|A-32 Intel® Architecture
Software Developer’s
Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The IA-32 Intel Architecture Software Developer's Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction
Set Reference N-Z, Order Number 253667; System Programming
Guide, Part 1, Order Number 253668; System Programming Guide,
Part 2, Order Number 253669. Refer to all five volumes when
evaluating your design needs.

Order Number: 253667-018
January 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® |A-32 architecture processors (e.g., Pentium® 4 and Pentium IlI processors) may contain design defects or
errors known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/techtrends/technologies/hyperthreading.htm for more in-
formation including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will_vary de-
pending on hardware and software configurations. Intel® Virtualization Technology-enabled BIOS and VMM applications are
currently in development.

Intel® Extended Memory 64 Technology (Intel® EM64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium are
trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel's website at http://www.intel.com

Copyright © 1997 - 2006 Intel Corporation

http://www.intel.com/techtrends/technologies/hyperthreading.htm
http://www.intel.com

Instruction Set
Reference, N-Z

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-2)

Chapter 4 continues the alphabetical discussion of 1A-32 instructions (N-Z). See also: Chapter 3,
“Instruction Set Reference, A-M”, 1A-32 Intel® Architecture Software Developer’s Manual,

Volume 2A.

Vol. 2B 4-1

INSTRUCTION SET REFERENCE, N-Z Intel®

NEG—Two's Complement Negation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F6 /3 NEG r/m8 Valid Valid Two's complement negate r/m8.
REX + F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.
F71/3 NEG r/m16 Valid Valid Two's complement negate r/m16.
F71/3 NEG r/m32 Valid Valid Two's complement negate r/m32.
REX.W + F7 /3 NEG r/m64 Valid N.E. Two's complement negate r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IFDEST=0
THEN CF « 0;
ELSE CF « 1;

FI,

DEST « [- (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and
PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

4-2 Vol. 2B NEG—Two's Complement Negation

Intel® INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

NEG—Two's Complement Negation Vol. 2B 4-3

INSTRUCTION SET REFERENCE, N-Z Intel®

NOP—No Operation

Compat/
Opcode Instruction 64-Bit Mode Leg Mode Description
20 NOP Valid Valid No operation.

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected
None.

Exceptions (All Operating Modes)
None.

4-4 Vol. 2B NOP—No Operation

Intel® INSTRUCTION SET REFERENCE, N-Z

NOT—One's Complement Negation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F6 /2 NOT r/m8 Valid Valid Reverse each bit of r/m8.
REX + F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.
F712 NOT r/m16 Valid Valid Reverse each bit of r/m16.
F712 NOT r/m32 Valid Valid Reverse each bit of /m32.
REXW +F7/2 NOT r/m64 Valid N.E. Reverse each bit of /m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination
operand and stores the result in the destination operand location. The destination operand can be
a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST « NOT DEST;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

NOT—One's Complement Negation Vol. 2B 4-5

INSTRUCTION SET REFERENCE, N-Z Intel®

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

4-6 Vol. 2B NOT—One's Complement Negation

intgl.

OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

0Cib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX, imm16 Valid Valid AX OR imm16.

oD id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.

REX +80/1ib OR r/m8*, imm8 Valid N.E. r/m8 OR imm8.

81/1iw OR r/m16, imm16 Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32 Valid Valid r/m32 OR imm32.

REX.W +81/1id OR r/m64, imm32 Valid N.E. r/mé4 OR imm32 (sign-
extended).

83/1ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W +83/1ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR 1r/m8, r8 Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* Valid N.E. r/m8 OR r8.

09 /Ir OR r/m16, r16 Valid Valid r/m16 OR r16.

09 /Ir OR 1r/m32, r32 Valid Valid r/m32 OR r32.

REX.W + 09 Ir OR r/m64, r64 Valid N.E. r/m64 OR r64.

OA Ir OR 8, r/m8 Valid Valid r8 OR r/m8.

REX + OA /r OR r8*, r/m8* Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 Valid Valid rl6 OR r/m16.

0B /r OR r32, r/Im32 Valid Valid r32 OR r/m32.

REX.W + 0B Ir OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is set to 0 if both corresponding bits of the first and second
operands are O; otherwise, each bit is set to 1.

OR—Logical Inclusive OR Vol. 2B 4-7

INSTRUCTION SET REFERENCE, N-Z Intel®

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST « DEST OR SRC,;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

4-8 Vol. 2B OR—Logical Inclusive OR

Intel® INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

OR—Logical Inclusive OR Vol. 2B 4-9

INSTRUCTION SET REFERENCE, N-Z Intel®

ORPD—-Bitwise Logical OR of Double-Precision Floating-Point
Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 56 /r ORPD xmm1, xmm2/m128 Valid Valid Bitwise OR of xmm2/m128
and xmmZ1.
Description

Performs a bitwise logical OR of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPD _m128d _mm_or_pd(__m128d a, _ m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-10 Vol. 2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values Vol. 2B 4-11

INSTRUCTION SET REFERENCE, N-Z Intel®

ORPS—Bitwise Logical OR of Single-Precision Floating-Point
Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmml.

Description

Performs a bitwise logical OR of the four packed single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] «— DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS _ m128 _mm_or_ps(_ m128 a, _ m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

4-12 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values Vol. 2B 4-13

INSTRUCTION SET REFERENCE, N-Z Intel®

OUT—Output to Port

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

E6 ib OUT imm8, AL Valid Valid Qutput byte in AL to I/O port
address imm8.

E7 ib OUT imm8, AX Valid Valid Output word in AX to I/O port
address imm8.

E7ib OUT imm8, EAX Valid Valid Output doubleword in EAX to I/O
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX Valid Valid QOutput word in AX to I/O port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to I/O

port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Copies the value from the second operand (source operand) to the 1/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows 1/0O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows 1/O ports
from 0 to 65,535 to be accessed.

The size of the 1/0 port being accessed is determined by the opcode for an 8-bit 1/0 port or by
the operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the machine code level, 1/0O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s 1/0 address
space. See Chapter 13, “Input/Output”, in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing 1/0 ports in the 1/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

4-14 Vol. 2B OUT—Output to Port

Intel® INSTRUCTION SET REFERENCE, N-Z

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium processor insures that the EWBE# pin has been
sampled active before it begins to execute the next instruction. (Note that the instruction can be
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled
active.) Only the Pentium processor family has the EWBE# pin; the other 1A-32 processors do
not.

