD, VPSRAVW,
VPSRAVQ, VPSRLD, VPSRLQ)', VPSUBD, VPSUBQ, VPSUBUSB, VPSUBUSW, VPTERNLOGD, VPTERNLOGQ,
VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VPXORD, VPXORQ, VPSLLVD, VPSLLVQ, VRCP14PD,
VRCP14PS, VRCPPH, VRSQRT14PD, VRSQRT14PS, VRSQRTPH, VXORPD, VXORPS

€4.nb°

VVCOMPRESSPD, VCOMPRESSPS, VEXPANDPD, VEXPANDPS, VMOVDQUS, VMOVDQU16, VMOVDQU32,
VMOVDQU64, VMOVUPD, VMOVUPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,
VPADDUSW, VPAVGB, VPAVGW, VPCMPB, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPCMPW, VPCMPUB,
VPCMPUW, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ, VPMAXSB, VPMAXSW, VPMAXUB,
VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW, VPMULLW,
VPSLLVW, VPSLLW, VPSRAW, VPSRLVW, VPSRLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB,
VPTESTMW, VPTESTNMB, VPTESTNMW

Type E4NF

VALIGND, VALIGNQ, VPACKSSDW, VPACKUSDW, VPCONFLICTD, VPCONFLICTQ, VPERMD, VPERMIZD, VPERMIZPS,
VPERMIZPD, VPERMI2Q, VPERMPD, VPERMPS, VPERMQ, VPERMT 2D, VPERMTZ2PS, VPERMT2Q, VPERMT2PD,
VPERMILPD, VPERMILPS, VPMULTISHIFTQB, VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ,
VPUNPCKLQDQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2, VSHUFPD, VSHUFPS, VUNPCKHPD,
VUNPCKHPS, VUNPCKLPD, VUNPCKLPS

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMIZW, VPERMT2W

Type E5

PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW,
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, VCVTDQ2PD, VCVTUDQZPD, VMOVSH,
VPMOVSXxx, VPMOVZXxX,

Type ES5NF

VMOVDDUP

Type €6

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VBROADCASTSD, VBROADCASTSS, VFPCLASSSD, VFPCLASSSS, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW, VPMOVWB, VPMOVSWB, VPMOVUSWB

Type EGNF

VEXTRACTF32X4, VEXTRACTF32X8, VEXTRACTF64X2, VEXTRACTF64X4, VEXTRACTI32X4, VEXTRACTI32XS,
VEXTRACTI64X2, VEXTRACTI64X4, VINSERTF32X4, VINSERTF32X8, VINSERTF64X2, VINSERTF64X4,
VINSERTI32X4, VINSERTI32X8, VINSERTI64X?2, VINSERTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D

Vol.2A 2-47

INSTRUCTION FORMAT

Table 2-45. EVEX Instructions in Each Exception Class (Contd.)

Exception Class

Instruction

Type VMOVHLPS, VMOVLHPS
E7NM.1284
Tvoe E7NM. | (VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)®, VPMOVB2M, VPMOVD2M, VPMOVMZE,
yp " | VPMOVM2D, VPMOVM2Q, VPMOVM2W, VPMOVQ2M, VPMOVW2M
Tvoe EGNF | VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VMOVW, VPEXTRB,
yp VPEXTRD, VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ
Tvoe €10 | VFCMADDCSH, VFMADDCSH, VFCMULCSH, VFMULCSH, VFPCLASSSH, VMOVSD, VMOVSS, VRCP14SD, VRCP14SS,
yp VRCPSH, VRSQRT14SD, VRSQRT14SS, VRSQRTSH
Type E1ONF | (VCVTSI2SD, VCVTUSI2SD)®
Type €11 | VCVTPH2PS, VCVTPS2PH
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
Type €12 | VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS
VGATHERPFODPD, VGATHERPFODPS, VGATHERPFOQPD, VGATHERPFOQPS, VGATHERPF1DPD, VGATHERPF1DPS,
Type E12NP | VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPFODPD, VSCATTERPFODPS, VSCATTERPFOQPD,
VSCATTERPFOQPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS
NOTES:

1. Operand encoding Full tupletype with immediate.

2. Embedded broadcast is not supported with the “.nb" suffix.
3. Operand encoding Mem128 tupletype.

4, #UD raised if EVEX.L'L I=00b (VL=128).

5. The source operand is a general purpose register.

6. WO encoding only.

2-48 Vol. 2A

INSTRUCTION FORMAT

2.8.1 Exceptions Type €1 and ETNF of EVEX-Encoded Instructions

EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.

Table 2-46. Type E1 Class Exception Conditions

(=} TV >
S |&E
. | 8 |88| 5 .
Exception K '_=,° E 9 $ Cause of Exception
£ |5E
" o O
> v
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X x | Opcode independent #UD condition in Table 2-40.
Invalid Opcode = Operand encoding #UD conditions in Table 2-41.
#UD ’ = Opmask encoding #UD condition of Table 2-42.
= EVEXb encoding #UD condition of Table 2-43.

Instruction specific EVEX.L'L restriction not met.

X X X X | If preceded by a LOCK prefix (FOH).

X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".

Device NotAvail- |y | x | x | X |IfcROTS[bit3)=1.

able, #NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #55(0) w | If fault suppression not set, and a memory address referencing the SS segment is in
a non-canonical form.
EVEX.512: Memory operand is not 64-byte aligned.
X X | EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.
General Protection, X If fault suppression not set, and an illegal memory operand effective address in the
#GP(0) CS, DS, ES, FS or GS segments.
X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
Page Fault .
#PF(fault-code) X X X | If fault suppression not set, and a page fault.

Vol. 2A 2-49

INSTRUCTION FORMAT

EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1NF.

Table 2-47. Type ETNF Class Exception Conditions

8 |22
X 0=

5| 8 88| 5

. = .
Exception 2 = g 9| 3 Cause of Exception

= - E (1]
= o
— o O
> (a v

X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

X x | = Opcode independent #UD condition in Table 2-40.
Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.

Invalid Opcode,
#UD

X X X X | If preceded by a LOCK prefix (FOH).

X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X | If any corresponding CPUID feature flag is ‘0".

Device Not Avail-

able, #NM X | X | X | X |IfCRO.TSbit3]=1.

X For an illegal address in the SS segment.

Stack, #SS(0
© X | If a memory address referencing the SS segment is in a non-canonical form.

EVEX.512: Memory operand is not 64-byte aligned.
X X | EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X | If the memory address is in @ non-canonical form.
X X If any part of the operand lies outside the effective address space from O to FFFFH.
Page Fault
#PF(fault-code) X X X | For a page fault.

2-50 Vol. 2A

2.8.2

INSTRUCTION FORMAT

Exceptions Type E2 of EVEX-Encoded Instructions

EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-48. Type €2 Class Exception Conditions

©
8 |SE
: =| 2 |32 5 :
Exception 2 "_=,° E é $ Cause of Exception
= -
S (28
X X If EVEX prefix present.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = O.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
Invalid Opcode, X X | = Opcode independent #UD condition in Table 2-40.
#UD = Operand encoding #UD conditions in Table 2-41.
= Opmask encoding #UD condition of Table 2-42.
= Instruction specific EVEX.L'L restriction not met.
X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".
Device Not Avail- N
able, #NM X X X X | If CRO.TS[bit 3]=1.
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #55(0) x| If fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.
General Protec- - . -
tion, #GP(0) X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
Page Fault .
HPF(fault-code) X X X | If fault suppression not set, and a page fault.
Alignment Check For 2, 4, or 8 byte memory access if alignment checking is enabled and an unaligned
X X X . . - .
#AC(0) memory access is made while the current privilege level is 3.
SIMD Floatlng- If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SXMMEX-
point Exception, X X X X . h
#XM CPT[bit 10] = 1.

Vol. 2A 2-51

INSTRUCTION FORMAT

2.8.3

Exceptions Type E3 and E3NF of EVEX-Encoded Instructions

EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception

class E3.
Table 2-49. Type E3 Class Exception Conditions
(=} TV >
S |8
. 5| 8 82| 5 .
Exception el 5 |8 ‘é Y Cause of Exception
2 |SE©
= © o
S |av
X X If EVEX prefix present.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
) X X | = Opcode independent #UD condition in Table 2-40.
Invalid Opcode, #UD = Operand encoding #UD conditions in Table 2-41.
= Opmask encoding #UD condition of Table 2-42.
= EVEX.b encoding #UD condition of Table 2-43.
X X X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #55(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.
ggg%?l Protection, X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
cPsdgs)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.
SIMD Floating-point X X X X If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SX-

Exception, #XM

MMEXCPTbit 10] = 1.

2-52 Vol.2A

INSTRUCTION FORMAT

EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow

exception class E3NF.

Table 2-50. Type E3NF Class Exception Conditions

o T >
R |BE
. 5| 8 |82| 5 .
Exception 2 = g 9| & Cause of Exception
= - E o
E © o
> |av
X X EVEX prefix.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPTI[bit 10] = 0.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
, X X | = Opcode independent #UD condition in Table 2-40.
Invalid Opcode, #UD = Operand encoding #UD conditions in Table 2-41.
= Opmask encoding #UD condition of Table 2-42.
= EVEX.Db encoding #UD condition of Table 2-43.
X X X | If preceded by a LOCK prefix (FOH).
X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".
Device Not Available | 'y |y | x | x |IfcroTSbit3)=1.
#NM
X For an illegal address in the SS segment.
Stack, #SS(0) ; . -
X | If a memory address referencing the SS segment is in a non-canonical form.
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
gzr;e((r)?l Protection, X | If the memory address is in a non-canonical form.
If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault #PF(fault- X X X | For a page fault.
code)
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.
SIMD Floating-point X X X X If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SX-
Exception, #XM MMEXCPT[bit 10] = 1.

Vol.2A 2-53

INSTRUCTION FORMAT

2.8.4 Exceptions Type €4 and E4NF of EVEX-Encoded Instructions

EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow
exception class E4.

Table 2-51. Type €4 Class Exception Conditions

8 |22
X 0=

5| 8 |82 5

. =1 .
Exception e = E o & Cause of Exception

=] Se o
E © o
S |av

X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
= Opcode independent #UD condition in Table 2-40.
* Operand encoding #UD conditions in Table 2-41.
. = Opmask encoding #UD condition of Table 2-42.
Invalid Opcode, #UD - EVEXb encoding #UD condition of Table 2-43 and in E4.nb subclass (see E4.nb
entries in Table 2-45).
= Instruction specific EVEX.L'L restriction not met.

X X X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".

Device Not Available,

#NM X X X X | If CRO.TS[bit 3]=1.

X If fault suppression not set, and an illegal address in the SS segment.

Stack, #55(0) w | If fault suppression not set, and a memory address referencing the SS segment is

in @ non-canonical form.

X If fault suppression not set, and an illegal memory operand effective address in
General Protection, the CS, DS, ES, FS or GS segments.
#GP(0) X | If fault suppression not set, and the memory address is in @ non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

chg:)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.

2-54 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.

Table 2-52. Type E4NF Class Exception Conditions

8 |22
X 0 =

5| 8 |82 5

. =1 .
Exception e = E 9| & Cause of Exception

= - E o
E © 0o
> av

X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
= Opcode independent #UD condition in Table 2-40.
X X | = Operand encoding #UD conditions in Table 2-41.
. = Opmask encoding #UD condition of Table 2-42.
Invalid Opcode, #UD EVEX.b encoding #UD condition of Table 2-43 and in E4NF.nb subclass (see
E4NF.nb entries in Table 2-45).
= Instruction specific EVEX.L'L restriction not met.

X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".

Device Not Available,

#NM X X X X | If CRO.TS[bit 3]=1.

X For an illegal address in the SS segment.

Stack, #SS(0
©) X | If a memory address referencing the SS segment is in a non-canonical form.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
General Protection, ments.
#GP(0) X | If the memory address is in @ non-canonical form.
If any part of the operand lies outside the effective address space from O to
X X FFFFH

Page Fault #PF(fault-

code) X X X | For a page fault.

Vol.2A 2-55

INSTRUCTION FORMAT

2.8.5

Exceptions Type €5 and E5NF

EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault

suppression follow exception class E5.

Table 2-53. Type E5 Class Exception Conditions

Exception

Real

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

> | Virtual 80x86

If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

= Opcode independent #UD condition in Table 2-40.
Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

If any corresponding CPUID feature flag is ‘0".

Device Not Available,
#NM

If CRO.TS[bit 3]=1.

Stack, #5S(0)

If fault suppression not set, and an illegal address in the SS segment.

If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.

General Protection,
#GP(0)

If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.

If fault suppression not set, and the memory address is in @ non-canonical form.

If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.

Page Fault #PF(fault-
code)

If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class ES5NF.

2-56 Vol. 2A

INSTRUCTION FORMAT

Table 2-54. Type E5NF Class Exception Conditions

(o] TV >
R |8E
. | 8 |88 5 .
Exception 2 = § ‘g <+ Cause of Exception
2 |[8El°
= © o
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X x | Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 2-42.
= EVEXb encoding #UD condition of Table 2-43.
= Instruction specific EVEX.L'L restriction not met.
X X X X | If preceded by a LOCK prefix (FOH).
X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X If an illegal address in the SS segment.
Stack, #SS(0) - — -
X | If a memory address referencing the SS segment is in a non-canonical form.
X If an illegal memory operand effective address in the CS, DS, €S, FS or GS segments.
General Protection, X | If the memory address is in a non-canonical form.
H#GP(0) If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault #PF(fault- X X X | For a page fault.
code)
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

#AC(0)

unaligned memory access is made while the current privilege level is 3.

Vol.2A 2-57

INSTRUCTION FORMAT

2.8.6 Exceptions Type €6 and E6NF
Table 2-55. Type E6 Class Exception Conditions
8 |22
X o=
. | & |BE| 5 .
Exception e = E o & Cause of Exception
2 |gE|l°
= © 0o
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X X |" Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 2-42.
= EVEX.Db encoding #UD condition of Table 2-43.
= Instruction specific EVEX.L'L restriction not met.
X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X | If any corresponding CPUID feature flag is ‘0".
Device Not Available, a1
#NM X X | f CRO.TS[bit 3]=1.
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #55(0) x| If fault suppression not set, and a memory address referencing the SS segment s
in a non-canonical form.
) X If fault suppression not set, and an illegal memory operand effective address in the
EEFFL%E)“ Protection, CS, DS, ES, FS or GS segments.
X | If fault suppression not set, and the memory address is in a non-canonical form.
cPsé]:)Fault #PF(fault- X X | If fault suppression not set, and a page fault.
Alignment Check X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

#AC(0)

unaligned memory access is made while the current privilege level is 3.

2-58 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow

exception class E6NF.

Table 2-56. Type E6NF Class Exception Conditions

o TV >
% |8
Exception 3 8 E = 5 Cause of Exception
’ €| 3 |58 3 P
£ |55
S |&S
Invalid Opcode, #UD X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X x | Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
= Opmask encoding #UD condition of Table 2-42.
= EVEX.b encoding #UD condition of Table 2-43.
= Instruction specific EVEX.L'L restriction not met.
X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
If any corresponding CPUID feature flag is ‘0".
gﬁ‘lﬂfe Not Available, X | X |If CRO.TSbit 3]=1.
Stack, #55(0) X For an illegal address in the SS segment.
ack,
X | If a memory address referencing the SS segment is in a non-canonical form.
G | Protecti X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
eneral Protection, ments.
#GP(0) . -
X | If the memory address is in a non-canonical form.
Egdgg)Fault #PF(fault- X | X | Forapage fault.
Alignment Check X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an
#AC(0) unaligned memory access is made while the current privilege level is 3.

Vol.2A 2-59

INSTRUCTION FORMAT

2.8.7 Exceptions Type E7NM

EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class
E7NM.

Table 2-57. Type E7NM Class Exception Conditions

e |22
X 0=

5| 8 |82 5

. = .
Exception e = E o & Cause of Exception

=] S e o
E © 0o
S |av

X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

X x | Opcode independent #UD condition in Table 2-40.
* Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.

Invalid Opcode, #UD

X X X X | If preceded by a LOCK prefix (FOH).

X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X | If any corresponding CPUID feature flag is ‘0".

Device Not Available,

M X | X |IfCRO.TS[bit 3]=1.

2-60 Vol. 2A

2.8.8

INSTRUCTION FORMAT

Exceptions Type €9 and E9NF

EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory

fault suppression follow exception class E9.

Table 2-58. Type E9 Class Exception Conditions

(o] TV >
¢ |5E
. | 8 |88 5 .
Exception 2 = E ‘g <+ Cause of Exception
2 |[8E°
= © o
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X x | Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 2-42.
= EVEXb encoding #UD condition of Table 2-43.
= Instruction specific EVEX.L'L restriction not met.
X X X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0".
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #55(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.
G#Er;e(ga;l Protection, X | If fault suppression not set, and the memory address is in @ non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
cPsg:)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

#AC(0)

unaligned memory access is made while the current privilege level is 3.

Vol. 2A 2-61

INSTRUCTION FORMAT

EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L'L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class E9NF.

Table 2-59. Type E9NF Class Exception Conditions

#AC(0)

8 B2
X 0 =
. | 8 82| 5 .
Exception 2 = g 9 $ Cause of Exception
2 |2 E
= © o
> |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X x | Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 2-42.
= EVEX.Db encoding #UD condition of Table 2-43.
= Instruction specific EVEX.L'L restriction not met.
X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X If any corresponding CPUID feature flag is ‘0".
gmce NotAvailable, |y | x | x | x |IfcROTS[bit3)=1.
Stack, #55(0) X If an illegal address in the SS segment.
ack,
X | If a memory address referencing the SS segment is in a non-canonical form.
X If an illegal memory operand effective address in the CS, DS, €S, FS or GS segments.
General Protection, X | If the memory address is in @ non-canonical form.
#GP(0) X X If any part of the operand lies outside the effective address space from O to
FFFFH.
Cngs)Fault #PF(fault- X X | X |Forapage fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

unaligned memory access is made while the current privilege level is 3.

2-62 Vol. 2A

INSTRUCTION FORMAT

2.8.9 Exceptions Type €10 and ET1ONF

EVEX-encoded scalar instructions that ignore EVEX.L'L vector length encoding, do not cause a SIMD FP exception,
and support memory fault suppression follow exception class E10.

Table 2-60. Type E10 Class Exception Conditions

(o] TV >
% |5
. | 8 |88 5 .
Exception K = E o & Cause of Exception
2 |2€E|l©
= © o
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
X X | = Opcode independent #UD condition in Table 2-40.
. = Operand encoding #UD conditions in Table 2-41.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 2-42.
= EVEXb encoding #UD condition of Table 2-43.
X X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘O’
Device Not Available, | 'y | x | x | x |ifcrRoTs[bit3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, #SS(0) « | If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
gzr;?(r)?l Protection, X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
Egg:)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

#AC(0)

unaligned memory access is made while the current privilege level is 3.

Vol.2A 2-63

INSTRUCTION FORMAT

EVEX-encoded scalar instructions that ignore EVEX.L'L vector length encoding, do not cause a SIMD FP exception,
and do not support memory fault suppression follow exception class E10NF.

Table 2-61. Type ET10NF Class Exception Conditions

Exception

Real

Protected and
Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

> | Virtual 80x86

If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

= Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
= Opmask encoding #UD condition of Table 2-42.

= EVEX.b encoding #UD condition of Table 2-43.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

If any corresponding CPUID feature flag is ‘0".

Device Not Available,
#NM

If CRO.TS[bit 3]=1.

Stack, #SS(0)

If fault suppression not set, and an illegal address in the SS segment.

If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.

General Protection,
#GP(0)

If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

If fault suppression not set, and the memory address is in a non-canonical form.

If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.

Page Fault #PF(fault-
code)

If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

For 2, 4, or 8 byte memory access if alignment checking is enabled and an
unaligned memory access is made while the current privilege level is 3.

2-64 Vol. 2A

2.8.10

INSTRUCTION FORMAT

Exceptions Type €11 (EVEX-only, Mem Arg, No AC, Floating-point Exceptions)

EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do

not cause #AC follow exception class E11.

Table 2-62. Type E11 Class Exception Conditions

Exception

Real

Virtual 80x86

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

X

If EVEX prefix present.

pad

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

= Opcode independent #UD condition in Table 2-40.
Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

If any corresponding CPUID feature flag is ‘0".

Device Not Available,
#NM

X | X | X | X

X | X | X | X

If CRO.TS[bit 3]=1.

Stack, #55(0)

If fault suppression not set, and an illegal address in the SS segment.

If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.

General Protection,
#GP(0)

If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.

If fault suppression not set, and the memory address is in @ non-canonical form.

If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.

Page Fault #PF (fault-
code)

If fault suppression not set, and a page fault.

SIMD Floating-Point
Exception, #XM

If an unmasked SIMD floating-point exception, {sae} not set, and CR4.0SXMMEX-
CPT[bit 10] = 1.

Vol.2A 2-65

INSTRUCTION FORMAT

2.8.11 Exceptions Type €12 and E12NP (VSIB Mem Arg, No AC, No Floating-point Exceptions)

Table 2-63. Type E12 Class Exception Conditions

Exception

Real

Cause of Exception

Virtual 80x86

Protected and
Compatibility
64-bit

Invalid Opcode, #UD | X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

Opcode independent #UD condition in Table 2-40.
Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.
If vwwv!=1111b.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
NA | If address size attribute is 16 bit.

If ModR/M.mod ="11b".

If ModR/M.rm I="100b".

If any corresponding CPUID feature flag is 0",

>
>

If kO is used (gather or scatter operation).

If index = destination register (gather operation).
If CRO.TS[bit 3]=1.

XXX | X|X]|X|X
XXX | X|X]|X|X
XXX | X[X]|X|X|X]|X
XX | X | X|X]|X

Device Not Available,
#NM

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from O to
FFFFH.

Page Fault #PF (fault- X X X For a page fault.
code)

2-66 Vol. 2A

EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-64. Type E12NP Class Exception Conditions

INSTRUCTION FORMAT

Exception

Real

Virtual 80x86

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

If EVEX prefix present.

>

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

Opcode independent #UD condition in Table 2-40.
Operand encoding #UD conditions in Table 2-41.
Opmask encoding #UD condition of Table 2-42.
EVEX.b encoding #UD condition of Table 2-43.
Instruction specific EVEX.L'L restriction not met.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

If address size attribute is 16 bit.

If ModR/M.mod = "11b'.

If ModR/M.rm = "100D".

If any corresponding CPUID feature flag is ‘0".

If kO is used (gather or scatter operation).

Device Not Available,

#NM

X | X | X[X|X]|X

X | X | X[X|X]|X

XX | X[X[X]|X|X]|X

X | X | X[X|X

If CRO.TS[bit 3]=1.

Vol.2A 2-67

INSTRUCTION FORMAT

2.9 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS, TYPE K20 AND
TYPE K21

The exception behavior of VEX-encoded opmask instructions are listed below.

2.9.1 Exceptions Type K20

Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-65. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)

Exception

Real

Cause of Exception

Virtual 80x86
Compatibility
64-bit

< | Protected and

Invalid Opcode, #UD | X X X If relevant CPUID feature flag is ‘0",
X X If a VEX prefix is present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 2-39 not met.

* Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X If ModRM:[7:6] != 11b.

>
>

Device Not Available,

#NM X X X X | If CRO.TS[bit 3]=1.

2-68 Vol. 2A

2.9.2

Exceptions Type K21

INSTRUCTION FORMAT

Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-66. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

#AC(0)

(e} © >
% |&E
, = | & |82 5 .
Exception 2 = |5 § < Cause of Exception
=] Q o
£ |55
S |&S
Invalid Opcode, #UD | X X X If relevant CPUID feature flag is ‘0".
X If a VEX prefix is present.
X X If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 2-39 not met.
= Opcode independent #UD condition in Table 2-40.
= Operand encoding #UD conditions in Table 2-41.
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
Stack, #SS(0) X X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
If the DS, €S, FS, or GS register is used to access memory and it contains a null
segment selector.
X If the memory address is in a non-canonical form.
X If any part of the operand lies outside the effective address space from O to
FFFFH.
Page Fault #PF(fault- X X For a page fault.
code)
Alignment Check X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an

unaligned memory access is made while the current privilege level is 3.

Vol.2A 2-69

INSTRUCTION FORMAT

2.10 INTEL®* AMX INSTRUCTION EXCEPTION CLASSES

Alighment exceptions: The Intel AMX instructions that access memory will never generate #AC exceptions.

Table 2-67. Intel® AMX Exception Classes

Class Description

» #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
* #UD if CR4.OSXSAVE # 1.

* #UD if XCRO[18:17] # Ob11.

* #UD if IA32_EFER.LMA# 1 OR CS.L #1.

* #UD if VVVV # 0b1111.
AMX-E1

» #GP based on palette and configuration checks (see pseudocode).
» #GP if the memory address is in a non-canonical form.

» #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

» #PF if a page fault occurs.

» #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
« #UD if CR4.0OSXSAVE # 1.

« #UD if XCRO[18:17] # 0b11.

* #UD if IA32_EFER.LMA# 1 OR CS.L# 1.

AMX-E2 * #UD if VVVV # 0b1111.

» #GP if the memory address is in a non-canonical form.

» #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

 #PF if a page fault occurs.

» #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.

« #UD if CR4.0OSXSAVE # 1.

« #UD if XCRO[18:17] # 0b11.

* #UD if IA32_EFER.LMA# 1 OR CS.L # 1.

« #UD if VVVV # 0b1111.

« #UD if not using SIB addressing.

« #UD if TILES_CONFIGURED == 0.

» #UD if tsrc or tdest are not valid tiles.

AMX-E3 « #UD if tsrc/tdest are 2 palette_table[tilecfg.palette_id].max_names.
« #UD if tsrc.colbytes mod 4 # 0 OR tdest.colbytes mod 4 # 0.

» #UD if tilecfg.start_row = tsrc.rows OR tilecfg.start_row = tdest.rows.

» #GP if the memory address is in a non-canonical form.

» #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

» #PF if any memory operand causes a page fault.

« #NM if XFD[18] == 1.

2-70 Vol.2A

Table 2-67. Intel® AMX Exception Classes (Contd.)

INSTRUCTION FORMAT

Class

Description

AMX-E4

» #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
* #UD if CR4.OSXSAVE # 1.

* #UD if XCRO[18:17] # Ob11.

* #UD if IA32_EFER.LMA# 1 OR CS.L# 1.

» #UD if srcdest == src1 OR src1 == src2 OR srcdest == src2.
* #UD if TILES_CONFIGURED == 0.

» #UD if srcdest.colbytes mod 4 # 0.

« #UD if src1.colbytes mod 4 # 0.

« #UD if src2.colbytes mod 4 # 0.

» #UD if srcdest/src1/src2 are not valid tiles.

« #UD if srcdest/src1/src2 are = palette_table[tilecfg.palette_id].max_names.
» #UD if srcdest.colbytes # src2.colbytes.

» #UD if srcdest.rows # src1.rows.

* #UD if src1.colbytes / 4 # src2.rows.

 #UD if srcdest.colbytes > tmul_maxn.

» #UD if src2.colbytes > tmul_maxn.

» #UD if src1.colbytes/4 > tmul_maxk.

» #UD if src2.rows > tmul_maxk.

« #NM if XFD[18] == 1.

AMX-E5

» #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
« #UD if CR4.0SXSAVE # 1.

* #UD if XCRO[18:17] # Ob11.

* #UD if IA32_EFER.LMA# 1 OR CS.L #1.

« #UD if VVVV # 0b1111.

« #UD if TILES_CONFIGURED == 0.

« #UD if tdest is not a valid tile.

« #UD if tdest is > palette_table[tilecfg.palette_id].max_names.

« #NM if XFD[18] == 1.

AMX-E6

 #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
« #UD if CR4.0SXSAVE # 1.

» #UD if XCRO0[18:17] # 0b11.

* #UD if IA32_EFER.LMA# 1 OR CS.L # 1.

« #UD if VVVV # 0b1111.

Vol.2A 2-71

INSTRUCTION FORMAT

2-72 Vol.2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-L) in IA-32e, protected,
virtual-8086, and real-address modes of operation. The set includes general-purpose, x87 FPU, MMX,
SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX, and system instructions. See also Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B;
Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C; and Chapter 6, “Instruction Set Reference, W-Z,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2D.

For each instruction, each operand combination is described. A description of the instruction and its operand, an
operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a
summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter. The heading below
introduces the example. The table below provides an example summary table.

CMC—Complement Carry Flag [this is an example]

Opcode Instruction Op/En |64/32-bit | CPUID Description
Mode Feature Flag
F5 CcMC Z0 VIV N/A Complement carry flag.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A

Vol.2A 3-1

INSTRUCTION SET REFERENCE, A-L

3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX Prefix)

The “Opcode” column in the table above shows the object code produced for each form of the instruction. When
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of
entries other than hexadecimal bytes are as follows:

® NP — Indicates the use of 66/F2/F3 prefixes (beyond those already part of the instructions opcode) are not
allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the
encoding for a different instruction.

®* NFx — Indicates the use of F2/F3 prefixes (beyond those already part of the instructions opcode) are not
allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the
encoding for a different instruction.

* REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of
the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

* /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

®* /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.

* cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value
following the opcode. This value is used to specify a code offset and possibly a new value for the code segment
register.

* ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed
value. All words, doublewords, and quadwords are given with the low-order byte first.

® +rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the
opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the register
operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

® +i— Anumber used in floating-point instructions when one of the operands is ST(i) from the FPU register stack.
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign
to form a single opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)

[© — o [© — ©

g) o] g o K] g @ ko] g o]

g B 5 B 2 0 B OB OB OB OB %

(=]

g = g |2 = g 2 = g g = g
AL None 0 AX None 0 EAX None 0 RAX None 0
CL None 1 X None 1 ECX None 1 RCX None 1
DL None 2 DX None 2 EDX None 2 RDX None 2
BL None 3 BX None 3 EBX None 3 RBX None 3
AH Not 4 SP None 4 EsP None 4 N/A N/A N/A

encodab

le (N.E)
CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A
DH N.E. 6 SI None 6 sl None 6 N/A N/A N/A
BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A
SPL Yes 4 SP None 4 ESP None 4 RSP None 4
BPL Yes 5 BP None 5 EBP None 5 RBP None 5

Vol.2A 3-2

INSTRUCTION SET REFERENCE, A-L

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)
g @ s |8 @ s |8 @ i g o 3
)] s B & s B & o G & =)
g = g e = g & o g & = &
SIL Yes 6 S| None 6 sl None 6 RSI None 6
DIL Yes 7 DI None 7 €Dl None 7 RDI None 7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8B Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0
R9B Yes 1 ROW Yes 1 RSD Yes 1 R9 Yes 1
R10B Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2
R11B Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3
R12B Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4
R13B Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5
R14B Yes 6 R14wW Yes 6 R14D Yes 6 R14 Yes 6
R15B Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)

In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in
following form (including the modR/M byte if applicable, the immediate byte if applicable):

VEX.[128,256].[66,F2,F3].0F/0OF3A/0F38.[WO,W1] opcode [/r] [/ib,/is4]

® VEX — Indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-
byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX
only applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W,
VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix.

The encoding of various sub-fields of the VEX prefix is described using the following notations:

128,256: VEX.L field can be 0 (denoted by VEX.128, VEX.LO, or VEX.LZ) or 1 (denoted by VEX.256 or
VEX.L1). The VEX.L field can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The
presence of the notation VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a)
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b)
an #UD occurs if there is no VEX.128 version defined.

If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same
opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception (e.g., VMOVLPS).

If VEX.LO or VEX.L1 is present in the opcode column: The specified VEX.L value is required for encoding
this instruction but does not have the connotation of specifying vector length.

If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction
mnemonic would be either "SS”, “SD", or “SI” for SIMD floating-point conversion instructions.

If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if
VEX.L is not zero.

Vol.2A 3-3

INSTRUCTION SET REFERENCE, A-L

— 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using
either the 2-byte or 3-byte form of the VEX prefix.

— OF,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of OFH, OF3AH,
and OF38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the
corresponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a
valid encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either OFH, OF3AH
or OF38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix.

— OF,0F3A,0F38 and 2-byte/3-byte VEX: The presence of OF3A and OF38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of OF in the opcode column
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— WO: VEX.W=0.
— W1: VEX.W=1.

— The presence of WO/W1 in the opcode column applies to two situations: (a) it is treated as an extended
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section
2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX
prefix.

— If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of
VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored.

opcode — Instruction opcode.

/is4 — An 8-bit immediate byte is present containing a source register specifier in either imm8[7:4] (for 64-
bit mode) or imm8[6:4] (for 32-bit mode), and instruction-specific payload in imm8[3:0].

In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The
encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3.

EVEX.[128,256,512,LL1IG].[66,F2,F3].0F/0OF3A/0F38.[W0,W1,WIG] opcode [/r] [/ib]

EVEX — The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 2.7.1 for
more detail on the EVEX prefix.

The encoding of various sub-fields of the EVEX prefix is described using the following notations:

— 128, 256, 512, LLIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit,
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically
applies to scalar instructions operating on one data element of a vector register.

— 66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix.

— OF,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of OFH, OF3AH, and OF38H.
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either OFH, OF3AH or
OF38H.

— WaO: EVEX.W=0.

Vol.2A 3-4

INSTRUCTION SET REFERENCE, A-L

— W1: EVEX.W=1.
— WIG: EVEX.W bit ignored
opcode — Instruction opcode.

In general, the encoding of EVEX.R and R’, EVEX.X and X', and EVEX.B and B’ fields are not shown explicitly in
the opcode column.

NOTE

Previously, the terms NDS, NDD, and DDS were used in instructions with an EVEX (or VEX) prefix.
These terms indicated that the vvvv field was valid for encoding, and specified register usage.
These terms are no longer necessary and are redundant with the instruction operand encoding
tables provided with each instruction. The instruction operand encoding tables give explicit details
on all operands, indicating where every operand is stored and if they are read or written. If vvvv is
not listed as an operand in the instruction operand encoding table, then EVEX (or VEX) vvvv must
be Ob1111.

3.1.1.3 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program.
The following is a list of the symbols used to represent operands in the instruction statements:

rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the
end of the instruction.

rell6, rel32 — A relative address within the same code segment as the instruction assembled. The rel16
symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions
with an operand-size attribute of 32 bits.

ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL, and SIL; or
one of the byte registers (R8B - R15B) available when using REX.R and 64-bit mode.

r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers
(R8-R15) available when using REX.R and 64-bit mode.

r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8-R15.
These are available when using REX.R and 64-bit mode.

imm8 — An immediate byte value. The imm8 symbol can be a signed nhumber between -128 and +127
inclusive; an unsigned number between 0 and 255 inclusive; or a bitmap when an instruction uses its individual
bits. For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is
sign-extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between -32,768 and +32,767 inclusive.

imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and -2,147,483,648 inclusive.

imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
The value allows the use of a number between +9,223,372,036,854,775,807 and -
9,223,372,036,854,775,808 inclusive.

/ib — A single-byte value.

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-L

r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, BPL, SPL, DIL, and SIL) or a byte from memory. Byte registers R8B - R15B are available using REX.R
in 64-bit mode.

r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of
memory are found at the address provided by the effective address computation. Word registers RBW - R15W
are available using REX.R in 64-bit mode.

r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
EDI. The contents of memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8-R15; these are available only in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

reg — A general-purpose register used for instructions when the width of the register does not matter to the
semantics of the operation of the instruction. The register can be r16, r32, or r64.

m — A 16-, 32- or 64-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.

m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.

m32 — A doubleword operand in memory. The contents of memory are found at the address provided by the
effective address computation.

m64 — A memory quadword operand in memory.
m128 — A memory double quadword operand in memory.

m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The
number to the left of the colon corresponds to the pointer's segment selector. The humber to the right
corresponds to its offset.

m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR
registers.

m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.

moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or
doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

Sreg — A segment register. The segment register bit assignmentsare ES=0,CS =1,SS=2,DS =3, FS =
4, and GS = 5.

m32fp, m64fp, m80fp — A single precision, double precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands for
x87 FPU floating-point instructions.

m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

ST or ST(0) — The top element of the FPU register stack.
ST(i) — The ith element from the top of the FPU register stack (i := 0 through 7).
mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

Vol.2A 3-6

INSTRUCTION SET REFERENCE, A-L

mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers
are: MMO through MM7. The contents of memory are found at the address provided by the effective address
computation.

mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MMO through MM7.
The contents of memory are found at the address provided by the effective address computation.

xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode.

xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMMO through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMMO through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of
memory are found at the address provided by the effective address computation.

xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMMO through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

<XMMO>— Indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second
source operand using an XMM register.

Some instructions use the XMMO register as the third source operand, indicated by <XMMO0>. The use of the
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

ymm — A YMM register. The 256-bit YMM registers are: YMMO through YMM7; YMM8 through YMM15 are
available in 64-bit mode.

m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
ymm/m256 — A YMM register or 256-bit memory operand.

<YMMO>— Indicates use of the YMMO register as an implicit argument.

bnd — A 128-bit bounds register. BNDO through BND3.

mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-
lation, Scale is ignored. Only the base and displacement are used in effective address calculation.

m512 — A 64-byte operand in memory.
zmm/m512 — A ZMM register or 512-bit memory operand.

{k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.
Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.

{k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking.

k1l — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0
through k7.

mV — A vector memory operand; the operand size is dependent on the instruction.

vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).

vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-L

* zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.

* zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.

* <ZMMO> — Indicates use of the ZMMO register as an implicit argument.

* {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form
of the instruction. This also implies support for SAE (Suppress All Exceptions).

* {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE,
but do not support embedded rounding control.

® SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having two or more source operands.

® SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having two or more source operands.

® SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having three source operands.

® SRC — The source in a single-source instruction.
® DST — The destination in an instruction. This field is encoded by reg_field.

In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:

®* If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is
denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

* If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

* If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb.

3.1.14 Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.

EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 2-36 and Table 2-37, according to tupletypes. The tupletype for an instruction is listed in the operand
encoding definition table where applicable.

NOTES

® The letters in the Op/En column of an instruction apply ONLY to the encoding definition table
immediately following the instruction summary table.

* Inthe encoding definition table, the letter 'r’ within a pair of parenthesis denotes the content of
the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the
content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table

The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated
specific instruction extensions.

Vol.2A 3-8

INSTRUCTION SET REFERENCE, A-L

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
® V — Supported.
® I — Not supported.

®* N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of
valid instructions in other modes).

®* N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
®* N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

®* N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not
supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation:
e V — Supported.
e I — Not supported.

¢ N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or IA-32 mode. The opcode may represent a valid
sequence of legacy IA-32 instructions.

3.1.1.6 CPUID Support Column in the Instruction Summary Table

The fourth column holds abbreviated CPUID feature flags (e.g., appropriate bit in CPUID.01H.ECX,
CPUID.01H.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AESNI/PCLMULQDQ/AVX/RDRAND support) that
indicate processor support for the instruction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.8 Description Section

Each instruction is then described by number of information sections. The “Description” section describes the
purpose of the instructions and required operands in more detail.

Summary of terms that may be used in the description section:

®* Legacy SSE — Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ, and any future instruction sets
referencing XMM registers and encoded without a VEX prefix.

®* VEX.vvvv — The VEX bit field specifying a source or destination register (in 1’s complement form).
* rm_field — shorthand for the ModR/M r/m field and any REX.B.
* reg_field — shorthand for the ModR/M reg field and any REX.R.

3.1.1.9 Operation Section

The “Operation” section contains an algorithm description (frequently written in pseudo-code) for the instruction.
Algorithms are composed of the following elements:

® Comments are enclosed within the symbol pairs “(*” and “*)".

®* Compound statements are enclosed in keywords, such as: IF, THEN, ELSE, and FI for an if statement; DO and
OD for a do statement; or CASE... OF for a case statement.

®* Aregister name implies the contents of the register. A register name enclosed in brackets implies the contents
of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the
location whose ES segment relative address is in register DI. [SI] indicates the contents of the address
contained in register SI relative to the SI register’s default segment (DS) or the overridden segment.

® Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that the offset is read
from the SI register if the address-size attribute is 16, from the ESI register if the address-size attribute is 32.

Vol.2A 3-9

INSTRUCTION SET REFERENCE, A-L

Parentheses around the “R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register
definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register if the address-size
attribute is 64.

Brackets are used for memory operands where they mean that the contents of the memory location is a
segment-relative offset. For example, [SRC] indicates that the content of the source operand is a segment-
relative offset.

A =B indicates that the value of B is assigned to A.

The symbols =, #, >, <, 2, and < are relational operators used to compare two values: meaning equal, not
equal, greater or equal, less or equal, respectively. A relational expression such as A=B is TRUE if the value of
A is equal to B; otherwise it is FALSE.

The expression "« COUNT” and “» COUNT" indicates that the destination operand should be shifted left or right
by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:

OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the
instruction, which is 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute, which
is 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute depends
on the form of the MOV instruction used.

IF Instruction = MOVW
THEN OperandSize := 16;
ELSE
IF Instruction = MOVD
THEN OperandSize := 32;
ELSE
IF Instruction = MOVQ
THEN OperandSize := 64;
Fl;
Fl;
Fl;
See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for guidelines on how these attributes are determined.

StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a
value of 16, 32 or 64-bits. See “"Address-Size Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and
Exceptions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

SRC — Represents the source operand.
DEST — Represents the destination operand.

MAXVL — The maximum vector register width pertaining to the instruction. This is not the vector-length
encoding in the instruction's encoding but is instead determined by the current value of XCRO. For details, refer
to the table below. Note that the value of MAXVL is the largest of the features enabled. Future processors may
define new bits in XCRO whose setting may imply other values for MAXVL.

MAXVL Definition
XCRO Component MAXVL
XCRO.SSE 128
XCRO.AVX 256
XCRO{ZMM_Hi256, Hi16_ZMM, OPMASK} 512

The following functions are used in the algorithmic descriptions:

ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For
example, if the operand-size attribute is 32, zero extending a byte value of —10 converts the byte from F6H to

Vol.2A 3-10

INSTRUCTION SET REFERENCE, A-L

a doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operand-size
attribute are the same size, ZeroExtend returns the value unaltered.

SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For
example, if the operand-size attribute is 32, sign extending a byte containing the value -10 converts the byte
from F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the operand-
size attribute are the same size, SignExtend returns the value unaltered.

SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed
16-bit value is less than -128, it is represented by the saturated value -128 (80H); if it is greater than 127, it
is represented by the saturated value 127 (7FH).

SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the
signed 32-bit value is less than -32768, it is represented by the saturated value -32768 (8000H); if it is
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the
signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than
255, it is represented by the saturated value 255 (FFH).

SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less
than -128, it is represented by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less
than -32768, it is represented by the saturated value -32768 (8000H); if it is greater than 32767, itis
represented by the saturated value 32767 (7FFFH).

SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less
than zero it is represented by the saturated value zero (O0H); if it is greater than 255, it is represented by the
saturated value 255 (FFH).

SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is
less than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented
by the saturated value 65535 (FFFFH).

LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least significant
word of the doubleword result in the destination operand.

HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most
significant word of the doubleword result in the destination operand.

Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-size
attribute of the instruction. See the “Operation” subsection of the "PUSH—Push Word, Doubleword, or
Quadword Onto the Stack” section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Pop() — removes the value from the top of the stack and returns it. The statement EAX :=Pop(); assigns to
EAX the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword
depending on the operand-size attribute. See the “Operation” subsection in the "POP—Pop a Value From the
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer
(TOP) by 1.

Switch-Tasks — Performs a task switch.

Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a sequence of bits in
memory or a register. Bits are numbered from low-order to high-order within registers and within memory

bytes. If the BitBase is a register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the mode
and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

Vol.2A 3-11

INSTRUCTION SET REFERENCE, A-L

63

31

21 0

T—Bit Offset := 21 A

Figure 3-1. Bit Offset for BIT[RAX, 21]

If BitBase is a memory address, the BitOffset has different ranges depending on the operand size (see Table

3-2).
Table 3-2. Range of Bit Positions Specified by Bit Offset Operands
Operand Size Immediate BitOffset Register BitOffset
16 0to15 -2 t02" -1
32 0to31 -237t0 231 -1
64 01063 -253 10253 -1

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where
DIV is signed division with rounding towards negative infinity and MOD returns a positive humber (see

Figure 3-2).

7 5 07 07 0

BitBase +1

LBitOffset =+13

7 07 07 5 0

BitBase J BitBase -1

BitBase L

BitBase -1 BitBase -2

BitOffset :=-11 J

Figure 3-2. Memory Bit Indexing

3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsic functions give access to the full power of the Intel Architecture Instruction Set,
while allowing the compiler to optimize register allocation and instruction scheduling for faster execution. Most of
these functions are associated with a single IA instruction, although some may generate multiple instructions or
different instructions depending upon how they are used. In particular, these functions are used to invoke instruc-
tions that perform operations on vector registers that can hold multiple data elements. These SIMD instructions
use the following data types.

__m128, __m256,and __m512 can represent 4, 8, or 16 packed single precision floating-point values, and are

used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128 data
type is also used with various single precision floating-point scalar instructions that perform calculations using

Vol.2A 3-12

INSTRUCTION SET REFERENCE, A-L

only the lowest 32 bits of a vector register; the remaining bits of the result come from one of the sources or are
set to zero depending upon the instruction.

® _ ml128d,__m256d, and __mb512d can represent 2, 4, or 8 packed double precision floating-point values, and
are used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The _ _m128d
data type is also used with various double precision floating-point scalar instructions that perform calculations
using only the lowest 64 bits of a vector register; the remaining bits of the result come from one of the sources
or are set to zero depending upon the instruction.

® _ ml128i,_ _m256i, and __m512i can represent integer data in bytes, words, doublewords, quadwords, and
occasionally larger data types.

Each of these data types incorporates in its name the number of bits it can hold. For example, the __m128 type
holds 128 bits, and because each single precision floating-point value is 32 bits long the __m128 type holds
(128/32) or four values. Normally the compiler will allocate memory for these data types on an even multiple of the
size of the type. Such aligned memory locations may be faster to read and write than locations at other addresses.

These SIMD data types are not basic Standard C data types or C++ objects, so they may be used only with the
assignment operator, passed as function arguments, and returned from a function call. If you access the internal
members of these types directly, or indirectly by using them in a union, there may be side effects affecting optimi-
zation, so it is recommended to use them only with the SIMD instruction intrinsic functions described in this manual
or the Intel C/C++ compiler documentation.

Many intrinsic functions names are prefixed with an indicator of the vector length and suffixed by an indicator of
the vector element data type, although some functions do not follow the rules below. The prefixes are:

* _mm_ indicates that the function operates on 128-bit (or sometimes 64-bit) vectors.
®* _mm256_ indicates the function operates on 256-bit vectors.

* _mmb512_ indicates that the function operates on 512-bit vectors.

The suffixes include:

®* _ps, which indicates a function that operates on packed single precision floating-point data. Packed single
precision floating-point data corresponds to arrays of the C/C++ type float with either 4, 8 or 16 elements.
Values of this type can be loaded from an array using the _mm_Jloadu_ps, _mm256_loadu_ps, or _mmb512_-
loadu_ps functions, or created from individual values using _mm_set_ps, _mm256_set_ps, or
_mmb512_set_ps functions, and they can be stored in an array using _mm_storeu_ps, _mmZ256_storeu_ps, or
_mmb512_storeu_ps.

®* _ss, which indicates a function that operates on scalar single precision floating-point data. Single precision
floating-point data corresponds to the C/C++ type float, and values of type float can be converted to type
_m128 for use with these functions using the _mm_set_ss function, and converted back using the
_mm_cvtss_f32 function. When used with functions that operate on packed single precision floating-point data
the scalar element corresponds with the first packed value.

®* _pd, which indicates a function that operates on packed double precision floating-point data. Packed double
precision floating-point data corresponds to arrays of the C/C++ type double with either 2, 4, or 8 elements.
Values of this type can be loaded from an array using the _mm_Jloadu_pd, _mm?256_Jloadu_pd, or_mm512_-
loadu_pd functions, or created from individual values using _mm_set_pd, _mm2566_set_pd, or
_mmb512_set pd functions, and they can be stored in an array using_mm_storeu_pd, _mmZ256_storeu_pd, or
_mmb512_storeu_pd.

®* _sd, which indicates a function that operates on scalar double precision floating-point data. Double precision
floating-point data corresponds to the C/C++ type double, and values of type double can be converted to type
_m128d for use with these functions using the _mm_set_sd function, and converted back using the
_mm_cvtsd_f64 function. When used with functions that operate on packed double precision floating-point
data the scalar element corresponds with the first packed value.

®* _epi8, which indicates a function that operates on packed 8-bit signed integer values. Packed 8-bit signed
integers correspond to an array of signed char with 16, 32 or 64 elements. Values of this type can be created
from individual elements using _mm_set_epi8, _mm256_set_epi8, or _mm512_set epi8 functions.

® _epil6, which indicates a function that operates on packed 16-bit signed integer values. Packed 16-bit signed
integers correspond to an array of short with 8, 16 or 32 elements. Values of this type can be created from
individual elements using _mm_set_epil6, _mm256_set epil6, or_mmb512_set_epil6 functions.

Vol.2A 3-13

INSTRUCTION SET REFERENCE, A-L

®* _epi32, which indicates a function that operates on packed 32-bit signed integer values. Packed 32-bit signed
integers correspond to an array of int with 4, 8 or 16 elements. Values of this type can be created from
individual elements using _mm_set_epi32, _mm256_set_epi32, or _mmb512_set_epi32 functions.

® _epi64, which indicates a function that operates on packed 64-bit signed integer values. Packed 64-bit signed
integers correspond to an array of long long (or long if it is a 64-bit data type) with 2, 4 or 8 elements. Values
of this type can be created from individual elements using _mm_set_epi32, _mm256_set epi32, or
_mmb512_set_epi32 functions.

®* _epu8, which indicates a function that operates on packed 8-bit unsigned integer values. Packed 8-bit unsigned
integers correspond to an array of unsigned char with 16, 32 or 64 elements.

® _epul6, which indicates a function that operates on packed 16-bit unsigned integer values. Packed 16-bit
unsigned integers correspond to an array of unsigned short with 8, 16 or 32 elements.

® _epu32, which indicates a function that operates on packed 32-bit unsigned integer values. Packed 32-bit
unsigned integers correspond to an array of unsigned with 4, 8 or 16 elements.

® _epub4, which indicates a function that operates on packed 64-bit unsigned integer values. Packed 64-bit
unsigned integers correspond to an array of unsigned long long (or unsigned long if it is a 64-bit data type) with
2, 4 or 8 elements.

®* _sil128, which indicates a function that operates on a single 128-bit value of type ___m128i.
® _si256, which indicates a function that operates on a single a 256-bit value of type ___m256i.
®* _si512, which indicates a function that operates on a single a 512-bit value of type __m512i.

Values of any packed integer type can be loaded from an array using the _mm_Jloadu_si128, _mm256_loadu_ -
si256, or _mmb512_ Joadu_si512 functions, and they can be stored in an array using _mm_storeu_si128,
_mm256_storeu_si256, or_mmb512_storeu_si512.

These functions and data types are used with the SSE, AVX, and AVX-512 instruction set extension families. In
addition there are similar functions that correspond to MMX instructions. These are less frequently used because
they require additional state management, and only operate on 64-bit packed integer values.

The declarations of Intel C/C++ compiler intrinsic functions may reference some non-standard data types, such as
__int6é4. The C Standard header stdint.h defines similar platform-independent types, and the documentation for
that header gives characteristics that apply to corresponding non-standard types according to the following table.

Table 3-3. Standard and Non-Standard Data Types

Non-standard Type Standard Type (from stdint.h)
__int64 int64_t

unsigned __int64 uint64_t

_int32 int32_t

unsigned __int32 uint32_t

_int16 int16_t

unsigned __int16 uint16_t

For a more detailed description of each intrinsic function and additional information related to its usage, refer to the
online Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/IntrinsicsGuide.

3.1.1.11 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the instruction. When a flag
is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and logical instructions usually assign
values to the status flags in a uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional assignments are described in the
“Operation” section. The values of flags listed as undefined may be changed by the instruction in an indeterminate
manner. Flags that are not listed are unchanged by the instruction.

Vol.2A 3-14

https://software.intel.com/sites/landingpage/IntrinsicsGuide

INSTRUCTION SET REFERENCE, A-L

3.1.1.12 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes how each instruction can affect
the four condition code flags of the FPU status word.

3.1.1.13 Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound
sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general
protection exception with an error code of 0. Table 3-4 associates each two-letter mnemonic with the corre-
sponding exception vector and name. See Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their operating systems to determine

the actions taken when exceptions occur.

Table 3-4. Intel 64° and IA-32 General Exceptions
Vector Name Source Protected | Real Virtual
Mode! Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT3 instruction. Yes Yes Yes
4 #OF—Overflow INTO instruction. Yes Yes Yes
5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes
6 #UD—Invalid Opcode (Undefined UD instruction or reserved opcode. Yes Yes Yes
Opcode)
7 #NM—Device Not Available (No Floating-point or WAIT/FWAIT instruction. Yes Yes Yes
Math Coprocessor)
8 #DF—Double Fault Any instruction that can generate an Yes Yes Yes
exception, an NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes No Yes
11 #NP—Segment Not Present Loading segment registers or accessing system Yes No Yes
segments.
12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes
13 #GP—General Protection? Any memory reference and other protection Yes Yes Yes
checks.
14 #PF—Page Fault Any memory reference. Yes No Yes
16 #MF—Floating-Point Error (Math Floating-point or WAIT/FWAIT instruction. Yes Yes Yes
Fault)
17 #AC—Alignment Check Any data reference in memory. Yes No Yes
18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes
19 #XM—SIMD Floating-Point SSE/SSEZ2/SSE3 floating-point instructions. Yes Yes Yes
Numeric Error
20 #VE—Virtualization Exception EPT violations3 Yes No No

Vol.2A 3-15

INSTRUCTION SET REFERENCE, A-L

Table 3-4. Intel 64° and IA-32 General Exceptions (Contd.)

Vector Name Source Protected | Real Virtual
Mode! Address | 8086
Mode Mode

21 #CP—Control Protection Exception | RET, IRET, RSTORSSP, and SETSSBSY Yes No No
instructions can generate this exception. When
CET indirect branch tracking is enabled, this
exception can be generated due to a missing
ENDBRANCH instruction at target of an
indirect call or jump.

NOTES:

1. Apply to protected mode, compatibility mode, and 64-bit mode.

2. In the real-address mode, vector 13 is the segment overrun exception.

3. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE" VM-execution control.

3.1.1.14 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
real-address mode (see Table 3-4).

3.1.1.15 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
virtual-8086 mode (see Table 3-4).

3.1.1.16 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction
is executed. All of these exception conditions result in a floating-point error exception (#MF, exception 16) being
generated. Table 3-5 associates a one- or two-letter mnemonic with the corresponding exception name. See
“Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for a detailed description of these exceptions.

Table 3-5. x87 FPU Floating-Point Exceptions

Mnemonic Name Source

Floating-point invalid operation:

ﬁ:i - Stack overflow or underflow - x87 FPU stack overflow or underflow
- Invalid arithmetic operation - Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#0 Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

3.1.1.17 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE/SSE2/SSE3 floating-
point instruction is executed. All of these exception conditions result in a SIMD floating-point error exception (#XM,
exception 19) being generated. Table 3-6 associates a one-letter mnemonic with the corresponding exception
name. For a detailed description of these exceptions, refer to “SSE and SSE2 Exceptions”, in Chapter 11 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Vol.2A 3-16

INSTRUCTION SET REFERENCE, A-L

Table 3-6. SIMD Floating-Point Exceptions

Mnemonic Name Source
#l Floating-point invalid operation Invalid arithmetic operation or source operand
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand Source operand that is a denormal number
#0 Floating-point numeric overflow Overflow in result
#U Floating-point numeric underflow Underflow in result
#P Floating-point inexact result Inexact result (precision)

3.1.1.18 Compatibility Mode Exceptions Section

This section lists exceptions that occur within compatibility mode.

3.1.1.19 64-Bit Mode Exceptions Section

This section lists exceptions that occur within 64-bit mode.

3.2 INTEL® AMX CONSIDERATIONS

The following implementation parameters and helper functions are applicable to the Intel® AMX instructions.

3.2.1 Implementation Parameters

The parameters are reported via CPUID leaf 1DH. Index O reports all zeros for all fields.
define palette table[id]:

uintlé t
uintleé t
uintleé t
uintlé t
uintleé t

total tile bytes
bytes per tile
bytes per row
max_names

max Trows

The tile parameters are set by LDTILECFG or XRSTOR* of TILECFG:
define tile[tid]:

byte rows

word colsb // bytes per row
bool wvalid

3.2.2 Helper Functions

The helper functions used in Intel AMX instructions are defined below.

Vol.2A 3-17

INSTRUCTION SET REFERENCE, A-L

define write row_and zero(treg, r, data, nbytes):
for 7 in 0 ...nbytes-1:
treg.row[r].byte[]j] := data.bytel]j]

// zero the rest of therow
for j in nbytes ... palette table[tilecfg.palette id].bytes per row-1:
treg.row[r].byte[]j] := 0

define zero upper rows(treg, r):
for 1 in r . palette table[tilecfg.palette id].max rows-1:
for jin 0 ... palette table[tilecfg.palette id].bytes per row-1:

treg.row[i] .byte[j] :=0

define zero tilecfg start():

tilecfg.start row :=0

define zero all tile data():
if XCRO[TILEDATA]:
b :=CPUID(0xD, TILEDATA) .EAX // size of feature
for j in 0 ... Db:
TILEDATA.byte[]] := 0

define xcr0 supports palette(palette id):
if palette id ==
return 1
elif palette id ==
if XCRO[TILECFG] and XCRO[TILEDATA]:
return 1
return 0

3.3 INSTRUCTIONS (A-L)

The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions (A-L). See also: Chapter 4,
“Instruction Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B; Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 2C; and Chapter 6, “Instruction Set Reference, W-Z,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2D.

Vol.2A 3-18

AAA—ASCII Adjust After Addition

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
37 AAA Z0 |Invalid Valid ASCII adjust AL after addition.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4
through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF =1)
THEN
AX:= AX + 106H;
AF:=1,
CF:=1,
ELSE

Fl;
AL := AL AND OFH;
Fl;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF,
SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

AAA—ASCII Adjust After Addition Vol.2A 3-19

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAA—ASCII Adjust After Addition Vol.2A 3-20

AAD—ASCII Adjust AX Before Division

Opcode Instruction Op/ | 64-bit Compat/ |Description
En |Mode Leg Mode
D5 0A AAD Z0 |Invalid Valid ASCII adjust AX before division.
D5ib AAD imm8 Z0 |Invalid Valid Adjust AX before division to number base
imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-significant digit in the
AH register) so that a division operation performed on the result will yield a correct unpacked BCD value. The AAD
instruction is only useful when it precedes a DIV instruction that divides (binary division) the adjusted value in the
AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH register to O0H.
The value in the AX register is then equal to the binary equivalent of the original unpacked two-digit (base 10)
number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any humber base (see the
“Operation” section below), by setting the imm8 byte to the selected number base (for example, 08H for octal, 0AH
for decimal, or OCH for base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean adjust
ASCII (base 10) values. To adjust values in another number base, the instruction must be hand coded in machine
code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL := AL
tempAH = AH;

AL := (tempAL + (tempAH = imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)
AH:=0;
Fl;
The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags
are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

AAD—ASCII Adjust AX Before Division Vol.2A 3-21

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAD—ASCII Adjust AX Before Division Vol.2A 3-22

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Op/ | 64-bit Compat/ |Description
En |Mode Leg Mode
D4 0A AAM Z0 |Invalid Valid ASCIl adjust AX after multiply.
D4 ib AAM imm8 Z0 |Invalid Valid Adjust AX after multiply to number base
imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked (base 10) BCD
values. The AX register is the implied source and destination operand for this instruction. The AAM instruction is
only useful when it follows an MUL instruction that multiplies (binary multiplication) two unpacked BCD values and
stores a word result in the AX register. The AAM instruction then adjusts the contents of the AX register to contain
the correct 2-digit unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create two unpacked
digits of any number base (see the “"Operation” section below). Here, the imm8 byte is set to the selected humber
base (for example, 08H for octal, 0AH for decimal, or OCH for base 12 numbers). The AAM mnemonic is interpreted
by all assemblers to mean adjust to ASCII (base 10) values. To adjust to values in another number base, the
instruction must be hand coded in machine code (D4 immS8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL = AL;
AH := tempAL / imm8; (* imm8is set to OAH for the AAM mnemonic *)
AL := tempAL MOD imm8;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags
are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-23

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-24

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
3F AAS Z0 |Invalid Valid ASCII adjust AL after subtraction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result. The AL register
is the implied source and destination operand for this instruction. The AAS instruction is only useful when it follows
a SUB instruction that subtracts (binary subtraction) one unpacked BCD value from another and stores a byte
result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-
digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and AF flags are set. If no
decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL
register is left with its top four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation
IF 64-bit mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF =1)
THEN
AX:= AX-6;
AH:=AH-1;
AF:=1;
CF:=1,
AL := AL AND OFH;
ELSE
CF:=0;
AF:=0;
AL := AL AND OFH;
Fl;
Fl;
Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and
PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

AAS—ASCII Adjust AL After Subtraction Vol.2A 3-25

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAS—ASCII Adjust AL After Subtraction Vol.2A 3-26

ADC—Add With Carry

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.
15iw ADC AX, imm16 | Valid Valid Add with carry imm16 to AX.
15id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.
REXW + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-
bits to RAX.
80/2ib ADC r/m8, imm8 Ml | Valid Valid Add with carry imm8 to r/m8.
REX+80/2ib ADCr/m8 ,imm8 Ml |Valid N.E. Add with carry imm8 to r/m8.
81/2iw ADCr/m16, imm16 M Valid Valid Add with carry imm16 to r/m16.
81/2id ADC r/m32, imm32 Ml | Valid Valid Add with CF imm32 to r/m32.
REX.W + 81 /2id ADC r/m64, imm32 Ml |Valid N.E. Add with CF imm32 sign extended to 64-bits
to r/m64.
83/2ib ADCr/m16, imm8 Ml |Valid Valid Add with CF sign-extended imm8 to r/m16.
83/2ib ADC r/m32, imm8 Mi Valid Valid Add with CF sign-extended imm8 into r/m32.
REXW +83 /2 ib ADC r/m64, imm8 Ml |Valid N.E. Add with CF sign-extended imm8 into r/m64.
10/r ADCr/m8, r8 MR | Valid Valid Add with carry byte register to r/m8.
REX+10/r ADCr/m8, 18 MR |Valid N.E. Add with carry byte register to r/m64.
11 /r ADCr/m16,r16 MR | Valid Valid Add with carry r16 tor/m16.
11 /r ADCr/m32,r32 MR | Valid Valid Add with CF r32 to r/m32.
REXW +11/r ADC r/m64, r64 MR | Valid N.E. Add with CF r64 to r/m64.
121/r ADCr8, r/m8 RM | Valid Valid Add with carry r/m8 to byte register.
REX+12/r ADCr8,r/m8 RM | Valid N.E. Add with carry r/m64 to byte register.
13/r ADCr16,r/m16 RM | Valid Valid Add with carry r/m16 tor16.
13/r ADCr32,r/m32 RM | Valid Valid Add with CF r/m32 to r32.
REXW +13/r ADC r64, r/m64 RM | Valid N.E. Add with CF r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Ml ModRM:r/m (r, w) imm8/16/32 N/A N/A
| AL/AX/EAX/RAX imm8/16/32 N/A N/A
Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and
stores the result in the destination operand. The destination operand can be a register or a memory location; the
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate
value is used as an operand, it is sign-extended to the length of the destination operand format.

ADC—Add With Carry

Vol.2A 3-27

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result,
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is
followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST := DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);
ADC extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short *sum_out);
ADC extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);

ADC extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64
*sum_out);

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment

selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

ADC—Add With Carry Vol.2A 3-28

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

ADC—Add With Carry Vol.2A 3-29

ADCX—Unsigned Integer Addition of Two Operands With Carry Flag

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature

Support | Flag
66 OF 38 F6 /r RM |V/V ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF.
ADCX r32, r/m32
66 REX.w OF 38 F6 /r RM | V/N.E ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF.
ADCX r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the carry-flag (CF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of
CF can represent a carry from a previous addition. The instruction sets the CF flag with the carry generated by the
unsigned addition of the operands.

The ADCX instruction is executed in the context of multi-precision addition, where we add a series of operands with
a carry-chain. At the beginning of a chain of additions, we need to make sure the CF is in a desired initial state.
Often, this initial state needs to be 0, which can be achieved with an instruction to zero the CF (e.g. XOR).

This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.

In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64 bits.

ADCX executes normally either inside or outside a transaction region.

Note: ADCX defines the OF flag differently than the ADD/ADC instructions as defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN CF:DEST[63:0] := DEST[63:0] + SRC[63:0] + CF;
ELSE CF:DEST[31:0] := DEST[31:0] + SRC[31:0] + CF;
Fl;

Flags Affected
CF is updated based on result. OF, SF, ZF, AF, and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions
None.

ADCX—Unsigned Integer Addition of Two Operands With Carry Flag Vol.2A 3-30

Protected Mode Exceptions

#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.

#SS(0) For an illegal address in the SS segment.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

ADCX—Unsigned Integer Addition of Two Operands With Carry Flag Vol.2A 3-31

ADD—Add

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.
05id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8, imm8 Ml | Valid Valid Add imm8 to r/m8.
REX +80/0ib ADD r/m8’, imm8 Ml |Valid N.E. Add sign-extended imm8 to r/m8.
81 /0iw ADD r/m16, imm16 Ml | Valid Valid Add imm16 to r/m16.
81/0id ADD r/m32, imm32 Ml | Valid Valid Add imm32 to r/m32.
REX.W + 81 /0id ADD r/m64, imm32 Ml | Valid N.E. Add imm32 sign-extended to 64-bits to
r/mé64.
83/0ib ADD r/m16, imm8 Ml | Valid Valid Add sign-extended imm8 to r/m16.
83/0ib ADD r/m32, imm8 Ml | Valid Valid Add sign-extended imm8 to r/m32.
REXW +83/0ib ADD r/m64, imm8 Ml |Valid N.E. Add sign-extended imm8 to r/m64.
00 /r ADD r/m8, r8 MR | Valid Valid Add r8 to r/m8.
REX +00 /r ADD r/m8’, r8 MR | Valid N.E. Add r8 to r/m8.
o1 /r ADD r/m16,r16 MR | Valid Valid Addr16 tor/m16.
01 /r ADD r/m32,r32 MR | Valid Valid Add r32 tor/m32.
REX.W + 01 /r ADD r/m64, r64 MR | Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 RM | Valid Valid Add r/m8 tor8.
REX+02 /r ADD 8, r/m8 RM | Valid N.E. Add r/m8 to r8.
03/r ADDr16,r/m16 RM | Valid Valid Addr/m16tor16.
03/r ADD r32, r/m32 RM | Valid Valid Add r/m32 to r32.
REXW + 03 /r ADD r64, r/m64 RM | Valid N.E. Add r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/€En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
M ModRM:r/m (r, w) imm8/16/32 N/A N/A

I AL/AX/EAX/RAX imm8/16/32 N/A N/A
Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result
in the destination operand. The destination operand can be a register or a memory location; the source operand
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the OF and CF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The
SF flag indicates the sign of the signed result.

ADD—Add Vol.2A 3-32

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST := DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment

selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

ADD—Add Vol.2A 3-33

ADDPD—Add Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag

Support
66 OF 58 /r A VIV SSE2 Add packed double precision floating-point values from
ADDPD xmm1, xmm2/m128 xmm2/mem to xmm1 and store result in xmm1.
VEX.128.66.0F.WIG 58 /r B VIV AVX Add packed double precision floating-point values from
VADDPD xmm1,xmm2, xmm3/mem to xmm¢Z2 and store result in xmm1.
xmm3/m128
VEX.256.66.0F.WIG 58 /r B VIV AVX Add packed double precision floating-point values from
VADDPD ymm1, ymm2, ymm3/mem to ymm¢Z2 and store result in ymm1.
ymm3/m256
EVEX.128.66.0F.W1 58 /r C VIV (AVX512VL AND | Add packed double precision floating-point values from
VADDPD xmm1 {k1Xz}, xmm2, AVX512F) OR xmm3/m128/m64bcst to xmm2 and store result in xmm’1
xmm3/m128/m64bcst AVX10.1" with writemask k1.
EVEX.256.66.0F.W1 58 /r C VIV (AVX512VL AND | Add packed double precision floating-point values from
VADDPD ymm1 {k1}z}, ynm2, AVX512F) OR ymm3/m256/m64bcst to ymm2 and store result in ymm1
ymm3/m256/m64bcst AVX10.17 with writemask k1.
EVEX.512.66.0F.W1 58 /r C VIV AVX512F OR Add packed double precision floating-point values from
VVADDPD zmm1 {k1}z}, zmmZ, Avx10.1? zmm3/m512/m64bcst to zmm2 and store result in zmm1
zmm3/m512/m64bcst {er} with writemask k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vwvv (1) ModRM:r/m (r) N/A
Description

Adds two, four or eight packed double precision floating-point values from the first source operand to the second
source operand, and stores the packed double precision floating-point result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of
the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding
ZMM register destination are unmodified.

ADDPD—Add Packed Double Precision Floating-Point Values Vol.2A 3-34

Operation

VADDPD (EVEX Encoded Versions) When SRC2 Operand is a Vector Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF(VL=512) AND (EVEXb = 1)
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
Fl;
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask*
THEN DESTI[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i1:=0
Fl
FI;
ENDFOR
DEST[MAXVL-1:VL] =0

VADDPD (EVEX Encoded Versions) When SRC2 Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FORj:= 0 TOKL-1

i=j*64
IF k1[j] OR *no writemask*
THEN
IF (EVEXb =1)
THEN
DEST[i+63:i] := SRC1[i+63:i] + SRC2[63:0]
ELSE
DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL] = 0

VADDPD (VEX.256 Encoded Version)

DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64]:= SRC1[127:64] + SRC2[127:64]
DEST[191:128] := SRC1[191:128] + SRC2[191:128]
DEST[255:192] := SRC1[255:192] + SRC2[255:192]
DEST[MAXVL-1:256]:= 0

ADDPD—Add Packed Double Precision Floating-Point Values

Vol.2A 3-35

VADDPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64]:= SRC1[127:64] + SRC2[127:64]
DEST[MAXVL-1:128]:=0

ADDPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] + SRC[63:0]
DEST[127:64] := DEST[127:64] + SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPD _m512d _mm512_add_pd (__m512d a, __m512db);

VADDPD __m512d _mm512_mask_add_pd (__m512ds, __mmask8k,__m512da, __ m512db);
VADDPD _m512d _mm512_maskz_add_pd (__mmask8k, __m512da, __m512d b);

VADDPD _m256d _mm256_mask_add_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VADDPD _m256d _mm256_maskz_add_pd (__mmask8 k, __m256d a, __m256d b);

VADDPD __m128d _mm_mask_add_pd (__m128ds, __mmask8k,__m128da, __ m128db);
VADDPD _m128d _mm_maskz_add_pd (__mmask8k, __m128da, _ m128db);

VADDPD _m512d _mm512_add_round_pd (__m512d a, __m512d b, int);

VADDPD _m512d _mm512_mask_add_round_pd (__m512ds, __mmask8k, __ m512da, __m512d b, int);
VADDPD __m512d _mm512_maskz_add_round_pd (__mmask8k, __m512da, __m512d b, int);
ADDPD __m256d _mm256_add_pd (__m256d a, __m256d b);

ADDPD __m128d _mm_add_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, "Type E2 Class Exception Conditions.”

ADDPD—Add Packed Double Precision Floating-Point Values

Vol.2A 3-36

ADDPS—Add Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag
Support
NP OF 58 /r A VIV SSE Add packed single precision floating-point values
ADDPS xmm1, xmm2/m128 from xmm2/m128 to xmm1 and store result in
xmm1.
VEX.128.0F.WIG 58 /r B VIV AVX Add packed single precision floating-point values
VADDPS xmm1,xmmZ2, xmm3/m128 from xmm3/m128 to xmm2 and store result in
xmm1.
VEX.256.0F.WIG 58 /r B VIV AVX Add packed single precision floating-point values
VADDPS ymm1, ymm2, ymm3/m256 from ymm3/m256 to ymmZ2 and store result in
ymm1.
EVEX.128.0F.W0 58 /r C VIV (AVX512VL AND | Add packed single precision floating-point values
VADDPS xmm1 {k1}z}, xmm2, AVX512F)OR | from xmm3/m128/m32bcst to xmmZ2 and store
xmm3/m128/m32bcst AVX10.1" result in xmm1 with writemask k1.
EVEX.256.0F.W0 58 /r C VIV (AVX512VL AND | Add packed single precision floating-point values
VADDPS ymm1 {k1}z}, ynm2, AVX512F)OR |from ymm3/m256/m32bcst to ymm2 and store
ymm3/m256/m32bcst AVX10.1" result in ymm1 with writemask k1.
EVEX.512.0F.W0 58 /r C VIV AVX512F OR Add packed single precision floating-point values
VADDPS zmm1 {k1}z}, zmm2, AVX10.1" from zmm3/m512/m32bcst to zmm2 and store
zmm3/m512/m32bcst {er} result in zmm1 with writemask k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-

tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vvvv (1) ModRM:r/m (r) N/A
Description

Adds four, eight or sixteen packed single precision floating-point values from the first source operand with the
second source operand, and stores the packed single precision floating-point result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of
the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding
ZMM register destination are unmodified.

ADDPS—Add Packed Single Precision Floating-Point Values Vol.2A 3-37

Operation

VADDPS (EVEX Encoded Versions) When SRC2 Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF(VL=512) AND (EVEXb = 1)
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
Fl;
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask*
THEN DESTI[i+31:i] := SRC1[i+31:i] + SRC2[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i1:=0
Fl
FI;
ENDFOR;
DEST[MAXVL-1:VL] =0

VADDPS (EVEX Encoded Versions) When SRC2 Operand is a Memory Source

(KL, VL) = (4, 128), (8, 256), (16, 512)

FORj:= 0 TOKL-1

i=j*32
IF k1[j] OR *no writemask*
THEN
IF (EVEXb =1)
THEN
DEST[i+31:i] := SRC1[i+31:i] + SRC2[31:0]
ELSE
DEST[i+31:i] := SRC1[i+31:i] + SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i1:=0
Fl
Fl;
ENDFOR;

DEST[MAXVL-1:VL] = 0

ADDPS—Add Packed Single Precision Floating-Point Values

Vol.2A 3-38

VADDPS (VEX.256 Encoded Version)

DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[159:128] := SRC1[159:128] + SRC2[159:128]
DEST[191:160]:= SRC1[191:160] + SRC2[191:160]
DEST[223:192] := SRC1[223:192] + SRC2[223:192]
DEST[255:224] := SRC1[255:224] + SRC2[255:224].
DEST[MAXVL-1:256]:= 0

VADDPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128]:=0

ADDPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPS _m512 _mm512_add_ps (__m512a,__m512 b);

VADDPS __m512 _mm512_mask_add_ps (__m512 s, __mmask16k,__m512a,__m512b);
VADDPS __m512 _mm512_maskz_add_ps (__mmask16k, __m5124a,__m512b);

VADDPS _m256 _mm256_mask_add_ps (__m256's,__mmask8 k, __m256 a, __m256 b);
VADDPS _m256 _mm256_maskz_add_ps (__mmask8 k, __m256 a, __m256 b);

VADDPS __m128 _mm_mask_add_ps (_m128ds, __mmask8k, __m128a,__m128Db);
VADDPS __m128 _mm_maskz_add_ps (__mmask8k, __m128a,__m128b);

VADDPS __m512 _mm512_add_round_ps (__m512 3, __m512 b, int);

VADDPS __m512 _mm512_mask_add_round_ps (__m512s, __mmask16k, __m512a,__m512 b, int);
VADDPS __m512 _mm512_maskz_add_round_ps (__mmask16k,__m512 a,__m512 b, int);
ADDPS __m256 _mm256_add_ps (__m256 a, __m256 b);

ADDPS __m128 _mm_add_ps(_m1283a,__m128b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, "Type E2 Class Exception Conditions.”

ADDPS—Add Packed Single Precision Floating-Point Values

Vol. 2A

3-39

ADDSD—Add Scalar Double Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag

Support
F2 OF 58 /r A VIV SSE2 Add the low double precision floating-point value from
ADDSD xmm1, xmm2/m64 xmm2/mem to xmm1 and store the result in xmmT1.
VEX.LIG.F2.0F.WIG 58 /r B VIV AVX Add the low double precision floating-point value from
VADDSD xmm1, xmmZ, xmm3/mem to xmmZ2 and store the result in xmm1.
xmm3/m64
EVEX.LLIG.F2.0F.W1 58 /r C VIV AVX512F Add the low double precision floating-point value from
VADDSD xmm1 {k1¥z}, xmm2, OR AVX10.1" | xmm3/m64 to xmm2 and store the result in xmm1 with
xmm3/m64{er} writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Adds the low double precision floating-point values from the second source operand and the first source operand
and stores the double precision floating-point result in the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.

128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:64) of the
corresponding destination register remain unchanged.

EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of
the destination register are zeroed.

EVEX version: The low quadword element of the destination is updated according to the writemask.

Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.

ADDSD—Add Scalar Double Precision Floating-Point Values Vol.2A 3-40

Operation

VADDSD (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
Fl;
IF k1[0] or *no writemask*
THEN DEST[63:0]:= SRC1[63:0] + SRC2[63:0]

ELSE
IF *merging-masking* , merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0]:=0
Fl;

Fl;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128]:=0

VADDSD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64]:= SRC1[127:64]
DEST[MAXVL-1:128]:=0

ADDSD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] + SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSD __m128d _mm_mask_add_sd (__m128ds,
VADDSD __m128d _mm_maskz_add_sd (__mmask8 k, __ m128d a,_ m128d b);
VADDSD __m128d _mm_add_round_sd (__m128da, __ m128d b, int);

VADDSD __m128d _mm_mask_add_round_sd (__m128ds, __mmask8k, _ m128d a,
VADDSD __m128d _mm_maskz_add_round_sd (__mmask8 k, __m128d g,
ADDSD __m128d _mm_add_sd (__m128da, __m128d b);

mmask8 k, __ m128da, __m128db);

m128d b, int);
m128d b, int);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “"Type E3 Class Exception Conditions.”

ADDSD—Add Scalar Double Precision Floating-Point Values

Vol. 2A

3-41

ADDSS—Add Scalar Single Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag

Support
F30F58/r A VIV SSE Add the low single precision floating-point value from
ADDSS xmm1, xmm2/m32 xmm2/mem to xmm1 and store the result in xmm1.
VEX.LIG.F3.0F.WIG 58 /r B VIV AVX Add the low single precision floating-point value from
VADDSS xmm1,xmm2, xmm3/mem to xmmZ2 and store the result in xmm1.
xmm3/m32
EVEX.LLIG.F3.0F.WO0 58 /r C VIV AVX512F Add the low single precision floating-point value from
VADDSS xmm1{k1¥z}, xmm2, OR AVX10.1" | xmm3/m32 to xmm2 and store the result in xmm1with
xmm3/m32{er} writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Tuple1 Scalar ModRM:reg (w) EVEX.vvwv (r) ModRM:r/m (r) N/A
Description

Adds the low single precision floating-point values from the second source operand and the first source operand,
and stores the double precision floating-point result in the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.

128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:32) of the
corresponding the destination register remain unchanged.

EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:32) of
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of
the destination register are zeroed.

EVEX version: The low doubleword element of the destination is updated according to the writemask.

Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

ADDSS—Add Scalar Single Precision Floating-Point Values Vol.2A 3-42

Operation

VADDSS (EVEX Encoded Versions)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
Fl;
IF k1[0] or *no writemask*
THEN DEST[31:0]:= SRC1[31:0] + SRC2[31:0]

ELSE
IF *merging-masking* , merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0]:=0
Fl;

Fl;
DEST[127:32]:= SRC1[127:32]
DEST[MAXVL-1:128]:=0

VADDSS DEST, SRC1, SRC2 (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]

DEST[127:32] := SRC1[127:32]

DEST[MAXVL-1:128]:= 0

ADDSS DEST, SRC (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] + SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSS __m128 _mm_mask_add_ss (_m128s,_mmask8k,__m128a,__m128b);
VADDSS __m128 _mm_maskz_add_ss (__mmask8k, __ m128a,__m128b);
VADDSS __m128 _mm_add_round_ss (__m1283a,__m128b, int);

VADDSS __m128 _mm_mask_add_round_ss (__m128s, __mmask8k,_ m128a,__ m128 b, int);
VADDSS __m128 _mm_maskz_add_round_ss (__mmask8k,_ m128a, _ m128 b, int);
ADDSS __m128 _mm_add_ss(_m1283a,__m128b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “"Type E3 Class Exception Conditions.”

ADDSS—Add Scalar Single Precision Floating-Point Values

Vol. 2A

3-43

ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
66 OF DO /r RM |V/V SSE3 Add/subtract double precision floating-point
ADDSUBPD xmm1, xmm2/m128 values from xmm2/m128 to xmm1.
VEX.128.66.0F.WIG DO /r RVM |V/V AVX Add/subtract packed double precision
VADDSUBPD xmm1, xmm2, xmm3/m128 floating-point values from xmm3/mem to
xmm2 and stores result in xmm1.
VEX.256.66.0F.WIG DO /r RVM | VIV AVX Add / subtract packed double precision
VADDSUBPD ymm1, ymm2, ymm3/m256 floating-point values from ymm3/mem to
ymm2 and stores result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRMrreg (r, w) ModRM:r/m (r) N/A N/A
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
Description

Adds odd-numbered double precision floating-point values of the first source operand (second operand) with the
corresponding double precision floating-point values from the second source operand (third operand); stores the
resultin the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered double
precision floating-point values from the second source operand from the corresponding double precision floating
values in the first source operand; stores the result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
YMM register destination are unmodified. See Figure 3-3.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract Vol.2A 3-44

ADDSUBPD xmm1, xmm2/m128

[127:64]

[63:0]

4

4

xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0]

[127:64]

[63:0]

xmm2/m128

RESULT:
xmm1

Figure 3-3. ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract

Operation

ADDSUBPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] - SRC[63:0]
DEST[127:64] := DEST[127:64] + SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

VADDSUBPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[MAXVL-1:128]:=0

VADDSUBPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[191:128] := SRC1[191:128] - SRC2[191:128]
DEST[255:192] := SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPD _m128d _mm_addsub_pd(__m128d a, __m128d b)
VADDSUBPD _m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a general-protection

exception (#GP) will be generated.

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “"Type 2 Class Exception Conditions.”

ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract

Vol.2A 3-45

ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract

Opcode/ Op/ |64/32-bit | CPUID Description
Instruction En |Mode Feature

Flag
F2 OF DO /r RM |V SSE3 Add/subtract single precision floating-point
ADDSUBPS xmm1, xmm2/m128 values from xmm2/m128 to xmm1.
VEX.128.F2.0F.WIG DO /r RVM | V/V AVX Add/subtract single precision floating-point

values from xmm3/mem to xmm2 and stores

VADDSUBPS xmm1, xmm2, xmm3/m128
result in xmm1.

VEX.256.F2.0F.WIG DO /r RVM | V/V AVX
VADDSUBPS ymm1, ymm2, ymm3/m256

Add / subtract single precision floating-point
values from ymm3/mem to ymm2 and stores
result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
Description

Adds odd-numbered single precision floating-point values of the first source operand (second operand) with the
corresponding single precision floating-point values from the second source operand (third operand); stores the
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single
precision floating-point values from the second source operand from the corresponding single precision floating
values in the first source operand; stores the result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
YMM register destination are unmodified. See Figure 3-4.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract Vol.2A 3-46

ADDSUBPS xmm1, xmm2/m128
. . . . xmm?2/
[127:96] [95:64] [63:32] [31:0] m128
A A A 4
xmm1[127:96] + xmm1[95:64] - xmm2/ xmm1[63:32] + xmm1[31:0] - RESULT:
xmm2/m128[127:96] m128[95:64] xmm2/m128[63:32] xmm2/m128[31:0] | xmm1
[127:96] [95:64] [63:32] [31:0]

OM15992

Figure 3-4. ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract

Operation

ADDSUBPS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] - SRC[31:0]
DEST[63:32] := DEST[63:32] + SR([63:32]
DEST[95:64] := DEST[95:64] - SRC[95:64]
DEST[127:96] := DEST[127:96] + SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

VADDSUBPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128]:=0

VADDSUBPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[159:128] := SRC1[159:128] - SRC2[159:128]
DEST[191:160] := SRC1[191:160] + SRC2[191:160]
DEST[223:192] := SRC1[223:192] - SRC2[223:192]
DEST[255:224] := SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128b)
VADDSUBPS __m256 _mm256_addsub_ps (__m256 a, __ m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract Vol.2A 3-47

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”

ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract Vol.2A 3-48

ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature

Support | Flag
F30F38F6/r RM |V/V ADX Unsigned addition of r32 with OF, r/m32 to r32, writes OF.
ADOX r32, r/m32
F3 REX.w OF 38 F6 /1 RM | V/N.E ADX Unsigned addition of r64 with OF, r/m64 to r64, writes OF.
ADOX r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the overflow-flag (OF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of
OF represents a carry from a previous addition. The instruction sets the OF flag with the carry generated by the
unsigned addition of the operands.

The ADOX instruction is executed in the context of multi-precision addition, where we add a series of operands with
a carry-chain. At the beginning of a chain of additions, we execute an instruction to zero the OF (e.g. XOR).

This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.

In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64-bits.

ADOX executes normally either inside or outside a transaction region.

Note: ADOX defines the CF and OF flags differently than the ADD/ADC instructions as defined in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN OF:DEST[63:0] := DEST[63:0] + SRC[63:0] + OF;
ELSE OF:DEST[31:0] := DEST[31:0] + SRC[31:0] + OF;
Fl;

Flags Affected
OF is updated based on result. CF, SF, ZF, AF, and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions
None.

ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag Vol.2A 3-49

Protected Mode Exceptions

#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.

#SS(0) For an illegal address in the SS segment.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag Vol.2A 3-50

AESDEC—Perform One Round of an AES Decryption Flow

Opcode/ Op/ | 64/32-bit | CPUID Description
Instruction En |Mode Feature Flag
66 OF 38 DE /r A VIV AES Perform one round of an AES decryption flow, using
AESDEC xmm1, xmm2/m128 the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm1 with one 128-bit round key from
xmm2/m128.
VEX.128.66.0F38.WIG DE /r B VIV AES Perform one round of an AES decryption flow, using
VAESDEC xmm1, xmm2, xmm3/m128 AVX the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.
VEX.256.66.0F38.WIG DE /r B VIV VAES Perform one round of an AES decryption flow, using
VAESDEC ymm1, ymm2, ymm3/m256 the Equivalent Inverse Cipher, using two 128-bit data
(state) from ymm2 with two 128-bit round keys from
ymm3/m256; store the result in ymm1.
EVEX.128.66.0F38.WIG DE /r C VIV VAES Perform one round of an AES decryption flow, using
VAESDEC xmm1, xmm2, xmm3/m128 (AVX512VL | the Equivalent Inverse Cipher, using one 128-bit data
OR AVX10.1") | (state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.
EVEX.256.66.0F38.WIG DE /r C VIV VAES Perform one round of an AES decryption flow, using
VAESDEC ymm1, ymmZ2, ymm3/m256 (AVX512VL | the Equivalent Inverse Cipher, using two 128-bit data
OR AVX10.1") | (state) from ymm2 with two 128-bit round keys from
ymm3/m256; store the result in ymm1.
EVEX.512.66.0F38.WIG DE /r C VIV VAES Perform one round of an AES decryption flow, using
VAESDEC zmm1, zmmZ2, zmm3/m512 (AVX512F OR | the Equivalent Inverse Cipher, using four 128-bit data
AVX10.1" (state) from zmm2 with four 128-bit round keys from
zmm3/m512; store the result in zmm1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/€En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.wvvv (r) ModRM:r/m (r) N/A
C Full Mem ModRM:reg (w) EVEX.vwwv (r) ModRM:r/m (r) N/A
Description

This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, using
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four
(depending on vector length) round key(s) from the second source operand, and stores the result in the destina-
tion operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-
CLAST instruction.

VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.

The EVEX encoded form of this instruction does not support memory fault suppression.

AESDEC—Perform One Round of an AES Decryption Flow Vol.2A 3-51

Operation

AESDEC

STATE := SRCT;

RoundKey := SRCZ;

STATE := InvShiftRows(STATE);
STATE := InvSubBytes(STATE);
STATE := InvMixColumns(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDEC (128b and 256b VEX Encoded Versions)
(KL VL) = (1,128), (2,256)
FORi =0 to KL-1:

STATE := SRC1.xmm[i]

RoundKey := SRC2.xmm[i]

STATE := InvShiftRows(STATE)

STATE := InvSubBytes(STATE)

STATE := InvMixColumns(STATE)

DEST.xmm[i] ;= STATE XOR RoundKey
DEST[MAXVL-1:VL]:=0

VAESDEC (EVEX Encoded Version)
(KLVL) =(1,128), (2,256), (4,512)
FORi =0 toKL-1:
STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
STATE := InvMixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL] :=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC _m128i _mm_aesdec (__m128i,__m128i)
VAESDEC __m256i _mm256_aesdec_epil28(_m256i,
VAESDEC __m512i _mm512_aesdec_epi128(_m512i,

SIMD Floating-Point Exceptions
None.

Other Exceptions

m256i);
m512i);

See Table 2-21, “"Type 4 Class Exception Conditions.”

EVEX-encoded: See Table 2-52, “"Type E4NF Class Exception Conditions.”

AESDEC—Perform One Round of an AES Decryption Flow

Vol.2A 3-52

AESDEC128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker Using 128-Bit
Key

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DD (11):rrr:bbb A VIV AESKLE Decrypt xmm using 128-bit AES key indicated by han-
AESDEC128KL xmm, m384 dle at m384 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

The AESDEC128KL! instruction performs 10 rounds of AES to decrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESDEC128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES128);
IF (lllegal Handle) {
THEN RFLAGS.ZF ;= 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF ;= 1;
ELSE
DEST := AES128Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF = Q;
FI;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent
AESDEC128KL unsigned char _mm_aesdec128kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

AESDEC128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker Using 128-Bit Key Vol.2A 3-53

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.

AESDEC128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker Using 128-Bit Key Vol.2A 3-54

AESDEC256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker Using 256-Bit Key

Opcode/ Op/ | 64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DF {(11):rrr:bbb A VIV AESKLE Decrypt xmm using 256-bit AES key indicated by han-
AESDEC256KL xmm, m512 dle at m512 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

The AESDEC256KL! instruction performs 14 rounds of AES to decrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESDEC256KL
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256);
IF (Illegal Handle)
THEN RFLAGS.ZF := 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwKey);
IF (Authentic == 0)
THEN RFLAGS.ZF := 1;
ELSE
DEST := AES256Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF ;= 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC256KL unsigned char _mm_aesdec256kl_u8(_m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

AESDEC256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker Using 256-Bit Key Vol.2A 3-55

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.

AESDEC256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker Using 256-Bit Key Vol.2A 3-56

AESDECLAST—Perform Last Round of an AES Decryption Flow

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature Flag
66 OF 38 DF /r A VIV AES Perform the last round of an AES decryption flow,
AESDECLAST xmm1, xmm2/m128 using the Equivalent Inverse Cipher, using one 128-
bit data (state) from xmm1 with one 128-bit round
key from xmm2/m128.
VEX.128.66.0F38.WIG DF /r B VIV AES Perform the last round of an AES decryption flow,
VAESDECLAST xmm1, xmm2, xmm3/m128 AVX using the Equivalent Inverse Cipher, using one 128-
bit data (state) from xmm2 with one 128-bit round
key from xmm3/m128; store the result in xmm1.
VEX.256.66.0F38.WIG DF /r B VIV VAES Perform the last round of an AES decryption flow,
VAESDECLAST ymm1, ymm2, ymm3/m256 using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round
keys from ymm3/m256; store the result in ymm1.
EVEX.128.66.0F38.WIG DF /r C VIV VAES Perform the last round of an AES decryption flow,
VAESDECLAST xmm1, xmm2, xmm3/m128 (AVX512VL |using the Equivalent Inverse Cipher, using one 128-
OR AVX10.1") | bit data (state) from xmm2 with one 128-bit round
key from xmm3/m128; store the result in xmm1.
EVEX.256.66.0F38.WIG DF /r C VIV VAES Perform the last round of an AES decryption flow,
VAESDECLAST ymm1, ymm2, ymm3/m256 (AVX512VL |using the Equivalent Inverse Cipher, using two 128-
OR AVX10.1") | bit data (state) from ymm2 with two 128-bit round
keys from ymm3/m256; store the result in ymm1.
EVEX.512.66.0F38.WIG DF /r C VIV VAES Perform the last round of an AES decryption flow,
VAESDECLAST zmm1, zmmZ2, zmm3/m512 (AVX512F OR | using the Equivalent Inverse Cipher, using four128-
AVX10.1") bit data (state) from zmm2 with four 128-bit round
keys from zmm3/m512; store the result in zmm1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvvv () ModRM:r/m (r) N/A
C Full Mem ModRM:reg (w) EVEX.vvwv (1) ModRM:r/m (r) N/A
Description

This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, using
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four
(depending on vector length) round key(s) from the second source operand, and stores the result in the destina-
tion operand.

VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.

The EVEX encoded form of this instruction does not support memory fault suppression.

AESDECLAST—Perform Last Round of an AES Decryption Flow Vol.2A 3-57

Operation

AESDECLAST

STATE := SRCT;

RoundKey := SRCZ;

STATE := InvShiftRows(STATE);
STATE := InvSubBytes(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDECLAST (128b and 256b VEX Encoded Versions)
(KLVL) = (1,128), (2,256)
FOR i =0 to KL-1:

STATE := SRC1.xmm[i]

RoundKey := SRC2.xmm[i]

STATE := InvShiftRows(STATE)

STATE := InvSubBytes(STATE)

DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:= 0

VAESDECLAST (EVEX Encoded Version)
(KLVL) =(1,128), (2,256), (4,512)
FORi =0 toKL-1:
STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST _m128i _mm_aesdeclast (__m128i,__m128i)
VAESDECLAST _m256i _mm256_aesdeclast_epi128(_m256i,
VAESDECLAST _m512i _mm512_aesdeclast_epi128(_m512i,

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “"Type 4 Class Exception Conditions.”

EVEX-encoded: See Table 2-52, “"Type E4NF Class Exception Conditions.”

AESDECLAST—Perform Last Round of an AES Decryption Flow

m256i);
m512i);

Vol.2A 3-58

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks

Using 128-Bit Key

AESDECWIDE128KL m384, <XMMO-7>

Opcode/ Op/ |64/32-bit | CPUID Feature |Description
Instruction En |Mode Flag
F3 OF 38 D8(11):001:bbb A VIV AESKLEWIDE_KL | Decrypt XMMO-7 using 128-bit AES key indicated

by handle at m384 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/€En Tuple Operand 1 Operands 2—9
A N/A ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESDECWIDE128KL! instruction performs ten rounds of AES to decrypt each of the eight blocks in XMMO0-7
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7
with its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDET28KL
Handle := UnalignedLoad of 384 bit (SRC);

lllegal Handle = (HandleReservedBitSet (Handle) ||

(Handle[0] AND (CPL > 0)) ||
Handle [2] ||

// Load is not guaranteed to be atomic.

HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES128);

IF (Illegal Handle)
THEN RFLAGS.ZF = 1;
ELSE

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwKey);

IF Authentic == 0 {
THEN RFLAGS.ZF = 1;
ELSE
XMMO := AES128Decrypt
XMM1 := AES128Decrypt
XMM2 := AES128Decrypt
XMM3 := AES128Decrypt
XMM4 = AES128Decrypt
XMMS5 ;= AES128Decrypt
XMM6 := AES128Decrypt
XMM7 := AES128Decrypt
RFLAGS.ZF := 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

P

XMMO, UnwrappedKey)
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey)
XMM3, UnwrappedKey) ;
XMM4, UnwrappedKey)
XMMS5, UnwrappedKey)
XMM6, UnwrappedKey)
XMM7, UnwrappedKey)

’

’

’

’

’

’

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.ntml.

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 128-Bit Key Vol.2A 3-59

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Intel C/C++ Compiler Intrinsic Equivalent
AESDECWIDE128KLunsigned char _mm_aesdecwide128kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 128-Bit Key Vol.2A 3-60

AESDECWIDEZ256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker on 8 Blocks
Using 256-Bit Key

Opcode/ Op/ |64/32-bit | CPUID Feature |Description

Instruction En |Mode Flag

F3 OF 38 D8!(11):011:bbb A VIV AESKLEWIDE_KL | Decrypt XMMO-7 using 256-bit AES key indicated

AESDECWIDE256KL m512, <XMMO-7> by handle at m512 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/€En Tuple Operand 1 Operands 2—9
A N/A ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESDECWIDE256KL! instruction performs 14 rounds of AES to decrypt each of the eight blocks in XMMO-7
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7
with its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDE256KL

Handle := UnalignedlLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.

lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > O)) ||
Handle [2] ||
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256);

IF (Illegal Handle) {

THEN RFLAGS.ZF :=1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE

XMMO := AES256Decrypt
XMM1 := AES256Decrypt
XMM2 := AES256Decrypt
XMM3 := AES256Decrypt
XMM4 = AES256Decrypt
XMMS5 ;= AES256Decrypt
XMM6 := AES256Decrypt
XMM7 := AES256Decrypt
RFLAGS.ZF := 0;

XMMO, UnwrappedKey) ;
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey) ;

)
)
)
XMM3, UnwrappedKey) ;
)
)
)
)

XMM4, UnwrappedKey
XMM5, UnwrappedKey
XMM6, UnwrappedKey
XMM7, UnwrappedKey

’

’

’

P

’

Fl;
Fl;
RFLAGS.OF, SF, AF, PF,CF:=0;

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.ntml.

AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-61

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Intel C/C++ Compiler Intrinsic Equivalent
AESDECWIDEZ256KLunsigned char _mm_aesdecwide256kI_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-62

AESENC—Perform One Round of an AES Encryption Flow

Opcode/ Op/ |64/32-bit | CPUID Feature | Description
Instruction En |Mode Flag
66 OF 38 DC/r A VIV AES Perform one round of an AES encryption flow, using one
AESENC xmm1, xmm2/m128 128-bit data (state) from xmm1 with one 128-bit round
key from xmm2/m128.
VEX.128.66.0F38.WIG DC /r B VIV AES Perform one round of an AES encryption flow, using one
VAESENC xmm1, xmm2, xmm3/m128 AVX 128-bit data (state) from xmm2 with one 128-bit round
key from the xmm3/m128; store the result in xmm1.
VEX.256.66.0F38.WIG DC /r B VIV VAES Perform one round of an AES encryption flow, using two
VAESENC ymm1, ymm2, ymm3/m256 128-bit data (state) from ymm2 with two 128-bit round
keys from the ymm3/m256; store the result in ymm1.
EVEX.128.66.0F38.WIG DC /r C VIV VAES Perform one round of an AES encryption flow, using one
VAESENC xmm1, xmm2, xmm3/m128 (AVX512VLOR | 128-bit data (state) from xmmZ2 with one 128-bit round
AVX10.1M key from the xmm3/m128; store the result in xmm1.
EVEX.256.66.0F38.WIG DC /r C VIV VAES Perform one round of an AES encryption flow, using two
VAESENC ymm1, ymmZ2, ymm3/m256 (AVX512VLOR | 128-bit data (state) from ymm2 with two 128-bit round
AVX10.1 1) keys from the ymm3/m256; store the result in ymm1.
EVEX.512.66.0F38.WIG DC /r C VIV VAES Perform one round of an AES encryption flow, using
VAESENC zmm1, zmm2, zmm3/m512 (AVX512F OR | four 128-bit data (state) from zmm?2 with four 128-bit
AVX10.11 round keys from the zmm3/m512; store the result in
zmm1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/€En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRMrreg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Full Mem ModRM:reg (w) EVEX.vvvv (1) ModRM:r/m (r) N/A
Description

This instruction performs a single round of an AES encryption flow using one/two/four (depending on vector
length) 128-bit data (state) from the first source operand with one/two/four (depending on vector length) round
key(s) from the second source operand, and stores the result in the destination operand.

Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-

CLAST instruction.

VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.

The EVEX encoded form of this instruction does not support memory fault suppression.

AESENC—Perform One Round of an AES Encryption Flow

Vol.2A 3-63

Operation

AESENC

STATE := SRC1;

RoundKey := SRCZ;

STATE := ShiftRows(STATE);

STATE := SubBytes(STATE);

STATE := MixColumns(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENC (128b and 256b VEX Encoded Versions)
(KLVL) = (1,128), (2,256)
FOR |:= 0 to KL-1:

STATE := SRC1.xmm[i]

RoundKey := SRC2.xmm[i]

STATE := ShiftRows(STATE)

STATE := SubBytes(STATE)

STATE := MixColumns(STATE)

DEST.xmm[i] ;= STATE XOR RoundKey
DEST[MAXVL-1:VL]:= 0

VAESENC (EVEX Encoded Version)
(KLVL) =(1,128), (2,256), (4,512)
FORi:= 0 toKL-1:
STATE := SRC1.xmm([i] // xmm[i] is the i'th xmm word in the SIMD register
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
STATE := MixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent
(V)AESENC _m128i _mm_aesenc (__m128i,__m128i)

VAESENC __m256i _mm256_aesenc_epil128(_m256i, _ m256i);
VAESENC __m512i _mm512_aesenc_epi128(_m512i, __m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “"Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “"Type E4NF Class Exception Conditions.”

AESENC—Perform One Round of an AES Encryption Flow

Vol.2A 3-64

AESENC128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker Using 128-Bit Key

Opcode/ Op/ | 64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DC!(11):rrr:bbb A VIV AESKLE Encrypt xmm using 128-bit AES key indicated by han-
AESENC128KL xmm, m384 dle at m384 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

The AESENC128KL! instruction performs ten rounds of AES to encrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation
AESENC128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > Q)) ||
Handle [1]]]

HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES128
)
IF (llegal Handle) {
THEN RFLAGS.ZF := 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwKey);
IF (Authentic == 0)
THEN RFLAGS.ZF := 1;
ELSE
DEST := AES128Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF ;= 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC128KL unsigned char _mm_aesenc128kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

AESENC128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker Using 128-Bit Key Vol.2A 3-65

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.

AESENC128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker Using 128-Bit Key Vol.2A 3-66

AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-Bit Key

Opcode/ Op/ | 64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DE {(11):rrr:bbb A VIV AESKLE Encrypt xmm using 256-bit AES key indicated by han-
AESENC256KL xmm, m512 dle at m512 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

The AESENC256KL! instruction performs 14 rounds of AES to encrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESENC256KL
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [1]1]|
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256
)
IF (Ilegal Handle)
THEN RFLAGS.ZF := 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwKey);
IF (Authentic == 0)
THEN RFLAGS.ZF := 1;
ELSE
DEST := AES256€Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF ;= 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC256KL unsigned char _mm_aesenc256kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-Bit Key Vol.2A 3-67

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.

AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-Bit Key Vol.2A 3-68

AESENCLAST—Perform Last Round of an AES Encryption Flow

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature Flag

66 OF 38DD /r A VIV AES
AESENCLAST xmm1, xmm2/m128

Perform the last round of an AES encryption flow,
using one 128-bit data (state) from xmm1 with one
128-bit round key from xmm2/m128.

VEX.128.66.0F38.WIG DD /r B VIV AES Perform the last round of an AES encryption flow,

VAESENCLAST xmm1, xmm2, xmm3/m128 AVX using one 128-bit data (state) from xmmZ2 with one
128-bit round key from xmm3/m128; store the
result in xmm1.

VEX.256.66.0F38.WIG DD /r B VIV VAES Perform the last round of an AES encryption flow,

VAESENCLAST ymm1, ymm2, ymm3/m256 using two 128-bit data (state) from ymm2 with two
128-bit round keys from ymm3/m256; store the

result in ymm1.

EVEX.128.66.0F38.WIG DD /r C VIV VAES Perform the last round of an AES encryption flow,
VAESENCLAST xmm1, xmm2, xmm3/m128 (AVX512VL |using one 128-bit data (state) from xmm2 with one
OR AVX10.1") | 128-bit round key from xmm3/m128; store the
result in xmm1.

EVEX.256.66.0F38.WIG DD /r C VIV VAES Perform the last round of an AES encryption flow,
VAESENCLAST ymm1, ymm2, ymm3/m256 (AVX512VL | using two 128-bit data (state) from ymm?2 with two
OR AVX10.1") [128-bit round keys from ymm3/m256; store the
result in ymm1.

EVEX.512.66.0F38.WIG DD /r C VIV VAES Perform the last round of an AES encryption flow,
VAESENCLAST zmm1, zmmZ2, zmm3/m512 (AVX512F OR | using four 128-bit data (state) from zmm2 with four
AVX10.1") | 128-bit round keys from zmm3/m512; store the
result in zmm1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX 10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRMireg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

This instruction performs the last round of an AES encryption flow using one/two/four (depending on vector length)
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s)
from the second source operand, and stores the result in the destination operand.

VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.

The EVEX encoded form of this instruction does not support memory fault suppression.

AESENCLAST—Perform Last Round of an AES Encryption Flow Vol.2A 3-69

Operation

AESENCLAST

STATE := SRC1;

RoundKey := SRCZ;

STATE := ShiftRows(STATE);

STATE := SubBytes(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENCLAST (128b and 256b VEX Encoded Versions)
(KL, VL) = (1,128), (2.256)
FOR I1=0 to KL-1:

STATE := SRC1.xmm[i]

RoundKey := SRC2.xmm[i]

STATE := ShiftRows(STATE)

STATE := SubBytes(STATE)

DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:= 0

VAESENCLAST (EVEX Encoded Version)
(KLVL) =(1,128), (2,256), (4,512)
FORi =0 toKL-1:
STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows(STATE)
STATE := SubBytes(STATE)
DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST _m128i _mm_aesenclast (__m128i, __m128i)
VAESENCLAST _m256i _mm256_aesenclast_epi128(_m256i, __m256i);
VAESENCLAST _m512i _mm512_aesenclast_epi128(_m512i,__m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “"Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “"Type E4NF Class Exception Conditions.”

AESENCLAST—Perform Last Round of an AES Encryption Flow

Vol.2A 3-70

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker on 8 Blocks

Using 128-Bit Key

Opcode/ Op/ | 64/32-bit | CPUID Feature Description

Instruction En |Mode Flag

F3 OF 38 D8 !(11):000:bbb A VIV AESKLE WIDE_KL | Encrypt XMMO-7 using 128-bit AES key indicated
AESENCWIDE128KL m384, <XMMO0-7> by handle at m384 and store each resultant block

back to its corresponding register.
Instruction Operand Encoding
Op/€En Tuple Operand 1 Operands 2—9
A N/A ModRM:r/m (r) Implicit XMMO-7 (r, w)

Description

The AESENCWIDE128KL! instruction performs ten rounds of AES to encrypt each of the eight blocks in XMMO-7
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7
with its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation
AESENCWIDE128KL

Handle := UnalignedLoad of 384 bit (SRC);

lllegal Handle = (

// Load is not guaranteed to be atomic.

HandleReservedBitSet (Handle) ||

(Handle[O] AND (CPL > 0)) ||

Handle [1]]]

HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES128

)
IF (Illegal Handle)
THEN RFLAGS.ZF = 1;
ELSE

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwKey);

IF Authentic ==
THEN RFLAGS.ZF = 1;
ELSE

XMMO := AES128Encrypt (XMMO, UnwrappedKey) ;
XMM1 := AES128Encrypt (XMM1, UnwrappedKey
XMM2 := AES128Encrypt
XMM3 := AES128Encrypt
XMM4 := AES128Encrypt
XMM5 := AES128Encrypt
XMM6 := AES128Encrypt
XMM7 := AES128Encrypt

RFLAGS.ZF = Q;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF := 0;

1. Further details on Key Locker and usage of this instruction can be found here:

P

)
XMM2, UnwrappedKey) ;
XMM3, UnwrappedKey)
XMM4, UnwrappedKey) ;
XMM5, UnwrappedKey)
XMM6, UnwrappedKey)
XMM7, UnwrappedKey)

’

’

’

’

’

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 128-Bit Key

Vol.2A 3-71

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent
AESENCWIDE128KLunsigned char _mm_aesencwide128kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.AESKLE = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 128-Bit Key Vol.2A 3-72

AESENCWIDEZ256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker on 8 Blocks
Using 256-Bit Key

Opcode/ Op/ | 64/32-bit | CPUID Feature Description

Instruction En |Mode Flag

F3 OF 38 D8(11):010:bbb A VIV AESKLE WIDE_KL | Encrypt XMMO-7 using 256-bit AES key indicated

AESENCWIDEZ256KL m512, <XMMO0-7> by handle at m512 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/€En Tuple Operand 1 Operands 2—9
A N/A ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESENCWIDE256KL! instruction performs 14 rounds of AES to encrypt each of the eight blocks in XMMO-7
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7
with its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESENCWIDE256KL
Handle := UnalignedlLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > O)) ||
Handle [1]]|
HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES256
)
IF (Illegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE
XMMO := AES256Encrypt
XMM1 := AES256Encrypt
XMM2 := AES256Encrypt
XMM3 := AES256Encrypt
XMM4 = AES256Encrypt
XMM5 ;= AES256Encrypt
XMM6 := AES256Encrypt
XMM7 := AES256Encrypt
RFLAGS.ZF := 0;

XMMO, UnwrappedKey) ;
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey) ;
XMM3, UnwrappedKey) ;
XMM4, UnwrappedKey) ;
XMM5, UnwrappedKey)
XMM6, UnwrappedKey)
)

XMM7, UnwrappedKey

’

’

’

P

’

Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.ntml.

AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-73

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent
AESENCWIDEZ256KLunsigned char _mm_aesencwide256k|_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-74

AESIMC—Perform the AES InvMixColumn Transformation

Opcode/ Op/ |64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
66 OF 38DB/r RM |V/V AES Perform the InvMixColumn transformation on
AESIMC xmm1, xmm2/m128 a 128-bit round key from xmm2/m128 and
store the result in xmm1.
VEX.128.66.0F38.WIG DB /r RM |V/V Both AES | Perform the InvMixColumn transformation on
VAESIMC xmm1, xmm2/m128 and a 128-bit round key from xmm2/m128 and
AVX flags |store the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Perform the InvMixColumns transformation on the source operand and store the result in the destination operand.
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-

tion.

Note: the AESIMC instruction should be applied to the expanded AES round keys (except for the first and last round
key) in order to prepare them for decryption using the “Equivalent Inverse Cipher” (defined in FIPS 197).

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain

unchanged.

VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation
AESIMC

DEST[127:0] := InvMixColumns(SRC);
DEST[MAXVL-1:128] (Unmodified)

VAESIMC

DEST[127:0] := InvMixColumns(SRC);
DEST[MAXVL-1:128] := O;

Intel C/C++ Compiler Intrinsic Equivalent
(V)AESIMC _m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:

#UD

If VEX.vvvv #= 1111B.

AESIMC—Perform the AES InvMixColumn Transformation

Vol.2A 3-75

AESKEYGENASSIST—AES Round Key Generation Assist

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
66 OF 3ADF /rib RMI | VIV AES Assist in AES round key generation using an 8
AESKEYGENASSIST xmm1, xmm2/m128, imm8 bits Round Constant (RCON) specified in the
immediate byte, operating on 128 bits of data
specified in xmm2/m128 and stores the
result in xmm1.
VEX.128.66.0F3A.WIG DF /rib RMI |V/V Both AES | Assist in AES round key generation using 8
VAESKEYGENASSIST xmm1, xmm2/m128, imm8 and bits Round Constant (RCON) specified in the
AVX flags |immediate byte, operating on 128 bits of data

specified in xmm2/m128 and stores the
result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A
Description

Assist in expanding the AES cipher key, by computing steps towards generating a round key for encryption, using
128-bit data specified in the source operand and an 8-bit round constant specified as an immediate, store the

result in the destination operand.

The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-

tion.

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain

unchanged.

VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESKEYGENASSIST

X3[31:0]:= SRC[127: 96];

X2[31:0]:= SRC [95: 64];

X1[31:0]:= SRC[63: 32];

X0[31:0]:= SRC[31:0];

RCON[31:0] := ZeroExtend(imm8[7:0]);

DEST[31:0] := SubWord(X1);

DEST[63:32] := RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] := SubWord(X3);

DEST[127:96] := RotWord(SubWord(X3)) XOR RCON;

DEST[MAXVL-1:128] (Unmodified)

AESKEYGENASSIST—AES Round Key Generation Assist

Vol.2A 3-76

VAESKEYGENASSIST

X3[31:0]:= SRC[127: 96];

X2[31:0] := SRC [95: 64];

X1[31:0] := SRC [63: 32];

X0[31:0]:= SRC[31: 0];

RCON[31:0] := ZeroExtend(imm8[7:0]);

DEST[31:0] := SubWord(X1);

DEST[63:32] := RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] := SubWord(X3);

DEST[127:96] := RotWord(SubWord(X3)) XOR RCON;
DEST[MAXVL-1:128] := (;

Intel C/C++ Compiler Intrinsic Equivalent
(V)AESKEYGENASSIST __m128i _mm_aeskeygenassist (__m128i, const int)

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions,” additionally:

#UD If VEX.vvvv # 1111B.

AESKEYGENASSIST—AES Round Key Generation Assist

Vol.2A 3-77

AND—Logical AND

Opcode Instruction Op/ |64-bit Compat/ |Description

En |Mode Leg Mode

24 ib AND AL, imm8 | Valid Valid AL AND imm8.

25iw AND AX, imm16 | Valid Valid AX AND imm16.

25id AND EAX, imm32 | Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 I Valid N.E. RAX AND imm32 sign-extended to 64-bits.
80/4ib AND r/m8, imm8 Ml |Valid Valid r/m8 AND imm8.

REX +80/4ib AND r/m8’, imm8 Ml | Valid N.E. r/m8 AND imm8.

81 /4iw AND r/m16, imm16 Ml |Valid Valid r/m16 AND imm16.

81/4id AND r/m32, imm32 Ml | Valid Valid r/m32 AND imm32.

REX.W + 81 /4id AND r/m64, imm32 Ml |Valid N.E. r/m64 AND imm32 sign extended to 64-bits.
83/4ib AND r/m16, imm8 Ml | Valid Valid r/m16 AND imm8 (sign-extended).
83/4ib AND r/m32, imm8 Ml |Valid Valid r/m32 AND imm8 (sign-extended).
REXW +83 /4 ib AND r/m64, imm8 Ml |Valid N.E. r/m64 AND imm8 (sign-extended).
20/r AND r/m8, r8 MR | Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8,r8 MR | Valid N.E. r/m64 AND r8 (sign-extended).

21 /r AND r/m16,r16 MR | Valid Valid r/m16 AND r16.

21 /r AND r/m32,r32 MR | Valid Valid r/m32 AND r32.

REXW + 21 /r AND r/m64, r64 MR | Valid N.E. r/m64 AND r32.

22 1Ir AND r8, r/m8 RM | Valid Valid r8 AND r/m8.

REX + 22 /r AND r8 , r/m8 RM | Valid N.E. r/m64 AND r8 (sign-extended).
23/r AND 16, r/m16 RM | Valid Valid r16 AND r/m16.

23/r AND r32,r/m32 RM | Valid Valid r32 AND r/m32.

REXW + 23 /r AND r64, r/m64 RM | Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Ml ModRM:r/m (r, w) imm8/16/32 N/A N/A
| AL/AX/EAX/RAX imm8/16/32 N/A N/A
Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in
the destination operand location. The source operand can be an immediate, a register, or a memory location; the
destination operand can be a register or a memory location. (However, two memory operands cannot be used in
one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1;
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

AND—Logical AND Vol.2A 3-78

Operation
DEST := DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is
undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

AND—Logical AND Vol.2A 3-79

ANDN-—Logical AND NOT

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode Flag
VEX.LZ.OF38.WO0 F2 /r RVM |V/V BMI1 Bitwise AND of inverted r32b with r/m32, store result in r32a.
ANDN r323, r32b, r/m32
VEX.LZ.OF38.W1 F2 /r RVM | V/NE. BMI1 Bitwise AND of inverted r64b with r/m64, store result in r64a.
ANDN r64a, r64b, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
Description

Performs a bitwise logical AND of inverted second operand (the first source operand) with the third operand (the
second source operand). The result is stored in the first operand (destination operand).

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

DEST := (NOT SRC1) bitwiseAND SRC2;
SF := DEST[OperandSize -17;
ZF := (DEST = O);

Flags Affected
SF and ZF are updated based on result. OF and CF flags are cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent
Auto-generated from high-level language.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.

”

ANDN—Logical AND NOT Vol.2A 3-80

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag
Support

66 OF 55 /r A VIV SSE2 Return the bitwise logical AND NOT of packed double
ANDNPD xmm1, xmm2/m128 precision floating-point values in xmm1 and

xmm2/mem.
VEX.128.66.0F 55 /r B VIV AVX Return the bitwise logical AND NOT of packed double
VANDNPD xmm1, xmm2, precision floating-point values in xmm2 and
xmm3/m128 xmm3/mem.
VEX.256.66.0F 55/r B VIV AVX Return the bitwise logical AND NOT of packed double
VANDNPD ymm1, ymmZ, precision floating-point values in ymmZ2 and
ymm3/m256 ymm3/mem.
EVEX.128.66.0F.W1 55 /r C VIV (AVX512VL AND | Return the bitwise logical AND NOT of packed double
VANDNPD xmm1 {k1}z}, xmme, AVX512DQ) OR | precision floating-point values in xmmZ2 and
xmm3/m128/m64bcst AVX10.1" xmm3/m128/m64bcst subject to writemask k1.
EVEX.256.66.0F.W1 55 /r C VIV (AVX512VL AND | Return the bitwise logical AND NOT of packed double
VANDNPD ymm1 {k1}z}, ymmz2, AVX512DQ) OR | precision floating-point values in ymm2 and
ymm3/m256/m64bcst AVX10.1" ymm3/m256/m64bcst subject to writemask k1.
EVEX.512.66.0F.W1 55 /r C VIV AVX512DQ Return the bitwise logical AND NOT of packed double
VANDNPD zmm1 {k1¥z}, zmm2, OR AVX10.17 precision floating-point values in zmmZ2 and
zmm3/m512/m64bcst zmm3/m512/m64bcst subject to writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX 10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vwvv (1) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Performs a bitwise logical AND NOT of the two, four or eight packed double precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-

mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the

corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

Vol. 2A 3-81

Operation

VANDNPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] := (NOT(SRC1[i+63:i])) BITWISE AND SRC2[63:0]
ELSE
DEST[i+63:i] := (NOT(SRC1[i+63:i])) BITWISE AND SRC2[i+63:i]
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:]=0
Fl;
Fl;
ENDFOR
DEST[MAXVL-1:VL] =0

VANDNPD (VEX.256 Encoded Version)

DEST[63:0] := (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64]:= (NOT(SRC1[127:647)) BITWISE AND SRC2[127:64]
DEST[191:128] := (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192] := (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]
DEST[MAXVL-1:256]:= 0

VANDNPD (VEX.128 Encoded Version)

DEST[63:0] := (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] := (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[MAXVL-1:128]:=0

ANDNPD (128-bit Legacy SSE Version)

DEST[63:0] := (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] := (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDNPD __m512d _mm512_andnot_pd (__m512d a, __m512d b);
VANDNPD __m512d _mm512_mask_andnot_pd (__m512ds, __mmask8Kk,
VANDNPD __m512d _mm512_maskz_andnot_pd (__mmask8 k, __m512d a,
VANDNPD __m256d _mm256_mask_andnot_pd (__m256d s, __mmask8 k, __ m256d a,
VANDNPD __m256d _mm256_maskz_andnot_pd (__mmask8 k, __ m256d a, __m256d b);
VANDNPD __m128d _mm_mask_andnot_pd (__m128ds, __mmask8k,__m128da, _ m128db);
VANDNPD __m128d _mm_maskz_andnot_pd (__mmask8 k, __ m128da, _ m128d b);

VANDNPD __m256d _mm256_andnot_pd (__m256d a, __ m256d b);

ANDNPD __m128d _mm_andnot_pd (__ m128d a, __ m128d b);

m512d a,
m512d b);

m512d b);

m256d b);

SIMD Floating-Point Exceptions
None.

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

Vol. 2A

3-82

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values Vol.2A 3-83

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag

Support
NP OF 55 /r A VIV SSE Return the bitwise logical AND NOT of packed single
ANDNPS xmm1, xmm2/m128 precision floating-point values in xmm1 and xmm2/mem.
VEX.128.0F 55 /r B VIV AVX Return the bitwise logical AND NOT of packed single
VANDNPS xmm1, xmm2, precision floating-point values in xmmZ2 and xmm3/mem.
xmm3/m128
VEX.256.0F 55 /r B VIV AVX Return the bitwise logical AND NOT of packed single
VANDNPS ymm1, ymm2, precision floating-point values in ymmZ2 and ymm3/mem.
ymm3/m256
EVEX.128.0F.W0 55 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed single precision
VANDNPS xmm1 {k1}{z}, xmmz2, AVX512DQ) OR | floating-point values in xmmZ2 and xmm3/m128/m32bcst
xmm3/m128/m32bcst AVX10.1" subject to writemask k1.
EVEX.256.0F.W0 55 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed single precision
VANDNPS ymm1 {k1¥z}, ymm2, AVX512DQ) OR | floating-point values in ymmZ2 and ymm3/m256/m32bcst
ymm3/m256/m32bcst AVX10.1" subject to writemask k1.
EVEX.512.0FWO 55 /r C VIV AVX512DQ Return the bitwise logical AND of packed single precision
VANDNPS zmm1 {k1}{z}, zmm2, OR AVX10.1! floating-point values in zmm2 and zmm3/m512/m32bcst
zmm3/m512/m32bcst subject to writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Full ModRMireg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Performs a bitwise logical AND NOT of the four, eight or sixteen packed single precision floating-point values from
the first source operand and the second source operand, and stores the result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the
corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
ZMM register destination are unmodified.

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values Vol.2A 3-84

Operation

VANDNPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

DEST[i+31:] := (NOT(SRC1[i+31:i])) BITWISE AND SRC2[31:0]

ELSE

DEST[i+31:] := (NOT(SRC1[i+31:i])) BITWISE AND SRC2[i+31:i]

Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i1=0
Fl;
Fl;
ENDFOR
DEST[MAXVL-1:VL] =0

VANDNPS (VEX.256 Encoded Version)

DEST[31:0] := (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] := (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] := (NOT(SRC1[95:641)) BITWISE AND SRC2[95:64]
DEST[127:96] := (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] := (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160] := (NOT(SRC1[191:1601])) BITWISE AND SRC2[191:160]
DEST[223:192] := (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] := (NOT(SRC1[255:2241)) BITWISE AND SRC2[255:224].
DEST[MAXVL-1:256]:= 0

VANDNPS (VEX.128 Encoded Version)

DEST[31:0] := (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] := (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] := (NOT(SRC1[95:641)) BITWISE AND SRC2[95:64]
DEST[127:96] := (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[MAXVL-1:128]:=0

ANDNPS (128-bit Legacy SSE Version)

DEST[31:0] := (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] := (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] := (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] := (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

Vol.2A 3-85

Intel C/C++ Compiler Intrinsic Equivalent

VANDNPS __m512 _mm512_andnot_ps (__m5124a,__m512 b);

VANDNPS __m512 _mm512_mask_andnot_ps (__m512s,_mmask16k,__m5123a,__m512b);
VANDNPS __m512 _mm512_maskz_andnot_ps (__mmask16 k, __m5123a,__m512b);
VANDNPS __m256 _mm256_mask_andnot_ps (__m256's,__mmask8 k, __m256 a, __m256 b);
VANDNPS __m256 _mm256_maskz_andnot_ps (__mmask8 k, __m256 a, __m256 b);

VANDNPS __m128 _mm_mask_andnot_ps (__m128s,__mmask8k, __m128a,__m128b);
VANDNPS __m128 _mm_maskz_andnot_ps (__mmask8k, __m128a,__m128b);

VANDNPS __m256 _mm256_andnot_ps (__m256 a, __m256 b);

ANDNPS __m128 _mm_andnot_ps (__m128a, __m128b);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, "Type E4 Class Exception Conditions.”