Operation

IF ((PE =1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any 1/0O Permission Bit for I/O port being accessed = 1)
THEN (* /O operation is not allowed *)
#GP(0);
ELSE (* /O operation is allowed *)
DEST « SRC; (* Writes to selected 1/0 port *)
FI;
ELSE (Real Mode or Protected Mode with CPL < |IOPL *)
DEST <« SRC; (* Writes to selected 1/0 port *)
Fl;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/0O privilege level (IOPL)
and any of the corresponding 1/0O permission bits in TSS for the 1/0 port
being accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.
#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

OUT—Output to Port Vol. 2B 4-15

INSTRUCTION SET REFERENCE, N-Z Intel®

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

64-Bit Compat/
Opcode* Instruction Mode Leg Mode Description
6E OUTS DX, m8 Valid Valid Output byte from memory

location specified in DS:(E)SI or
RSI to I/O port specified in DX**.
6F OUTS DX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSl to I/O port specified in DX**.
6F OUTS DX, m32 Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.
6E OUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSl to I/O port specified in DX**.
6F OUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.
6F OUTSD Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

NOTES:

* See IA-32 Architecture Compatibility section below.

** |n 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit mode,
only 32-bit (ESI) and 16-bit (SlI) address sizes are supported.

Description

Copies data from the source operand (second operand) to the 1/0O port specified with the desti-
nation operand (first operand). The source operand is a memory location, the address of which
is read from either the DS:Sl, DS:ESI or the RSI registers (depending on the address-size
attribute of the instruction, 16, 32 or 64, respectively). (The DS segment may be overridden with
a segment override prefix.) The destination operand is an 1/0O port address (from 0 to 65,535)
that is read from the DX register. The size of the 1/O port being accessed (that is, the size of the
source and destination operands) is determined by the opcode for an 8-bit 1/0 port or by the
operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the OUTS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand should be a symbol that indicates the size of the 1/O port and the source address,
and the destination operand must be DX. This explicit-operands form is provided to allow docu-
mentation; however, note that the documentation provided by this form can be misleading. That
is, the source operand symbol must specify the correct type (size) of the operand (byte, word,
or doubleword), but it does not have to specify the correct location. The location is always spec-
ified by the DS:(E)SI or RSI registers, which must be loaded correctly before the OUTS instruc-
tion is executed.

4-16 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Intel® INSTRUCTION SET REFERENCE, N-Z

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
OUTS instructions. Here also DS:(E)SI is assumed to be the source operand and DX is assumed
to be the destination operand. The size of the 1/0 port is specified with the choice of mnemonic:
OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the 1/0 port, the
SI/ESI/RSI register is incremented or decremented automatically according to the setting of the
DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incremented,; if the DF
flag is 1, the SI/ESI/RSI register is decremented.) The SI/ESI/RSI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, and by 4 for doubleword oper-
ations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE
/IREPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.
This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, “Input/Output”, in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing 1/0 ports in the 1/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by the use of
REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit address is specified using
RSI by default. 32-bit address using ESI is support using the prefix 67H, but 16-bit address is
not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor
insures that the EWBE# pin has been sampled active before it begins to execute the next instruc-
tion. (Note that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the
EWBEH# pin; the other IA-32 processors do not. For the Pentium 4, Intel Xeon, and P6 processor
family, upon execution of an OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor
will not execute the next instruction until the data phase of the transaction is complete.

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port Vol. 2B 4-17

INSTRUCTION SET REFERENCE, N-Z

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any 1/0O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE (* /O operation is allowed *)
DEST « SRC; (* Writes to I/O port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < IOPL *)
DEST « SRC; (* Writes to I/O port *)
Fl;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI < RSIRSI + 1;
ELSE RSl <~ RSl or-1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI <« ESI+1;
ELSE ESI<« ESI-1;
Fl;
Fl;
ELSE
IFDF=0

THEN (E)SI « (E)SI + 1;
ELSE (E)SI < (E)SI - 1;

Fl;
Fl;
Word transfer:
IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI <« RSIRSI + 2;
ELSE RSI <~ RSl or-2;
Fl,
ELSE (* 32-Bit Address Size *)
IFDF=0

THEN ESI« ESI + 2;
ELSE ESI« ESI-2;

4-18 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Intel® INSTRUCTION SET REFERENCE, N-Z

Fl,
Fl,
ELSE
IFDF=0
THEN (E)SI « (E)SI + 2;
ELSE (E)SI « (E)SI - 2;
Fl;
Fl,
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI « RSI RSI + 4;
ELSE RSI «<— RSl or — 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI « ESI + 4;
ELSE ESI <« ESI-4;
Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI < (E)SI + 4;
ELSE (E)SI « (E)SI - 4;
Fl;
Fl;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the 1/0 port
being accessed is 1.

If a memory operand effective address is outside the limit of the CS, DS,
ES, FS, or GS segment.

If the segment register contains a NULL segment selector.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port Vol. 2B 4-19

INSTRUCTION SET REFERENCE, N-Z Intel®

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/0 permission bits in the TSS for the I/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding 1/0 permission bits in TSS for the 1/0 port
being accessed is 1.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-20 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

intgl.

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Opcode
OF 63 /Ir

66 OF 63 /r

OF 6B /r

66 OF 6B /r

Instruction

PACKSSWB mmi1,
mm2/m64

PACKSSWB xmm1,
xmm2/m128

PACKSSDW mm1,
mm2/m64

PACKSSDW xmm1,
xmm2/m128

64-Bit
Mode

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Description

Converts 4 packed signed word
integers from mm1 and from
mm2/m64 into 8 packed signed byte
integers in mm1 using signed
saturation.

Converts 8 packed signed word
integers from xmm1 and from
xxm2/m128 into 16 packed signed
byte integers in xxm1 using signed
saturation.

Converts 2 packed signed
doubleword integers from mm1 and
from mm2/m64 into 4 packed signed
word integers in mm1 using signed
saturation.

Converts 4 packed signed
doubleword integers from xmm1 and
from xxm2/m128 into 8 packed
signed word integers in xxm1 using
signed saturation.