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

Vol. 2A 3-86

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32 bit |CPUID Feature |Description
Instruction En Mode Flag
Support
66 OF 54 /r A VIV SSE2 Return the bitwise logical AND of packed double
ANDPD xmm1, xmm2/m128 precision floating-point values in xmm1 and
xmm2/mem.
VEX.128.66.0F 54 /r B VIV AVX Return the bitwise logical AND of packed double
VANDPD xmm1, xmm2, xmm3/m128 precision floating-point values in xmmZ2 and
xmm3/mem.
VEX.256.66.0F 54 /r B VIV AVX Return the bitwise logical AND of packed double
VANDPD ymm1, ymm2, ymm3/m256 precision floating-point values in ymm2 and
ymm3/mem.
EVEX.128.66.0F.W1 54 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed double
VANDPD xmm1 {k1}z}, xmm2, AVX512DQ) OR | precision floating-point values in xmmZ2 and
xmm3/m128/m64bcst AVX10.1" xmm3/m128/m64bcst subject to writemask k1.
EVEX.256.66.0F.W1 54 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed double
VANDPD ymm1 {k1}z}, ymm2, AVX512DQ) OR | precision floating-point values in ymmZ2 and
ymm3/m256/m64bcst AVX10.1" ymm3/m256/m64bcst subject to writemask k1.
EVEX.512.66.0F.W1 54 /r C VIV AVX512DQ Return the bitwise logical AND of packed double
VANDPD zmm1 {k1}z}, zmm2, OR AVX10.17 precision floating-point values in zmmZ2 and
zmm3/m512/m64bcst zmm3/m512/m64bcst subject to writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector

width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vvwv () ModRM:r/m (r) N/A
Description

Performs a bitwise logical AND of the two, four or eight packed double precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the
corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values Vol.2A 3-87

Operation

VANDPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[63:0]
ELSE
DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[i+63:i]
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:]=0
Fl;
Fl;
ENDFOR
DEST[MAXVL-1:VL] =0

VANDPD (VEX.256 Encoded Version)

DEST[63:0] := SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64]:= SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE AND SRC2[255:192]
DEST[MAXVL-1:256]:= 0

VANDPD (VEX.128 Encoded Version)

DEST[63:0] := SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64]:= SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[MAXVL-1:128]:=0

ANDPD (128-bit Legacy SSE Version)

DEST[63:0] := DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE AND SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDPD __m512d _mm512_and_pd (__m512d a, __m512db);

VANDPD __m512d _mm512_mask_and_pd (__m512ds,__mmask8k, __m512d a,
VANDPD __m512d _mm512_maskz_and_pd (__mmask8 k, _ m512da, _ m512d b);
VANDPD __m256d _mm256_mask_and_pd (__m256d s, __mmask8 k, __m256d a,
VANDPD __m256d _mm256_maskz_and_pd (__mmask8 k, __m256d a, __m256d b);
VANDPD __m128d _mm_mask_and_pd (__m128ds,__mmask8k, __m128da, _ m128db);
VANDPD __m128d _mm_maskz_and_pd (__mmask8k, _ m128da, _ m128db);

VANDPD __m256d _mm256_and_pd (__m256d a, __m256d b);

ANDPD __m128d _mm_and_pd (__m128d a, _ m128db);

m512d b);

m256d b);

SIMD Floating-Point Exceptions
None.

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

Vol. 2A

3-88

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values Vol.2A 3-89

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32 bit |CPUID Feature |Description
Instruction En Mode Flag

Support
NP OF 54 /r A VIV SSE Return the bitwise logical AND of packed single precision
ANDPS xmm1, xmm2/m128 floating-point values in xmm1 and xmmZ2/mem.
VEX.128.0F 54 /r B VIV AVX Return the bitwise logical AND of packed single precision
VANDPS xmm1,xmm2, floating-point values in xmm2 and xmm3/mem.
xmm3/m128
VEX.256.0F 54 /r B VIV AVX Return the bitwise logical AND of packed single precision
VANDPS ymm1, ymm2, floating-point values in ymmZ2 and ymm3/mem.
ymm3/m256
EVEX.128.0F.W0 54 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed single precision
VANDPS xmm1 {k1}z}, xmm2, AVX512DQ) OR | floating-point values in xmm2 and xmm3/m128/m32bcst
xmm3/m128/m32bcst AVX10.1" subject to writemask k1.
EVEX.256.0F.W0 54 /r C VIV (AVX512VL AND | Return the bitwise logical AND of packed single precision
VANDPS ymm1 {k1¥z}, ymm2, AVX512DQ) OR | floating-point values in ymm2 and ymm3/m256/m32bcst
ymm3/m256/m32bcst AVX10.1" subject to writemask k1.
EVEX.512.0F.W0 54 /r C VIV AVX512DQ Return the bitwise logical AND of packed single precision
VANDPS zmm1 {k1}z}, zmm2, OR AVX10.1' floating-point values in zmm2 and zmm3/m512/m32bcst
zmm3/m512/m32bcst subject to writemask k1.
NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/€En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vvvv (1) ModRM:r/m (r) N/A
Description

Performs a bitwise logical AND of the four, eight or sixteen packed single precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the
corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
ZMM register destination are unmodified.

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values Vol.2A 3-90

Operation

VANDPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

DEST[i+63:i] := SRC1[i+31:i] BITWISE AND SRC2[31:0]

ELSE

DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRCZ2[i+31:i]

Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:]1:=0
Fl;
Fl;
ENDFOR
DEST[MAXVL-1:VL]:= 0;

VANDPS (VEX.256 Encoded Version)

DEST[31:0] := SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE AND SRC2[255:224].
DEST[MAXVL-1:256] := O;

VANDPS (VEX.128 Encoded Version)

DEST[31:0] := SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[MAXVL-1:128] := O;

ANDPS (128-bit Legacy SSE Version)

DEST[31:0] := DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] := DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] := DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] := DEST[127:96] BITWISE AND SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

Vol. 2A 3-91

Intel C/C++ Compiler Intrinsic Equivalent

VANDPS __m512 _mm512_and_ps (__m5123a,__m512 b);

VANDPS __m512 _mm512_mask_and_ps (__m512s,__mmask16k, __m5123,__m512b);
VANDPS __m512 _mm512_maskz_and_ps (__mmask16k, __m512 3, __m512b);

VANDPS __m256 _mm256_mask_and_ps (__m256's, __mmask8 k, __m256 a, __m256 b);
VANDPS __m256 _mm256_maskz_and_ps (__mmask8 k, __m256 a, __m256 b);

VANDPS __m128 _mm_mask_and_ps (__m128s,__mmask8k, _ m1283a,__m128b);
VANDPS __m128 _mm_maskz_and_ps (__mmask8k, __m128a,__m128b);

VANDPS __m256 _mm256_and_ps (__m256 a, __m256 b);

ANDPS __m128 _mm_and_ps (__m128a,__m128b);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”

EVEX-encoded instruction, see Table 2-51, "Type E4 Class Exception Conditions.”

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

Vol.2A 3-92

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
63/r ARPL r/m16,r16 MR ([N.E Valid Adjust RPL of r/m16 to not less than RPL of
r16.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand) contains one
segment selector and the second operand (source operand) contains the other. (The RPL field is located in bits 0
and 1 of each operand.) If the RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match that of the source operand.
Otherwise, the ZF flag is cleared and no change is made to the destination operand. (The destination operand can
be a word register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also be used by applica-
tions). It is generally used to adjust the RPL of a segment selector that has been passed to the operating system
by an application program to match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment selector for the application
program’s code segment is placed in the source operand. (The RPL field in the source operand represents the priv-
ilege level of the application program.) Execution of the ARPL instruction then ensures that the RPL of the segment
selector received by the operating system is no lower (does not have a higher privilege) than the privilege level of
the application program (the segment selector for the application program’s code segment can be read from the
stack following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is not encodable in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the use of this instruc-
tion.

Operation
IF 64-BIT MODE
THEN
See MOVSXD;
ELSE
IF DEST[RPL] < SRC[RPL]
THEN
ZF:=1;
DEST[RPL] := SRC[RPLJ;
ELSE
ZF:=0;
Fl;
Fl;
Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source operand; otherwise,
it is set to 0.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-93

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment

selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-94

BEXTR—BIt Field Extract

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode |[Flag
VEX.LZ.OF38WO F7 /r RMV | V/V BMI1 Contiguous bitwise extract from r/m32 using r32b as control; store
BEXTR r32a, r/m32,r32b resultinr32a.
VEX.LZ.OF38W1 F7 /It RMV |V/NE. |BMI1 Contiguous bitwise extract from r/m64 using ré4b as control; store
BEXTR r64a, r/m64, ré4b result in r64a.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvwv (r) N/A
Description

Extracts contiguous bits from the first source operand (the second operand) using an index value and length value
specified in the second source operand (the third operand). Bit 7:0 of the second source operand specifies the
starting bit position of bit extraction. A START value exceeding the operand size will not extract any bits from the
second source operand. Bit 15:8 of the second source operand specifies the maximum number of bits (LENGTH)
beginning at the START position to extract. Only bit positions up to (OperandSize -1) of the first source operand are
extracted. The extracted bits are written to the destination register, starting from the least significant bit. All higher
order bits in the destination operand (starting at bit position LENGTH) are zeroed. The destination register is
cleared if no bits are extracted.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

START := SRC2[7:0];

LEN := SRC2[15:8];

TEMP := ZERO_EXTEND_TO_512 (SRCT);

DEST := ZERO_EXTEND(TEMP[START+LEN -1: START]);
ZF := (DEST = 0);

Flags Affected
ZF is updated based on the result. AF, SF, and PF are undefined. All other flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

BEXTR unsigned __int32 _bextr_u32(unsigned __int32 sr¢, unsigned __int32 start. unsigned __int32 len);
BEXTR unsigned __int64 _bextr_u64(unsigned __int64 src, unsigned __int32 start. unsigned __int32 len);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.

BEXTR—BIt Field Extract Vol.2A 3-95

BLENDPD—BIlend Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
66 0F3A 0D /rib RMI | V/V SSE4_1 Select packed double precision floating-point
BLENDPD xmm1, xmm2/m128, imm8 values from xmm1 and xmm2/m128 from
mask specified in imm8 and store the values
into xmm1.
VEX.128.66.0F3A.WIG OD /rib RVMI| VIV AVX Select packed double precision floating-point
VBLENDPD xmm1, xmm2, xmm3/m128, imm8 Values from xmm2 and xmm3/m128 from
mask in imm8 and store the values in xmm1.
VEX.256.66.0F3A.WIG OD /rib RVMI| VIV AVX Select packed double precision floating-point
VBLENDPD ymm1, ymm2, ymm3/m256, imm8 Values from ymm2 and ymm3/m256 from
mask in imm8 and store the values in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
RVMI ModRM:reg (w) VEX.vvwv (1) ModRM:r/m (r) imm8[3:0]
Description

Double precision floating-point values from the second source operand (third operand) are conditionally merged
with values from the first source operand (second operand) and written to the destination operand (first operand).
The immediate bits [3:0] determine whether the corresponding double precision floating-point value in the desti-
nation is copied from the second source or first source. If a bit in the mask, corresponding to a word, is "1”, then
the double precision floating-point value in the second source operand is copied, else the value in the first source
operand is copied.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
YMM register destination are unmodified.

VEX.128 encoded version: the first source operand is an XMM register. The second source operand is an XMM

register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

Operation

BLENDPD (128-bit Legacy SSE Version)
IF (IMM8[0] = O)THEN DEST[63:0] := DEST[63:0]
ELSE DEST [63:0] := SRC[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] := DEST[127:64]
ELSE DEST [127:64] := SRC[127:64] FI
DEST[MAXVL-1:128] (Unmodified)

VBLENDPD (VEX.128 Encoded Version)
IF (IMM8[0] = 0)THEN DEST[63:0] := SRC1[63:0]
ELSE DEST [63:0] := SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] := SRC1[127:64]
ELSE DEST [127:64] := SRC2[127:64] FI
DEST[MAXVL-1:128]:= 0

BLENDPD—BIlend Packed Double Precision Floating-Point Values Vol.2A 3-96

VBLENDPD (VEX.256 Encoded Version)

IF (IMMB[0] = 0)THEN DEST[63:0] := SRC1[63:0]
ELSE DEST [63:0] := SRC2[63:0] FI

IF (IMM8[1] = 0) THEN DEST[127:64] := SRC1[127:64]
ELSE DEST [127:64] := SRC2[127:64] FI

IF (IMM8[2] = 0) THEN DEST[191:128] := SRC1[191:128]
ELSE DEST [191:128] := SRC2[191:128] FI

IF (IMM8B[3] = 0) THEN DEST[255:192] := SRC1[255:192]
ELSE DEST [255:192] := SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);
VBLENDPD __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”

BLENDPD—BIlend Packed Double Precision Floating-Point Values Vol.2A 3-97

BLENDPS—BIlend Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
66 0F3A0C/rib RMI | V/V SSE4_1 Select packed single precision floating-point
BLENDPS xmm1, xmm2/m128, imm8 values from xmm1 and xmm2/m128 from
mask specified in imm8 and store the values
into xmm1.
VEX.128.66.0F3A.WIG OC /rib RVMI | VIV AVX Select packed single precision floating-point
VBLENDPS xmm1, xmm2, xmm3/m128, imm8 values from xmm2 and xmm3/m128 from
mask in imm8 and store the values in xmm1.
VEX.256.66.0F3A.WIG OC /r ib RVMI | VIV AVX Select packed single precision floating-point
VBLENDPS ymm?1, ymm2, ymm3/m256, imm8 values from ymmZ2 and ymm3/m256 from
mask in imm8 and store the values in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
RVMI ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8

Description

Packed single precision floating-point values from the second source operand (third operand) are conditionally
merged with values from the first source operand (second operand) and written to the destination operand (first
operand). The immediate bits [7:0] determine whether the corresponding single precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask, corresponding to a word, is
“1”, then the single precision floating-point value in the second source operand is copied, else the value in the first
source operand is copied.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
YMM register destination are unmodified.

VEX.128 encoded version: The first source operand an XMM register. The second source operand is an XMM register
or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the
corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

Operation

BLENDPS (128-bit Legacy SSE Version)

IF (IMM8[0] = 0) THEN DEST[31:0] :=DEST[31:0]
ELSE DEST [31:0] := SRC[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] := DEST[63:32]
ELSE DEST [63:32] := SRC[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] := DEST[95:64]
ELSE DEST [95:64] := SRC[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] := DEST[127:96]
ELSE DEST [127:96] := SRC[127:96] FI

DEST[MAXVL-1:128] (Unmodified)

BLENDPS—BIend Packed Single Precision Floating-Point Values Vol.2A 3-98

VBLENDPS (VEX.128 Encoded Version)

IF (IMMB[0] = 0) THEN DEST[31:0] :=SRC1[31:0]
ELSE DEST [31:0]:= SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] := SRC1[63:32]
ELSE DEST [63:32] := SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] := SRC1[95:64]
ELSE DEST [95:64] := SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] := SRC1[127:96]
ELSE DEST [127:96] := SRC2[127:96] FI

DEST[MAXVL-1:128]:=0

VBLENDPS (VEX.256 Encoded Version)

IF (IMMB[0] = 0) THEN DEST[31:0] :=SRC1[31:0]
ELSE DEST [31:0]:= SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] := SRC1[63:32]
ELSE DEST [63:32] := SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] := SRC1[95:64]
ELSE DEST [95:64] := SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] := SRC1[127:96]
ELSE DEST [127:96] := SRC2[127:96] FI

IF (IMM8[4] = 0) THEN DEST[159:128] := SRC1[159:128]

ELSE DEST [159:128] := SRC2[159:128] FI

IF (IMM8[5] = 0) THEN DEST[191:160] := SRC1[191:160]

ELSE DEST [191:160] := SRC2[191:160] FI

IF (IMM8[6] = 0) THEN DEST[223:192] := SRC1[223:192]

ELSE DEST [223:192] := SRC2[223:192] FI

IF (IMM8[7] = 0) THEN DEST[255:224] := SRC1[255:224]

ELSE DEST [255:224] := SRC2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS __m128 _mm_blend_ps (__m128 v1,_m128 v2, const int mask);
VBLENDPS __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

BLENDPS—BIend Packed Single Precision Floating-Point Values

Vol.2A 3-99

BLENDVPD—Variable Blend Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En Mode Feature
Flag
660F3815/r RMO |V/V SSE4 1 Select packed double precision floating-point
BLENDVPD xmm1, xmm2/m128 , <XMM0> values from xmm1 and xmm2 from mask specified
in XMMO and store the values in xmm1.
VEX.128.66.0F3A.W0 4B /r /is4 RVMR | V/V AVX Conditionally copy double precision floating-point
VBLENDVPD xmm1, xmm2, xmm3/m128, xmm4 values from xmm2 or xmm3/m128 to xmm1, based
on mask bits in the mask operand, xmm4.
VEX.256.66.0F3A.W0 4B /r /is4 RVMR | V/V AVX Conditionally copy double precision floating-point
VBLENDVPD ymm1, ymm2, ymm3/m256, ynm4 values from ymmZ2 or ymm3/m256 to ymm1, based
on mask bits in the mask operand, ymm4.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMO ModRM:reg (r, w) ModRM:r/m (r) implicit XMMO N/A
RVMR ModRM:reg (w) VEX.vvvv (1) ModRM:r/m (r) imm8[7:4]
Description

Conditionally copy each quadword data element of double precision floating-point value from the second source
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits
are the most significant bit in each quadword element of the mask register.

Each quadword element of the destination operand is copied from:
®* the corresponding quadword element in the second source operand, if a mask bitis “1”; or
®* the corresponding quadword element in the first source operand, if a mask bit is “0”

The register assignment of the implicit mask operand for BLENDVPD is defined to be the architectural register
XMMO.

128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (MAXVL-1:128)
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined
to be the architectural register XMMO0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored. The upper bits (MAXVL-1:128) of the corresponding YMM register (destination register) are zeroed.
VEX.W must be 0, otherwise, the instruction will #UD.

VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored. VEX.W must be 0, otherwise, the instruction will #UD.

VBLENDVPD permits the mask to be any XMM or YMM register. In contrast, BLENDVPD treats XMMO implicitly as the
mask and do not support non-destructive destination operation.

BLENDVPD—Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-100

Operation

BLENDVPD (128-bit Legacy SSE Version)
MASK := XMMO
IF (MASK[63] = 0) THEN DEST[63:0] := DEST[63:0]
ELSE DEST [63:0] := SRC[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] := DEST[127:64]
ELSE DEST [127:64] := SRC[127:64] FI
DEST[MAXVL-1:128] (Unmodified)

VBLENDVPD (VEX.128 Encoded Version)
MASK := SRC3
IF (MASK[63] = 0) THEN DEST[63:0] := SRC1[63:0]
ELSE DEST [63:0] := SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] := SRC1[127:64]
ELSE DEST [127:64] := SRC2[127:64] FI
DEST[MAXVL-1:128]:=0

VBLENDVPD (VEX.256 Encoded Version)

MASK := SRC3

IF (MASK[63] = 0) THEN DEST[63:0] := SRC1[63:0]
ELSE DEST [63:0] := SRC2[63:0] FI

IF (MASK[127] = 0) THEN DEST[127:64]:= SRC1[127:64]
ELSE DEST [127:64]:= SRC2[127:64] FI

IF (MASK[191] = 0) THEN DEST[191:128] := SRC1[191:128]
ELSE DEST [191:128] := SRC2[191:128] FI

IF (MASK[255] = 0) THEN DEST[255:192] := SRC1[255:192]
ELSE DEST [255:192] := SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent
BLENDVPD __m128d _mm_blendv_pd(__m128d v1,

VBLENDVPD __m128 _mm_blendv_pd (__m128d a,
VBLENDVPD __m256 _mm256_blendv_pd (__m256d a,

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions,” additionally:

#UD If VEX.W = 1.

BLENDVPD—Variable Blend Packed Double Precision Floating-Point Values

m128d ve,
m128d b,

m128d mask);
m256d mask);

m256d b,

Vol.2A 3-101

BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En Mode Feature
Flag
66 0F 3814 /r RMO |V/V SSE4_1 | Select packed single precision floating-point values
BLENDVPS xmm1, xmm2/m128, <XMM0> from xmm1 and xmm2/m128 from mask specified
in XMMO and store the values into xmm1.
VEX.128.66.0F3A.WO0 4A /r /is4 RVMR | V/V AVX Conditionally copy single precision floating-point
VBLENDVPS xmm1, xmm2, xmm3/m128, xmm4 values from xmm2 or xmm3/m128 to xmm1, based
on mask bits in the specified mask operand, xmm4.
VEX.256.66.0F3A.WO0 4A /r /is4 RVMR | V/V AVX Conditionally copy single precision floating-point
VBLENDVPS ymm1, ynm2, ymm3/m256, ymmé4 values from ymm2 or ymm3/m256 to ymm1, based
on mask bits in the specified mask register, ymm4.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMO ModRM:reg (r, w) ModRM:r/m (r) implicit XMMO N/A
RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
Description

Conditionally copy each dword data element of single precision floating-point value from the second source
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits
are the most significant bit in each dword element of the mask register.

Each quadword element of the destination operand is copied from:
® the corresponding dword element in the second source operand, if a mask bitis “1"; or
®* the corresponding dword element in the first source operand, if a mask bit is “0”.

The register assignment of the implicit mask operand for BLENDVPS is defined to be the architectural register
XMMO.

128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (MAXVL-1:128)
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined
to be the architectural register XMMO0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored. The upper bits (MAXVL-1:128) of the corresponding YMM register (destination register) are zeroed.
VEX.W must be 0, otherwise, the instruction will #UD.

VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imma8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored. VEX.W must be 0, otherwise, the instruction will #UD.

VBLENDVPS permits the mask to be any XMM or YMM register. In contrast, BLENDVPS treats XMMO implicitly as the
mask and do not support non-destructive destination operation.

BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-102

Operation

BLENDVPS (128-bit Legacy SSE Version)

MASK := XMMO

IF (MASK[31] = 0) THEN DEST[31:0] := DEST[31:0]
ELSE DEST [31:0] := SRC[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] := DEST[63:32]
ELSE DEST [63:32] := SRC[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] := DEST[95:64]
ELSE DEST [95:64] := SRC[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] := DEST[127:96]
ELSE DEST [127:96] := SRC[127:96] FI

DEST[MAXVL-1:128] (Unmodified)

VBLENDVPS (VEX.128 Encoded Version)

MASK := SRC3

IF (MASK[31] = 0) THEN DEST[31:0] := SRC1[31:0]
ELSE DEST [31:0] := SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] := SRC1[63:32]
ELSE DEST [63:32] := SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] := SRC1[95:64]
ELSE DEST [95:64] := SRC2[95:64] FI

IF (MASK[127] = O) THEN DEST[127:96] := SRC1[127:96]
ELSE DEST [127:96] := SRC2[127:96] FI

DEST[MAXVL-1:128]:=0

VBLENDVPS (VEX.256 Encoded Version)

MASK := SRC3

IF (MASK[31] = 0) THEN DEST[31:0] := SRC1[31:0]
ELSE DEST [31:0] := SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] := SRC1[63:32]
ELSE DEST [63:32] := SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] := SRC1[95:64]
ELSE DEST [95:64] := SRC2[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] := SRC1[127:96]
ELSE DEST [127:96] := SRC2[127:96] FI

IF (MASK[159] = 0) THEN DEST[159:128] := SRC1[159:128]
ELSE DEST [159:128] := SRC2[159:128] FI

IF (MASK[191] = 0) THEN DEST[191:160] := SRC1[191:160]
ELSE DEST [191:160] := SRC2[191:160] FI

IF (MASK[223] = 0) THEN DEST[223:192] := SRC1[223:192]
ELSE DEST [223:192] := SRC2[223:192] FI

IF (MASK[255] = 0) THEN DEST[255:224] := SRC1[255:224]
ELSE DEST [255:224] := SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent
BLENDVPS __m128 _mm_blendv_ps(__m128v1,_m128v2,_ m128v3);

VBLENDVPS __m128 _mm_blendv_ps (__m1283a,__m128b,_m128 mask);
VBLENDVPS __m256 _mm256_blendv_ps (__m256 a, __ m256 b, __m256 mask);

SIMD Floating-Point Exceptions
None.

BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-103

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.

BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-104

BLSI—Extract Lowest Set Isolated Bit

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode Flag
VEX.LZ.OF38.W0 F3 /3 VM |V BMI1 Extract lowest set bit from r/m32 and set that bit in r32.
BLSIr32, r/m32
VEX.LZ.OF38.W1 F3 /3 VM |V/NE. BMI1 Extract lowest set bit from r/m64, and set that bit in r64.
BLSI r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
VM VEX.vvvv (w) ModRM:r/m (r) N/A N/A
Description

Extracts the lowest set bit from the source operand and set the corresponding bit in the destination register. All
other bits in the destination operand are zeroed. If no bits are set in the source operand, BLSI sets all the bits in
the destination to 0 and sets ZF and CF.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation
temp := (-SRC) bitwiseAND (SRC);
SF := temp[OperandSize -1];
ZF := (temp = 0);
IFSRC=0
CF:=0;
ELSE

Fl
DEST := temp;

Flags Affected

ZF and SF are updated based on the result. CF is set if the source is not zero. OF flags are cleared. AF and PF
flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSI unsigned __int32 _blsi_u32(unsigned __int32 src);
BLSI unsigned __int64 _blsi_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

BLSI—Extract Lowest Set Isolated Bit Vol.2A 3-105

BLSMSK—Get Mask Up to Lowest Set Bit

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode Flag
VEX.LZ.OF38.WO F3 /2 VM |V/V BMIN Set all lower bits in r32 to “1" starting from bit O to lowest set bit in
BLSMSK r32, r/m32 r/m32.
VEX.LZ.OF38W1 F3 /2 VM |V/NE |BMI Set all lower bits in r64 to “1" starting from bit O to lowest set bit in
BLSMSK r64, r/m64 r/m64.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
VM VEX.vvvv (w) ModRM:r/m (r) N/A N/A
Description

Sets all the lower bits of the destination operand to “1” up to and including lowest set bit (=1) in the source
operand. If source operand is zero, BLSMSK sets all bits of the destination operand to 1 and also sets CF to 1.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation
temp := (SRC-1) XOR (SRC) ;
SF := temp[OperandSize -1];
ZF:=0;
IFSRC=0
CF:=1,
ELSE
CF:=0;
Fl
DEST := temp;

Flags Affected

SF is updated based on the result. CF is set if the source if zero. ZF and OF flags are cleared. AF and PF flag are

undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSMSK unsigned __int32 _blsmsk_u32(unsigned __int32 src);
BLSMSK unsigned __int64 _blsmsk_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-29, “Type 13 Class Exception Conditions.”

BLSMSK—Get Mask Up to Lowest Set Bit

Vol.2A 3-106

BLSR—Reset Lowest Set Bit

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode Flag
VEX.LZ.OF38.WO0 F3 /1 VM |V BMI1 Reset lowest set bit of r/m32, keep all other bits of r/m32 and write
BLSR r32, r/m32 result tor32.
VEX.LZ.OF38.W1 F3 /1 VM |V/NE |BMI Reset lowest set bit of r/m64, keep all other bits of r/m64 and write
BLSR r64, r/m64 result to re4.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
VM VEX.vvwv (w) ModRM:r/m (r) N/A N/A
Description

Copies all bits from the source operand to the destination operand and resets (=0) the bit position in the destina-
tion operand that corresponds to the lowest set bit of the source operand. If the source operand is zero BLSR sets
CF.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation
temp := (SRC-1) bitwiseAND (SRC);
SF := temp[OperandSize -1];
ZF := (temp = 0);
IFSRC=0
CF:=1;
ELSE

Fl
DEST := temp;

Flags Affected

ZF and SF flags are updated based on the result. CF is set if the source is zero. OF flag is cleared. AF and PF flags
are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSR unsigned __int32 _blsr_u32(unsigned __int32 src);
BLSR unsigned __int64 _blsr_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

BLSR—Reset Lowest Set Bit Vol.2A 3-107

BNDCL—Check Lower Bound

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag
F30F1A/r RM N.E/V MPX Generate a #BR if the address in r/m32 is lower than the lower
BNDCL bnd, r/m32 bound in bnd.LB.
F3O0F 1A /r RM V/N.E. MPX Generate a #BR if the address in r/m64 is lower than the lower
BNDCL bnd, r/m64 bound in bnd.LB.
Instruction Operand Encoding
Op/€En Operand 1 Operand 2 Operand 3
RM ModRM:reg (w) ModRM:r/m (r) N/A
Description

Compare the address in the second operand with the lower bound in bnd. The second operand can be either a
register or memory operand. If the address is lower than the lower bound in bnd.LB, it will set BNDSTATUS to 01H
and signal a #BR exception.

This instruction does not cause any memory access, and does not read or write any flags.

Operation

BNDCL BND, reg

IF reg < BND.LB Then
BNDSTATUS := 01H;
#BR;

Fl;

BNDCL BND, mem

TEMP := LEA(mem);

IF TEMP < BND.LB Then
BNDSTATUS := 01H;
#BR;

FI;

Intel C/C++ Compiler Intrinsic Equivalent
BNDCL void _bnd_chk_ptr_Ibounds(const void *q)

Flags Affected
None

Protected Mode Exceptions

#BR If lower bound check fails.
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

BNDCL—Check Lower Bound

Vol.2A 3-108

Real-Address Mode Exceptions

#BR If lower bound check fails.

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions

#BR If lower bound check fails.

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
Same exceptions as in protected mode.

BNDCL—Check Lower Bound Vol.2A 3-109

BNDCU/BNDCN—Check Upper Bound

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag
F2OF 1A /r RM N.E/V MPX Generate a #BR if the address in r/m32 is higher than the upper
BNDCU bnd, r/m32 bound in bnd.UB (bnb.UB in 1's complement form).
F2OF 1A /r RM V/IN.E. MPX Generate a #BR if the address in r/m64 is higher than the upper
BNDCU bnd, r/m64 bound in bnd.UB (bnb.UB in 1's complement form).
F2 OF 1B /r RM N.E/V MPX Generate a #BR if the address in r/m32 is higher than the upper
BNDCN bnd, r/m32 bound in bnd.UB (bnb.UB not in 1's complement form).
F2OF 1B /r RM V/N.E. MPX Generate a #BR if the address in r/m64 is higher than the upper
BNDCN bnd, r/m64 bound in bnd.UB (bnb.UB not in 1's complement form).
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (w) ModRM:r/m (r) N/A

Description

Compare the address in the second operand with the upper bound in bnd. The second operand can be either a
register or a memory operand. If the address is higher than the upper bound in bnd.UB, it will set BNDSTATUS to
01H and signal a #BR exception.

BNDCU perform 1's complement operation on the upper bound of bnd first before proceeding with address compar-
ison. BNDCN perform address comparison directly using the upper bound in bnd that is already reverted out of 1's

complement form.

This instruction does not cause any memory access, and does not read or write any flags.
Effective address computation of m32/64 has identical behavior to LEA

Operation

BNDCU BND, reg

IF reg > NOT(BND.UB) Then
BNDSTATUS := 01H;
#BR;

Fl;

BNDCU BND, mem

TEMP := LEA(mem);

IF TEMP > NOT(BND.UB) Then
BNDSTATUS := 01H;
#BR;

Fl;

BNDCN BND, reg

IF reg > BND.UB Then
BNDSTATUS := 01H;
#BR;

Fl;

BNDCU/BNDCN—Check Upper Bound

Vol.2A 3-110

BNDCN BND, mem

TEMP := LEA(mem);

IF TEMP > BND.UB Then
BNDSTATUS := 01H;
#BR;

Fl;

Intel C/C++ Compiler Intrinsic Equivalent
BNDCU .void _bnd_chk_ptr_ubounds(const void *q)

Flags Affected
None

Protected Mode Exceptions

#BR If upper bound check fails.

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions

#BR If upper bound check fails.

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions

#BR If upper bound check fails.

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

Same exceptions as in protected mode.

BNDCU/BNDCN—Check Upper Bound

Vol.2A 3-111

BNDLDX—Load Extended Bounds Using Address Translation

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag
NP OF 1A /r RM VIV MPX Load the bounds stored in a bound table entry (BTE) into bnd with
BNDLDX bnd, mib address translation using the base of mib and conditional on the
index of mib matching the pointer value in the BTE.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3
SIB.base (r): Address of pointer
RM ModRM:reg (w) (S)IB.index(r) P N/A
Description

BNDLDX uses the linear address constructed from the base register and displacement of the SIB-addressing form
of the memory operand (mib) to perform address translation to access a bound table entry and conditionally load
the bounds in the BTE to the destination. The destination register is updated with the bounds in the BTE, if the
content of the index register of mib matches the pointer value stored in the BTE.

If the pointer value comparison fails, the destination is updated with INIT bounds (Ib = 0x0, ub = 0x0) (note: as
articulated earlier, the upper bound is represented using 1's complement, therefore, the 0x0 value of upper bound
allows for access to full memory).

This instruction does not cause memory access to the linear address of mib nor the effective address referenced by
the base, and does not read or write any flags.

Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.

The base of mib will not be checked for canonical address violation as it does not access memory.

Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.

The scale field of the SIB byte has no effect on these instructions and is ignored.

The bound register may be partially updated on memory faults. The order in which memory operands are loaded is
implementation specific.

Operation

base := mib.SIB.base ? mib.SIB.base + Disp: O;
ptr_value ;= mib.SIB.index ? mib.SIB.index : O;

Outside 64-bit Mode
A_BDE[31:0] := (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12);
A_BT[31:0] := LoadFrom(A_BDE);
IF A_BT[0] equal O Then
BNDSTATUS := A_BDE | 02H;
#BR;
Fl;
A_BTE[31:0] := (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2);
Temp_Ib[31:0] := LoadFrom(A_BTE);
Temp_ub[31:0] := LoadFrom(A_BTE + 4);
Temp_ptr[31:0] := LoadFrom(A_BTE + 8);
IF Temp_ptr equal ptr_value Then
BND.LB := Temp_lb;
BND.UB := Temp_ub;

BNDLDX—Load Extended Bounds Using Address Translation Vol.2A 3-112

ELSE
BND.LB := 0;
BND.UB :=0;
Fl;

In 64-bit Mode
A_BDE[63:0] := (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12);1
A_BT[63:0] := LoadFrom(A_BDE);
IF A_BT[0] equal O Then
BNDSTATUS := A_BDE | 02H;
#BR;
Fl;
A_BTE[63:0] := (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3);
Temp_Ib[63:0] := LoadFrom(A_BTE);
Temp_ub[63:0] := LoadFrom(A_BTE + 8);
Temp_ptr[63:0] := LoadFrom(A_BTE + 16);
IF Temp_ptr equal ptr_value Then
BND.LB := Temp_lb;
BND.UB := Temp_ub;

ELSE
BND.LB := 0;
BND.UB :=0;
Fl;

Intel C/C++ Compiler Intrinsic Equivalent
BNDLDX: Generated by compiler as needed.

Flags Affected
None.

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.
#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is O. If CPL = 3, the user MAWA (MAWALU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Appendix E.3.1 of Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 1.

BNDLDX—Load Extended Bounds Using Address Translation Vol.2A 3-113

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
#PF(fault code) If a page fault occurs.

BNDLDX—Load Extended Bounds Using Address Translation Vol.2A 3-114

BNDMK—Make Bounds

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag

BNDMK bnd, m32

F3O0F1B/r RM N.E/V MPX Make lower and upper bounds from m32 and store them in bnd.

BNDMK bnd, m64

F30F 1B /r RM V/N.E. MPX Make lower and upper bounds from m64 and store them in bnd.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (w) ModRM:r/m (r) N/A
Description

Makes bounds from the second operand and stores the lower and upper bounds in the bound register bnd. The
second operand must be a memory operand. The content of the base register from the memory operand is stored
in the lower bound bnd.LB. The 1's complement of the effective address of m32/m64 is stored in the upper bound

b.UB. Computation of m32/m64 has identical behavior to LEA.

This instruction does not cause any memory access, and does not read or write any flags.

If the instruction did not specify base register, the lower bound will be zero. The reg-reg form of this instruction

retains legacy behavior (NOP).

The instruction causes an invalid-opcode exception (#UD) if executed in 64-bit mode with RIP-relative addressing.

Operation

BND.LB := SRCMEM.base;
IF 64-bit mode Then
BND.UB := NOT(LEA.64_bits(SRCMEM));
ELSE
BND.UB := Zero_Extend.64_bits(NOT(LEA.32_bits(SRCMEM)));
Fl;

Intel C/C++ Compiler Intrinsic Equivalent
BNDMKvoid * _bnd_set_ptr_bounds(const void * q, size_t size);

Flags Affected
None.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

BNDMK—Make Bounds

Vol.2A 3-115

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
If RIP-relative addressing is used.
#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
Same exceptions as in protected mode.

BNDMK—Make Bounds Vol.2A 3-116

BNDMOV—Move Bounds

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag
66 OF 1A /r RM N.E/V MPX Move lower and upper bound from bnd2/m64 to bound register
BNDMOV bnd1, bnd2/m64 bnd1.
66 OF 1A /r RM V/IN.E. MPX Move lower and upper bound from bnd2/m128 to bound register
BNDMOV bnd1, bnd2/m128 bnd1.
66 OF 1B /r MR N.E/V MPX Move lower and upper bound from bnd2 to bnd1/m64.
BNDMOQV bnd1/m64, bnd2
66 OF 1B /r MR V/N.E. MPX Move lower and upper bound from bnd2 to bound register
BNDMOV bnd1/m128, bnd2 bnd1/m128.
Instruction Operand Encoding
Op/€En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) N/A

MR ModRM:r/m (w) ModRM:reg (r) N/A
Description

BNDMOV moves a pair of lower and upper bound values from the source operand (the second operand) to the
destination (the first operand). Each operation is 128-bit move. The exceptions are same as the MOV instruction.

The memory format for loading/store bounds in 64-bit mode is shown in Figure 3-5.

Upper

Bound (UB)

Lower Bound (LB)

| BNDMOV to memory in 64-bit mode

16

\ 8

\ 0 Byte offset

Upper Bound (UB)

Lower Bound (LB) |

BNDMOV to memory in 32-bit mode

4 0 Byte offset

=]

Figure 3-5. Memory Layout of BNDMOV to/from Memory

This instruction does not change flags.

Operation

BNDMOV register to register
DEST.LB := SRC.LB;
DEST.UB := SRC.UB;

BNDMOV—Move Bounds

Vol.2A 3-117

BNDMOV from memory

IF 64-bit mode THEN

DEST.LB := LOAD_QWORD(SRC);
DEST.UB := LOAD_QWORD(SRC+8);

ELSE

DEST.LB := LOAD_DWORD_ZERO_EXT(SRC);
DEST.UB := LOAD_DWORD_ZERO_EXT(SRC+4);

Fl;

BNDMOV to memory

IF 64-bit mode THEN

DEST[63:0] := SRC.LB;
DEST[127:64] := SRC.UB;

ELSE

DEST[31:0] := SRC.LB;
DEST[63:32] := SRC.UB;

Fl;

Intel C/C++ Compiler Intrinsic Equivalent
BNDMOV void * _bnd_copy_ptr_bounds(const void *q, const void *r)

Flags Affected
None.

Protected Mode Exceptions

#UD

#55(0)
#GP(0)

#AC(0)
#PF(fault code)

If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0.

If 67H prefix is used and CS.D=1.

If the memory operand effective address is outside the SS segment limit.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the destination operand points to a non-writable segment

If the DS, ES, FS, or GS segment register contains a NULL segment selector.

If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
If a page fault occurs.

Real-Address Mode Exceptions

#UD

#GP(0)
#SS

BNDMOV—Move Bounds

If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the memory operand effective address is outside the SS segment limit.

Vol.2A 3-118

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If the memory operand effective address is outside the SS segment limit.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unalighed memory reference is made while CPL is 3.

#PF(fault code) If a page fault occurs.

BNDMOV—Move Bounds Vol.2A 3-119

BNDSTX—Store Extended Bounds Using Address Translation

Opcode/ Op/En |64/32 bit |CPUID Description
Instruction Mode Feature
Support | Flag
NP OF 1B /r MR VIV MPX Store the bounds in bnd and the pointer value in the index register
BNDSTX mib, bnd of mib to a bound table entry (BTE) with address translation using
the base of mib.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3
SIB.base (r): Address of pointer .
MR SIB.index(r) ModRM:reg (r) N/A
Description

BNDSTX uses the linear address constructed from the displacement and base register of the SIB-addressing form
of the memory operand (mib) to perform address translation to store to a bound table entry. The bounds in the
source operand bnd are written to the lower and upper bounds in the BTE. The content of the index register of mib
is written to the pointer value field in the BTE.

This instruction does not cause memory access to the linear address of mib nor the effective address referenced by
the base, and does not read or write any flags.

Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.

The base of mib will not be checked for canonical address violation as it does not access memory.

Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.

The scale field of the SIB byte has no effect on these instructions and is ignored.

The bound register may be partially updated on memory faults. The order in which memory operands are loaded is
implementation specific.

Operation

base := mib.SIB.base ? mib.SIB.base + Disp: O;
ptr_value := mib.SIB.index ? mib.SIB.index : O;

Outside 64-bit Mode
A_BDE[31:0] := (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12);
A_BT[31:0] := LoadFrom(A_BDE);
IF A_BT[0] equal O Then
BNDSTATUS := A_BDE | 02H;
#BR;
Fl;
A_DEST[31:0] := (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2); // address of Bound table entry
A_DESTI[8][31:0] := ptr_value;
A_DEST[0][31:0]:= BND.LB;
A_DEST[4][31:0] := BND.UB;

BNDSTX—Store Extended Bounds Using Address Translation Vol.2A 3-120

In 64-bit Mode
A_BDE[63:0] := (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12);1
A_BT[63:0] := LoadFrom(A_BDE);
IF A_BT[0] equal O Then
BNDSTATUS := A_BDE | 02H;
#BR;
Fl;
A_DEST[63:0] := (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3); // address of Bound table entry
A_DEST[16][63:0] := ptr_value;
A_DEST[0][63:0] := BND.LB;
A_DEST[8][63:0] := BND.UB;

Intel C/C++ Compiler Intrinsic Equivalent
BNDSTX: _bnd_store_ptr_bounds(const void **ptr_addr, const void *ptr_val);

Flags Affected
None.

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.
If the destination operand points to a non-writable segment
#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.
#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is O. If CPL = 3, the user MAWA (MAWALU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Appendix E.3.1 of Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 1.

BNDSTX—Store Extended Bounds Using Address Translation Vol.2A 3-121

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.
If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
If the destination operand points to a non-writable segment
#PF(fault code) If a page fault occurs.

BNDSTX—Store Extended Bounds Using Address Translation Vol.2A 3-122

BOUND—Check Array Index Against Bounds

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
62/r BOUND r16, m16&16 RM |Invalid Valid Check if r16 (array index) is within bounds
specified by m16&16.
62 /r BOUND r32, m32&32 RM |Invalid Valid Check if r32 (array index) is within bounds
specified by m32&32.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
Description

BOUND determines if the first operand (array index) is within the bounds of an array specified the second operand
(bounds operand). The array index is a signed integer located in a register. The bounds operand is a memory loca-
tion that contains a pair of signed doubleword-integers (when the operand-size attribute is 32) or a pair of signed
word-integers (when the operand-size attribute is 16). The first doubleword (or word) is the lower bound of the

array and the second doubleword (or word) is the upper bound of the array. The array index must be greater than
or equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When this exception is generated, the
saved return instruction pointer points to the BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper limits of the array) is
usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of
the array. Because the address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN
#UD;
ELSE

IF (Arraylndex < LowerBound OR Arraylndex > UpperBound) THEN

(* Below lower bound or above upper bound *)
IF <equation for PL enabled> THEN BNDSTATUS := 0

#BR;
Fl;
Fl;
Flags Affected
None.

BOUND—Check Array Index Against Bounds

Vol.2A 3-123

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

BOUND—Check Array Index Against Bounds Vol.2A 3-124

BSF—Bit Scan Forward

Opcode Instruction Op/ | 64-bit Compat/ |Description

En |Mode Leg Mode
OFBC/r BSFr16,r/m16 RM | Valid Valid Bit scan forward on r/m16.
OFBC/r BSFr32, r/m32 RM | Valid Valid Bit scan forward on r/m32.
REXW + OF BC /r BSF r64, r/m64 RM | Valid N.E. Bit scan forward on r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the content of the source operand is zero, the destination operand is unmodified.?

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
ZF:=1;
DEST is undefined;
ELSE
ZF:=0;
temp:=0;
WHILE Bit(SRC, temp) =0
DO
temp:=temp + 1;
0D;
DEST := temp;
Fl;

Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags
are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

1. On some older processors, use of a 32-bit operand size may clear the upper 32 bits of a 64-bit destination while leaving the lower
32 bits unmodified.

BSF—Bit Scan Forward Vol.2A 3-125

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

BSF—Bit Scan Forward Vol.2A 3-126

BSR—BIt Scan Reverse

Opcode Instruction Op/ | 64-bit Compat/ |Description

En |Mode Leg Mode
OFBD /r BSRr16,r/m16 RM | Valid Valid Bit scan reverse on r/m16.
OFBD /r BSRr32,r/m32 RM | Valid Valid Bit scan reverse on r/m32.
REXW +OF BD /r BSR r64, r/m64 RM | Valid N.E. Bit scan reverse on r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:ireg (w) ModRM:r/m (r) N/A N/A
Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the content source operand is zero, the destination operand is unmodified.!

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

IFSRC=0

THEN
ZF:=1;
DEST is undefined;

ELSE
ZF:=0;
temp := OperandSize - 1;
WHILE Bit(SRC, temp) = 0

DO
temp:=temp-1;
0D;
DEST := temp;
Fl;
Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags
are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

1. On some older processors, use of a 32-bit operand size may clear the upper 32 bits of a 64-bit destination while leaving the lower
32 bits unmodified.

BSR—Bit Scan Reverse Vol.2A 3-127

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

BSR—Bit Scan Reverse Vol.2A 3-128

BSWAP—Byte Swap

Opcode Instruction Op/ | 64-bit Compat/ |Description

En |Mode Leg Mode
OF C8+rd BSWAP r32 0 Valid* Valid Reverses the byte order of a 32-bit register.
REX.W + OF C8+rd BSWAP r64 0 Valid N.E. Reverses the byte order of a 64-bit register.
NOTES:

* See IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
0 opcode + rd (r, w) N/A N/A N/A
Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided for converting little-
endian values to big-endian format and vice versa. To swap bytes in a word value (16-bit register), use the XCHG
instruction. When the BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.B permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486™ processor family. For
compatibility with this instruction, software should include functionally equivalent code for execution on Intel
processors earlier than the Intel486 processor family.

Operation

TEMP := DEST
IF 64-bit mode AND OperandSize = 64
THEN
DEST[7:0] := TEMP[63:56];
DEST[15:8] := TEMP[55:48];
DEST[23:16] := TEMP[47:40];
DEST[31:24] := TEMP[39:32];
DEST[39:32] := TEMP[31:24];
DEST[47:40] := TEMP[23:16];
DEST[55:48] := TEMP[15:8];
DEST[63:56] := TEMP[7:0];
ELSE
DEST[7:0] := TEMP[31:24];
DEST[15:8] := TEMP[23:16];
DEST[23:16] := TEMP[15:8];
DEST[31:24] := TEMP[7:0];
Fl;

Flags Affected
None.

Exceptions (All Operating Modes)
#UD

BSWAP—Byte Swap

If the LOCK prefix is used.

Vol.2A 3-129

BT—Bit Test

Opcode Instruction Op/ | 64-bit Compat/ |Description
En |Mode Leg Mode

OF A3 /r BT r/m16,r16 MR | Valid Valid Store selected bit in CF flag.
OF A3 /r BT r/m32,r32 MR | Valid Valid Store selected bit in CF flag.
REX.W + OF A3 /r BT r/m64, r64 MR | Valid N.E. Store selected bit in CF flag.
OFBA/4ib BT r/m16, imm8 Ml |Valid Valid Store selected bit in CF flag.
OFBA/4ib BT r/m32, imm8 Ml | Valid Valid Store selected bit in CF flag.
REXW + OF BA /4 ib BT r/m64, imm8 Ml |Valid N.E. Store selected bit in CF flag.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r) ModRM:reg (r) N/A N/A
Ml ModRM:r/m (r) imm8 N/A N/A
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by
the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand
can be a register or a memory location; the bit offset operand can be a register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset
operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit
mode).

* Ifthe bit base operand specifies a memory location, the operand represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. In this case, the low-order 3 or 5 bits (3 for 16-bit oper-
ands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-
order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The
processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory address for a 32-bit
operand size, using by the following relationship:

Effective Address + (4 * (BitOffset DIV 32))
Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this relationship:
Effective Address + (2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using this bit
addressing mechanism, software should avoid referencing areas of memory close to address space holes. In partic-
ular, it should avoid references to memory-mapped I/0 registers. Instead, software should use the MOV instruc-
tions to load from or store to these addresses, and use the register form of these instructions to manipulate the
data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
CF := Bit(BitBase, BitOffset);

BT—Bit Test Vol.2A 3-130

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

BT—Bit Test Vol.2A 3-131

BTC—Bit Test and Complement

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode

OF BB /r BTCr/m16,r16 MR | Valid Valid Store selected bit in CF flag and complement.
OFBB/r BTCr/m32,r32 MR |Valid Valid Store selected bit in CF flag and complement.
REX.W + OF BB /r BTC r/m64, r64 MR | Valid N.E. Store selected bit in CF flag and complement.
OFBA/7ib BTC r/m16, imm8 Ml |Valid Valid Store selected bit in CF flag and complement.
OFBA/7ib BTC r/m32, imm8 Ml | Valid Valid Store selected bit in CF flag and complement.
REXW +0OFBA /7 ib BTC r/m64, imm8 Ml |Valid N.E. Store selected bit in CF flag and complement.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Mi ModRM:r/m (r, w) imm8 N/A N/A
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by
the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected

bit in the bit string. The bit base operand can be a register or a memory location; the bit offset operand can be a

register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset
operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit
mode). This allows any bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “"BT—Bit Test” in this chapter for more information on
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.B permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) := NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag is unaffected. The OF, SF,
AF, and PF flags are undefined.

BTC—Bit Test and Complement Vol.2A 3-132

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

BTC—Bit Test and Complement Vol.2A 3-133

BTR—BIt Test and Reset

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode

OFB3/r BTRr/m16, 116 MR | Valid Valid Store selected bit in CF flag and clear.
OFB3/r BTR r/m32,r32 MR |Valid Valid Store selected bit in CF flag and clear.
REXW +OF B3 /r BTR r/m64, r64 MR | Valid N.E. Store selected bit in CF flag and clear.
OFBA/6ib BTR r/m16, imm8 Ml |Valid Valid Store selected bit in CF flag and clear.
OFBA/6ib BTR r/m32, imm8 Ml | Valid Valid Store selected bit in CF flag and clear.
REXW +0FBA/6ib BTR r/m64, imm8 Ml |Valid N.E. Store selected bit in CF flag and clear.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Ml ModRM:r/m (r, w) imm8 N/A N/A
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by
the bit offset operand (second operand), stores the value of the bit in the CF flag, and clears the selected bit in the
bit string to 0. The bit base operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset
operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit
mode). This allows any bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “"BT—Bit Test” in this chapter for more information on
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ;= O;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaffected. The OF, SF, AF, and
PF flags are undefined.

BTR—Bit Test and Reset Vol.2A 3-134

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

BTR—Bit Test and Reset Vol.2A 3-135

BTS—Bit Test and Set

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode

OF AB /r BTSr/m16,r16 MR | Valid Valid Store selected bit in CF flag and set.
OF AB /r BTS r/m32,r32 MR |Valid Valid Store selected bit in CF flag and set.
REX.W + OF AB /r BTS r/m64, r64 MR |Valid N.E. Store selected bit in CF flag and set.
OFBA/5ib BTS r/m16, imm8 Ml |Valid Valid Store selected bit in CF flag and set.
OFBA/5ib BTS r/m32, imm8 Ml | Valid Valid Store selected bit in CF flag and set.
REXW +0FBA/5ib BTS r/m64, imm8 Ml |Valid N.E. Store selected bit in CF flag and set.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Ml ModRM:r/m (r, w) imm8 N/A N/A
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by
the bit offset operand (second operand), stores the value of the bit in the CF flag, and sets the selected bit in the
bit string to 1. The bit base operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset
operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit
mode). This allows any bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “"BT—Bit Test” in this chapter for more information on
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) := 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaffected. The OF, SF, AF, and PF
flags are undefined.

BTS—Bit Test and Set Vol.2A 3-136

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

BTS—Bit Test and Set Vol.2A 3-137

BZHI—Zero High Bits Starting with Specified Bit Position

Opcode/Instruction Op/ |64/32- |CPUID Description
En bit Feature
Mode Flag
VEX.LZ.OF38.WO F5 /r RMV |V/V BMI2 Zero bits in r/m32 starting with the position in r32b, write result to
BZHI r323, r/m32,r32b r32a.
VEX.LZ.OF38.W1 F5 /r RMV |V/N.E. [BMI2 Zero bits in r/m64 starting with the position in r64b, write result to
BZHI r64a, r/m64, ré4b ré4a.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvwv (r) N/A
Description

BZHI copies the bits of the first source operand (the second operand) into the destination operand (the first
operand) and clears the higher bits in the destination according to the INDEX value specified by the second source
operand (the third operand). The INDEX is specified by bits 7:0 of the second source operand. The INDEX value is
saturated at the value of OperandSize -1. CF is set, if the number contained in the 8 low bits of the third operand
is greater than OperandSize -1.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

N := SRC2[7:0]

DEST := SRC1

IF (N < OperandSize)
DEST[OperandSize-1:N]:= 0

Fl

IF (N > OperandSize - 1)
CF:=1

ELSE
CF:=0

Fl

Flags Affected

ZF and SF flags are updated based on the result. CF flag is set as specified in the Operation section. OF flag is
cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BZHI unsigned __int32 _bzhi_u32(unsigned __int32 src, unsigned __int32 index);
BZHI unsigned __int64 _bzhi_u64(unsigned __int64 src, unsigned __int32 index);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “"Type 13 Class Exception Conditions.”

BZHI—Zero High Bits Starting with Specified Bit Position Vol.2A 3-138

CALL—Call Procedure

Opcode Instruction Op/ | 64-bit Compat/ |Description
En |Mode Leg Mode
€8 cw CALL rel16 D N.S. Valid Call near, relative, displacement relative to next
instruction.
€8 cd CALL rel32 D Valid Valid Call near, relative, displacement relative to next

instruction. 32-bit displacement sign extended to
64-bits in 64-bit mode.

FF /2 CALLr/m16 M N.E. Valid Call near, absolute indirect, address given in r/m16.
FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in r/m32.
FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in r/m64.
9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.
9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.
FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in m16:16.

In 32-bit mode: if selector points to a gate, then RIP
= 32-bit zero extended displacement taken from
gate; else RIP = zero extended 16-bit offset from
far pointer referenced in the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
zero extended 32-bit offset from far pointer
referenced in the instruction.

REX.W FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
64-bit offset from far pointer referenced in the
instruction.

Instruction Operand Encoding

Op/€En Operand 1 Operand 2 Operand 3 Operand 4
D Offset N/A N/A N/A
M ModRM:r/m (r) N/A N/A N/A
Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:

® Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the CS
register), sometimes referred to as an intra-segment call.

® Far Call — A call to a procedure located in a different segment than the current code segment, sometimes
referred to as an inter-segment call.

* Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that
of the currently executing program or procedure.

®* Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 9, “Task
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on performing task switches with the CALL instruction.

CALL—Call Procedure Vol.2A 3-139

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The
processor then branches to the address in the current code segment specified by the target operand. The target
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16, r/m32, or /y/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64
bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the
EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute
offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP
before the instruction executes.

A relative offset (rel/16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to
perform the following types of far calls:

® Far call to the same privilege level
®* Far call to a different privilege level (inter-privilege level call)
® Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand
is ignored when a call gate is used.)

CALL—Call Procedure Vol.2A 3-140

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to
the new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the
EIP register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of
the task gate. See Chapter 9, "Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register
and the new TSS'’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend
this nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 9 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruc-
tion differs in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit
values can be pushed on the stack. See Chapter 23, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be
used to perform the following types of far calls:

® Far call to the same privilege level, remaining in compatibility mode
® Far call to the same privilege level, transitioning to 64-bit mode
® Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly
with a pointer (ptr16:16 or ptri6:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code
segment at the same privilege level. However, using this mechanism requires that the target code segment
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target

CALL—Call Procedure Vol.2A 3-141

operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with @ memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0,
the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the
upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for
the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to
perform the following types of far calls:

® Far call to the same privilege level, transitioning to compatibility mode
®* Far call to the same privilege level, remaining in 64-bit mode
® Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type
of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use
a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling proce-
dure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter
copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called
within the new code segment.

CALL—Call Procedure Vol.2A 3-142

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” and Chapter 18, “Control-flow Enforcement
Technology (CET),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET
details.

Instruction ordering. Instructions following a far call may be fetched from memory before earlier instructions
complete execution, but they will not execute (even speculatively) until all instructions prior to the far call have
completed execution (the later instructions may execute before data stored by the earlier instructions have
become globally visible).

Instructions sequentially following a near indirect CALL instruction (i.e., those not at the target) may be executed
speculatively. If software needs to prevent this (e.g., in order to prevent a speculative execution side channel),
then an LFENCE instruction opcode can be placed after the near indirect CALL in order to block speculative execu-
tion.

Operation

IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN
tempDEST := SignExtend(DEST); (* DEST is rel32 *)
tempRIP := RIP + tempDEST;
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
IF ShadowStackEnabled(CPL) AND DEST = 0
ShadowStackPush8B(RIP);
Fl;
RIP := tempRIP;
Fl;
IF OperandSize = 32
THEN
temp€EIP := EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL) AND DEST = 0
ShadowStackPush4B(EIP);
Fl;
EIP := tempEIP;
Fl;
IF OperandSize = 16
THEN
temp€ElIP := (EIP + DEST) AND OOOOFFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL) AND DEST = 0
(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);
Fl;
EIP := tempEIP;
Fl;
ELSE (* Near absolute call *)

CALL—Call Procedure Vol.2A 3-143

IF OperandSize = 64

Fl;

THEN

tempRIP := DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;

Push(RIP);
IF ShadowStackEnabled(CPL)

Fl;

ShadowStackPush8B(RIP);

RIP := tempRIP;

IF OperandSize = 32
THEN
tempéElP := DEST; (* DEST is /m32 *)

Fl;

IF tempEIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;

Push(EIP);
IF ShadowStackEnabled(CPL)

Fl;

ShadowStackPush4B(EIP);

EIP := tempéElP;

IF OperandSize = 16
THEN
temp€lP ;= DEST AND 0O00OFFFFH; (* DEST is r/m16 *)

Fl;
Fl;rel/abs

IF temp€EIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);

IF ShadowStackEnabled(CPL)

Fl;

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

EIP := tempEIP;

IF (Call near indirect, absolute indirect)
IF EndbranchEnabledAndNotSuppressed(CPL)
IFCPL=3
THEN
IF (no 3€H prefix OR IA32_U_CET.NO_TRACK_EN ==0)

Fl;

ELSE

Fl;
Fl;
Fl;
Fl; near

CALL—Call Procedure

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

IF (no 3€H prefix OR IA32_S_CET.NO_TRACK_EN ==0)

Fl;

THEN

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

Vol.2A 3-144

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)

THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP := DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);
Push(IP);
CS := DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP := DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
Fl;

Fl;

IF far call and (PE = 1 and VM = 0O) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); Fl;
Read type and access rights of selected segment descriptor;
IFIA32_EFERLMA =0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); Fl;
Fl;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IF Lbit=1andD bit =1 and IA32_EFERLMA =1
THEN GP(new code segment selector); Fl;
IF DPL > CPL
THEN #GP(new code segment selector); FI;
IF segment not present
THEN #NP(new code segment selector); Fl;

CALL—Call Procedure Vol.2A 3-145

IF stack not large enough for return address
THEN #SS(0); FI;
tempéElP := DEST(Offset);
IF target mode = Compatibility mode
THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16
THEN
tempéEIP := tempEIP AND O000FFFFH; FI; (* Clear upper 16 bits *)
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(Q); FI;
IF ShadowStackEnabled(CPL)
IF OperandSize = 32

THEN
tempPushLIP = CSBASE + EIP;
ELSE
IF OperandSize = 16
THEN
tempPushLIP = CSBASE + IP;
ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;
Fl;
Fl;
tempPushCS = CS;
Fl;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempéEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempéEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := temp€EIP;
Fl;
Fl;

IF ShadowStackEnabled(CPL)
IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0

CALL—Call Procedure Vol.2A 3-146

(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & OxFFFFFFFFO0000000 = 0)
THEN #GP(0); FI;
Fl;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of O to (SSP - 4)
SSP = SSP & OxFFFFFFFFFFFFFFFSH
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of O *)
ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0
Fl;
Fl;
END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL = CPL)
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempéEIP := DEST(Offset);
IF target mode = Compatibility mode
THEN temp€EIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16
THEN temp€EIP := tempEIP AND O000FFFFH; FI; (* Clear upper 16 bits *)
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)
IFIA32_EFERLMA & CS.L
tempPushLIP = RIP
ELSE
tempPushLIP = CSBASE + EIP;

Fl;
tempPushCS = CS;
Fl;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);

CALL—Call Procedure Vol.2A 3-147

CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempéEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := temp€EIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := temp€EIP;
Fl;
Fl;
IF ShadowStackEnabled(CPL)
IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & OxFFFFFFFFO0000000 = 0)
THEN #GP(0); FI;
Fl;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of O to (SSP - 4)
SSP = SSP & OxFFFFFFFFFFFFFFFBH
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order O bits *)
ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0
Fl;
FI;
END;
CALL-GATE:

IF call gate (DPL < CPL) or (RPL > DPL)
THEN #GP(call-gate selector); Fl;

IF call gate not present
THEN #NP(call-gate selector); FI;

IF call-gate code-segment selector is NULL

CALL—Call Procedure

Vol.2A 3-148

THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL
THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)
THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present
THEN #NP(call-gate code-segment selector); Fl;
IF call-gate code segment is non-conforming and DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit
THEN
TSSstackAddress := (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit
THEN #TS(current TSS selector); FI;
NewsSS := 2 bytes loaded from (TSS base + TSSstackAddress + 4);
New€SP := 4 bytes loaded from (TSS base + TSSstackAddress);
ELSE
IF current TSS is 16-bit
THEN
TSSstackAddress := (new code-segment DPL * 4) + 2
IF (TSSstackAddress + 3) > current TSS limit
THEN #TS(current TSS selector); FI;
NewsSS := 2 bytes loaded from (TSS base + TSSstackAddress + 2);
New€SP := 2 bytes loaded from (TSS base + TSSstackAddress);
ELSE (* current TSS is 64-bit *)
TSSstackAddress := (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit
THEN #TS(current TSS selector); FI;
NewsSS := new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP ;= 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
Fl;
IF IA32_EFER.LMA = 0 and NewsSS is NULL
THEN #TS(NewsSS); Fl;
Read new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewsSS RPL # new code-segment DPL
or new stack-segment DPL # new code-segment DPL or new stack segment is not a
writable data segment)
THEN #TS(NewSS); Fl
IF IA32_EFER.LMA = 0 and new stack segment not present
THEN #SS(NewsSS); Fl;
IF CallGateSize = 32
THEN
IF new stack does not have room for parameters plus 16 bytes

CALL—Call Procedure Vol.2A 3-149

THEN #SS(NewsSS); Fl;
IF CallGate(InstructionPointer) not within new code-segment limit
THEN #GP(0); FI;
SS = newsSS; (* Segment descriptor information also loaded *)
ESP := newESP;
CS:EIP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:old€ESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
IF CallGateSize = 16
THEN

IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewsSS); FI;

IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(O); FI;

SS = newsSS; (* Segment descriptor information also loaded *)

ESP := newESP;

CS:IP := CallGate(CS:InstructionPointer);

(* Segment descriptor information also loaded *)

Push(oldSS:old€ESP); (* From calling procedure *)

temp := parameter count from call gate, masked to 5 bits;

Push(parameters from calling procedure’s stack, temp)

Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)

IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewsSS); FI;
IF (CallGate(InstructionPointer) is non-canonical)
THEN #GP(0); FI;
SS := NewsSS; (* NewsSS is NULL)
RSP := NewESP;
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:old€ESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
Fl;
Fl;
IF ShadowStackEnabled(CPL) AND CPL = 3
THEN
IFIA32_EFERLMA =0
THEN IA32_PL3_SSP := SSP;

ELSE (* adjust so bits 63:N get the value of bit N-1, where N is the CPU’'s maximum linear-address width *)

[A32_PL3_SSP := LA_adjust(SSP);
Fl;
Fl;
CPL := CodeSegment(DPL)
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)
oldSSP := SSP
SSP :=1A32_PLi_SSP; (* where i is the CPL *)
IF SSP & 0x07 I= 0 (* if SSP not aligned to 8 bytes then #GP *)
THEN #GP(0); FI;

CALL—Call Procedure

Vol.2A 3-150

(* Token and CS:LIP:0ldSSP pushed on shadow stack must be contained in a naturally aligned 32-byte region*)
IF (SSP & ~0x1F) = ((SSP - 24) & ~Ox1F)
#GP(O); FI;
IF (IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] = 0)
THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position O - must be clear *)
new_token_value = SSP | BUSY_BIT (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) = expected_token_value
THEN #GP(0); FI;
IF oldSS.DPL =3
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(oldSSP);
Fl;
Fl;
IF EndbranchEnabled (CPL)
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS =0
Fl;
END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(O); FI;
CS:EIP := CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
If CallGateSize = 16
THEN
IF stack does not have room for 4 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(0); FI;
IF RIP non-canonical
THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
Fl;
Fl;
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)
(* Align to next 8 byte boundary *)
tempSSP = SSP;

CALL—Call Procedure

Vol.2A 3-151

Shadow_stack_store 4 bytes of O to (SSP - 4)

SSP = SSP & OxFFFFFFFFFFFFFFFBH;

(* push cs:lip:ssp on shadow stack *)

ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled (CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0
Fl;
Fl;
END;
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector); FI;
IF task gate not present
THEN #NP(task gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF descriptor is not a TSS segment
THEN #GP(TSS selector); FI;
IF TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

CALL—Call Procedure Vol.2A 3-152

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

If the token and the stack frame to be pushed on shadow stack are not contained in a naturally
aligned 32-byte region of the shadow stack.

If “supervisor Shadow Stack” token on new shadow stack is marked busy.

If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow
stack” token is beyond 4GB.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task
state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the
segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than
the RPL of the call-gate, task-gate, or TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate does not indicate it is a code
segment.

If the segment selector from a call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and the segment pointed to is
marked not present.

If stack segment does not have room for the return address, parameters, or stack segment
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, call gate, task gate, or TSS is not present.

CALL—Call Procedure Vol.2A 3-153

#TS(selector)

#PF(fault-code)
#AC(0)

#UD

If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector is NULL.

If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the
code segment descriptor.

If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

#GP(selector)
#GP(0)

If a memory address accessed by the selector is in non-canonical space.
If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0)

CALL—Call Procedure

If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

If target mode is compatibility mode and SSP is not in low 4GB.

If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

If the token and the stack frame to be pushed on shadow stack are not contained in a naturally
aligned 32-byte region of the shadow stack.

If “supervisor Shadow Stack” token on new shadow stack is marked busy.

If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-visor
shadow” stack token is beyond 4GB.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

Vol.2A 3-154

#GP(selector)

#55(0)

#SS(selector)

#NP(selector)
#TS(selector)
#UD

#PF(fault-code)
#AC(0)

CALL—Call Procedure

If code segment or 64-bit call gate is outside descriptor table limits.
If code segment or 64-bit call gate overlaps non-canonical space.

If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the destination operand is a
code segment and has both the D-bit and the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the
segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.

If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the
L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it
is a code segment.

If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack
segment when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error
code onto the stack violates the canonical boundary when a stack switch occurs.

If a code segment or 64-bit call gate is not present.

If the load of the new RSP exceeds the limit of the TSS.

(64-bit mode only) If a far call is direct to an absolute address in memory.
If the LOCK prefix is used.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Vol.2A 3-155

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to

Quadword
Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
98 CBW Z0 |Valid Valid AX ;= sign-extend of AL.
98 CwDE Z0 |Valid Valid EAX := sign-extend of AX.
REX.W + 98 CDQE Z0 |Valid N.E. RAX := sign-extend of EAX.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Double the size of the source operand by means of sign extension. The CBW (convert byte to word) instruction
copies the sign (bit 7) in the source operand into every bit in the AH register. The CWDE (convert word to double-
word) instruction copies the sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register.

CBW and CWDE reference the same opcode. The CBW instruction is intended for use when the operand-size attri-
bute is 16; CWDE is intended for use when the operand-size attribute is 32. Some assemblers may force the
operand size. Others may treat these two mnemonics as synonyms (CBW/CWDE) and use the setting of the

operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use of the REX.W prefix promotes
this instruction (CDQE when promoted) to operate on 64-bit operands. In which case, CDQE copies the sign (bit

31) of the doubleword in the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN
AX = SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)
EAX := SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)
RAX := SignExtend(EAX);
Fl;

Flags Affected
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword Vol.2A 3-156

CLAC—Clear AC Flag in EFLAGS Register

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature
Support | Flag
NP OF 01 CA Z0 VIV SMAP Clear the AC flag in the EFLAGS register.
CLAC

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Clears the AC flag bit in EFLAGS register. This disables any alignment checking of user-mode data accesses. Ifthe
SMAP bit is set in the CR4 register, this disallows explicit supervisor-mode data accesses to user-mode pages.

This instruction's operation is the same in non-64-bit modes and 64-bit mode. Attempts to execute CLAC when
CPL > 0 cause #UD.

Operation
EFLAGS.AC = 0;

Flags Affected
AC cleared. Other flags are unaffected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Virtual-8086 Mode Exceptions
#UD The CLAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

CLAC—Clear AC Flag in EFLAGS Register Vol.2A 3-157

CLC—Clear Carry Flag

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
F8 CLC Z0 |Valid Valid Clear CF flag.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Clears the CF flag in the EFLAGS register. Operation is the same in all modes.

Operation
CF:=0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD

CLC—Clear Carry Flag

If the LOCK prefix is used.

Vol.2A 3-158

CLD—Clear Direction Flag

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
FC CLD Z0 |Valid Valid Clear DF flag.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations increment the index regis-
ters (ESI and/or EDI). Operation is the same in all modes.

Operation
DF:=0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD

If the LOCK prefix is used.

CLD—Clear Direction Flag

Vol.2A 3-159

CLDEMOTE—Cache Line Demote

Opcode/ Op/ |64/32Dbit |CPUID Feature | Description
Instruction En Mode Flag
Support
NP OF 1C/0 A VIV CLDEMOTE Hint to hardware to move the cache line containing m8 to a
CLDEMOTE m8 more distant level of the cache without writing back to mem-
ory.

Instruction Operand Encoding’

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) N/A N/A N/A
Description

Hints to hardware that the cache line that contains the linear address specified with the memory operand should be
moved (“demoted”) from the cache(s) closest to the processor core to a level more distant from the processor
core. This may accelerate subsequent accesses to the line by other cores in the same coherence domain, especially
if the line was written by the core that demotes the line. Moving the line in such a manner is a performance optimi-
zation, i.e., it is a hint which does not modify architectural state. Hardware may choose which level in the cache
hierarchy to retain the line (e.g., L3 in typical server designs). The source operand is a byte memory location.

The availability of the CLDEMOTE instruction is indicated by the presence of the CPUID feature flag CLDEMOTE (bit
25 of the ECX register in sub-leaf 07H, see "CPUID—CPU Identification”). On processors which do not support the
CLDEMOTE instruction (including legacy hardware) the instruction will be treated as a NOP.

A CLDEMOTE instruction is ordered with respect to stores to the same cache line, but unordered with respect to
other instructions including memory fences, CLDEMOTE, CLWB or CLFLUSHOPT instructions to a different cache
line. Since CLDEMOTE will retire in order with respect to stores to the same cache line, software should ensure that
after issuing CLDEMOTE the line is not accessed again immediately by the same core to avoid cache data move-
ment penalties.

The effective memory type of the page containing the affected line determines the effect; cacheable types are
likely to generate a data movement operation, while uncacheable types may cause the instruction to be ignored.

Speculative fetching can occur at any time and is not tied to instruction execution. The CLDEMOTE instruction is not
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms. That is, data can
be speculatively loaded into a cache line just before, during, or after the execution of a CLDEMOTE instruction that
references the cache line.

Unlike CLFLUSH, CLFLUSHOPT, and CLWB instructions, CLDEMOTE is not guaranteed to write back modified data to
memory.

The CLDEMOQOTE instruction may be ignored by hardware in certain cases and is not a guarantee.

The CLDEMOTE instruction can be used at all privilege levels. In certain processor implementations the CLDEMOTE
instruction may set the A bit but not the D bit in the page tables.

If the line is not found in the cache, the instruction will be treated as a NOP.

In some implementations, the CLDEMOTE instruction may always cause a transactional abort with Transactional
Synchronization Extensions (TSX). However, programmers must not rely on CLDEMOTE instruction to force a
transactional abort.

1. The Mod field of the ModR/M byte cannot have value 11B.

CLDEMOTE—Cache Line Demote Vol.2A 3-160

Operation

Cache_Line_Demote(m8);

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent
CLDEMOTE void _cldemote(const void*);

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

CLDEMOTE—Cache Line Demote

Vol.2A 3-161

CLFLUSH—FIlush Cache Line

Opcode / Op/ | 64-bit Compat/ |Description

Instruction En |Mode Leg Mode

NP OF AE /7 M Valid Valid Flushes cache line containing m8.
CLFLUSH m8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) N/A N/A N/A
Description

Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the
linear address specified with the memory operand. If that cache line contains modified data at any level of the
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH
(CPUID.01H:EDX[bit 19]). The aligned cache line size affected is also indicated with the CPUID instruction (bits 8
through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHhA
instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative
fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with
respect to PREFETCHA instructions or any of the speculative fetching mechanisms (that is, data can be specula-
tively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references
the cache line).

Executions of the CLFLUSH instruction are ordered with respect to each other and with respect to writes, locked
read-modify-write instructions, and fence instructions.! They are not ordered with respect to executions of
CLFLUSHOPT and CLWB. Software can use the SFENCE instruction to order an execution of CLFLUSH relative to one
of those operations.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults asso-
ciated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an execute-
only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables.

In some implementations, the CLFLUSH instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). The CLFLUSH instruction is not expected to be commonly used inside typical
transactional regions. However, programmers must not rely on CLFLUSH instruction to force a transactional abort,
since whether they cause transactional abort is implementation dependent.

The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID feature
flag, it can be implemented in IA-32 processors that do not include the SSE2 extensions. Also, detecting the pres-
ence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction is imple-
mented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation
Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents
CLFLUSH void _mm_clflush(void const *p)

1. Earlier versions of this manual specified that executions of the CLFLUSH instruction were ordered only by the MFENCE instruction.
All processors implementing the CLFLUSH instruction also order it relative to the other operations enumerated above.

CLFLUSH—FIlush Cache Line Vol.2A 3-162

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

CLFLUSH—FIlush Cache Line Vol.2A 3-163

CLFLUSHOPT—FIlush Cache Line Optimized

Opcode / Op/ | 64-bit Compat/ |Description

Instruction En |Mode Leg Mode

NFx 66 OF AE /7 M Valid Valid Flushes cache line containing m8.
CLFLUSHOPT m8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) N/A N/A N/A
Description

Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the
linear address specified with the memory operand. If that cache line contains modified data at any level of the
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSHOPT is indicated by the presence of the CPUID feature flag CLFLUSHOPT
(CPUID.(EAX=07H,ECX=0H):EBX[bit 23]). The aligned cache line size affected is also indicated with the CPUID
instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHhA
instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative
fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with
respect to PREFETCHA instructions or any of the speculative fetching mechanisms (that is, data can be specula-
tively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references
the cache line).

Executions of the CLFLUSHOPT instruction are ordered with respect to fence instructions and to locked read-
modify-write instructions; they are also ordered with respect to older writes to the cache line being invalidated.
They are not ordered with respect to other executions of CLFLUSHOPT, to executions of CLFLUSH and CLWB, or to
younger writes to the cache line being invalidated. Software can use the SFENCE instruction to order an execution
of CLFLUSHOPT relative to one of those operations.

The CLFLUSHOPT instruction can be used at all privilege levels and is subject to all permission checking and faults
associated with a byte load (and in addition, a CLFLUSHOPT instruction is allowed to flush a linear address in an
execute-only segment). Like a load, the CLFLUSHOPT instruction sets the A bit but not the D bit in the page tables.

In some implementations, the CLFLUSHOPT instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). The CLFLUSHOPT instruction is not expected to be commonly used inside
typical transactional regions. However, programmers must not rely on CLFLUSHOPT instruction to force a transac-
tional abort, since whether they cause transactional abort is implementation dependent.

CLFLUSHOPT operation is the same in non-64-bit modes and 64-bit mode.

Operation
Flush_Cache_Line_Optimized(SRC);

Intel C/C++ Compiler Intrinsic Equivalents
CLFLUSHOPT void _mm_clflushopt(void const *p)

CLFLUSHOPT—Flush Cache Line Optimized Vol.2A 3-164

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.

If an instruction prefix F2H or F3H is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

CLFLUSHOPT—Flush Cache Line Optimized Vol.2A 3-165

CLI—Clear Interrupt Flag

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
FA Ccul Z0 |Valid Valid Clear interrupt flag; interrupts disabled when
interrupt flag cleared.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

In most cases, CLI clears the IF flag in the EFLAGS register and no other flags are affected. Clearing the IF flag
causes the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction have no
effect on the generation of exceptions and NMI interrupts.

Operation is different in two modes defined as follows:
* PVI mode (protected-mode virtual interrupts): CRO.PE = 1, EFLAGS.VM = 0, CPL = 3, and CR4.PVI = 1;
®* VME mode (virtual-8086 mode extensions): CRO.PE = 1, EFLAGS.VM = 1, and CR4.VME = 1.

If IOPL < 3 and either VME mode or PVI mode is active, CLI clears the VIF flag in the EFLAGS register, leaving IF
unaffected.

Table 3-7 indicates the action of the CLI instruction depending on the processor operating mode, IOPL, and CPL.

Table 3-7. Decision Table for CLI Results

Mode I0PL CLI Result
Real-address X7 IF=0
>CPL IF=0
Protected, not PVI2
<CPL #GP fault
3 IF=0
Protected, PVI3
0-2 VIF=0
3 IF=0
Virtual-8086, not VME3
0-2 #GP fault
3 IF=0
Virtual-8086, VME3
0-2 VIF=0

NOTES:
1. X = This setting has no effect on instruction operation.
2. For this table, “protected mode” applies whenever CRO.PE = 1 and EFLAGS.VM = 0; it includes compatibility mode and 64-bit mode.

3. PVI mode and virtual-8086 mode each imply CPL = 3.

CLI—Clear Interrupt Flag Vol.2A 3-166

Operation

IFCROPE=0
THEN IF := O; (* Reset Interrupt Flag *)
ELSE
IFIOPL > CPL (* CPL = 3 if EFLAGS.VM =1 *)
THEN IF := O; (* Reset Interrupt Flag *)
ELSE
IF VME mode OR PVI mode
THEN VIF := O; (* Reset Virtual Interrupt Flag *)
ELSE #GP(0);
Fl;
Fl;
Fl;

Flags Affected
Either the IF flag or the VIF flag is cleared to 0. Other flags are unaffected.

Protected Mode Exceptions

#GP(0) If CPL is greater than IOPL and PVI mode is not active.

If CPL is greater than IOPL and less than 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If IOPL is less than 3 and VME mode is not active.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

CLI—Clear Interrupt Flag

Vol.2A 3-167

CLRSSBSY—Clear Busy Flag in a Supervisor Shadow Stack Token

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature
Support | Flag
F3 OF AE /6 M VIV CET_SS Clear busy flag in supervisor shadow stack token
CLRSSBSY m64 reference by m64.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
M N/A ModRM:r/m (r, w) N/A N/A N/A
Description

Clear busy flag in supervisor shadow stack token reference by m64. Subsequent to marking the shadow stack as
not busy the SSP is loaded with value 0.

Operation

IF (CR4.CET = 0)
THEN #UD; FI;

IF (IA32_S_CET.SH_STK_EN = 0)
THEN #UD; FI;

IFCPL>0
THEN GP(0); FI;

SSP_LA = Linear_Address(mem operand)

IF SSP_LA not aligned to 8 bytes
THEN #GP(0); FI;

expected_token_value = SSP_LA | BUSY_BIT (* busy bit - bit position O - must be set *)

new_token_value = SSP_LA (* Clear the busy bit *)

IF shadow_stack_lock_cmpxchg8b(SSP_LA, new_token_value, expected_token_value) I= expected_token_value
invalid_token := 1; Fl

(* Set the CF if invalid token was detected *)
RFLAGS.CF = (invalid_token ==1)?7 1:0;
RFLAGS.ZF,PF,AF,OF SF ;= O;

SSP:=0

Flags Affected
CF is set if an invalid token was detected, else it is cleared. ZF, PF, AF, OF, and SF are cleared.

CLRSSBSY—Clear Busy Flag in a Supervisor Shadow Stack Token Vol.2A 3-168

Protected Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.CET = 0.
IF IA32_S_CET.SH_STK_EN = 0.
#GP(0) If memory operand linear address not aligned to 8 bytes.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If CPL is not O.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The CLRSSBSY instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The CLRSSBSY instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD Same exceptions as in protected mode.
#GP(0) Same exceptions as in protected mode.
#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.CET = 0.
IF IA32_S_CET.SH_STK_EN = 0.
#GP(0) If memory operand linear address not aligned to 8 bytes.

If CPL is not 0.

If the memory address is in a non-canonical form.

If token is invalid.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

CLRSSBSY—Clear Busy Flag in a Supervisor Shadow Stack Token Vol.2A 3-169

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
OF 06 CLTS Z0 |Valid Valid Clears TS flag in CRO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for use in operating-system
procedures. It is a privileged instruction that can only be executed at a CPL of 0. It is allowed to be executed in real-
address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize the saving of FPU
context in multitasking applications. See the description of the TS flag in the section titled “Control Registers” in
Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information
about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 26, “Virtual Machine Control Structures,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C, for more information about the behavior of this instruction in VMX non-root operation.

Operation
CRO.TS[bit 3]:=0;

Flags Affected
The TS flag in CRO register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.

CLTS—Clear Task-Switched Flag in CRO Vol.2A 3-170

CLUI—Clear User Interrupt Flag

Opcode/ Op/ |64/32 bit | CPUID Feature Description
Instruction En Mode Flag
Support
F3 OF 01 EE Z0 |V UINTR Clear user interrupt flag; user interrupts blocked
cLul when user interrupt flag cleared.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
20 N/A N/A N/A N/A N/A
Description

CLUI clears the user interrupt flag (UIF). Its effect takes place immediately: a user interrupt cannot be delivered

on the instruction boundary following CLUI.

An execution of CLUI inside a transactional region causes a transactional abort; the abort loads EAX as it would

have had it been caused due to an execution of CLI.

Operation
UIF:=0;

Flags Affected
None.

Protected Mode Exceptions
#UD The CLUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions

#UD The CLUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The CLUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The CLUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

CLUI—Clear User Interrupt Flag

Vol.2A 3-171

CLwWB—Cache Line Write Back

Opcode/ Op/ |64/32bit |CPUID Feature | Description
Instruction En Mode Flag
Support
66 OF AE /6 M VIV CLwB Writes back modified cache line containing m8, and may
CLwWB m8 retain the line in cache hierarchy in non-modified state.