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB) or
converts packed signed doubleword integers into packed signed word integers (PACKSSDW),
using saturation to handle overflow conditions. See Figure 4-1 for an example of the packing

operation.

64-Bit SRC

64-Bit DEST

c

B

64-Bit DEST

T

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Vol. 2B 4-21

INSTRUCTION SET REFERENCE, N-Z Intel®

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination operand
(first operand) and 4 or 8 signed word integers from the source operand (second operand) into
8 or 16 signed byte integers and stores the result in the destination operand. If a signed word
integer value is beyond the range of a signed byte integer (that is, greater than 7FH for a positive
integer or greater than 80H for a negative integer), the saturated signed byte integer value of 7FH
or 80H, respectively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination operand
(first operand) and 2 or 4 signed doublewords from the source operand (second operand) into 4
or 8 signed words in the destination operand (see Figure 4-1). If a signed doubleword integer
value is beyond the range of a signed word (that is, greater than 7FFFH for a positive integer or
greater than 8000H for a negative integer), the saturated signed word integer value of 7FFFH or
8000H, respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit operands.
When operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit memory
location. When operating on 128-bit operands, the destination operand must be an XMM
register and the source operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PACKSSWSB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] « SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWSB instruction with 128-bit operands:
DEST[7:0] <« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] « SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32));
DEST[31:24] « SaturateSignedWordToSignedByte (DEST[63:48));
DEST[39:32] « SaturateSignedWordToSignedByte (DEST[79:64]);
DEST[47:40] « SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToSignedByte (DEST[127:112]);

4-22 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

intgl.

INSTRUCTION SET REFERENCE, N-Z

DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] < SaturateSignedWordToSignedByte (SRC[31:16]);
DESTI[87:80] « SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] <« SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] « SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] « SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] « SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] <« SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] « SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] « SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] <« SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] « SaturateSignedDwordToSignedWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB
PACKSSDW

Flags Affected

None.

__m64 _mm_packs_pil6(__m64 ml, __m64 m2)
__m64 _mm_packs_pi32 (__m64 ml, __m64 m2)

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol. 2B 4-23

INSTRUCTION SET REFERENCE, N-Z Intel®

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from

0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-24 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 67 Ir PACKUSWB mm, Valid Valid Converts 4 signed word integers
mm/m64 from mm and 4 signed word integers
from mm/m64 into 8 unsigned byte
integers in mm using unsigned
saturation.
66 OF 67 /r PACKUSWB xmm1, Valid Valid Converts 8 signed word integers
xmm2/m128 from xmm1 and 8 signed word

integers from xmm2/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.

Description

Converts 4 or 8 signed word integers from the destination operand (first operand) and 4 or 8
signed word integers from the source operand (second operand) into 8 or 16 unsigned byte inte-
gers and stores the result in the destination operand. (See Figure 4-1 for an example of the
packing operation.) If a signed word integer value is beyond the range of an unsigned byte
integer (that is, greater than FFH or less than 00H), the saturated unsigned byte integer value of
FFH or 00H, respectively, is stored in the destination.

The PACKUSWAB instruction operates on either 64-bit or 128-bit operands. When operating on
64-bit operands, the destination operand must be an MMX technology register and the source
operand can be either an MMX technology register or a 64-bit memory location. When oper-
ating on 128-bit operands, the destination operand must be an XMM register and the source
operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PACKUSWSB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] <« SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] <« SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWSB instruction with 128-bit operands:
DEST[7:0] <« SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToUnsignedByte (DEST[47:32]);

PACKUSWB—Pack with Unsigned Saturation Vol. 2B 4-25

INSTRUCTION SET REFERENCE, N-Z Intel®

DEST[31:24] « SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] « SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] < SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToUnsignedByte (DEST[111:96));
DEST[63:56] « SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] « SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] <« SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSWB _ m64 _mm_packs_pul6(__m64 ml, __m64 m2)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-26 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

intgl.

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

PACKUSWB—Pack with Unsigned Saturation Vol. 2B 4-27

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-28 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PACKUSWB—Pack with Unsigned Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OFFC/r PADDB mm, Valid Valid Add packed byte integers from mm/mé64
mm/m64 and mm.

66 OF FC Ir PADDB xmm1, Valid Valid Add packed byte integers from
xmm2/m128 xmm2/m128 and xmm1.

OFFD /Ir PADDW mm, Valid Valid Add packed word integers from
mm/m64 mm/m64 and mm.

66 OF FD /Ir PADDW xmm1, Valid Valid Add packed word integers from
xmm2/m128 xmm2/m128 and xmm1.

OF FE Ir PADDD mm, Valid Valid Add packed doubleword integers from
mm/m64 mm/m64 and mm.

66 OF FE Ir PADDD xmm1, Valid Valid Add packed doubleword integers from
xmm2/m128 xmm2/m128 and xmm1.

Description

Performs an SIMD add of the packed integers from the source operand (second operand) and
the destination operand (first operand), and stores the packed integer results in the destination
operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume
1, for an illustration of an SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too large to be
represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to
the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written
to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits
are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values operated on.

PADDB/PADDW/PADDD—Add Packed Integers Vol. 2B 4-29

INSTRUCTION SET REFERENCE, N-Z Intel®

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST([7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] «- DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST([7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] « DEST[15:0] + SRCJ[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] <« DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] «- DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] <~ DEST[31:0] + SRC[31:0];
DEST[63:32] «— DEST[63:32] + SRC[63:32];
PADDD instruction with 128-hit operands:
DEST[31:0] «- DEST[31:0] + SRC[31.:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] «— DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB __m64 _mm_add_pi8(_m64 m1l, __m64 m2)
PADDB __m128i_mm_add_epi8 (__m128ia,_ _m128ib)
PADDW __m64 _mm_addw_pil6(__m64 ml, __m64 m2)
PADDW __m128i _mm_add_epil6 (__m128ia, __ m128ib)
PADDD __m64 _mm_add_pi32(_m64 ml, __m64 m2)
PADDD __m128i _mm_add_epi32 (_m128ia, __ m128ib)

Flags Affected
None.

4-30 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

PADDB/PADDW/PADDD—Add Packed Integers Vol. 2B 4-31

INSTRUCTION SET REFERENCE, N-Z Intel®

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-32 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDB/PADDW/PADDD—Add Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D4 Ir PADDQ mm1, Valid Valid Add quadword integer
mm2/m64 mm2/m64 to mm1.
66 OF D4 /r PADDQ xmml1, Valid Valid Add packed quadword integers
xmm2/m128 xmm2/m128 to xmm1.
Description

Adds the first operand (destination operand) to the second operand (source operand) and stores
the result in the destination operand. The source operand can be a quadword integer stored in an
MMX technology register or a 64-bit memory location, or it can be two packed quadword inte-
gers stored in an XMM register or an 128-bit memory location. The destination operand can be
a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD add is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values operated on.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] «- DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] « DEST[63:0] + SRC[63:0];
DEST[127:64] «— DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents
PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia, __m128ib)

Flags Affected
None.

PADDQ—Add Packed Quadword Integers Vol. 2B 4-33

INSTRUCTION SET REFERENCE, N-Z Intel®

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

4-34 Vol. 2B PADDQ—Add Packed Quadword Integers

intgl.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDQ—Add Packed Quadword Integers Vol. 2B 4-35

INSTRUCTION SET REFERENCE, N-Z Intel®

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EC It PADDSB mm, Valid Valid Add packed signed byte integers
mm/mé4 from mm/m64 and mm and
saturate the results.
66 OF EC /r PADDSB xmm1, Valid Valid Add packed signed byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OF ED Ir PADDSW mm, Valid Valid Add packed signed word integers
mm/mé4 from mm/m64 and mm and
saturate the results.
66 OF ED /r PADDSW xmm1, Valid Valid Add packed signed word integers
xmm2/m128 from xmm2/m128 and xmm1 and

saturate the results.

Description

Performs an SIMD add of the packed signed integers from the source operand (second operand)
and the destination operand (first operand), and stores the packed integer results in the destina-
tion operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD operation. Overflow is handled with signed saturation,
as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte result is
beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.

The PADDSW instruction adds packed signed word integers. When an individual word result is
beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the
saturated value of 7FFFH or 8000H, respectively, is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-36 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] «-SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] + SRC[127:120));

PADDSW instruction with 64-bit operands
DEST[15:0] < SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(_m64 m1, __m64 m2)
PADDSB __m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW __m64 _mm_adds_pil6(__m64 ml, __m64 m2)
PADDSW __m128i _mm_adds_epil6 (_m128ia, __m128ib)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Vol. 2B 4-37
Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-38 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Vol. 2B 4-39
Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

PADDUSB/PADDUSW—Add Packed Unsigned Integers with
Unsigned Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DC Ir PADDUSB mm, Valid Valid Add packed unsigned byte integers
mm/m64 from mm/m64 and mm and saturate
the results.
66 OF DC /r PADDUSB xmml1, Valid Valid Add packed unsigned byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OF DD Ir PADDUSW mm, Valid Valid Add packed unsigned word integers
mm/m64 from mm/m64 and mm and saturate
the results.
66 OF DD /r PADDUSW xmm1, Valid Valid Add packed unsigned word integers
xmm2/m128 from xmm2/m128 to xmm1 and

saturate the results.

Description

Performs an SIMD add of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer results in the
destination operand. See Figure 9-4 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled with unsigned
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual byte result
is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value
of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual word
result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the satu-
rated value of FFFFH is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-40 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] < SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] < SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(_m64 ml, __m64 m2)
PADDUSW __m64 _mm_adds_pul6(__m64 ml, _m64 m2)
PADDUSB __m128i _mm_adds_epu8 (__mi128ia, __m128ib)
PADDUSW __m128i _mm_adds_epul6 (__ml28ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Vol. 2B 4-41
Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-42 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

intgl.

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Vol. 2B 4-43

Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

PAND—Logical AND

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DB Ir PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.
66 OF DB /r PAND xmm1, xmm2/m128 Valid Valid Bitwise AND of xmm2/m128
and xmm1.
Description

Performs a bitwise logical AND operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if the corresponding bits of the first
and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PAND __m64 _mm_and_si64 (__m64 ml, __m64 m2)
PAND __m128i _mm_and_sil28 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

4-44 Vol. 2B PAND—Logical AND

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PAND—Logical AND Vol. 2B 4-45

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-46 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PAND—Logical AND

Intel® INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DF Ir PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.
66 OF DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmml.

Description

Performs a bitwise logical NOT of the destination operand (first operand), then performs a
bitwise logical AND of the source operand (second operand) and the inverted destination
operand. The result is stored in the destination operand. The source operand can be an MMX
technology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an XMM
register. Each bit of the result is set to 1 if the corresponding bit in the first operand is 0 and the
corresponding bit in the second operand is 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PANDN __m64 _mm_andnot_si64 (__m64 ml, __m64 m2)
PANDN ~m128i _mm_andnot_si128 (__m128ia, __ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

PANDN—Logical AND NOT Vol. 2B 4-47

INSTRUCTION SET REFERENCE, N-Z Intel®

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-48 Vol. 2B PANDN—Logical AND NOT

intgl.

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PANDN—Logical AND NOT Vol. 2B 4-49

INSTRUCTION SET REFERENCE, N-Z Intel®

PAUSE—Spin Loop Hint

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a Pentium 4
or Intel Xeon processor suffers a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to avoid the
memory order violation in most situations, which greatly improves processor performance. For
this reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a
Pentium 4 processor while executing a spin loop. The Pentium 4 processor can execute a spin-
wait loop extremely quickly, causing the processor to consume a lot of power while it waits
for the resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with
all 1A-32 processors. In earlier 1A-32 processors, the PAUSE instruction operates like a NOP
instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE instruction as a
pre-defined delay. The delay is finite and can be zero for some processors. This instruction does
not change the architectural state of the processor (that is, it performs essentially a delaying
no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
None.