Instruction Operand Encoding’

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) N/A N/A N/A
Description

Writes back to memory the cache line (if modified) that contains the linear address specified with the memory
operand from any level of the cache hierarchy in the cache coherence domain. The line may be retained in the
cache hierarchy in non-modified state. Retaining the line in the cache hierarchy is a performance optimization
(treated as a hint by hardware) to reduce the possibility of cache miss on a subsequent access. Hardware may
choose to retain the line at any of the levels in the cache hierarchy, and in some cases, may invalidate the line from
the cache hierarchy. The source operand is a byte memory location.

The availability of CLWB instruction is indicated by the presence of the CPUID feature flag CLWB (bit 24 of the EBX
register, see "CPUID — CPU Identification” in this chapter). The aligned cache line size affected is also indicated
with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because this
speculative fetching can occur at any time and is not tied to instruction execution, the CLWB instruction is not
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can
be speculatively loaded into a cache line just before, during, or after the execution of a CLWB instruction that refer-
ences the cache line).

Executions of the CLWB instruction are ordered with respect to fence instructions and to locked read-modify-write
instructions; they are also ordered with respect to older writes to the cache line being written back. They are not
ordered with respect to other executions of CLWB, to executions of CLFLUSH and CLFLUSHOPT, or to younger
writes to the cache line being written back. Software can use the SFENCE instruction to order an execution of CLWB
relative to one of those operations.

For usages that require only writing back modified data from cache lines to memory (do not require the line to be
invalidated), and expect to subsequently access the data, software is recommended to use CLWB (with appropriate
fencing) instead of CLFLUSH or CLFLUSHOPT for improved performance.

The CLWB instruction can be used at all privilege levels and is subject to all permission checking and faults associ-
ated with a byte load. Like a load, the CLWB instruction sets the accessed flag but not the dirty flag in the page
tables.

In some implementations, the CLWB instruction may always cause transactional abort with Transactional Synchro-
nization Extensions (TSX). CLWB instruction is not expected to be commonly used inside typical transactional
regions. However, programmers must not rely on CLWB instruction to force a transactional abort, since whether
they cause transactional abort is implementation dependent.

Operation
Cache_Line_Write_Back(m8);

1. The Mod field of the ModR/M byte cannot have value 11B.

CLwWB—Cache Line Write Back Vol.2A 3-172

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent
CLWB void _mm_clwb(void const *p);

Protected Mode Exceptions

#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLWBI[bit 24] = 0.
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

CLwWB—Cache Line Write Back Vol.2A 3-173

CMC—Complement Carry Flag

Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
F5 CMC Z0 |Valid Valid Complement CF flag.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0] := NOT EFLAGS.CF[bit O];

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD

If the LOCK prefix is used.

CMC—Complement Carry Flag

Vol.2A 3-174

CMOVcc—Conditional Move

Opcode Instruction Op/ | 64-Bit Compat/ |Description

En |Mode Leg Mode
OF 47 /Ir CMOVAT16,r/m16 RM | Valid Valid Move if above (CF=0 and ZF=0).
OF 47 /Ir CMOVA 32, r/m32 RM | Valid Valid Move if above (CF=0 and ZF=0).
REX.W + OF 47 /r CMOVA r64, r/m64 RM | Valid N.E. Move if above (CF=0 and ZF=0).
OF 43 /r CMOVAET16,r/m16 RM | Valid Valid Move if above or equal (CF=0).
OF 43 /r CMOVAE r32, r/m32 RM | Valid Valid Move if above or equal (CF=0).
REXW +OF 43 /r CMOVAE r64, r/m64 RM | Valid N.E. Move if above or equal (CF=0).
OF42/r CMOVB 16, r/m16 RM | Valid Valid Move if below (CF=1).
OF 42 /r CMOVB 32, r/m32 RM | Valid Valid Move if below (CF=1).
REX.W + OF 42 /r CMOVB r64, r/m64 RM | Valid N.E. Move if below (CF=1).
OF 46 /r CMOVBETr16,r/m16 RM | Valid Valid Move if below or equal (CF=1 or ZF=1).
OF 46 /r CMOVBE r32, r/m32 RM | Valid Valid Move if below or equal (CF=1 or ZF=1).
REXW + OF 46 /r CMOVBE r64, r/m64 RM | Valid N.E. Move if below or equal (CF=1 or ZF=1).
OF 42 /r CMOVCr16,r/m16 RM | Valid Valid Move if carry (CF=1).
OF 42 /r CMOVCr32,r/m32 RM | Valid Valid Move if carry (CF=1).
REX.W + OF 42 /r CMOVC r64, r/m64 RM | Valid N.E. Move if carry (CF=1).
OF 44 /r CMOVETr16,r/m16 RM | Valid Valid Move if equal (ZF=1).
OF 44 /r CMOVE r32, r/m32 RM | Valid Valid Move if equal (ZF=1).
REXW + OF 44 /r CMOVE r64, r/mé4 RM | Valid N.E. Move if equal (ZF=1).
OF 4F /r CMOVGr16,r/m16 RM | Valid Valid Move if greater (ZF=0 and SF=0F).
OF 4F /r CMOVG r32,r/m32 RM | Valid Valid Move if greater (ZF=0 and SF=0F).
REX.W + OF 4F /r CMOVG r64, r/m64 RM | V/NE. N/A Move if greater (ZF=0 and SF=0F).
OF4D/r CMOVGETr16,r/m16 RM | Valid Valid Move if greater or equal (SF=0F).
OF4D /r CMOVGE r32,r/m32 RM | Valid Valid Move if greater or equal (SF=0F).
REXW +OF 4D /r CMOVCGE r64, r/mé4 RM | Valid N.E. Move if greater or equal (SF=0F).
OF4C/r CMOVLr16,r/m16 RM | Valid Valid Move if less (SF# OF).
OF 4C/r CMOVL r32, r/m32 RM | Valid Valid Move if less (SF# OF).
REX.W + OF 4C /r CMOVL r64, r/m64 RM | Valid N.E. Move if less (SF# OF).
OF 4€ /r CMOVLETr16,r/m16 RM | Valid Valid Move if less or equal (ZF=1 or SF# OF).
OF 4€ /r CMOVLE r32, r/m32 RM | Valid Valid Move if less or equal (ZF=1 or SF# OF).
REX.W + OF 4€ /r CMOVLE r64, r/m64 RM | Valid N.E. Move if less or equal (ZF=1 or SF# OF).
OF 46 /r CMOVNAT16,r/m16 RM | Valid Valid Move if not above (CF=1 or ZF=1).
OF 46 /r CMOVNA 32, r/m32 RM | Valid Valid Move if not above (CF=1 or ZF=1).
REXW + OF 46 /r CMOVNA r64, r/m64 RM | Valid N.E. Move if not above (CF=1 or ZF=1).
OF 42 /r CMOVNAET16,r/m16 RM | Valid Valid Move if not above or equal (CF=1).
OF 42 /r CMOVNAE r32, r/m32 RM | Valid Valid Move if not above or equal (CF=1).
REXW +OF 42 /r CMOVNAE r64, r/mé4 RM | Valid N.E. Move if not above or equal (CF=1).
OF 43 /r CMOVNB 16, r/m16 RM | Valid Valid Move if not below (CF=0).
OF 43 /r CMOVNB 32, r/m32 RM | Valid Valid Move if not below (CF=0).
REX.W + OF 43 /r CMOVNB r64, r/m64 RM | Valid N.E. Move if not below (CF=0).
OF 47 /Ir CMOVNBE r16, r/m16 RM | Valid Valid Move if not below or equal (CF=0 and ZF=0).

CMOVcc—Conditional Move

Vol.2A 3-175

Opcode Instruction Op/ |[64-Bit |Compat/ |Description
En |Mode Leg Mode
OF47/r CMOVNBE r32, r/m32 RM | Valid Valid Move if not below or equal (CF=0 and ZF=0).
REXW + OF 47 /r CMOVNBE r64, r/m64 RM | Valid N.E. Move if not below or equal (CF=0 and ZF=0).
OF 43 /r CMOVNCr16, r/m16 RM |Valid Valid Move if not carry (CF=0).
OF43/r CMOVNCr32,r/m32 RM | Valid Valid Move if not carry (CF=0).
REXW + OF 43 /r CMOVNC r64, r/m64 RM |Valid N.E. Move if not carry (CF=0).
OF45/r CMOVNE 16, r/m16 RM | Valid Valid Move if not equal (ZF=0).
OF 45 /r CMOVNE r32, r/m32 RM |Valid Valid Move if not equal (ZF=0).
REXW + OF 45 /r CMOVNE r64, r/m64 RM | Valid N.E. Move if not equal (ZF=0).
OF 4€ /r CMOVNG r16, r/m16 RM | Valid Valid Move if not greater (ZF=1 or SF# OF).
OF 4€E /r CMOVNG r32, r/m32 RM | Valid Valid Move if not greater (ZF=1 or SF# OF).
REX.W + OF 4€ /r CMOVNCG r64, r/m64 RM | Valid N.E. Move if not greater (ZF=1 or SF# OF).
OF 4C /r CMOVNGE r16, r/m16 RM | Valid Valid Move if not greater or equal (SF# OF).
OF 4C/r CMOVNGE r32, r/m32 RM | Valid Valid Move if not greater or equal (SF# OF).
REX.W + OF 4C /r CMOVNGE r64, r/m64 RM | Valid N.E. Move if not greater or equal (SF# OF).
OF4D/r CMOVNL 16, r/m16 RM | Valid Valid Move if not less (SF=0F).
OF4D /r CMOVNL r32, r/m32 RM | Valid Valid Move if not less (SF=0F).
REXW +OF 4D /r CMOVNL r64, r/m64 RM | Valid N.E. Move if not less (SF=0F).
OF 4F /r CMOVNLE r16, r/m16 RM | Valid Valid Move if not less or equal (ZF=0 and SF=0F).
OF 4F /r CMOVNLE r32, r/m32 RM | Valid Valid Move if not less or equal (ZF=0 and SF=0F).
REXW + OF 4F /r CMOVNLE r64, r/m64 RM | Valid N.E. Move if not less or equal (ZF=0 and SF=0F).
OF 41 /r CMOVNOTr16,r/m16 RM | Valid Valid Move if not overflow (OF=0).
OF 41 /r CMOVNO r32, r/m32 RM | Valid Valid Move if not overflow (OF=0).
REXW +OF 41 /r CMOVNO r64, r/m64 RM | Valid N.E. Move if not overflow (OF=0).
OF 4B /r CMOVNP r16, r/m16 RM | Valid Valid Move if not parity (PF=0).
OF 4B /r CMOVNP r32, r/m32 RM | Valid Valid Move if not parity (PF=0).
REX.W + OF 4B /r CMOVNP r64, r/m64 RM |Valid N.E. Move if not parity (PF=0).
OF 49 /r CMOVNSr16,r/m16 RM | Valid Valid Move if not sign (SF=0).
OF 49 /r CMOVNS r32, r/m32 RM | Valid Valid Move if not sign (SF=0).
REXW + OF 49 /r CMOVNS r64, r/mé4 RM | Valid N.E. Move if not sign (SF=0).
OF 45 /r CMOVNZ 16, r/m16 RM | Valid Valid Move if not zero (ZF=0).
OF 45 /r CMOVNZ r32, r/m32 RM | Valid Valid Move if not zero (ZF=0).
REXW +OF 45 /r CMOVNZ r64, r/m64 RM | Valid N.E. Move if not zero (ZF=0).
OF 40 /r CMOVOr16,r/m16 RM | Valid Valid Move if overflow (OF=1).
OF 40 /r CMOVO r32,r/m32 RM | Valid Valid Move if overflow (OF=1).
REXW + OF 40 /r CMOVO r64, r/m64 RM | Valid N.E. Move if overflow (OF=1).
OF 4A It CMOVP r16, r/m16 RM |Valid Valid Move if parity (PF=1).
OF4A /r CMOVP r32,r/m32 RM | Valid Valid Move if parity (PF=1).
REX.W + OF 4A /r CMOVP r64, r/m64 RM |Valid N.E. Move if parity (PF=1).
OF 4A /r CMOVPETr16,r/m16 RM | Valid Valid Move if parity even (PF=1).
OF 4A /r CMOVPE r32, r/m32 RM | Valid Valid Move if parity even (PF=1).
REXW +OF 4A /r CMOVPE r64, r/mé4 RM | Valid N.E. Move if parity even (PF=1).

CMOVcc—Conditional Move

Vol.2A 3-176

Opcode Instruction Op/ |64-Bit |Compat/ |Description
En |Mode Leg Mode
OF 4B /r CMOVPO 16, r/m16 RM |Valid Valid Move if parity odd (PF=0).
OF 4B /r CMOVPO r32, r/m32 RM | Valid Valid Move if parity odd (PF=0).
REXW + OF 4B /r CMOVPO r64, r/m64 RM |Valid N.E. Move if parity odd (PF=0).
OF 48 /r CMOVSr16, r/m16 RM | Valid Valid Move if sign (SF=1).
OF 48 /r CMOVS r32, r/m32 RM |Valid Valid Move if sign (SF=1).
REXW + OF 48 /r CMOVS r64, r/m64 RM | Valid N.E. Move if sign (SF=1).
OF 44 /r CMOVZ 16, r/m16 RM |Valid Valid Move if zero (ZF=1).
OF 44 /r CMOVZ r32,r/m32 RM | Valid Valid Move if zero (ZF=1).
REX.W + OF 44 /r CMOVZ r64, r/m64 RM |Valid N.E. Move if zero (ZF=1).
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Each of the CMOVcc instructions performs a move operation if the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) are in a specified state (or condition). A condition code (cc) is associated with each instruction to indi-
cate the condition being tested for. If the condition is not satisfied, a move is not performed and execution
continues with the instruction following the CMOVcc instruction.

Specifically, CMOVcc loads data from its source operand into a temporary register unconditionally (regardless of
the condition code and the status flags in the EFLAGS register). If the condition code associated with the instruction
(cc) is satisfied, the data in the temporary register is then copied into the instruction's destination operand.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a general-purpose register or from one
general-purpose register to another. Conditional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the above table. The terms “less”
and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used for
unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are
defined for some opcodes. For example, the CMOVA (conditional move if above) instruction and the CMOVNBE
(conditional move if not below or equal) instruction are alternate mnemonics for the opcode OF 47H.

The CMOVcc instructions were introduced in P6 family processors; however, these instructions may not be
supported by all IA-32 processors. Software can determine if the CMOVcc instructions are supported by checking
the processor’s feature information with the CPUID instruction (see "CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation
temp := SRC

IF condition TRUE
THEN DEST := temp;

ELSE IF (OperandSize = 32 and IA-32e mode active)
THEN DEST[63:32] := 0;

Fl;

CMOVcc—Conditional Move Vol.2A 3-177

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

CMOVcc—Conditional Move Vol.2A 3-178

CMP—Compare Two Operands

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
3Cib CMP AL, imm8 | Valid Valid Compare imm8 with AL.
3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.
3Did CMP EAX, imm32 | Valid Valid Compare imm32 with EAX.
REXW + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-extended to 64-bits
with RAX.
80/7ib CMP r/m8, imm8 Ml | Valid Valid Compare imm8 with r/m8.
REX+80/7ib CMP r/m8 , imm8 Ml | Valid N.E. Compare imm8 with r/m8.
81177 iw CMP r/m16,imm16 Ml | Valid Valid Compare imm16 with r/m16.
81/7id CMP r/m32, imm32 Ml | Valid Valid Compare imm32 with r/m32.
REXW + 81 /7 id CMP r/m64, imm32 Ml |Valid N.E. Compare imm32 sign-extended to 64-bits
with r/m64.
83/7ib CMP r/m16, imm8 Ml | Valid Valid Compare imm8 with r/m16.
83/7ib CMP r/m32, imm8 Ml |Valid Valid Compare imm8 with r/m32.
REXW +83 /7 ib CMP r/m64, imm8 Ml | Valid N.E. Compare imm8 with r/m64.
38/r CMP r/m8, r8 MR |Valid Valid Compare r8 with r/m8.
REX +38/r CMPr/m8,r8 MR | Valid N.E. Compare r8 with r/m8.
39/r CMP r/m16,r16 MR | Valid Valid Compare r16 with r/m16.
39/r CMP r/m32,r32 MR | Valid Valid Compare r32 with r/m32.
REXW +39/r CMP r/m64,r64 MR | Valid N.E. Compare r64 with r/m64.
3A/r CMP r8, r/m8 RM | Valid Valid Compare r/m8 with r8.
REX +3A/r CMP 8, r/m8" RM |Valid NE. Compare r/m8 with r8.
3B/r CMPr16,r/m16 RM | Valid Valid Compare r/m16 with r16.
3B /r CMP r32,r/m32 RM | Valid Valid Compare r/m32 with r32.
REXW + 3B /r CMP r64, r/m64 RM | Valid N.E. Compare r/m64 with ré4.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
MR ModRM:r/m (r) ModRM:reg (r) N/A N/A
MI ModRM:r/m (r) imm8/16/32 N/A N/A
I AL/AX/EAX/RAX (r) imm8/16/32 N/A N/A
Description

Compares the first source operand with the second source operand and sets the status flags in the EFLAGS register
according to the results. The comparison is performed by subtracting the second operand from the first operand

and then setting the status flags in the same manner as the SUB instruction. When an immediate value is used as
an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruction.
Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, shows the relationship of the status flags and the condition codes.

CMP—Compare Two Operands

Vol.2A 3-179

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

temp := SRC1 — SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

CMP—Compare Two Operands Vol.2A 3-180

CMPccXADD—Compare and Add if Condition is Met

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.WO0 E6 I(11):rrr:bbb
CMPBEXADD m32,r32,r32

A

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If below or equal (CF=1 or ZF=1),
add value from r32 (third operand) to m32 and
write new value in m32. The second operand is
always updated with the original value from
m32.

VEX.128.66.0F38.W1 E6 !(11):rrr:bbb
CMPBEXADD m64, r64, re4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If below or equal (CF=1 or ZF=1),
add value from r64 (third operand) to m64 and
write new value in m64. The second operand is
always updated with the original value from
m64.

VEX.128.66.0F38.W0 E2 (11):rrr:bbb
CMPBXADD m32, r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If below (CF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E2 |(11):rrr:bbb
CMPBXADD mb64, r64, reé4

V/NE.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If below (CF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 EE |(11):rrr:bbb
CMPLEXADD m32,r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If less or equal (ZF=1 or SF#£0F),
add value from r32 (third operand) to m32 and
write new value in m32. The second operand is
always updated with the original value from
m32.

VEX.128.66.0F38.W1 EE !{(11):rrr:bbb
CMPLEXADD mb64, r64, ro4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If less or equal (ZF=1 or SF£0F),
add value from r64 (third operand) to m64 and
write new value in m64. The second operand is
always updated with the original value from
m64.

VEX.128.66.0F38.W0 EC!(11):rrr:bbb
CMPLXADD m32, r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If less (SF#OF), add value from r32
(third operand) to m32 and write new value in
m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EC!(11):rrr:bbb
CMPLXADD m64, r64, ro4

V/NE.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If less (SF#£OF), add value from r64
(third operand) to m64 and write new value in
m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E7 !(11):rrr:bbb
CMPNBEXADD m32,r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not below or equal (CF=0 and
ZF=0), add value from r32 (third operand) to
m32 and write new value in m32. The second
operand is always updated with the original
value from m32.

CMPccXADD—Compare and Add if Condition is Met

Vol.2A 3-181

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W1 E7 {(11):rrr:bbb
CMPNBEXADD m64, r64, ro4

V/NE.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not below or equal (CF=0 and
ZF=0), add value from r64 (third operand) to
m64 and write new value in m64. The second
operand is always updated with the original
value from m64.

VEX.128.66.0F38.WO0 E3 !(11):rrr:bbb
CMPNBXADD m32,r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not below (CF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E3 I(11):rrr:bbb
CMPNBXADD m64, r64, r64

V/NE.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not below (CF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.WO0 EF {(11).rrr:bbb
CMPNLEXADD m32, r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not less or equal (ZF=0 and
SF=0F), add value from r32 (third operand) to
m32 and write new value in m32. The second
operand is always updated with the original
value from m32.

VEX.128.66.0F38.W1 EF !(11):rrr:bbb
CMPNLEXADD m64, r64, re4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not less or equal (ZF=0 and
SF=0F), add value from r64 (third operand) to
m64 and write new value in m64. The second
operand is always updated with the original
value from m64.

VEX.128.66.0F38.W0 ED |(11):rrr:bbb
CMPNLXADD m32, r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not less (SF=0F), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 ED |(11):rrr:bbb
CMPNLXADD m64, r64, ro4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not less (SF=0F), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.WO0 ET I(11):rrr:bbb
CMPNOXADD m32,r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not overflow (OF=0), add value
from r32 (third operand) to m32 and write new
value in m32. The second operand is always
updated with the original value from m32.

VEX.128.66.0F38.W1 ET (11):rrr:bbb
CMPNOXADD m64, r64, r64

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not overflow (OF=0), add value
from r64 (third operand) to m64 and write new
value in m64. The second operand is always
updated with the original value from m64.

CMPccXADD—Compare and Add if Condition is Met

Vol.2A 3-182

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.WO0 EB I(11):rrr:bbb
CMPNPXADD m32,r32,r32

V/NE.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not parity (PF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EB I(11):rrr:bbb
CMPNPXADD m64, r64, re4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not parity (PF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.WO0 ES !(11):rrr:bbb
CMPNSXADD m32,r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not sign (SF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 ES I(11):rrr:bbb
CMPNSXADD m64, r64, r64

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not sign (SF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.WO0 E5 !(11):rrr:bbb
CMPNZXADD m32,r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If not zero (ZF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E5 !(11):rrr:bbb
CMPNZXADD m64, r64, r64

V/NE.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If not zero (ZF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 EO !(11):rrr:bbb
CMPOXADD m32, r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If overflow (OF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EO (11):rrr:bbb
CMPOXADD m64, r64, re4

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If overflow (OF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 EA !(11):rrr:bbb
CMPPXADD m32,r32,r32

V/N.E.

CMPCCXADD

Compare value in r32 (second operand) with
value in m32. If parity (PF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EA |(11):rrr:bbb
CMPPXADD m64, r64, r64

V/N.E.

CMPCCXADD

Compare value in r64 (second operand) with
value in m64. If parity (PF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

CMPccXADD—Compare and Add if Condition is Met

Vol.2A 3-183

Opcode/ Op/ 64/32 bit | CPUID Feature | Description

Instruction En Mode Flag
Support
VEX.128.66.0F38.W0 €8 !(11):rrr:bbb A V/IN.E. CMPCCXADD Compare value in r32 (second operand) with

value in m32. If sign (SF=1), add value from r32
(third operand) to m32 and write new value in
m32. The second operand is always updated
with the original value from m32.

CMPSXADD m32, r32,r32

VEX.128.66.0F38.W1 €8 (11):rrrbbb A V/N.E. CMPCCXADD Compare value in r64 (second operand) with

value in m64. If sign (SF=1), add value from r64
(MPSXADD mb4, r64, 64 (third operand) to m64 and write new value in
m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E4 I(11):rrr:bbb A V/N.E. CMPCCXADD Compare value in r32 (second operand) with

value in m32. If zero (ZF=1), add value from r32
(MPZXADD m3¢, r32, r32 (third operand) to m32 and write new value in
m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 €4 I(11):rrr:bbb A V/N.E. CMPCCXADD Compare value in r64 (second operand) with

value in m64. If zero (ZF=1), add value from r64
(MPZXADD mb4, r64, ro4 (third operand) to m64 and write new value in
m64. The second operand is always updated
with the original value from m64.

Instruction Operand Encoding’

Op/En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:r/m (r, w) ModRM:reg (r, w) VEX.vvwv (r) N/A
Description

This instruction compares the value from memory with the value of the second operand. If the specified condition
is met, then the processor will add the third operand to the memory operand and write it into memory, else the
memory is unchanged by this instruction.

This instruction must have MODRM.MOD equal to 0, 1, or 2. The value 3 for MODRM.MOD is reserved and will cause
an invalid opcode exception (#UD).

The second operand is always updated with the original value of the memory operand. The EFLAGS conditions are
updated from the results of the comparison.The instruction uses an implicit lock. This instruction does not permit
the use of an explicit lock prefix.

Operation

CMPCCXADD srcdest1, srcdest2, src3
tmp1 := load lock srcdest1
tmp2 := tmp1 + src3
EFLAGS.CS,0F,SF,ZF AF,PF := CMP tmp1, srcdest2
IF <condition>:
srcdest1 := store unlock tmp2
ELSE
srcdest1 := store unlock tmp1
srcdest2 :=tmp1

1. ModRM.MOD!=011B

CMPccXADD—Compare and Add if Condition is Met Vol.2A 3-184

Flags Affected
The EFLAGS conditions are updated from the results of the comparison.

Intel C/C++ Compiler Intrinsic Equivalent

CMPCCXADD int _cmpccxadd_epi32 (void* __A, int __B,int __C, constint __D);
CMPCCXADD __int64 _cmpccxadd_epi64 (void* __A, __int64 __B, __int64 __C, constint __D);

SIMD Floating-Point Exceptions
None.

Exceptions
Exceptions Type 14; see Table 2-31.

CMPccXADD—Compare and Add if Condition is Met Vol.2A 3-185

CMPPD—Compare Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag
Support
66 0FC2 /rib A VIV SSE2 Compare packed double precision floating-point
CMPPD xmm1, xmm2/m128, imm8 values in xmm2/m128 and xmm1 using bits 2:0 of
imm8 as a comparison predicate.
VEX.128.66.0F.WIG C2 /r ib B VIV AVX Compare packed double precision floating-point
VCMPPD xmm1, xmmZ2, xmm3/m128, values in xmm3/m128 and xmm2 using bits 4:0 of
imm8 imm8 as a comparison predicate.
VEX.256.66.0F.WIG C2 /r ib B VIV AVX Compare packed double precision floating-point
VCMPPD ymm1, ymm2, ymm3/m256, values in ymm3/m256 and ymmZ using bits 4:0 of
imm8 imm8 as a comparison predicate.
EVEX.128.66.0F.W1 C2 /rib C VIV (AVX512VL AND | Compare packed double precision floating-point
VCMPPD k1 {k2}, xmmZ2, AVX512F) OR values in xmm3/m128/m64bcst and xmm2 using
xmm3/m128/m64bcst, imm8 AVX10.1" bits 4.0 of imm8 as a comparison predicate with
writemask k2 and leave the result in mask register
k1.
EVEX.256.66.0F.W1 C2 /rib C VIV (AVX512VL AND | Compare packed double precision floating-point
VCMPPD k1 {k2}, ynm2, AVX512F) OR values in ymm3/m256/m64bcst and ymm2 using
ymm3/m256/m64bcst, imm8 AVX10.11 bits 4.0 of imm8 as a comparison predicate with
writemask k2 and leave the result in mask register
k1.
EVEX.512.66.0F.W1 C2 /rib C VIV AVX512F Compare packed double precision floating-point
VCMPPD k1 {k2}, zmmZ, OR AVX10.1! values in zmm3/m512/m64bcst and zmm2 using
zmm3/m512/m64bcst {sae}, imm8 bits 4.0 of imm8 as a comparison predicate with
writemask k2 and leave the result in mask register
k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
C Full ModRM:reg (w) EVEX.vvwv (r) ModRM:r/m (r) imm8
Description

Performs a SIMD compare of the packed double precision floating-point values in the second source operand and
the first source operand and returns the result of the comparison to the destination operand. The comparison pred-
icate operand (immediate byte) specifies the type of comparison performed on each pair of packed values in the

two source operands.

EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location ora 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand (first operand) is an opmask register.
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a
single mask bit of 1 (comparison true) or 0 (comparison false).

VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first

CMPPD—Compare Packed Double Precision Floating-Point Values

Vol.2A 3-186

operand) is a YMM register. Four comparisons are performed with results written to the destination operand. The
result of each comparison is a quadword mask of all 1s (comparison true) or all Os (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128)
of the corresponding ZMM destination register remain unchanged. Two comparisons are performed with results
written to bits 127:0 of the destination operand. The result of each comparison is a quadword mask of all 1s
(comparison true) or all Os (comparison false).

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destina-
tion ZMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destination
operand.

The comparison predicate operand is an 8-bit immediate:

® Forinstructions encoded using the VEX or EVEX prefix, bits 4:0 define the type of comparison to be performed
(see Table 3-8). Bits 5 through 7 of the immediate are reserved.

® For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 3-8). Bits 3 through 7 of the immediate are reserved.

Table 3-8. Comparison Predicate for CMPPD and CMPPS Instructions

Predicate imm8 | Description Result: A Is 1st Operand, B Is 2nd Operand | Signals
Value A>B |A<B |A=B | Unordered’ g',\‘:\A?\,"
EQ_0Q (EQ) OH Equal (ordered, non-signaling) False False True False No
LT_OS (LT) TH Less-than (ordered, signaling) False True False False Yes
LE_OS (LE) 2H Less-than-or-equal (ordered, signaling) False True True False Yes
UNORD_Q (UNORD) | 3H Unordered (non-signaling) False False False True No
NEQ_UQ (NEQ) 4H Not-equal (unordered, non-signaling) True True False True No
NLT_US (NLT) 5H Not-less-than (unordered, signaling) True False True True Yes
NLE_US (NLE) 6H Not-less-than-or-equal (unordered, signaling) | True False False True Yes
ORD_Q (ORD) 7H Ordered (non-signaling) True True True False No
EQ_UQ 8H Equal (unordered, non-signaling) False False True True No
NGE_US (NGE) 9H Not-greater-than-or-equal (unordered, False True False True Yes
signaling)
NGT_US (NGT) AH Not-greater-than (unordered, signaling) False True True True Yes
FALSE_OQ(FALSE) |BH False (ordered, non-signaling) False False False False No
NEQ_OQ CH Not-equal (ordered, non-signaling) True True False False No
GE_OS (GE) DH Greater-than-or-equal (ordered, signaling) True False True False Yes
GT_OS (GT) EH Greater-than (ordered, signaling) True False False False Yes
TRUE_UQ(TRUE) FH True (unordered, non-signaling) True True True True No
EQ_OS 10H | Equal (ordered, signaling) False False True False Yes
LT_0Q 11H | Less-than (ordered, nonsignaling) False True False False No
LE_OQ 12H | Less-than-or-equal (ordered, nonsignaling) False True True False No
UNORD_S 13H | Unordered (signaling) False False False True Yes
NEQ_US 14H Not-equal (unordered, signaling) True True False True Yes
NLT_UQ 15H | Not-less-than (unordered, nonsignaling) True False True True No
NLE_UQ 16H | Not-less-than-or-equal (unordered, nonsig- | True False False True No
naling)

CMPPD—Compare Packed Double Precision Floating-Point Values Vol.2A 3-187

Table 3-8. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)

Predicate imm8 | Description Result: A Is 1st Operand, B Is 2nd Operand | Signals
Value A>B |A<B |A=B |Unordered’ g:\‘:‘A?\,"
ORD_S 17H | Ordered (signaling) True True True False Yes
EQ_US 18H | Equal (unordered, signaling) False False True True Yes
NGE_UQ 19H | Not-greater-than-or-equal (unordered, non- | False True False True No
signaling)
NGT_UQ 1AH | Not-greater-than (unordered, nonsignaling) | False True True True No
FALSE_OS 1BH | False (ordered, signaling) False False False False Yes
NEQ_OS 1CH Not-equal (ordered, signaling) True True False False Yes
GE_OQ 1DH | Greater-than-or-equal (ordered, nonsignal- True False True False No
ing)
GT_0Q 1EH Greater-than (ordered, nonsignaling) True False False False No
TRUE_US 1FH | True (unordered, signaling) True True True True Yes
NOTES:

1. If either operand A or B is a NAN.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all Os corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPPD instruction, for processors with "CPUID.1H:ECX.AVX =0". See Table 3-9. The compiler should treat
reserved imm8 values as illegal syntax.

Table 3-9. Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation
CMPEQPD xmm1, xmm2 CMPPD xmm1, xmmZ2, O
CMPLTPD xmm1, xmm2 CMPPD xmm1, xmmZ2, 1
CMPLEPD xmm1, xmm2 CMPPD xmm1, xmmz2, 2
CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3
CMPNEQPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 4
CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5
CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmmZ2, 6
CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the

CMPPD—Compare Packed Double Precision Floating-Point Values Vol.2A 3-188

operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 predicates shown in Table 3-10,
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPPD instruction. See Table 3-10, where the notations of regl reg2,
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPD
instructions in a similar fashion by extending the syntax listed in Table 3-10.

Table 3-10. Pseudo-Op and VCMPPD Implementation

Pseudo-Op

CMPPD Implementation

VCMPEQPD reg]l, reg2, reg3

VCMPPD reg]1, regz, reg3, 0

VCMPLTPD reg1, regz, reg3

VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3

VCMPPD reg1, rege, reg3, 2

VCMPUNORDPD regl, reg2, reg3

VCMPPD regl, rege, reg3, 3

VVCMPNEQPD reg], reg2, reg3

VCMPPD reg1, rege, reg3, 4

VCMPNLTPD regl, reg2, reg3

VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3

VCMPPD regl, rege, reg3, 6

VCMPORDPD reg1, regz, reg3

VCMPPD reg]1, reg2, reg3, 7

VCMPEQ_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD regl, reg2, reg3

VCMPPD regl, rege, reg3, 9

VCMPNGTPD reg1, reg2, reg3

VCMPPD reg1, regz, reg3, 0OAH

VCMPFALSEPD reg1, reg2, reg3

VCMPPD reg1, regZ, reg3, 0BH

VCMPNEQ_OQPD regl, regz, reg3

VCMPPD reg1, reg2, reg3, OCH

VCMPGEPD regl, reg2, reg3

VCMPPD reg1, reg2, reg3, ODH

VCMPGTPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, OEH

VCMPTRUEPD reg1, reg2, reg3

VCMPPD regl, regz, reg3, OFH

VCMPEQ_OSPD regl, reg2, reg3

VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, rege, reg3

VCMPPD regl, reg2, reg3, 12H

VCMPUNORD_SPD reg1, regz, reg3

VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3

VCMPPD regl, reg2, reg3, 14H

VCMPNLT_UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 15H

VCMPNLE_UQPD regT, regz, reg3

VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD regl, regz, reg3

VCMPPD regl, reg2, reg3, 18H

VCMPNGE_UQPD regl, reg2, reg3

VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3

VCMPPD reg1, regz, reg3, 1AH

VCMPFALSE_OSPD regl, regz, reg3

VCMPPD regl, rege, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD regl, reg2, reg3

VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD regl, reg2, reg3

VCMPPD regl, regz, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3

VCMPPD reg1, regz, reg3, 1FH

CMPPD—Compare Packed Double Precision Floating-Point Values

Vol.2A 3-189

Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 := EQ_0Q; OP5 := EQ_0Q;
1:0P3:=LT_0OS; OP5:=LT_OS;
2:0P3:= LE_OS; OP5 := LE_OS;
3: 0P3:= UNORD_Q; OP5 := UNORD_Q;
4: 0P3 := NEQ_UQ; OP5 := NEQ_UQ;
5:0P3:= NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7:0P3:= ORD_Q; OP5:= ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5:= NEQ_OQ;
13: OP5 := GE_OS;
14:0P5:= GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 ;= EQ_OS;
17:0P5:=LT_0OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21:0P5:= NLT_UQ;
22:0P5 := NLE_UQ;
23:0P5:= ORD_S;
24: 0P5 ;= EQ_US;
25: 0P5 := NGE_UQ;
26: 0P5 := NGT_UQ;
27:.0P5 := FALSE_OS;
28: 0P5 := NEQ_OS;
29: OP5 := GE_OQ;
30: 0P5:=GT_0OQ;
31: 0P5 := TRUE_US;
DEFAULT: Reserved;
ESAC;

VCMPPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8,512)
FORj:=0 TOKL-1

i=j*64
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory?*)
THEN
CMP := SRC1[i+63:i] OP5 SRC2[63:0]
ELSE
CMP := SRC1[i+63:i] OP5 SRC2[i+63:i]
FI;
IF CMP = TRUE
THEN DEST[j]:= 1;
ELSE DEST[j]:= 0; FI;
ELSE DEST[]]:=0 ; zeroing-masking only

Fl;

CMPPD—Compare Packed Double Precision Floating-Point Values Vol.2A 3-190

ENDFOR
DEST[MAX_KL-1:KL]:= 0

VCMPPD (VEX.256 Encoded Version)
CMPO := SRC1[63:0] OP5 SRC2[63:0];
CMP1 := SRC1[127:64] OP5 SRC2[127:64];
CMP2 := SRC1[191:128] OP5 SRC2[191:128];
CMP3 := SRC1[255:192] OP5 SRC2[255:192];
IF CMPO = TRUE
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;
IF CMP2 = TRUE
THEN DEST[191:128] := FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] := 0000000000000000H; FI;
IF CMP3 = TRUE
THEN DEST[255:192] := FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] := 0000000000000000H; FI;
DEST[MAXVL-1:256]:= 0

VCMPPD (VEX.128 Encoded Version)
CMPO := SRC1[63:0] OP5 SRC2[63:0];
CMP1 := SRC1[127:64] OP5 SRC2[127:64];
IF CMPO = TRUE
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;
DEST[MAXVL-1:128]:=0

CMPPD (128-bit Legacy SSE Version)
CMPO := SRC1[63:0] OP3 SRC2[63:0];
CMP1 := SRC1[127:64] OP3 SRC2[127:64];
IF CMPO = TRUE
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPD _mmask8 _mm512_cmp_pd_mask(_m512d a, __m512d b, int imm);

VCMPPD __mmask8 _mm512_cmp_round_pd_mask(_m512d a, __m512d b, int imm, int sae);

VCMPPD __mmask8 _mm512_mask_cmp_pd_mask(_mmask8 k1, __m512d a, __m512d b, int imm);

VCMPPD __mmask8 _mm512_mask_cmp_round_pd_mask(__mmask8 k1, __m512d a, __m512d b, int imm, int sae);
VCMPPD __mmask8 _mm256_cmp_pd_mask(__m256d a, __m256d b, int imm);

VCMPPD __mmask8 _mm256_mask_cmp_pd_mask(_mmask8 k1, __m256d a, __m256d b, int imm);

VCMPPD __mmask8 _mm_cmp_pd_mask(__m128d a, __m128d b, int imm);

VCMPPD __mmask8 _mm_mask_cmp_pd_mask(_mmask8 k1, __m128d a,__m128d b, int imm);

VCMPPD _m256 _mm256_cmp_pd(__m256d a, __m256d b, int imm)

CMPPD—Compare Packed Double Precision Floating-Point Values

Vol.2A 3-191

(V)CMPPD _m128 _mm_cmp_pd(__m128d a, __m128d b, int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 3-8, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

CMPPD—Compare Packed Double Precision Floating-Point Values Vol.2A 3-192

CMPPS—Compare Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Feature |Description
Instruction En Mode Flag
Support
NP OF C2 /rib A VIV SSE Compare packed single precision floating-point values in
CMPPS xmm1, xmm2/m128, imm8 xmm2/m128 and xmm1 using bits 2:0 of imm8 as a
comparison predicate.
VEX.128.0F.WIG C2 /rib B VIV AVX Compare packed single precision floating-point values in
VCMPPS xmm1, xmmZ, xmm3/m128 and xmmZ2 using bits 4:0 of imm8 as a
xmm3/m128, imm8 comparison predicate.
VEX.256.0F.WIG C2 /rib B VIV AVX Compare packed single precision floating-point values in
VCMPPS ymm1, ymmZ, ymm3/m256 and ymmZ2 using bits 4:0 of imm8 as a
ymm3/m256, imm8 comparison predicate.
EVEX.128.0F.WO0 C2 /rib C VIV (AVX512VL AND | Compare packed single precision floating-point values in
VCMPPS k1 {k2}, xmmz, AVX512F) OR xmm3/m128/m32bcst and xmmZ2 using bits 4:0 of
xmm3/m128/m32bcst, imm8 AVX10.1" imm8 as a comparison predicate with writemask k2 and
leave the result in mask register k1.
EVEX.256.0F.WO0 C2 /rib C VIV (AVX512VL AND | Compare packed single precision floating-point values in
VCMPPS k1 {k2}, ymm2, AVX512F) OR ymm3/m256/m32bcst and ymmZ2 using bits 4:0 of
ymm3/m256/m32bcst, imm8 AVX10.1" imm8 as a comparison predicate with writemask k2 and
leave the result in mask register k1.
EVEX.512.0FWO C2 /rib C VIV AVX512F Compare packed single precision floating-point values in
VCMPPS k1 {k2}, zmm2, OR AVX10.11 zmm3/m512/m32bcst and zmm2 using bits 4:0 of imm8
zmm3/m512/m32bcst {sae}, imm8 as a comparison predicate with writemask k2 and leave
the result in mask register k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
B N/A ModRM:reg (w) VEX.vwvv (r) ModRM:r/m (r) imm8
C Full ModRM:reg (w) EVEX.vvwv () ModRM:r/m (r) imm8
Description

Performs a SIMD compare of the packed single precision floating-point values in the second source operand and

the first source operand and returns the result of the comparison to the destination operand. The comparison pred-
icate operand (immediate byte) specifies the type of comparison performed on each of the pairs of packed values.

EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location ora 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand (first operand) is an opmask register.
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a
single mask bit of 1 (comparison true) or 0 (comparison false).

VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first
operand) is a YMM register. Eight comparisons are performed with results written to the destination operand. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all Os (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128)

CMPPS—Compare Packed Single Precision Floating-Point Values Vol.2A 3-193

of the corresponding ZMM destination register remain unchanged. Four comparisons are performed with results
written to bits 127:0 of the destination operand. The result of each comparison is a doubleword mask of all 1s
(comparison true) or all Os (comparison false).