4-50 Vol. 2B PAUSE—Spin Loop Hint

Intel® INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF EO /r PAVGB mm1, Valid Valid Average packed unsigned byte integers
mm2/m64 from mm2/m64 and mm1 with rounding.
66 OF EO, /I PAVGB xmm1, Valid Valid Average packed unsigned byte integers
Xxmm2/m128 from xmm2/m128 and xmm1 with
rounding.
OF E3 /r PAVGW mm1, Valid Valid Average packed unsigned word integers
mm2/m64 from mm2/m64 and mm1 with rounding.
66 OF E3 /r PAVGW xmm1, Valid Valid Average packed unsigned word integers
xmm2/m128 from xmm2/m128 and xmm1 with
rounding.
Description

Performs an SIMD average of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the results in the destination
operand. For each corresponding pair of data elements in the first and second operands, the
elements are added together, a 1 is added to the temporary sum, and that result is shifted right
one bit position. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates
on packed unsigned words.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
SRCJ[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
SRC[63:56) < (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 64-bit operands:
SRC[15:0) « (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
SRC[63:48) < (SRC[63:48) + DEST[63:48) + 1) >> 1;

PAVGB instruction with 128-bit operands:
SRCJ[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
SRC[63:56) < (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 128-bit operands:

PAVGB/PAVGW—Average Packed Integers Vol. 2B 4-51

INSTRUCTION SET REFERENCE, N-Z Intel®

SRC[15:0) « (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
SRC[127:48) < (SRC[127:112) + DEST[127:112) + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64_mm_avg_pu8 (__m64 a, _ mb4 b)

PAVGW __m64_mm_avg_pul6 (__m64 a, __m64 b)
PAVGB _ ml128i _mm_avg_epu8 (__ml128ia, __m1l28ib)
PAVGW _ m128i _mm_avg_epul6 (__m1l28ia, _ ml28ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

4-52 Vol. 2B PAVGB/PAVGW—Average Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PAVGB/PAVGW—Average Packed Integers Vol. 2B 4-53

INSTRUCTION SET REFERENCE, N-Z Intel®

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for
Equal

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 74 Ir PCMPEQB mm, Valid Valid Compare packed bytes in
mm/m64 mm/m64 and mm for equality.
66 OF 74 Ir PCMPEQB xmm1, Valid Valid Compare packed bytes in
xmmz2/m128 xmm2/m128 and xmmZ1 for
equality.
OF 75 1/r PCMPEQW mm, Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for equality.
66 OF 75 /r PCMPEQW xmm1, Valid Valid Compare packed words in
xmm2/m128 xmm2/m128 and xmm1 for
equality.
OF 76 Ir PCMPEQD mm, Valid Valid Compare packed doublewords
mm/m64 in mm/m64 and mm for equality.
66 OF 76 /r PCMPEQD xmm1, Valid Valid Compare packed doublewords
xmmz2/m128 in xmm2/m128 and xmm1 for
equality.
Description

Performs an SIMD compare for equality of the packed bytes, words, or doublewords in the desti-
nation operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination operand is set to all 1s;
otherwise, it is set to all 0s. The source operand can be an MMX technology register or a 64-bit
memory location, or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and source
operands; the PCMPEQW instruction compares the corresponding words in the destination and
source operands; and the PCMPEQD instruction compares the corresponding doublewords in
the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRCJ[7:0]
THEN DESTI[7:0) « FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] <« FFH;
ELSE DEST[63:56] « O; FI;

4-54 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Intel® INSTRUCTION SET REFERENCE, N-Z

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRCJ[7:0]
THEN DESTI[7:0) « FFH;
ELSE DEST([7:0] <« O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] <~ FFFFH;
ELSE DESTI[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] <~ FFFFH;
ELSE DEST[63:48] < 0; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DESTI[15:0] < FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] < FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31.:0]
THEN DEST([31:0] <~ FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] < FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] < FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmped_pi8 (_m64 ml, __m64 m2)
PCMPEQW __m64 _mm_cmpeq_pil6 (__m64 ml, __m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 ml, __m64 m2)

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol. 2B 4-55

INSTRUCTION SET REFERENCE, N-Z Intel®

PCMPEQB
PCMPEQW
PCMPEQD

Flags Affected

None.

__m128i _mm_cmpeq_epi8 (__m128ia, _ m128ib)
__m128i _mm_cmpeq_epil6 (__m128ia, _ m128ib)
_m128i _mm_cmpeq_epi32 (__m128ia, _ m128ib)

Protected Mode Exceptions

#GP(0)

#Ss(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

4-56 Vol. 2B

(128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Intel® INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol. 2B 4-57

INSTRUCTION SET REFERENCE, N-Z Intel®

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed
Integers for Greater Than

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 64 /Ir PCMPGTB mm, Valid Valid Compare packed signed byte
mm/m64 integers in mm and mm/m64 for
greater than.
66 OF 64 /r PCMPGTB xmml1, Valid Valid Compare packed signed byte
xmm2/m128 integers in xmm1 and
xmm2/m128 for greater than.
OF 65 /r PCMPGTW mm, Valid Valid Compare packed signed word
mm/m64 integers in mm and mm/m64 for
greater than.
66 OF 65 /r PCMPGTW xmm1, Valid Valid Compare packed signed word
xmm2/m128 integers in xmm1 and
xmm2/m128 for greater than.
OF 66 /r PCMPGTD mm, Valid Valid Compare packed signed
mm/m64 doubleword integers in mm and
mm/m64 for greater than.
66 OF 66 /r PCMPGTD xmm1, Valid Valid Compare packed signed
xmm2/m128 doubleword integers in xmm1 and
xmm2/m128 for greater than.

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or double-
word integers in the destination operand (first operand) and the source operand (second
operand). If a data element in the destination operand is greater than the corresponding date
element in the source operand, the corresponding data element in the destination operand is set
to all 1s; otherwise, it is set to all 0s. The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location. The
destination operand can be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the destination
and source operands; the PCMPGTW instruction compares the corresponding signed word inte-
gers in the destination and source operands; and the PCMPGTD instruction compares the corre-
sponding signed doubleword integers in the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-58 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRCJ[7:0]
THEN DEST([7:0) < FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST([7:0) < FFH;
ELSE DEST([7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] <~ FFFFH;
ELSE DESTI[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] <~ FFFFH;
ELSE DEST[63:48] < 0; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DESTI[15:0] < FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] < FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] <~ FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] < FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

Vol. 2B 4-59

INSTRUCTION SET REFERENCE, N-Z Intel®

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] < O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB
PCMPGTW
DCMPGTD
PCMPGTB
PCMPGTW
DCMPGTD

Flags Affected

None.

__m64 _mm_cmpgt_pi8 (__m64 ml, _ m64 m2)
__m64 _mm_pcmpgt_pil6 (__m64 ml, _ m64 m2)
__m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)
_m128i _mm_cmpgt_epi8 (__m128ia, _ ml128ib
__m128i _mm_cmpgt_epil6 (__ml128ia, __ml28ib
__m128i _mm_cmpgt_epi32 (_ml128ia, __ml28ib

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#Ss(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-60 Vol. 2B

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE?2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers Vol. 2B 4-61

for Greater Than

INSTRUCTION SET REFERENCE, N-Z Intel®

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

4-62 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

Intel® INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFC5/rib PEXTRW r32, Valid Valid Extract the word specified by
mm, imm8 imm8 from mm and move it to
r32, bits 15-0. Zero-extend the
result.
REXW +0F C5/rib PEXTRW r64, Valid N.E. Extract the word specified by
mm, imm8 imm8 from mm and move it to
r64, bits 15-0. Zero-extend the
result.
66 OF C5 /rib PEXTRW r32, Valid Valid Extract the word specified by
xmm, imm8 imm8 from xmm and move it to
r32, bits 15-0. Zero-extend the
result.
REX.W + 66 OF C5 PEXTRW r64, Valid N.E. Extract the word specified by
Irib xmm, imm8 imm8 from xmm and move it to
r64, bits 15-0. Zero-extend the
result.
Description

Copies the word in the source operand (second operand) specified by the count operand (third
operand) to the destination operand (first operand). The source operand can be an MMX tech-
nology register or an XMM register. The destination operand is the low word of a general-
purpose register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify the loca-
tion; for an XMM register, the 3 least-significant bits specify the location. The high word of the
destination operand is cleared (set to all 0s).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64-bit general
purpose registers.

PEXTRW—Extract Word Vol. 2B 4-63

INSTRUCTION SET REFERENCE, N-Z Intel®

Operation

IF (64-Bit Mode and REX.W used and 64-bit register selected)
THEN
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL <~ COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] <« ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)

{ SEL <~ COUNT AND 7H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] « ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL <« COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] « ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)

{ SEL <« COUNT AND 7H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] « ZERO_FILL; };

Fl,

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRW int_mm_extract_pil6 (__m64 a, int n)
PEXTRW int _mm_extract_epil6 (__m128ia, intimm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

4-64 Vol. 2B PEXTRW—Extract Word

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[hit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PEXTRW—Extract Word Vol. 2B 4-65

INSTRUCTION SET REFERENCE, N-Z Intel®

PINSRW—Insert Word

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF C4/rib PINSRW mm, Valid Valid Insert the low word from
r32/m16, imm8 r32 or from m16 into mm at
the word position specified
by imm8
REX.W + OF C4 Irib PINSRW mm, Valid N.E. Insert the low word from
r64/m16, imm8 r64 or from m16 into mm at
the word position specified
by imm8
66 OF C4 /rib PINSRW xmm, Valid Valid Move the low word of r32 or
r32/m16, imm8 from m16 into xmm at the
word position specified by
imm8.
REX.W + 66 OF C4 /rib PINSRW xmm, Valid N.E. Move the low word of r64 or
r64/m16, imm8 from m16 into xmm at the
word position specified by
imm8.

Description

Copies a word from the source operand (second operand) and inserts it in the destination
operand (first operand) at the location specified with the count operand (third operand). (The
other words in the destination register are left untouched.) The source operand can be a general-
purpose register or a 16-bit memory location. (When the source operand is a general-purpose
register, the low word of the register is copied.) The destination operand can be an MMX tech-
nology register or an XMM register. The count operand is an 8-bit immediate. When specifying
aword location in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general
purpose registers.

Operation

PINSRW instruction with 64-bit source operand:
SEL <~ COUNT AND 3H;
CASE (Determine word position) OF

SEL« 0: MASK « 000000000000FFFFH;
SEL « 1. MASK « 00000000FFFFO000H;
SEL <« 2: MASK « 0000FFFF00000000H;
SEL <+~ 3: MASK « FFFFO000000000000H;

DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <~ COUNT AND 7H;

4-66 Vol. 2B PINSRW—Insert Word

Intel® INSTRUCTION SET REFERENCE, N-Z

CASE (Determine word position) OF
SEL «+ 0: MASK « 0000000000000000000000000000FFFFH;
SEL« 1: MASK « 000000000000000000000000FFFFO000H;
SEL <+ 2: MASK « 00000000000000000000FFFF00000000H;
SEL <« 3: MASK « 0000000000000000FFFFO000000000000H;
SEL « 4: MASK « 000000000000FFFF0000000000000000H;
SEL «5: MASK « 00000000FFFF00000000000000000000H;
SEL <+ 6: MASK « 0000FFFF000000000000000000000000H;
SEL <« 7: MASK « FFFF0000000000000000000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent
PINSRW __m64 _mm_insert_pil6 (__m64 a, int d, int n)
PINSRW __m128i _mm_insert_epil6 (__m128i a, int b, intimm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to FFFFH.

PINSRW—Insert Word Vol. 2B 4-67

INSTRUCTION SET REFERENCE, N-Z Intel®

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-68 Vol. 2B PINSRW—Insert Word

Intel® INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F5 /r PMADDWD mm, Valid Valid Multiply the packed words in mm by
mm/m64 the packed words in mm/m64, add
adjacent doubleword results, and
store in mm.
66 OF F5 /r PMADDWD xmm1, Valid Valid Multiply the packed word integers in
xmm2/m128 xmm1l by the packed word integers

in xmm2/m128, add adjacent
doubleword results, and store in
xmm1.