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destina-
tion ZMM register are zeroed. Four comparisons are performed with results written to bits 127:0 of the destination
operand.

The comparison predicate operand is an 8-bit immediate:

® For instructions encoded using the VEX prefix and EVEX prefix, bits 4:0 define the type of comparison to be
performed (see Table 3-8). Bits 5 through 7 of the immediate are reserved.

® For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 3-8). Bits 3 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all Os corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPPS instruction, for processors with "CPUID.1H:ECX.AVX =0". See Table 3-11. The compiler should treat
reserved imm8 values as illegal syntax.

Table 3-11. Pseudo-Op and CMPPS Implementation

Pseudo-Op CMPPS Implementation
CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, O
CMPLTPS xmm1, xmm2 CMPPS xmm1, xmmZ2, 1
CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2
CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmmZ, 3
CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmmZ2, 4
CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5
CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmmZ2, 6
CMPORDPS xmm1, xmm2 CMPPS xmm1, xmmZ2, 7

The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 predicates shown in Table 3-12,
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPPS instruction. See Table 3-12, where the notation of regl and
reg2 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as illegal
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPS instructions
in a similar fashion by extending the syntax listed in Table 3-12.

CMPPS—Compare Packed Single Precision Floating-Point Values Vol.2A 3-194

Table 3-12. Pseudo-Op and VCMPPS Implementation

Pseudo-0Op CMPPS Implementation
VCMPEQPS regl, reg2, reg3 VCMPPS reg1, regz, reg3, 0
VCMPLTPS regl, reg2, reg3 VCMPPS reg1, reg2, reg3, 1
VCMPLEPS reg1, regz2, reg3 VCMPPS regl, reg2, reg3, 2
VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3
VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4
VCMPNLTPS reg1, reg2, reg3 VCMPPS regl, reg2, reg3, 5
VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6
VCMPORDPS reg1, regZ, reg3 VCMPPS reg1, reg2, reg3, 7
VCMPEQ_UQPS regl, rege, reg3 VCMPPS regl, reg2, reg3, 8
VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, regz, reg3, 9
VCMPNGTPS reg1, regz, reg3 VCMPPS regl, regZ, reg3, OAH

VCMPFALSEPS regl, reg2, reg3

VCMPPS reg],

reg2, reg3, OBH

VCMPNEQ_OQPS regl, regz, reg3

VCMPPS regl,

regz2, reg3, OCH

VCMPGEPS reg1, reg2, reg3

VCMPPS reg],

reg2, reg3, ODH

VCMPGTPS reg1, regz, reg3

VCMPPS reg],

reg2, reg3, OEH

VCMPTRUEPS reg1, reg2, reg3

VCMPPS regl,

regz2, reg3, OFH

VCMPEQ_OSPS reg1, regz, reg3

VCMPPS reg],

regz, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3

VCMPPS regl,

reg2, reg3, 11H

VCMPLE_OQPS reg1, rege, reg3

VCMPPS regl,

regz2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3

VCMPPS reg],

regz, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3

VCMPPS reg],

reg2, reg3, 14H

VCMPNLT_UQPS regl, reg2, reg3

VCMPPS regl,

regz2, reg3, 15H

VCMPNLE_UQPS reg1, regz, reg3

VCMPPS reg],

regz, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3

VCMPPS reg],

reg2, reg3, 17H

VCMPEQ_USPS regl, regz, reg3

VCMPPS regl,

regz2, reg3, 18H

VCMPNGE_UQPS regl, reg2, reg3

VCMPPS reg],

reg2, reg3, 19H

VCMPNGT_UQPS reg1, rege, reg3

VCMPPS reg],

regz2, reg3, 1AH

VCMPFALSE_OSPS regl, regz, reg3

VCMPPS regl,

regz, reg3, 1BH

VCMPNEQ_OSPS reg1, regz, reg3

VCMPPS reg],

reg2, reg3, 1CH

VCMPGE_OQPS regl, rege, reg3

VCMPPS reg],

reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3

VCMPPS regl,

regz2, reg3, 1€H

VCMPTRUE_USPS reg1, reg2, reg3

VCMPPS reg],

reg2, reg3, 1FH

CMPPS—Compare Packed Single Precision Floating-Point Values

Vol.2A 3-195

Operation

CASE (COMPARISON PREDICATE) OF
0: OP3:= EQ_0Q; OP5 := EQ_0Q;
1:0P3:=LT_0OS; OP5:=LT_OS;
2:0P3:= LE_OS; OP5 := LE_OS;

3: 0P3:= UNORD_Q; OP5 := UNORD_Q;
4: 0P3 := NEQ_UQ; OP5 := NEQ_UQ;
5:0P3:= NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7:0P3:= ORD_Q; OP5:= ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5:= NEQ_OQ;
13: OP5 := GE_OS;
14:0P5:= GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 ;= EQ_OS;
17:0P5:=LT_0OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21:0P5:= NLT_UQ;
22:0P5 := NLE_UQ;
23:0P5:= ORD_S;
24: 0P5 ;= EQ_US;
25: 0P5 := NGE_UQ;
26: 0P5 := NGT_UQ;
27:.0P5 := FALSE_OS;
28: 0P5 := NEQ_OS;
29: OP5 := GE_OQ;
30: 0P5:=GT_0OQ;
31: 0P5 := TRUE_US;
DEFAULT: Reserved
ESAC;

VCMPPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0 TOKL-1

i=j*32
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory?*)
THEN
CMP := SRC1[i+31:i] OP5 SRC2[31:0]
ELSE
CMP := SRC1[i+31:i] OP5 SRCZ[i+31:i]
FI;
IF CMP = TRUE
THEN DEST[j]:= 1;
ELSE DEST[j]:= 0; FI;
ELSE DEST[]]:=0 ; zeroing-masking onlyFl;

Fl;

CMPPS—Compare Packed Single Precision Floating-Point Values Vol.2A 3-196

ENDFOR
DEST[MAX_KL-1:KL]:= 0

VCMPPS (VEX.256 Encoded Version)
CMPO := SRC1[31:0] OP5 SRC2[31:0];
CMP1 := SRC1[63:32] OP5 SRC2[63:32];
CMP2 := SRC1[95:64] OP5 SRC2[95:64];
CMP3 ;= SRC1[127:96] OP5 SRC2[127:96];
CMP4 ;= SRC1[159:128] OP5 SRC2[159:128];
CMP5 := SRC1[191:160] OP5 SRC2[191:160];
CMP6 := SRC1[223:192] OP5 SRC2[223:192];
CMP7 := SRC1[255:224] OP5 SRC2[255:224];
IF CMPO = TRUE

THEN DEST[31:0] :=FFFFFFFFH;

ELSE DEST[31:0] := 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] := FFFFFFFFH;

ELSE DEST[63:32] :=000000000H; F;
IF CMP2 = TRUE

THEN DEST[95:64] := FFFFFFFFH;

ELSE DEST[95:64] := 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] := FFFFFFFFH;

ELSE DEST[127:96] := 000000000H; FI;
IF CMP4 = TRUE

THEN DEST[159:128] := FFFFFFFFH;

ELSE DEST[159:128] := 000000000H; Fl;
IF CMP5 = TRUE

THEN DEST[191:160] := FFFFFFFFH;

ELSE DEST[191:160] := 000000000H; FI;
IF CMP6 = TRUE

THEN DEST[223:192] := FFFFFFFFH;

ELSE DEST[223:192] :=000000000H; FI;
IF CMP7 = TRUE

THEN DEST[255:224] := FFFFFFFFH;

ELSE DEST[255:224] := 000000000H; Fl;
DEST[MAXVL-1:256]:= 0

VCMPPS (VEX.128 Encoded Version)
CMPO := SRC1[31:0] OP5 SRC2[31:0];
CMP1 ;= SRC1[63:32] OP5 SRC2[63:32];
CMP2 := SRC1[95:64] OP5 SRC2[95:64];
CMP3 ;= SRC1[127:96] OP5 SRC2[127:96];
IF CMPO = TRUE

THEN DEST[31:0] :=FFFFFFFFH;

ELSE DEST[31:0] := 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] := FFFFFFFFH;

ELSE DEST[63:32] := 000000000H; FI;
IF CMP2 = TRUE

THEN DEST[95:64] := FFFFFFFFH;

ELSE DEST[95:64] := 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] := FFFFFFFFH;

CMPPS—Compare Packed Single Precision Floating-Point Values

Vol.2A 3-197

ELSE DEST[127:96] :=000000000H; FI;
DEST[MAXVL-1:128]:=0

CMPPS (128-bit Legacy SSE Version)
CMPO := SRC1[31:0] OP3 SRC2[31:0];
CMP1 := SRC1[63:32] OP3 SRC2[63:32];
CMP2 := SRC1[95:64] OP3 SRC2[95:64];
CMP3 := SRC1[127:96] OP3 SRC2[127:96];
IF CMPO = TRUE

THEN DEST[31:0] :=FFFFFFFFH;

ELSE DEST[31:0] := 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] := FFFFFFFFH;

ELSE DEST[63:32] := 000000000H; FI;
IF CMP2 = TRUE

THEN DEST[95:64] := FFFFFFFFH;

ELSE DEST[95:64] := 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] := FFFFFFFFH;

ELSE DEST[127:96] :=000000000H; FI;
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPS __mmask16 _mm512_cmp_ps_mask(__m512 a, _m512 b, int imm);

VCMPPS __mmask16 _mm512_cmp_round_ps_mask(_m512 a,__m512 b, int imm, int sae);
VCMPPS __mmask16 _mm512_mask_cmp_ps_mask(__mmask16 k1, __m512 a, __m512 b, intimm);
VCMPPS __mmask16 _mm512_mask_cmp_round_ps_mask(_mmask16 k1, _m512 a,__m512 b, int imm, int sae);
VCMPPS __mmask8 _mm256_cmp_ps_mask(_m256 a, __m256 b, int imm);

VCMPPS __mmask8 _mm256_mask_cmp_ps_mask(__mmask8 k1, __m256 a,__m256 b, int imm);
VCMPPS _mmask8 _mm_cmp_ps_mask(_m128a, __m128 b, int imm);

VCMPPS __mmask8 _mm_mask_cmp_ps_mask(__mmask8 k1, __m128a,_m128b, intimm);
VCMPPS _m256 _mm256_cmp_ps(__m256 a, __m256 b, int imm)

CMPPS _m128 _mm_cmp_ps(__m128a, __m128 b, int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 3-8, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “"Type E2 Class Exception Conditions.”

CMPPS—Compare Packed Single Precision Floating-Point Values

Vol.2A 3-198

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
A6 CMPS m8, m8 Z0 |Valid Valid For legacy mode, compare byte at address DS:(E)SI with

byte at address ES:(E)DI; For 64-bit mode compare byte
at address (R|E)SI to byte at address (R|E)DI. The status
flags are set accordingly.

A7 CMPS m16, m16 Z0 |Valid Valid For legacy mode, compare word at address DS:(E)SI
with word at address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI with word at address
(R|E)DI. The status flags are set accordingly.

A7 CMPS m32, m32 Z0 |Valid Valid For legacy mode, compare dword at address DS:(E)SI at
dword at address ES:(E)DI; For 64-bit mode compare
dword at address (R|E)SI at dword at address (R|E)DI.
The status flags are set accordingly.

REX.W + A7 CMPS m64, m64 Z0 |Valid N.E. Compares quadword at address (R|E)SI with quadword
at address (R|E)DI and sets the status flags accordingly.
A6 CMPSB Z0 |Valid Valid For legacy mode, compare byte at address DS:(E)SI with

byte at address ES:(E)DI; For 64-bit mode compare byte
at address (R|E)SI with byte at address (R|E)DI. The
status flags are set accordingly.

A7 CMPSW Z0 |Valid Valid For legacy mode, compare word at address DS:(E)SI
with word at address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI with word at address
(RIE)DI. The status flags are set accordingly.

A7 CMPSD Z0 |Valid Valid For legacy mode, compare dword at address DS:(E)SI
with dword at address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI with dword at
address (R|E)DI. The status flags are set accordingly.

REX.W + A7 CMPSQ Z0 |Valid N.E. Compares quadword at address (R|E)SI with quadword
at address (R|E)DI and sets the status flags accordingly.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
20 N/A N/A N/A N/A
Description

Compares the byte, word, doubleword, or quadword specified with the first source operand with the byte, word,
doubleword, or quadword specified with the second source operand and sets the status flags in the EFLAGS register
according to the results.

Both source operands are located in memory. The address of the first source operand is read from DS:SI, DS:ESI
or RSI (depending on the address-size attribute of the instruction is 16, 32, or 64, respectively). The address of the
second source operand is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of the
instruction is 16, 32, or 64). The DS segment may be overridden with a segment override prefix, but the ES
segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the CMPS mnemonic) allows the two source operands
to be specified explicitly. Here, the source operands should be symbols that indicate the size and location of the
source values. This explicit-operand form is provided to allow documentation. However, note that the documenta-
tion provided by this form can be misleading. That is, the source operand symbols must specify the correct type
(size) of the operands (bytes, words, or doublewords, quadwords), but they do not have to specify the correct loca-

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-199

tion. Locations of the source operands are always specified by the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) regis-

ters, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the CMPS instructions.
Here also the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers are assumed by the processor to specify the loca-
tion of the source operands. The size of the source operands is selected with the mnemonic: CMPSB (byte compar-
ison), CMPSW (word comparison), CMPSD (doubleword comparison), or CMPSQ (quadword comparison using

REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement automatically according to the

setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E/R)SI and (E/R)DI register increment; if the
DF flag is 1, the registers decrement.) The registers increment or decrement by 1 for byte operations, by 2 for word
operations, 4 for doubleword operations. If operand size is 64, RSI and RDI registers increment by 8 for quadword

operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the REP prefix for block compar-
isons. More often, however, these instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat
String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 2B, for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is supported using the prefix
67H. Use of the REX.W prefix promotes doubleword operation to 64 bits (see CMPSQ). See the summary chart at

the beginning of this section for encoding data and limits.

Operation

temp := SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN
IF (Byte comparison)
THENIFDF=0
THEN
(RIE)SI:= (RIE)SI + 1;
(RIE)DI:= (RIE)DI + 1;
ELSE
(RIE)SI := (RIE)SI - 1;
(RIE)DI:= (RIE)DI - 1;

Fl;
ELSE IF (Word comparison)
THENIFDF=0
THEN
(RIE)SI = (RIE)SI + 2;
(RIE)DI := (RIE)DI + 2;
ELSE
(RIE)SI:= (RIE)SI - 2;
(RIE)DI := (RIE)DI - 2;
Fl;
ELSE IF (Doubleword comparison)
THENIFDF=0
THEN

(RIE)SI:= (RIE)SI + 4;
(RIE)DI = (RIE)DI + 4;
ELSE

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Vol.2A 3-200

ELSE (* Quadword comparison *)
THENIFDF=0
(RIE)SI := (RIE)SI + 8;
(RIE)DI:= (RIE)DI + 8;
ELSE
(RIE)SI := (RIE)SI - 8;
(RIE)DI:= (RIE)DI - 8;
Fl;
Fl;
ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THENIFDF=0
THEN
(E)SI:=(E)SI+1;
(E)DI:= (E)DI + 1;
ELSE
(E)SI:=(E)SI-1;
(E)DI:=(E)DI-1;
Fl;
ELSE IF (Word comparison)
THEN IF DF =0
(E)SI:=(E)SI + 2;
(E)DI:= (E)DI + 2;

Fl;
ELSE (* Doubleword comparison *)
THENIFDF=0
(E)SI':= (E)SI + 4;
(E)DI:= (E)DI + 4;

ELSE
(E)SI = (E)SI - 4
(E)DI:= (E)DI - 4;
Fl;
Fl;
Fl;
Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-201

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-202

CMPSD—Compare Scalar Double Precision Floating-Point Value

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support
F2 OF C2 /rib A VIV SSE2 Compare low double precision floating-point value in
CMPSD xmm1, xmm2/m64, imm8 xmm2/m64 and xmm1 using bits 2:0 of imm8 as
comparison predicate.
VEX.LIG.F2.0F.WIG C2 /rib B VIV AVX Compare low double precision floating-point value in
VCMPSD xmm1, xmmZ2, xmm3/m64, xmm3/m64 and xmmZ2 using bits 4.0 of imm8 as
imm8 comparison predicate.
EVEX.LLIG.F2.0F.W1 C2 /rib C VIV AVX512F Compare low double precision floating-point value in
VCMPSD k1 {k2}, xmm2, OR AVX10.1" | xmm3/m64 and xmm2 using bits 4:0 of imm8 as
xmm3/m64{sae}, imm8 comparison predicate with writemask k2 and leave the
result in mask register k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8
C Tuple1 Scalar ModRM:reg (w) EVEX.vvwv () ModRM:r/m (r) imm8
Description

Compares the low double precision floating-point values in the second source operand and the first source operand
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed.

128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 64-bit memory location. Bits (MAXVL-1:64) of
the corresponding YMM destination register remain unchanged. The comparison result is a quadword mask of all 1s
(comparison true) or all Os (comparison false).

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 64-bit memory location. The result is stored in the low quad-
word of the destination operand; the high quadword is filled with the contents of the high quadword of the first
source operand. Bits (MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a quad-
word mask of all 1s (comparison true) or all 0s (comparison false).

EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand
can be a XMM register or a 64-bit memory location. The destination operand (first operand) is an opmask register.
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.

The comparison predicate operand is an 8-bit immediate:

®* Forinstructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see
Table 3-8). Bits 5 through 7 of the immediate are reserved.

® For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 3-8). Bits 3 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.

CMPSD—Compare Scalar Double Precision Floating-Point Value Vol.2A 3-203

A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all Os corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPSD instruction, for processors with "CPUID.1H:ECX.AVX =0". See Table 3-13. The compiler should treat
reserved imma8 values as illegal syntax.

Table 3-13. Pseudo-Op and CMPSD Implementation

Pseudo-Op CMPSD Implementation
CMPEQSD xmm1, xmm2 CMPSD xmm1, xmmZ2, 0
CMPLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 1
CMPLESD xmm1, xmm2 CMPSD xmm1, xmm2, 2
CMPUNORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 3
CMPNEQSD xmm1, xmm2 CMPSD xmm1, xmmZ, 4
CMPNLTSD xmm1, xmm2 CMPSD xmm1, xmmZ2, 5
CMPNLESD xmm1, xmm2 CMPSD xmm1, xmm2, 6
CMPORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 7

The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 predicates shown in Table 3-14,
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPSD instruction. See Table 3-14, where the notations of regl reg2,
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSD
instructions in a similar fashion by extending the syntax listed in Table 3-14.

Table 3-14. Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0
VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1
VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2
VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3
VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4
VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5
VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6
VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7
VCMPEQ_UQSD reg1, reg?, reg3 VCMPSD reg1, reg2, reg3, 8
VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9

CMPSD—Compare Scalar Double Precision Floating-Point Value Vol.2A 3-204

Table 3-14. Pseudo-Op and VCMPSD Implementation (Contd.)

Pseudo-Op

CMPSD Implementation

VCMPNGTSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, OAH

VCMPFALSESD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, OBH

VCMPNEQ_0QSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, OCH

VCMPGESD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, ODH

VCMPGTSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, OEH

VCMPTRUESD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, OFH

VCMPEQ_OSSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, rege, reg3

VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, rege, reg3

VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, rege, reg3

VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD regl1, reg2, reg3

VCMPSD reg1, reg2, reg3, 1AH

VCMPFALSE_O0SSD reg1, rege, reg3

VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_0SSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD regT, reg2, reg3

VCMPSD reg1, reg2, reg3, 1DH

VCMPGT_0QSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 1eH

VCMPTRUE_USSD reg1, reg2, reg3

VCMPSD reg1, reg2, reg3, 1FH

Software should ensure VCMPSD is encoded with VEX.L=0.
dictable behavior across different processor generations.

Operation

CASE (COMPARISON PREDICATE) OF
0: OP3:= EQ_0OQ; OP5 := EQ_OQ;
1:0P3:=LT_OS; OP5 := LT_OS;
2: OP3 := LE_QS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4. 0P3:= NEQ_UQ; OP5 := NEQ_UQ;
5:0P3:=NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7:0P3:= ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5:= NEQ_OQ;
13: OP5 := GE_OS;
14: 0P5:= GT_OS;
15: 0P5 := TRUE_UQ;

CMPSD—Compare Scalar Double Precision Floating-Point Value

Encoding VCMPSD with VEX.L=1 may encounter unpre-

Vol.2A 3-205

16: OP5 := EQ_OS;
17:0P5:=LT_0Q;
18: 0P5:= LE_0Q;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21:0P5:= NLT_UQ;
22:0P5 := NLE_UQ;
23:0P5:= ORD_S;
24:0P5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27:0P5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_0Q;
30: OP5:= GT_0Q;
31: 0P5 := TRUE_US;
DEFAULT: Reserved
ESAC;

VCMPSD (EVEX Encoded Version)
CMPO := SRC1[63:0] OP5 SRC2[63:0];

IF k2[0] or *no writemask*
THEN IF CMPO = TRUE
THEN DEST[O] := 1;
ELSE DEST[0]:=O; FI;
ELSE DEST[0]:=0 ; zeroing-masking only
Fl;
DEST[MAX_KL-1:1]:=0

CMPSD (128-bit Legacy SSE Version)

CMPO := DEST[63:0] OP3 SRC[63:0];

IF CMPO = TRUE

THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
DEST[MAXVL-1:64] (Unmodified)

VCMPSD (VEX.128 Encoded Version)

CMPO := SRC1[63:0] OP5 SRC2[63:0];

IF CMPO = TRUE

THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
DEST[127:64]:= SRC1[127:64]
DEST[MAXVL-1:128]:=0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSD __mmask8 _mm_cmp_sd_mask(__m128d a, __m128d b, int imm);

VCMPSD __mmask8 _mm_cmp_round_sd_mask(__m128d a, __m128d b, int imm, int sae);

VCMPSD __mmask8 _mm_mask_cmp_sd_mask(__mmask8 k1, _m128d a, __m128d b, int imm);

VCMPSD __mmask8 _mm_mask_cmp_round_sd_mask(_mmask8 k1, __m128d a, __m128d b, int imm, int sae);
(V)CMPSD _m128d _mm_cmp_sd(__m128d a, __m128d b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 3-8, Denormal.

CMPSD—Compare Scalar Double Precision Floating-Point Value

Vol.2A 3-206

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “"Type E3 Class Exception Conditions.”

CMPSD—Compare Scalar Double Precision Floating-Point Value Vol.2A 3-207

CMPSS—Compare Scalar Single Precision Floating-Point Value

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support
F30FC2/rib A VIV SSE Compare low single precision floating-point value in
CMPSS xmm1, xmm2/m32, imm8 xmm2/m32 and xmm1 using bits 2:0 of imm8 as
comparison predicate.
VEX.LIG.F3.0F.WIG C2 /rib B VIV AVX Compare low single precision floating-point value in
VCMPSS xmm1, xmmZ2, xmm3/m32, xmm3/m32 and xmmZ2 using bits 4.0 of imm8 as
imm8 comparison predicate.
EVEX.LLIG.F3.0F.W0 C2 /rib C VIV AVX512F Compare low single precision floating-point value in
VCMPSS k1 {k2}, xmm2, ORAVX10.1" | xmm3/m32 and xmm2 using bits 4:0 of imm8 as
xmm3/m32{sae}, imm8 comparison predicate with writemask k2 and leave
the result in mask register k1.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/€En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A
B N/A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8
C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
Description

Compares the low single precision floating-point values in the second source operand and the first source operand
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed.

128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 32-bit memory location. Bits (MAXVL-1:32) of
the corresponding YMM destination register remain unchanged. The comparison result is a doubleword mask of all
1s (comparison true) or all 0s (comparison false).

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 32-bit memory location. The result is stored in the low 32 bits
of the destination operand; bits 127:32 of the destination operand are copied from the first source operand. Bits
(MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a doubleword mask of all 1s
(comparison true) or all Os (comparison false).

EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand
can be a XMM register or a 32-bit memory location. The destination operand (first operand) is an opmask register.
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.

The comparison predicate operand is an 8-bit immediate:

®* Forinstructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see
Table 3-8). Bits 5 through 7 of the immediate are reserved.

® For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 3-8). Bits 3 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.

CMPSS—Compare Scalar Single Precision Floating-Point Value Vol.2A 3-208

A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all Os corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPSS instruction, for processors with "CPUID.1H:ECX.AVX =0". See Table 3-15. The compiler should treat
reserved imma8 values as illegal syntax.

Table 3-15. Pseudo-Op and CMPSS Implementation
Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2

CMPSS xmm1, xmmZ2, 0

CMPLTSS xmm1, xmmZ2

CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2

CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2

CMPSS xmm1, xmmZ, 3

CMPNEQSS xmm1, xmm2

CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2

CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmmZ2

CMPSS xmm1, xmmZ2, 6

CMPORDSS xmm1, xmmZ2

CMPSS xmm1, xmmZ2, 7

The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 predicates shown in Table 3-14,
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 3-16, where the notations of regl reg2,
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSS
instructions in a similar fashion by extending the syntax listed in Table 3-16.

Table 3-16. Pseudo-Op and VCMPSS Implementation

Pseudo-0p CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0
VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1
VCMPLESS reg1, reg?, reg3 VCMPSS reg1, reg2, reg3, 2
VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3
VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4
VCMPNLTSS reg1, rege, reg3 VCMPSS reg1, reg2, reg3, 5
VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6
VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7
VCMPEQ_UQSS reg1, reg?, reg3 VCMPSS reg1, reg2, reg3, 8
VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

CMPSS—Compare Scalar Single Precision Floating-Point Value Vol.2A 3-209

Table 3-16. Pseudo-Op and VCMPSS Implementation (Contd.)

Pseudo-Op

CMPSS Implementation

VCMPNGTSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, OAH

VCMPFALSESS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, OBH

VCMPNEQ_O0QSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, OCH

VCMPGESS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, ODH

VCMPGTSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, OEH

VCMPTRUESS reg1, reg2, reg3

VCMPSS reg1, reg?, reg3, OFH

VCMPEQ_O0SSS reg1, rege, reg3

VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, rege, reg3

VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, rege, reg3

VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, rege, reg3

VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, rege, reg3

VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg?, reg3

VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 1€H

VCMPTRUE_USSS reg1, reg2, reg3

VCMPSS reg1, reg2, reg3, 1FH

Software should ensure VCMPSS is encoded with VEX.L=0.
dictable behavior across different processor generations.

Operation

CASE (COMPARISON PREDICATE) OF
0: 0P3:= EQ_0Q; OP5 := EQ_OQ;
1:0P3:= LT_OS; OP5 := LT_OS;
2. 0P3:= LE_OS; OP5 := LE_OS;

Encoding VCMPSS with VEX.L=1 may encounter unpre-

3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4. 0P3:= NEQ_UQ; OP5 := NEQ_UQ;
5:0P3:=NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7:0P3:= ORD_Q; OP5 := ORD_Q;

8: OP5 := EQ_UQ;

9: OP5 := NGE_US;

10: OP5 := NGT_US;

11: OP5 := FALSE_OQ;

12: OP5:= NEQ_OQ;

13: OP5 := GE_OS;

14: 0P5:= GT_OS;

15: 0P5 := TRUE_UQ;

CMPSS—Compare Scalar Single Precision Floating-Point Value Vol.2A 3-210

16: OP5 := EQ_OS;
17:0P5:=LT_0Q;
18: 0P5:= LE_0Q;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21:0P5:= NLT_UQ;
22:0P5 := NLE_UQ;
23:0P5:= ORD_S;
24:0P5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27:0P5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_0Q;
30: OP5:= GT_0Q;
31: 0P5 := TRUE_US;
DEFAULT: Reserved
ESAC;

VCMPSS (EVEX Encoded Version)
CMPO := SRC1[31:0] OP5 SRC2[31:0];

IF k2[0] or *no writemask*
THEN IF CMPO = TRUE
THEN DEST[O] := 1;
ELSE DEST[0]:=O; FI;
ELSE DEST[0]:=0
Fl;
DEST[MAX_KL-1:1]:=0

CMPSS (128-bit Legacy SSE Version)
CMPO := DEST[31:0] OP3 SRC[31:0];

IF CMPO = TRUE

THEN DEST[31:0] := FFFFFFFFH;

ELSE DEST[31:0] := 00000000H; FI;
DEST[MAXVL-1:32] (Unmodified)

VCMPSS (VEX.128 Encoded Version)
CMPO := SRC1[31:0] OP5 SRC2[31:0];
IF CMPO = TRUE

THEN DEST[31:0] := FFFFFFFFH;

ELSE DEST[31:0] := 00000000H; FI;
DEST[127:32]:= SRC1[127:32]
DEST[MAXVL-1:128]:=0

; zeroing-masking only

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSS __mmask8 _mm_cmp_ss_mask(_m128 a3, __m128b, intimm);

VCMPSS __mmask8 _mm_cmp_round_ss_mask(_m128a,__m128b, int imm, int sae);

VCMPSS __mmask8 _mm_mask_cmp_ss_mask(_mmask8 k1, __m128 3, __m128b, intimm);

VCMPSS __mmask8 _mm_mask_cmp_round_ss_mask(_mmask8 k1, __m128a, __m128 b, int imm, int sae);
(V)CMPSS _m128 _mm_cmp_ss(_m128a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 3-8, Denormal.

CMPSS—Compare Scalar Single Precision Floating-Point Value

Vol.2A 3-211

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “"Type E3 Class Exception Conditions.”

CMPSS—Compare Scalar Single Precision Floating-Point Value Vol.2A 3-212

CMPXCHG—Compare and Exchange

Opcode/ Op/ |64-Bit Compat/ |Description

Instruction En |Mode Leg Mode

OF BO/r MR | Valid Valid* Compare AL with r/m8. If equal, ZF is set and r8 is loaded into
CMPXCHG r/m8, r8 r/m8. Else, clear ZF and load r/m8 into AL.

REX + OF BO/r MR |Valid N.E. Compare AL with r/m8. If equal, ZF is set and r8 is loaded into
CMPXCHG r/m8** 8 r/m8. Else, clear ZF and load r/m8 into AL.

OF B1/r MR |Valid Valid* Compare AX with r/m16. If equal, ZF is set and r16 is loaded
CMPXCHG r/m16,r16 into r/m16. Else, clear ZF and load r/m16 into AX.

OF B1/r MR |Valid Valid* Compare EAX with r/m32. If equal, ZF is set and r32 is loaded
CMPXCHG r/m32, r32 into r/m32. Else, clear ZF and load r/m32 into EAX.

REXW + OF B1/r MR |Valid N.E. Compare RAX with r/m64. If equal, ZF is set and r64 is loaded
CMPXCHG r/m64, r64 into r/m64. Else, clear ZF and load r/m64 into RAX.

NOTES:

* See the IA-32 Architecture Compatibility section below.
**In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (destination operand). If the two
values are equal, the second operand (source operand) is loaded into the destination operand. Otherwise, the
destination operand is loaded into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is

written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

IA-32 Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or quadword comparison is being performed *)
TEMP := DEST
IF accumulator = TEMP
THEN
ZF:=1;
DEST := SRC;
ELSE
ZF:=0;
accumulator := TEMP;
DEST := TEMP;
Fl;

CMPXCHG—Compare and Exchange Vol.2A 3-213

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the comparison operation.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

CMPXCHG—Compare and Exchange Vol.2A 3-214

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Opcode/ Op/ | 64-Bit Compat/ |Description

Instruction En |Mode Leg Mode

OFC7 N M Valid Valid* Compare EDX:EAX with m64. If equal, set ZF and load

CMPXCHGSB m64 ECX:EBX into m64. Else, clear ZF and load m64 into EDX:EAX.

REX.W + OF C7 /1 M Valid N.E. Compare RDX:RAX with m128. If equal, set ZF and load

CMPXCHG16B m128 RCX:RBX into m128. Else, clear ZF and load m128 into
RDX:RAX.

NOTES:

*See |IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r, w) N/A N/A N/A
Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 128 bits) with the operand
(destination operand). If the values are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored
in the destination operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or RDX:RAX).
The destination operand is an 8-byte memory location (or 16-byte memory location if operand size is 128 bits). For
the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the
low-order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX and RCX contain the high-
order 64 bits and RAX and RBX contain the low-order 64bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is

written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes operation to 128 bits. Note that
CMPXCHG16B requires that the destination (memory) operand be 16-byte aligned. See the summary chart at the
beginning of this section for encoding data and limits. For information on the CPUID flag that indicates CMPX-
CHG16B, see page 3-251.

IA-32 Architecture Compatibility
This instruction encoding is not supported on Intel processors earlier than the Pentium processors.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-215

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN
TEMP128 := DEST
IF (RDX:RAX = TEMP128)

THEN

ZF:=1;

DEST := RCX:RBX;
ELSE

ZF:=0;

RDX:RAX := TEMP128;
DEST := TEMP128;
Fl;
Fl
ELSE
TEMP64 := DEST;
IF (EDX:EAX = TEMPG4)

THEN

ZF:=1;

DEST := ECX:EBX;
ELSE

ZF:=0;

EDX:EAX := TEMP64;
DEST := TEMP64;
Fl;
Fl;
Fl;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and
OF flags are unaffected.

Protected Mode Exceptions

#UD If the destination is not a memory operand.

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-216

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If memory operand for CMPXCHG16B is not aligned on a 16-byte boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-217

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support
66 OF 2F /It A VIV SSE2 Compare low double precision floating-point values in
COMISD xmm1, xmm2/m64 xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
VEX.LIG.66.0F.WIG 2F /r A VIV AVX Compare low double precision floating-point values in
VCOMISD xmm1, xmm2/m64 xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
EVEX.LLIG.66.0F.W1 2F /1 B VIV AVX512F Compare low double precision floating-point values in
VCOMISD xmm1, xmm2/m64{sae} ORAVX10.1" | xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Compares the double precision floating-point values in the low quadwords of operand 1 (first operand) and operand
2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered,
greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result
is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory location. The COMISD instruc-
tion differs from the UCOMISD instruction in that it signals a SIMD floating-point invalid operation exception (#1I)
when a source operand is either a QNaN or SNaN. The UCOMISD instruction signals an invalid operation exception
only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.

Operation

COMISD (All Versions)
RESULT := OrderedCompare(DEST[63:0] <> SRC[63:0]){
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PFCF:=111;
GREATER_THAN: ZF,PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF:= 100;
ESAC;
OF, AF,SF:=0;}

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS Vol.2A 3-218

Intel C/C++ Compiler Intrinsic Equivalent

VCOMISD int _mm_comi_round_sd(__m128d a, __m128d b, int imm, int sae);
VCOMISD int _mm_comieq_sd (__m128da,__m128d b)

VCOMISD int _mm_comilt_sd (__m128d a, __m128db)

VCOMISD int _mm_comile_sd (__m128d a, __m128db)

VCOMISD int _mm_comigt_sd (__m128da, __m128dDb)

VCOMISD int _mm_comige_sd (__m128d a,__m128d b)

VCOMISD int _mm_comineq_sd (__m128d a, __ m128db)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, "Type E3NF Class Exception Conditions.
Additionally:

#UD If VEX.vvvv !'= 1111B or EVEX.vvvv = 1111B.

"

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

Vol.2A 3-219

COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support

NP OF 2F /r A VIV SSE Compare low single precision floating-point values in

COMISS xmm1, xmm2/m32 xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.

VEX.LIG.OF.WIG 2F /r A VIV AVX Compare low single precision floating-point values in

VCOMISS xmm1, xmm2/m32 xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.

EVEX.LLIG.OF.WO 2F /r B VIV AVX512F Compare low single precision floating-point values in

VCOMISS xmm1, xmm2/m32{sae} ORAVX10.1" | xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Compares the single precision floating-point values in the low quadwords of operand 1 (first operand) and operand
2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered,
greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result
is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory location.
The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid opera-

tion exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid
operation exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.

Operation

COMISS (All Versions)
RESULT := OrderedCompare(DEST[31:0] <> SRC[31:0]){
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PF,CF:=111;
GREATER_THAN: ZF PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF:= 100;
ESAC;
OF, AF,SF:=0;}

COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS Vol.2A 3-220

Intel C/C++ Compiler Intrinsic Equivalent

VCOMISS int _mm_comi_round_ss(__m128a, __m128 b, int imm, int sae);
VCOMISS int _mm_comieq_ss (__m128a,__m128Db)

VCOMISS int _mm_comilt_ss(_m1283a,_m128b)

VCOMISS int _mm_comile_ss (_m128a,__m128b)

VCOMISS int _mm_comigt_ss (_m1283a,_m128b)

VCOMISS int _mm_comige_ss (__m128a,__m128Db)

VCOMISS int _mm_comineq_ss (__m1283a,__m128b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “"Type E3NF Class Exception Conditions.”
Additionally:

#UD If VEX.vvvv I= 1111B or EVEX.vvvv = 1111B.

r

COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

Vol.2A 3-221

CPUID—CPU Identification

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
OF A2 CPUID Z0 |Valid Valid Returns processor identification and feature

information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, O0H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using some Intel processors, the following is true:

CPUID.EAX = 0O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)2

CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = OBH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 10, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’'s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Linear-Address Pre-Processing,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends first checking for the existence of CPUID leaf 1FH before
using leaf OBH.

CPUID—CPU Identification Vol.2A 3-222

Table 3-17. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information.
EBX "Genu”
ECX “ntel”
EDX "inel”
O1H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).
EBX Bits 07-00: Brand Index.
Bits 15-08: CLFLUSH line size (Value * 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID**,
ECX Feature Information (see Figure 3-7 and Table 3-19).
EDX Feature Information (see Figure 3-8 and Table 3-20).
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC
IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTTI[bit 28]= 1.
** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf OBH and
Leaf TFH.
02H EAX Cache and TLB Information (see Table 3-21).
EBX Cache and TLB Information.
ECX Cache and TLB Information.
EDX Cache and TLB Information.
03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96-bit processor serial number. (Available in Pentium Ill processor only; otherwise, the value
in this register is reserved.)
EDX Bits 32-63 of 96-bit processor serial number. (Available in Pentium Il processor only; otherwise, the value
in this register is reserved.)
NOTES:

Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf (Initial EAX Value = 04H)

04H

NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 258.

EAX Bits 04-00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

CPUID—CPU Identification Vol.2A 3-223

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Bits 07-05: Cache Level (starts at 1).
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.
Bits 13-10: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***,
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
DaCkage**, ****l *****.
EBX Bits 11-00: L = System Coherency Line Size**.
Bits 21-12: P = Physical Line partitions**.
Bits 31-22: W = Ways of associativity**.
ECX Bits 31-00: S = Number of Sets**.
EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.
Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.
Bits 31-03: Reserved = 0.
NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-
leaf n returns EAX[4:0] as O.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-
tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique
Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.
***** The returned value is constant for valid initial values in ECX. Valid ECX values start from O.
MONITOR/MWAIT Leaf (Initial EAX Value = O5H)
O5H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31-16: Reserved = 0.
EBX Bits 15-00: Largest monitor-line size in bytes (default is processor’s monitor granularity).
Bits 31-16: Reserved = 0.
ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.
Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.
Bits 31-02: Reserved.
EDX Bits 03-00: Number of CO* sub C-states supported using MWAIT.

Bits 07-04: Number of C1* sub C-states supported using MWAIT.
Bits 11-08: Number of C2* sub C-states supported using MWAIT.
Bits 15-12: Number of C3* sub C-states supported using MWAIT.
Bits 19-16: Number of C4* sub C-states supported using MWAIT.
Bits 23-20: Number of C5* sub C-states supported using MWAIT.
Bits 27-24: Number of C6* sub C-states supported using MWAIT.
Bits 31-28: Number of C7* sub C-states supported using MWAIT.

CPUID—CPU Identification

Vol.2A 3-224

Table 3-17. Information Returned by CPUID Instruction (Contd.)

EBX

ECX

Initial EAX
Value Information Provided about the Processor
NOTE:
* The definition of CO through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-
states.
Thermal and Power Management Leaf (Initial EAX Value = 06H)
06H EAX Bit 00: Digital temperature sensor is supported if set.

Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).

Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.

Bit 03: Reserved.

Bit 04: PLN. Power limit notification controls are supported if set.

Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.

Bit 06: PTM. Package thermal management is supported if set.

Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, IA32_HWP_RE-
QUEST, IA32_HWP_STATUS) are supported if set.

Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.

Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST bits 41:32] is supported if set.

Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.

Bit 12: Reserved.

Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.

Bit 14: Intel® Turbo Boost Max Technology 3.0 available.

Bit 15: HWP Capabilities. Highest Performance change is supported if set.

Bit 16: HWP PECI override is supported if set.

Bit 17: Flexible HWP is supported if set.

Bit 18: Fast access mode, low latency, and posted IA32_HWP_REQUEST MSR are supported if set.

Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR MSR, IA32_HW_FEEDBACK_CONFIG MSR,
IA32_PACKAGE_THERM_STATUS MSR bit 26, and IA32_PACKAGE_THERM_INTERRUPT MSR bit 25 are
supported if set.

Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.

Bit 21: Reserved.

Bit 22: HWP Control MSR Support. The IA32_HWP_CTL MSR is supported if set.

Bit 23: Intel® Thread Director supported if set. The IA32_HW_FEEDBACK_CHAR and
IA32_HW_FEEDBACK_THREAD_CONFIG MSRs are supported if set.

Bit 24: 1A32_THERM_INTERRUPT MSR bit 25 is supported if set.

Bits 31-25: Reserved.

Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31-04: Reserved.

Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as a
percentage of the expected processor performance when running at the TSC frequency.

Bits 02-01: Reserved = 0.

Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH][bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH).
Bits 07-04: Reserved = 0.

Bits 15-08: Number of Intel® Thread Director classes supported by the processor. Information for that
many classes is written into the Intel Thread Director Table by the hardware.

Bits 31-16: Reserved = 0.

CPUID—CPU Identification

Vol.2A 3-225

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EDX Bits 07-00: Bitmap of supported hardware feedback interface capabilities.