Description

Multiplies the individual signed words of the destination operand (first operand) by the corre-
sponding signed words of the source operand (second operand), producing temporary signed,
doubleword results. The adjacent doubleword results are then summed and stored in the desti-
nation operand. For example, the corresponding low-order words (15-0) and (31-16) in the
source and destination operands are multiplied by one another and the doubleword results are
added together and stored in the low doubleword of the destination register (31-0). The same
operation is performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of words
being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PMADDWD—Multiply and Add Packed Integers Vol. 2B 4-69

INSTRUCTION SET REFERENCE, N-Z Intel®

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP X3 % Y3 X2 * Y2 X1 * Y1 X0 % YO
DEST (X3%Y3) + (X2+Y2)| (X1¥Y1) + (XO*YO0)

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] < (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] <« (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] < (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] < (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);
DEST[95:64] <« (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80]);
DEST[127:96] « (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent
PMADDWD __m64 _mm_madd_pil6(__m64 ml, __m64 m2)
PMADDWD _ m128i _mm_madd_epil6 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

4-70 Vol. 2B PMADDWD—Multiply and Add Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PMADDWD—Multiply and Add Packed Integers Vol. 2B 4-71

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-72 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMADDWD—Multiply and Add Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EE I PMAXSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mm2/m64 and mm1 and return
maximum values.
66 OF EE /Ir PMAXSW xmm1, Valid Valid Compare signed word integers in
xmm2/m128 xmm2/m128 and xmm1 and return
maximum values.

Description

Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «~ DEST[15:0];
ELSE
DESTI[15:0] « SRCI[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] < DEST[63:48];
ELSE
DEST[63:48] < SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «~ DEST[15:0];
ELSE
DESTI[15:0] « SRCI[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] «- DEST[127:112];
ELSE
DEST[127:112] « SRC[127:112]; FI;

PMAXSW—Maximum of Packed Signed Word Integers Vol. 2B 4-73

INSTRUCTION SET REFERENCE, N-Z Intel®

Intel C/C++ Compiler Intrinsic Equivalent
PMAXSW __m64 _mm_max_pil6(__m64 a, __mb64 b)
PMAXSW _ m128i _mm_max_epil6 (__m128ia, _ ml128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-74 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PMAXSW—Maximum of Packed Signed Word Integers Vol. 2B 4-75

INSTRUCTION SET REFERENCE, N-Z Intel®

PMAXUB—Maximum of Packed Unsigned Byte Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DE Ir PMAXUB mm1, Valid Valid Compare unsigned byte integers
mm2/m64 in mm2/m64 and mm1 and
returns maximum values.
66 OF DE /r PMAXUB xmm1, Valid Valid Compare unsigned byte integers
xmm2/m128 in xmm2/m128 and xmm1 and
returns maximum values.

Description

Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the maximum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] «- DEST[63:56];
ELSE
DEST[63:56] < SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN
DEST[127:120] «— DEST[127:120];
ELSE
DEST[127:120] « SRC[127:120]; FI;

4-76 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMAXUB __m64 _mm_max_pu8(_m64 a, __mb64 b)
PMAXUB _ m128i _mm_max_epu8 (__m128ia, _ ml128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PMAXUB—Maximum of Packed Unsigned Byte Integers Vol. 2B 4-77

INSTRUCTION SET REFERENCE, N-Z Intel®

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-78 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EA/r PMINSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mm2/m64 and mm1 and return minimum
values.
66 OF EA/r PMINSW xmm1, Valid Valid Compare signed word integers in
xmmz2/m128 xmm2/m128 and xmm1 and return
minimum values.

Description

Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] <~ DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] «— DEST[127:112];
ELSE
DEST[127:112] « SRC[127:112]; FI;

PMINSW—Minimum of Packed Signed Word Integers Vol. 2B 4-79

INSTRUCTION SET REFERENCE, N-Z Intel®

Intel C/C++ Compiler Intrinsic Equivalent
PMINSW __m64 _mm_min_pil6é (__m64 a, __m64 b)
PMINSW __m128i _mm_min_epil6 (__m128ia, __ m128iDb)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-80 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PMINSW—Minimum of Packed Signed Word Integers Vol. 2B 4-81

INSTRUCTION SET REFERENCE, N-Z Intel®

PMINUB—Minimum of Packed Unsigned Byte Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DA Ir PMINUB mm1, Valid Valid Compare unsigned byte integers in
mm2/m64 mm2/m64 and mm1 and returns
minimum values.
66 OF DA /r PMINUB xmm1, Valid Valid Compare unsigned byte integers in
xmm2/m128 xmm2/m128 and xmm1 and returns
minimum values.

Description

Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the minimum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «- DEST[63:56];
ELSE
DEST[63:56] < SRC[63:56]; FI;

PMINUB instruction for 128-hit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] «— DEST[127:120];
ELSE
DEST[127:120] « SRC[127:120]; FI;

4-82 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)
PMINUB _ m128i _mm_min_epu8 (_m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PMINUB—Minimum of Packed Unsigned Byte Integers Vol. 2B 4-83

INSTRUCTION SET REFERENCE, N-Z Intel®

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-84 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D7 Ir PMOVMSKB Valid Valid Move a byte mask of mm to
r32, mm r32.
REX.W + OF D7 Ir PMOVMSKB Valid N.E. Move a byte mask of mm to
ré4, mm the lower 32-bits of r64 and
zero-fill the upper 32-bits.
66 OF D7 Ir PMOVMSKB Valid Valid Move a byte mask of xmm to
r32, xmm r32.
REX.W + 66 OF D7 /r PMOVMSKB Valid N.E. Move a byte mask of xmm to
ré4, xmm the lower 32-bits of r64 and
zero-fill the upper 32-bits.

Description

Creates a mask made up of the most significant bit of each byte of the source operand (second
operand) and stores the result in the low byte or word of the destination operand (first operand).
The source operand is an MMX technology register or an XMM register; the destination
operand is a general-purpose register. When operating on 64-bit operands, the byte mask is
8 bits; when operating on 128-bit operands, the byte mask is 16-bits.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general
purpose registers.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRCI[7];
r32[1] « SRCJ[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] « SRC[63];
r32[31:8] « ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] « SRC[7];
r32[1] « SRCJ[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] « SRC[127];
r32[31:16] < ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] «— SRC[7];
r64[1] « SRCJ[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] « SRCI[63];

PMOVMSKB—Move Byte Mask Vol. 2B 4-85

INSTRUCTION SET REFERENCE, N-Z Intel®

r64[63:8] <~ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] « SRCI7];
ré4[1] « SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] « SRC[127];
r64[63:16] <~ ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent
PMOVMSKB int_mm_movemask_pi8(__m64 a)
PMOVMSKB int_mm_movemask_epi8 (__m128i a)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-86 Vol. 2B PMOVMSKB—Move Byte Mask

Intel® INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High
Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF E4 Ir PMULHUW mm1, Valid Valid Multiply the packed unsigned word
mm2/m64 integers in mm1 register and

mm2/m64, and store the high 16
bits of the results in mm1.