0 = When set to 1, indicates support for performance capability reporting.

1 = When set to 1, indicates support for energy efficiency capability reporting.

2-7 = Reserved
Bits 11-08: Enumerates the size of the hardware feedback interface structure in number of 4 KB pages;
add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor’s row in the hardware feedback interface struc-
ture. Note that on some parts the index may be same for multiple logical processors. On some parts the
indices may not be contiguovus, i.e., there may be unused rows in the hardware feedback interface struc-
ture.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Initial EAX Value = O7H, ECX = 0)

07H

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01:1A32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMIT.
Bit 04: HLE.
Bit 05: AVX2. Supports Intel® Advanced Vector Extensions 2 (Intel® AVX2) if 1.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512€R. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bit 30: AVX512BW.
Bit 31: AVX512VL.

CPUID—CPU Identification Vol.2A 3-226

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

ECX Bit 00: PREFETCHWT1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBML.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 of the
IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: IA32_INTERRUPT_SP-
P_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PLO_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDAQ.
Bit 11: AVX512_VNNI.
Bit 12: AVX512_BITALG.
Bits 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE,
IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
Bit 14: AVX512_VPOPCNTDQ.
Bit 15: Reserved.
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: BUS_LOCK_DETECT. If 1, indicates support for OS bus-lock detection.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRIif 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: ENQCMD. Supports Enqueue Stores if 1.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 00: Reserved.
Bit 01: SGX-KEYS. If 1, Attestation Services for Intel® SGX is supported.
Bit 02: AVX512_4VNNIW. (Intel®* Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bit 05: UINTR. If 1, the processor supports user interrupts.
Bits 07-06: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: SRBDS_CTRL. If 1, enumerates support for the IA32_MCU_OPT_CTRL MSR and indicates its bit 0
(RNGDS_MITG_DIS) is also supported.
Bit 10: MD_CLEAR supported.
Bit 11: RTM_ALWAYS_ABORT. If set, any execution of XBEGIN immediately aborts and transitions to the
specified fallback address.
Bit 12: Reserved.
Bit 13: If 1, RTM_FORCE_ABORT supported. Processors that set this bit support the IA32_TSX_-
FORCE_ABORT MSR. They allow software to set IA32_TSX_FORCE_ABORT[0] (RTM_FORCE_ABORT).
Bit 14: SERIALIZE.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part. If CPUID.0.MAXLEAF > 1AH and

CPUID.TA.EAX # 0, then the Native Model ID Enumeration Leaf 1AH exists.
Bit 16: TSXLDTRK. If 1, the processor supports Intel TSX suspend/resume of load address tracking.

CPUID—CPU Identification Vol.2A 3-227

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

Bit 17: Reserved.

Bit 18: PCONFIG. Supports PCONFIG if 1.

Bit 19: Architectural LBRs. If 1, indicates support for architectural LBRs.

Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit define bits
5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.

Bit 21: Reserved.

Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.

Bit 23: AVX512_FP16.

Bit 24: AMX-TILE. If 1, the processor supports tile architecture.

Bits 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.

Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch pre-
dictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[O] (IBRS) and IA32_PRED_CMD[0]
(IBPB).

Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set this
bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).

Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the IA32_FLUSH_CMD
MSR. They allow software to set IA32_FLUSH_CMD[O] (L1D_FLUSH).

Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.

Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit being
set in this MSR indicates that a model specific feature is supported; software must still consult CPUID
family/model/stepping to determine the behavior of the enumerated feature as features enumerated in
IA32_CORE_CAPABILITIES may have different behavior on different processor models. Some of these
features may have behavior that is consistent across processor models (and for which consultation of
CPUID family/model/stepping is not necessary); such features are identified explicitly where they are
documented in this manual.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit sup-
port the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).
NOTE:

* |f ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 1)

07H

EAX

NOTES:

Leaf O7H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.

This field reports 0 if the sub-leaf index, 1, is invalid.

Bit 00: SHA512. If 1, supports the SHA512 instructions.

Bit 01: SM3. If 1, supports the SM3 instructions.

Bit 02: SM4. If 1, supports the SM4 instructions.

Bit 03: Reserved.

Bit 04: AVX-VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.

Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT 16 inputs and conversion
instructions from IEEE single precision.

Bit 06: LASS. If 1, supports Linear Address Space Separation.

Bit 07: CMPCCXADD. If 1, supports the CMPccXADD instruction.

Bit 08: ArchPerfmonExt. If 1, supports ArchPerfmon€Ext. When set, indicates that the Architectural Perfor-
mance Monitoring Extended Leaf (EAX = 23H) is valid.

Bit 09: Reserved.

Bit 10: If 1, supports fast zero-length REP MOVSB.

Bit 11:If 1, supports fast short REP STOSB.

Bit 12: If 1, supports fast short REP CMPSB, REP SCASB.

CPUID—CPU Identification

Vol.2A 3-228

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX
EDX

Bits 18-13: Reserved.

Bit 19: WRMSRNS. If 1, supports the WRMSRNS instruction.

Bit 20: Reserved.

Bit 21: AMX-FP16. If 1, the processor supports tile computational operations on FP16 numbers.

Bit 22: HRESET. If 1, supports history reset via the HRESET instruction and the IA32_HRESET_ENABLE
MSR. When set, indicates that the Processor History Reset Leaf (EAX = 20H) is valid.

Bit 23: AVX-IFMA. If 1, supports the AVX-IFMA instructions.

Bits 25-24: Reserved.

Bit 26: LAM. If 1, supports Linear Address Masking.

Bit 27: MSRLIST. If 1, supports the RDMSRLIST and WRMSRLIST instructions and the IA32_BARRIER MSR.
Bits 29-28: Reserved.

Bit 30: INVD_DISABLE_POST_BIOS_DONE. If 1, supports INVD execution prevention after BIOS Done.
Bit 31: Reserved.

This field reports 0 if the sub-leaf index, 7, is invalid.

Bit 00: Enumerates the presence of the IA32_PPIN and IA32_PPIN_CTL MSRs. If 1, these MSRs are sup-
ported.

Bits 02-01: Reserved.

Bit 03: CPUIDMAXVAL_LIM_RMV. If 1, 1A32_MISC_ENABLE[bit 22] cannot be set to 1 to limit the value
returned by CPUID.O0OH:EAX[bits 7:0].

Bits 31-04: Reserved.
This field reports O if the sub-leaf index, 1, is invalid; otherwise it is reserved.

This field reports 0 if the sub-leaf index, 7, is invalid.

Bits 03-00: Reserved.

Bit 04: AVX-VNNI-INT8. If 1, supports the AVX-VNNI-INT8 instructions.

Bit 05: AVX-NE-CONVERT. If 1, supports the AVX-NE-CONVERT instructions.

Bits 09-06: Reserved.

Bit 10: AVX-VNNI-INT16. If 1, supports the AVX-VNNI-INT16 instructions.

Bits 13-11: Reserved.

Bit 14: PREFETCHIL. If 1, supports the PREFETCHITO/1 instructions.

Bits 16-15: Reserved.

Bit 17: UIRET_UIF. If 1, UIRET sets UIF to the value of bit 1 of the RFLAGS image loaded from the stack.
Bit 18: CET_SSS. If 1, indicates that an operating system can enable supervisor shadow stacks as long as
it ensures that a supervisor shadow stack cannot become prematurely busy due to page faults (see Sec-

tion 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). When
emulating the CPUID instruction, a virtual-machine monitor (VMM) should return this bit as 1 only if it
ensures that VM exits cannot cause a guest supervisor shadow stack to appear to be prematurely busy.
Such a VMM could set the “prematurely busy shadow stack” VM-exit control and use the additional infor-
mation that it provides.

Bit 19: AVX10. If 1, supports the Intel® AVX10 instructions and indicates the presence of CPUID Leaf 24H,
which enumerates version number and supported vector lengths.

Bits 31-20: Reserved.

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 2)

07H

EAX
EBX
ECX

NOTES:
Leaf O7H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.

This field reports O if the sub-leaf index, 2, is invalid; otherwise it is reserved.
This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

This field reports O if the sub-leaf index, 2, is invalid; otherwise it is reserved.

CPUID—CPU Identification

Vol.2A 3-229

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EDX This field reports 0 if the sub-leaf index, 2, is invalid.
Bit 00: PSFD. If 1, indicates bit 7 of the IA32_SPEC_CTRL MSR is supported. Bit 7 of this MSR disables Fast
Store Forwarding Predictor without disabling Speculative Store Bypass.
Bit 01: IPRED_CTRL. If 1, indicates bits 3 and 4 of the IA32_SPEC_CTRL MSR are supported. Bit 3 of this
MSR enables IPRED_DIS control for CPL3. Bit 4 of this MSR enables IPRED_DIS control for CPLO/1/2.
Bit 02: RRSBA_CTRL. If 1, indicates bits 5 and 6 of the IA32_SPEC_CTRL MSR are supported. Bit 5 of this
MSR disables RRSBA behavior for CPL3. Bit 6 of this MSR disables RRSBA behavior for CPLO/1/2.
Bit 03: DDPD_U. If 1, indicates bit 8 of the IA32_SPEC_CTRL MSR is supported. Bit 8 of this MSR disables
Data Dependent Prefetcher.
Bit 04: BHI_CTRL. If 1, indicates bit 10 of the IA32_SPEC_CTRL MSR is supported. Bit 10 of this MSR
enables BHI_DIS_S behavior.
Bit 05: MCDT_NO. Processors that enumerate this bit as 1 do not exhibit MXCSR Configuration Dependent
Timing (MCDT) behavior and do not need to be mitigated to avoid data-dependent behavior for certain
instructions.
Bit 06: If 1, supports the UC-lock disable feature and it causes #AC.
Bit 07: MONITOR_MITG_NO. If 1, indicates that the MONITOR/UMONITOR instructions are not affected by
performance or power issues due to MONITOR/UMONITOR instructions exceeding the capacity of an
internal monitor tracking table. If O, then the product may be affected by this issue.
Bits 31-08: Reserved.

Direct Cache Access Information Leaf (Initial EAX Value = O9H)

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Leaf (Initial EAX Value = OAH)

OAH EAX Bits 07-00: Version ID of architectural performance monitoring.

Bits 15-08: Number of general-purpose performance monitoring counter per logical processor.

Bits 23-16: Bit width of general-purpose, performance monitoring counter.

Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events. Archi-
tectural event x is supported if EBX[x]=0 && EAX[31:24]>x.

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.
Bits 31-08: Reserved = 0.

ECX Bits 31-00: Supported fixed counters bit mask. Fixed-function performance counter ‘' is supported if bit /'
is 1 (first counter index starts at zero). It is recommended to use the following logic to determine if a

Fixed Counter is supported: FxCtr[i]_is_supported := ECX]i] || (EDX[4:0] > i); !
EDX Bits 04-00: Number of contiguous fixed-function performance counters starting from O (if Version ID >

N

Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14-13: Reserved = 0.

Bit 15: AnyThread deprecation.

Bits 31-16: Reserved = 0.

CPUID—CPU Identification Vol.2A 3-230

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Extended Topology Enumeration Leaf (Initial EAX Value = OBH, ECX 2 0)
OBH NOTES:

CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends first checking for the existence
of Leaf 1FH before using leaf OBH.

The sub-leaves of CPUID leaf OBH describe an ordered hierarchy of logical processors starting from the
smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain (sub-leaf index 1)
to the largest-scoped domain (the last valid sub-leaf index) that is implicitly subordinate to the
unenumerated highest-scoped domain of the processor package (socket).

The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain include
its type and how all instances of that domain determine the number of logical processors and x2 APIC
ID partitioning at the next higher-scoped domain. The ordering of domains within the hierarchy is fixed
architecturally as shown below. For a given processor, not all domains may be relevant or enumerated;
however, the logical processor and core domains are always enumerated.

For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped
domain with respect to the domain of sub-leaf N for the given processor.

If sub-leaf index “N” returns an invalid domain type in ECX[15:08] (O0H), then all sub-leaves with an
index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid domain
always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances of the
next higher-scoped domain. When logical processor is not supported by the processor, the value of this
field at the Logical Processor domain sub-leaf may be returned as either O (no allocated bits in the x2APIC
ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.

Bits 31-05: Reserved.

EBX Bits 15-00: The number of logical processors across all instances of this domain within the next higher-
scoped domain. (For example, in a processor socket/package comprising “M” dies of “N" cores each, where
each core has “L" logical processors, the “die” domain sub-leaf value of this field would be M*N*L.) This
number reflects configuration as shipped by Intel. Note, software must not use this field to enumerate
processor topology*.

Bits 31-16: Reserved.

ECX Bits 07-00: The input ECX sub-leaf index.
Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as shown
below. Although domains are ordered, their assigned identification values are not and software should
not depend on it.

Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
Highest Core 2

(Note that enumeration values of 0 and 3-255 are reserved.)

Bits 31-16: Reserved.
EDX Bits 31-00: x2APIC ID of the current logical processor.

NOTES:

* Software must not use the value of EBX[15:0] to enumerate processor topology of the system. The
value is only intended for display and diagnostic purposes. The actual number of logical processors avail-
able to BIOS/0S/Applications may be different from the value of EBX[15:0], depending on software and
platform hardware configurations.

Processor Extended State Enumeration Main Leaf (Initial EAX Value = ODH, ECX = 0)

ODH NOTES:
Leaf ODH main leaf (ECX = Q).

CPUID—CPU Identification Vol.2A 3-231

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EAX Bits 31-00: Reports the supported bits of the lower 32 bits of XCRO. XCRO[Nn] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state.
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04-03: MPX state.
Bits 07-05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 16-10: Used for IA32_XSS.
Bit 17: TILECFG state.
Bit 18: TILEDATA state.
Bits 31-19: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in
XCRO.

EDX Bit 31-00: Reports the supported bits of the upper 32 bits of XCRO. XCRO[n+32] can be set to 1 only if
EDX[n]is 1.

Bits 31-00: Reserved.
Processor Extended State Enumeration Sub-leaf (Initial EAX Value = ODH, ECX = 1)

ODH EAX Bit 00: XSAVEOPT is available.

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.

Bit 04: Supports extended feature disable (XFD) if set.

Bits 31-05: Reserved.

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

NOTES:

If EAX[3] is enumerated as 0 and EAX[1]is enumerated as 1, EBX enumerates the size of the XSAVE area
containing all states enabled by XCRO. If EAX[1] and EAX[3] are both enumerated as 0, EBX enumerates
zero.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCRO.
Bit 08: PT state.
Bit 09: Used for XCRO.
Bit 10: PASID state.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.
Bit 14: UINTR state.
Bit 15: LBR state (only for the architectural LBR feature).
Bit 16: HWP state.
Bits 18-17: Used for XCRO.
Bits 31-19: Reserved.

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved.

CPUID—CPU Identification Vol.2A 3-232

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Processor Extended State Enumeration Sub-leaves (Initial EAX Value = ODH, ECX =n,n > 1)
ODH NOTES:

Leaf ODH output depends on the initial value in ECX.

Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the

XCRO register or the IA32_XSS MSR.

* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 £ n < 31) is invalid
if sub-leaf O returns O in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 < n £ 63) is invalid if
sub-leaf O returns 0 in EDX[n-32] and sub-leaf 1 returns O in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n.

EBX Bits 31-00: The offset in bytes of this extended state component's save area from the beginning of the
XSAVE/XRSTOR area.
This field reports O if the sub-leaf index, n, does not map to a valid bit in the XCRO register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCRO.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).
Bits 31-02 are reserved.
This field reports O if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel® Resource Director Technology (Intel® RDT) Monitoring Enumeration Sub-leaf (Initial EAX Value = OFH, ECX = 0)

OFH NOTES:
Leaf OFH output depends on the initial value in ECX.
Sub-leaf index O reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31-02: Reserved.

L3 Cache Intel® RDT Monitoring Capability Enumeration Sub-leaf (Initial EAX Value = OFH, ECX = 1)

OFH NOTES:

Leaf OFH output depends on the initial value in ECX.

EAX Bits 07-00:The counter width is encoded as an offset from 24b. A value of zero in this field indicates that
24-bit counters are supported. A value of 8 in this field indicates that 32-bit counters are supported.
Bit 08: If 1, indicates the presence of an overflow bit in the IA32_QM_CTR MSR (bit 61).
Bit 09: If 1, indicates the presence of non-CPU agent Intel RDT CMT support.
Bit 10: If 1, indicates the presence of non-CPU agent Intel RDT MBM support.
Bits 31-11: Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and Mem-
ory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

CPUID—CPU Identification Vol.2A 3-233

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31-03: Reserved.

Intel® Resource Director Technology (Intel® RDT) Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = 0)

10H

NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index O reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31-04: Reserved.

ECX Reserved.
EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =1)

10H

NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01:If 1, indicates L3 CAT for non-CPU agents is supported.
Bit 02: If 1, indicates L3 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the various
IA32_L3_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest Class of Service (CLOS) number supported for this ResID.
Bits 31-16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =2)

10H

NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01-00: Reserved.
Bit 02: CDP. If 1, indicates L2 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the various
IA32_L2_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest CLOS number supported for this ResID.
Bits 31-16: Reserved.

CPUID—CPU Identification Vol.2A 3-234

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

Memory Bandwidth Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =3)

10H

EAX

EBX
ECX

EDX

NOTES:
Leaf 10H output depends on the initial value in ECX.
Bits 11-00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add one

to the return value to get the result.
Bits 31-12: Reserved.

Bits 31-00: Reserved.

Bits 01-00: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31-03: Reserved.

Bits 15-00: Highest CLOS number supported for this ResID.
Bits 31-16: Reserved.

Intel® SGX Capability Enumeration Leaf, Sub-leaf O (Initial EAX Value = 12H, ECX = 0)

12H

EAX

EBX
ECX
EDX

NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H).:EBX[SCX] = 1.

Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.

Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.

Bits 04-02: Reserved.

Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and
ESETCONTEXT.

Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bit 07: If 1, indicates Intel SGX supports ENCLU instruction leaf EVERIFYREPORT?2.

Bits 09-08: Reserved.

Bit 10: If 1, indicates Intel SGX supports ENCLS instruction leaf EUPDATESVN.

Bit 11:If 1, indicates Intel SGX supports ENCLU instruction leaf EDECCSSA.

Bits 31-12: Reserved.

Bits 31-00: MISCSELECT. Bit vector of supported extended SGX features.
Bits 31-00: Reserved.

Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is

2" (EDX[7:0]).

Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2" (EDX[15:8]).
Bits 31-16: Reserved.

Intel SGX Attributes Enumeration Leaf, Sub-leaf 1 (Initial EAX Value = 12H, ECX = 1)

12H

EAX
EBX
ECX
EDX

NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H).EBX[SCGX] = 1.

Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.
Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.
Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.
Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel® SGX EPC Enumeration Leaf, Sub-leaves (Initial EAX Value = 12H, ECX = 2 or higher)

12H

NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below.

CPUID—CPU Identification

Vol.2A 3-235

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EAX

Type

Type

Bit 03-00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

0000b. This sub-leaf is invalid.
EDX:ECX:EBX:EAX return O.

0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If ECX[3:0] = 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If ECX[3:0] = 0001b, then this section has confidentiality, integrity, and replay protection.
If ECX[3:0] = 0010b, then this section has confidentiality protection only.
If ECX[3:0] = 0011b, then this section has confidentiality and integrity protection.
All other encodings are reserved.
ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved
Memory.
EDX[31:20]: Reserved.

Intel® Processor Trace Enumeration Main Leaf (Initial EAX Value = 14H, ECX = 0)

14H

EAX
EBX

NOTES:
Leaf 14H main leaf (ECX = 0).

Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH MSR
can be accessed.

Bit 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.

Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.

Bit 03: If 1, indicates support of MTC timing packet and suppression of COFl-based packets.

Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.

Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.

Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] (InjectPsb-
PmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or IA32_R-
TIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to Intel PT
disable. Writes can also set PendToPAPMI and PendPSB.

Bit 07: If 1, writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace packet generation.
Bit 08: If 1, writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet generation.
Bit 31-09: Reserved.

CPUID—CPU Identification

Vol.2A 3-236

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30-04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.
EDX Bits 31-00: Reserved.
Intel® Processor Trace Enumeration Sub-leaf (Initial EAX Value = 14H, ECX = 1)
14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved.
Bits 31-16: Bitmap of supported MTC period encodings.
EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings.
Bit 31-16: Bitmap of supported Configurable PSB frequency encodings.
ECX Bits 31-00: Reserved.
EDX Bits 31-00: Reserved.
Time Stamp Counter and Nominal Core Crystal Clock Information Leaf (Initial EAX Value = 15H)
15H NOTES:
If EBX[31:0]is O, the TSC/"core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is 0, the nominal core crystal clock frequency is not enumerated.
"TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.
EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/"core crystal clock” ratio.
EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/"core crystal clock” ratio.
ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.
EDX Bits 31-00: Reserved = 0.
Processor Frequency Information Leaf (Initial EAX Value = 16H)
16H EAX Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0.
EBX Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0.
ECX Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0.
EDX Reserved.

CPUID—CPU Identification

Vol.2A 3-237

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

NOTES:

* Data is returned from this interface in accordance with the processor’s specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of zero
are not supported.

System-0n-Chip Vendor Attribute Enumeration Main Leaf (Initial EAX Value = 17H, ECX = 0)

17H NOTES:

Leaf 17H main leaf (ECX = 0).

Leaf 17H output depends on the initial value in ECX.

Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.

Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.
EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.
System-On-Chip Vendor Attribute Enumeration Sub-leaf (Initial EAX Value = 17H, ECX = 1..3)
17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.
EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.
ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.
EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.
NOTES:

Leaf 17H output depends on the initial value in ECX.

SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of O0H.

The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-0On-Chip Vendor Attribute Enumeration Sub-leaves (Initial EAX Value = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.
EAX Bits 31-00: Reserved = 0.
EBX Bits 31-00: Reserved = 0.
ECX Bits 31-00: Reserved = 0.
EDX Bits 31-00: Reserved = 0.

CPUID—CPU Identification Vol.2A 3-238

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Deterministic Address Translation Parameters Main Leaf (Initial EAX Value = 18H, ECX = 0)
18H NOTES:

Each sub-leaf enumerates a different address translation structure.

If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns O.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.

* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch). See the Intel® 64 and I1A-32 Architectures Optimization Reference Manual for details
of a particular product.

** Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.
Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation cache.**
Bits 31-26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (Initial EAX Value = 18H, ECX > 1)

18H NOTES:

Each sub-leaf enumerates a different address translation structure.

If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns O.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.

* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch. See the Intel® 64 and IA-32 Architectures Optimization Reference Manual for details
of a particular product.

** Add one to the return value to get the result.

CPUID—CPU Identification Vol.2A 3-239

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EAX Bits 31-00: Reserved.
EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (O: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.
ECX Bits 31-00: S = Number of Sets.
EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
001 1b: Unified TLB*,
All other encodings are reserved.
Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31-26: Reserved.
Key Locker Leaf (Initial EAX Value = 19H)
19H EAX Bit 00: Key Locker restriction of CPLO-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.
EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs (IA32_COPY_LOCAL_TO_PLATFORM,
IA23_COPY_PLATFORM_TO_LOCAL,IA32_COPY_STATUS, andIA32_IWKEYBACKUP_STATUS)and backing
up the internal wrapping key.
Bits 31-05: Reserved.
ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31-02: Reserved.
EDX Reserved.
Native Model ID Enumeration Leaf (Initial EAX Value = 1AH, ECX = 0)
1AH NOTES:
This leaf exists on all hybrid parts, however this leaf is not only available on hybrid parts. The following
algorithm is used for detection of this leaf:
If CPUID.0.MAXLEAF > 1AH and CPUID.1A.EAX # 0, then the leaf exists.

CPUID—CPU Identification

Vol.2A 3-240

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EAX Enumerates the native model ID and core type.
Bits 31-24: Core type*
10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™
Bits 23-00: Native model ID of the core. The core-type and native model ID can be used to uniquely
identify the microarchitecture of the core. This native model ID is not unique across core types, and not
related to the model ID reported in CPUID leaf 01H, and does not identify the SOC.
* The core type may only be used as an identification of the microarchitecture for this logical processor
and its numeric value has no significance, neither large nor small. This field neither implies nor expresses
any other attribute to this logical processor and software should not assume any.
EBX Reserved.
ECX Reserved.
EDX Reserved.
PCONFIG Information Sub-leaf (Initial EAX Value = 1BH, ECX > 0)
1BH For details on this sub-leaf, see “INPUT EAX = 1BH: Returns PCONFIG Information” on page 3-260.
NOTE:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H).EDX[18] = 1.
Last Branch Records Information Leaf (Initial EAX Value = 1CH)
1CH NOTE:
This leaf pertains to the architectural feature.
EAX Bits 07-00: Supported LBR Depth Values. For each bit n set in this field, the IA32_LBR_DEPTH.DEPTH
value 8*(n+1) is supported.
Bits 29-08: Reserved.
Bit 30: Deep C-state Reset. If set, indicates that LBRs may be cleared on an MWAIT that requests a C-state
numerically greater than C1.
Bit 31: IP Values Contain LIP. If set, LBR IP values contain LIP. If clear, IP values contain Effective IP.
EBX Bit 00: CPL Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[2:1] to non-zero
value.
Bit 01: Branch Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[22:16] to non-
zero value.
Bit 02: Call-stack Mode Supported. If set, the processor supports setting IA32_LBR_CTL[3] to 1.
Bits 31-03: Reserved.
ECX Bit 00: Mispredict Bit Supported. IA32_LBR_x_INFO[63] holds indication of branch misprediction
(MISPRED).
Bit 01: Timed LBRs Supported. IA32_LBR_x_INFO[15:0] holds CPU cycles since last LBR entry (CYC_CNT),
and IA32_LBR_x_INFO[60] holds an indication of whether the value held there is valid (CYC_CNT_VALID).
Bit 02: Branch Type Field Supported. IA32_LBR_INFO_x[59:56] holds indication of the recorded
operation’s branch type (BR_TYPE).
Bits 15-03: Reserved.
Bits 19-16: Event Logging Supported bitmap.
Bits 31-20: Reserved.
EDX Bits 31-00: Reserved.
Tile Information Main Leaf (Initial EAX Value = 1DH, ECX = 0)
1DH NOTES:
For sub-leaves of 1DH, they are indexed by the palette id.
Leaf 1DH sub-leaves 2 and above are reserved.

CPUID—CPU Identification Vol.2A 3-241

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EAX Bits 31-00: max_palette. Highest numbered palette sub-leaf. Value = 1.
EBX Bits 31-00: Reserved = 0.
ECX Bits 31-00: Reserved = 0.
EDX Bits 31-00: Reserved = 0.
Tile Palette 1 Sub-leaf (Initial EAX Value = 1DH, ECX = 1)
1DH EAX Bits 15-00: Palette 1 total_tile_bytes. Value = 8192.
Bits 31-16: Palette 1 bytes_per_tile. Value = 1024.
EBX Bits 15-00: Palette 1 bytes_per_row. Value = 64.
Bits 31-16: Palette 1 max_names (number of tile registers). Value = 8.
ECX Bits 15-00: Palette 1 max_rows. Value = 16.
Bits 31-16: Reserved = 0.
EDX Bits 31-00: Reserved = 0.
TMUL Information Main Leaf (Initial EAX Value = 1€EH, ECX = 0)
1EH NOTE:
Leaf 1EH sub-leaves 1 and above are reserved.
EAX Bits 31-00: Reserved = 0.
EBX Bits 07-00: tmul_maxk (rows or columns). Value = 16.
Bits 23-08: tmul_maxn (column bytes). Value = 64.
Bits 31-24: Reserved = 0.
ECX Bits 31-00: Reserved = 0.
EDX Bits 31-00: Reserved = 0.
V2 Extended Topology Enumeration Leaf (Initial EAX Value = 1FH, ECX > 0)
1FH NOTES:

CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends using leaf 1FH when available
rather than leaf OBH and ensuring that any leaf OBH algorithms are updated to support leaf 1FH.

The sub-leaves of CPUID leaf 1FH describe an ordered hierarchy of logical processors starting from the
smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain (sub-leaf index 1)
to the largest-scoped domain (the last valid sub-leaf index) that is implicitly subordinate to the
unenumerated highest-scoped domain of the processor package (socket).

The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain include
its type and how all instances of that domain determine the number of logical processors and x2 APIC
ID partitioning at the next higher-scoped domain. The ordering of domains within the hierarchy is fixed
architecturally as shown below. For a given processor, not all domains may be relevant or enumerated;
however, the logical processor and core domains are always enumerated. As an example, a processor
may report an ordered hierarchy consisting only of “Logical Processor,” “Core,” and “Die.”

For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped
domain with respect to the domain of sub-leaf N for the given processor.

If sub-leaf index “N” returns an invalid domain type in ECX[15:08] (O0H), then all sub-leaves with an
index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid domain
always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances of the
next higher-scoped domain. When logical processor is not supported by the processor, the value of this
field at the Logical Processor domain sub-leaf may be returned as either O (no allocated bits in the x2APIC
ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.

Bits 31-05: Reserved.

CPUID—CPU Identification Vol.2A 3-242

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EBX Bits 15-00: The number of logical processors across all instances of this domain within the next higher-
scoped domain relative to this current logical processor. (For example, in a processor socket/package
comprising “M” dies of “N" cores each, where each core has “L" logical processors, the “die” domain sub-
leaf value of this field would be M*N*L. In an asymmetric topology this would be the summation of the
value across the lower domain level instances to create each upper domain level instance.) This number
reflects configuration as shipped by Intel. Note, software must not use this field to enumerate processor
topology*.
Bits 31-16: Reserved.
ECX Bits 07-00: The input ECX sub-leaf index.
Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as shown
below. Although domains are ordered, as also shown below, their assigned identification values are not
and software should not depend on it. (For example, if a new domain between core and module is speci-
fied, it will have an identification value higher than 5.)
Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
Core 2
Module 3
Tile 4
Die 5
DieGrp 6
Highest Package/Socket (implied)
(Note that enumeration values of 0 and 7-255 are reserved.)
Bits 31-16: Reserved.
EDX Bits 31-00: x2APIC ID of the current logical processor. It is always valid and does not vary with the sub-
leaf index in ECX.
NOTES:
* Software must not use the value of EBX[15:0] to enumerate processor topology of the system. The
value is only intended for display and diagnostic purposes. The actual number of logical processors avail-
able to BIOS/0S/Applications may be different from the value of EBX[15:0], depending on software and
platform hardware configurations.
Processor History Reset Sub-leaf (Initial EAX Value = 20H, ECX = 0)
20H EAX Reports the maximum number of sub-leaves that are supported in leaf 20H.
EBX Indicates which bits may be set in the IA32_HRESET_ENABLE MSR to enable reset of different compo-
nents of hardware-maintained history.
Bit 00: Indicates support for both HRESET's EAX[O] parameter, and IA32_HRESET_ENABLE[O] set by the
OS to enable reset of Intel® Thread Director history.
Bits 31-01: Reserved = 0.
ECX Reserved.
EDX Reserved.
Architectural Performance Monitoring Extended Main Leaf (Initial EAX Value = 23H, ECX = 0)
23H NOTE:
Output depends on ECX input value.
EAX Bits 31-0: If bit nis set, sub-leaf nis supported. (For unsupported sub-leaves, 0 is returned in the
registers EAX, EBX, ECX, and EDX.)

CPUID—CPU Identification Vol.2A 3-243

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EBX Bit 00: UnitMask?2 supported. If set, the processor supports the UnitMask?2 field in the
IA32_PERFEVTSELX MSRs.
Bit 01: EQ-bit supported. If set, the processor supports the equal flag in the IA32_PERFEVTSELx MSRs.

Bits 31-02: Reserved.

ECX Bits 07-00: Number of Top-down Microarchitecture Analysis (TMA) slots per cycle. This number can be
multiplied by the number of cycles (from CPU_CLK_UNHALTED.THREAD / CPU_CLK_UNHALTED.CORE or
IA32_FIXED_CTR1) to determine the total number of slots.

Bits 31-08: Reserved.
EDX Bits 31-00: Reserved.
Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 1)

23H EAX Bits 31-00: General counters bitmap. For each bit n set in this field, the processor supports general-
purpose performance monitoring counter n.

EBX Bits 31-00: Fixed counters bitmap. For each bit m set in this field, the processor supports fixed-function
performance monitoring counter m.

ECX Bits 31-00: Reserved.
EDX Bits 31-00: Reserved.
Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 2)

23H EAX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general counters that can be reloaded. For each bit n
set in this field, the processor supports ACR for general-purpose performance monitoring counter n.

EBX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed counters that can be reloaded. For each bit m set
in this field, the processor supports ACR for fixed-function performance monitoring counter m.

ECX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general counters that can cause reloads. For each bit y
set in this field, the processor allows general-purpose performance monitoring counter y to reload all
existing general-purpose performance monitoring counters capable of being reloaded.

EDX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed counters that can cause reloads. For each bit x set
in this field, the processor allows fixed-function performance monitoring counter x to reload all existing
fixed-function performance monitoring counters capable of being reloaded.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 3)

23H NOTE:
Architectural Performance Monitoring Events Bitmap. For each bit n set in this field, the processor sup-
ports Architectural Performance Monitoring Event of index n.
EAX Bit 00: Core cycles.
Bit 01: Instructions retired.
Bit 02: Reference cycles.
Bit 03: Last level cache references.
Bit 04: Last level cache misses.
Bit 05: Branch instructions retired.
Bit 06: Branch mispredicts retired.
Bit 07: Topdown slots.
Bit 08: Topdown backend bound.
Bit 09: Topdown bad speculation.

CPUID—CPU Identification Vol.2A 3-244

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

Bit 10: Topdown frontend bound.
Bit 11: Topdown retiring.

Bit 12: LBR inserts.

Bits 31-13: Reserved.

EBX Bits 31-00: Reserved.
ECX Bits 31-00: Reserved.
EDX Bits 31-00: Reserved.
Converged Vector ISA Main Leaf (Initial EAX Value = 24H, ECX = 0)
24H NOTE:
Output depends on ECX input value.
EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 24H.
EBX Bits 07-00: Reports the Intel AVX10 Converged Vector ISA version.
Bits 15-08: Reserved.
Bit 16: If 1, indicates that 128-bit vector support is present.
Bit 17:If 1, indicates that 256-bit vector support is present.
Bit 18: If 1, indicates that 512-bit vector support is present.
Bits 31-19: Reserved.
ECX Bits 31-00: Reserved.
EDX Bits 31-00: Reserved.
Unimplemented CPUID Leaf Functions
21H Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is 21TH. If the value returned by CPUID.0:EAX (the maximum input value for basic CPUID
information) is at least 21H, O is returned in the registers EAX, EBX, ECX, and EDX. Otherwise, the data
for the highest basic information leaf is returned.
40000000H Invalid. No existing or future CPU will return processor identification or feature information if the initial
— EAX value is in the range 40000000H to 4FFFFFFFH.
4FFFFFFFH
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended Function CPUID Information.
EBX Reserved.
ECX Reserved.
EDX Reserved.
8000000TH | EAX Extended Processor Signature and Feature Bits.
EBX Reserved.
ECX Bit 00: LAHF/SAHF available in 64-bit mode.*

Bits 04-01: Reserved.
Bit 05: LZCNT.

Bits 07-06: Reserved.
Bit 08: PREFETCHW.
Bits 31-09: Reserved.

CPUID—CPU Identification

Vol.2A 3-245

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EDX Bits 10-00: Reserved.
Bit 11: SYSCALL/SYSRET.**
Bits 19-12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25-21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.

Bit 29: Intel® 64 Architecture available if 1.
Bits 31-30: Reserved = 0.

NOTES:
* LAHF and SAHF are always available in other modes, regardless of the enumeration of this feature flag.

** Intel processors support SYSCALL and SYSRET only in 64-bit mode. This feature flag is always enumer-
ated as 0 outside 64-bit mode.

80000002H | EAX Processor Brand String.

EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.

80000003H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.

80000004H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.

80000005H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Reserved = 0.

80000006H | EAX Reserved = 0.
EBX Reserved = 0.

ECX Bits 07-00: Cache Line size in bytes.
Bits 11-08: Reserved.
Bits 15-12: L2 Associativity field *.
Bits 31-16: Cache size in 1K units.
EDX Reserved = 0.

NOTES:

* L2 associativity field encodings:

OOH - Disabled 08H - 16 ways

01H - 1 way (direct mapped) O9H - Reserved

02H - 2 ways OAH - 32 ways

0O3H - Reserved OBH - 48 ways

04H - 4 ways OCH - 64 ways

O5H - Reserved ODH - 96 ways

06H - 8 ways OEH - 128 ways

07H - See CPUID leaf 04H, sub-leaf 2** OFH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-leaf 2

CPUID—CPU Identification Vol.2A 3-246

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
80000007H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Bits 07-00: Reserved = 0.

Bit 08: Invariant TSC available if 1.
Bits 31-09: Reserved = 0.

80000008H | EAX Linear/Physical Address size.

Bits 07-00: #Physical Address Bits*.

Bits 15-08: #Linear Address Bits.

Bits 23-16: #Guest Physical Address Bits. This value applies only to software operating in a virtual
machine (Intel processors enumerate this value as zero). When this field is zero, refer to #Physical
Address Bits for the number of guest physical address bits.

Bits 31-24: Reserved = 0.

EBX Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.

ECX Reserved = 0.
EDX Reserved = 0.
NOTES:

* |f CPUID.B0O000008H:EAX[7:0] is supported, the maximum physical address number supported should
come from this field. If TME-MK is enabled, the number of bits that can be used to address physical
memory is CPUID.B0OO00008H:EAX[7:0] - IA32_TME_ACTIVATE[35:32].

NOTES:
1. The valid range of fixed-function counters is O through 15.

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
inelntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low eight bits of BL *)
EDX := 49656e69h (* “inel”, with i in the low eight bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID's Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 11 in
the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 3A.

INPUT EAX = 0TH: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

® Model —1111B

CPUID—CPU Identification Vol.2A 3-247

® Family — 0101B
® Processor Type — 00B
See Table 3-18 for available processor type values. Stepping IDs are provided as needed.

31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID |Model ID ID Model ID

Extended Family ID (0) |

Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)

Model

D Reserved

OM16525
Figure 3-6. Version Information Returned by CPUID in EAX
Table 3-18. Processor Type Field
Type Encoding
Original OEM Processor 00B
Intel OverDrive” Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B
NOTE

See Chapter 21 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Integrate the fields into a display
using the following rule:

IF Family_ID # OFH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
Fl;
(* Show DisplayFamily as HEX field. *)
The Extended Model ID needs to be examined only when the Family ID is 06H or OFH. Integrate the field into a
display using the following rule:

IF (Family_ID = O6H or Family_ID = OFH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

Fl;

CPUID—CPU Identification Vol.2A 3-248

(* Show DisplayModel as HEX field. *)

CPUID—CPU Identification Vol.2A 3-249

INPUT EAX = 01H: Returns Additional Information in EBX
When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:

®* Brand index (low byte of EBX) — this humber provides an entry into a brand string table that contains brand
strings for IA-32 processors. More information about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.

® Figure 3-7 and Table 3-19 show encodings for ECX.

®* Figure 3-8 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

313029 28 27 26 2524 23 222120191817 16 151413121110 9 8 7 6 564 3 2 1 O

ECX

0
RDRAND g
F16C —M—
AVX
OSXSAVE
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
x2APIC
SSE4_2 — SSE4.2
SSE4_1 — SSEA4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
XTPR Update Control
CMPXCHG16B
FMA — Fused Multiply Add
SDBG

CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication
SSE3 — SSE3 Extensions

OM16524b
D Reserved

Figure 3-7. Feature Information Returned in the ECX Register

CPUID—CPU Identification Vol.2A 3-250

Table 3-19. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 pcLMULQDQ PCLMULQDAQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 7, “Safer Mode Extensions Reference.”

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of O indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“"CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor supports changing

Control IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4_1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4 2 A value of 1 indicates that the processor supports SSE4.2.

21 Xx2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCRO.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.0SXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCRO and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

CPUID—CPU Identification

Vol.2A 3-251

Table 3-19. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.
30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

PBE—Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———
ACPI-Thermal Monitor and Clock Cirl
DS-Debug Store
CLFSH—CLFLUSH instruction
PSN—-Processor Serial Number
PSE-36 — Page Size Extension
PAT—Page Attribute Table
CMOV-Conditional Move/Compare Instruction
MCA-Machine Check Architecture
PGE—-PTE Global Bit
MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT
APIC—-APIC on Chip
CX8-CMPXCHGSB Inst.
MCE-Machine Check Exception
PAE-Physical Address Extensions
MSR-RDMSR and WRMSR Support
TSC-Time Stamp Counter
PSE-Page Size Extensions
DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement
FPU-x87 FPU on Chip

D Reserved

313029282726252423222120191817161514131211109 8 76 54 3 2 1 0

EDX

OM16523

CPUID—CPU Identification

Figure 3-8. Feature Information Returned in the EDX Register

Vol.2A 3-252

Table 3-20. More on Feature Information Returned in the EDX Register

Bit # | Mnemonic | Description

0 FPU Floating-Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFEOOOOH to FFFEOFFFH (by default - some
processors permit the APIC to be relocated).

10 | Reserved | Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 | MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 | PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 | MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 | CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 | PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 | PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 | PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 | CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 | Reserved | Reserved

CPUID—CPU Identification

Vol.2A 3-253

Table 3-20. More on Feature Information Returned in the EDX Register (Contd.)

Bit # | Mnemonic | Description

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see
Chapter 25, “Introduction to Virtual Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 3C).

22 | ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 | MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 | FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating-point context. Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 | SSE SSE. The processor supports the SSE extensions.

26 | SSE2 SSE2. The processor supports the SSE2 extensions.

27 |SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 | HTT Max APIC IDs reserved field is Valid. A value of O for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 |T™ Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 | Reserved | Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt.

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache, and prefetch hardware in the EAX, E