66 OF E4 /r PMULHUW xmm1, Valid Valid Multiply the packed unsigned word
xmm2/m128 integers in xmm1 and
xmm2/m128, and store the high
16 bits of the results in xmm1.

Description

Performs an SIMD unsigned multiply of the packed unsigned word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each 32-bit intermediate results in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP| Z3=X3xY3 Z2=X2 % Y2 Z1=X1#*Y1 Z0 = X0 * YO
DEST Z3[31:16] | Z2[31:16] | Z1[31:16] | Z0[31:16]

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol. 2B 4-87

INSTRUCTION SET REFERENCE, N-Z Intel®

DEST[15:0] «
DEST[31:16] «
DEST[47:32] <
DEST[63:48]

TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMPA4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «

DEST[31:16] <
DEST[47:32]
DEST[63:48] <
DEST[79:64] «
DEST[95:80] «

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DESTI[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

DEST[111:96] «- TEMP6[31:16];
DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHUW __m64 _mm_mulhi_pul6(__m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epul6 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5S(0)
#UD

4-88 Vol. 2B

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

intgl.

#NM

#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol. 2B 4-89

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-90 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Intel® INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF E5 /r PMULHW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and

mm2/m64, and store the high 16 bits
of the results in mm1.

66 OF E5 /r PMULHW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1 and xmm2/m128,
and store the high 16 bits of the
results in xmm1.

Description

Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];

TEMP2[31:0] « DEST[47:32] * SRC[47:32];

TEMP3[31:0] « DEST[63:48] * SRC[63:48];

DEST[15:0] « TEMPO[31:16];

DEST[31:16] « TEMP1[31:16];

DEST[47:32] « TEMP2[31:16];

DEST[63:48] « TEMP3[31:16];

PMULHW instruction with 128-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
TEMP4[31:0] « DEST[79:64] * SRC[79:64];
TEMP5[31:0] « DEST[95:80] * SRC[95:80];
TEMP6[31:0] « DEST[111:96] * SRC[111:96];
TEMP7[31:0] «~ DEST[127:112] * SRC[127:112];
DEST[15:0] < TEMPO[31:16];
DEST[31:16] « TEMP1[31:16];

PMULHW—Multiply Packed Signed Integers and Store High Result Vol. 2B 4-91

INSTRUCTION SET REFERENCE, N-Z Intel®

DEST[47:32]
DEST[63:48] <
DEST[79:64] <
DEST[95:80] <

TEMP2[31:16];
TEMP3[31:16];
TEMP4[31:16];
TEMP5[31:16];

DEST[111:96] «- TEMP6[31:16];
DEST[127:112] <~ TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHW __m64 _mm_mulhi_pil6 (__m64 m1, _ m64 m2)
PMULHW _ m128i _mm_mulhi_epil6 (__m128ia, __ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-92 Vol. 2B

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PMULHW—Multiply Packed Signed Integers and Store High Result Vol. 2B 4-93

INSTRUCTION SET REFERENCE, N-Z Intel®

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

4-94 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

Intel® INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D5 /r PMULLW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and
mm2/m64, and store the low 16 bits
of the results in mm1.
66 OF D5 /r PMULLW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1 and xmm2/m128,

and store the low 16 bits of the
results in xmm1.

Description

Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the low 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1l YO

TEMP| Z3=X3+#Y3 Z2=X2%Y2 Z1=X1%*Y1 Z0 = X0 * Y0
DEST Z3[15:0] | Z2[15:0] | Z1[15:0] | ZO[15:0]

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DESTI[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
DEST[15:0] « TEMPO[15:0];

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol. 2B 4-95

INSTRUCTION SET REFERENCE, N-Z Intel®

DEST[31:16] < TEMP1[15:0];
DEST[47:32] « TEMP2[15:0];
DEST[63:48] < TEMP3[15:0];

PMULLW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
TEMPA4[31:0] « DEST[79:64] * SRC[79:64];
TEMP5[31:0] « DEST[95:80] * SRC[95:80];
TEMP6[31:0] « DEST[111:96] * SRC[111:96];
TEMP7[31:0] « DEST[127:112] * SRC[127:112];
DEST[15:0] « TEMPO[15:0];

DEST[31:16] « TEMP1[15:0];
DEST[47:32] « TEMP2[15:0];
DEST[63:48] « TEMP3[15:0];
DEST[79:64] « TEMPA4[15:0];
DEST[95:80] « TEMP5[15:0];
DEST[111:96] «— TEMP6[15:0];
DEST[127:112] « TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PMULLW __m64 _mm_mullo_pil6(__m64 ml, _ m64 m2)
PMULLW _m128i _mm_mullo_epil6 (__m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

4-96 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

Intel® INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol. 2B 4-97

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-98 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULLW—Multiply Packed Signed Integers and Store Low Result

Intel® INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F4 Ir PMULUDQ mm1, Valid Valid Multiply unsigned doubleword integer
mm2/m64 in mm1 by unsigned doubleword

integer in mm2/m64, and store the
quadword result in mm1.

66 OF F4 Ir PMULUDQ xmm1, Valid Valid Multiply packed unsigned
xmm2/m128 doubleword integers in xmm1 by
packed unsigned doubleword
integers in xmm2/m128, and store
the quadword results in xmm1.

Description

Multiplies the first operand (destination operand) by the second operand (source operand) and
stores the result in the destination operand. The source operand can be an unsigned doubleword
integer stored in the low doubleword of an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed unsigned doubleword integers stored in the first (low) and third
doublewords of an XMM register or an 128-bit memory location. The destination operand can
be an unsigned doubleword integer stored in the low doubleword an MMX technology register
or two packed doubleword integers stored in the first and third doublewords of an XMM
register. The result is an unsigned quadword integer stored in the destination an MMX tech-
nology register or two packed unsigned quadword integers stored in an XMM register. When a
quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around
and the low 64 bits are written to the destination element (that is, the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low doubleword is
used in the computation; for 128-bit memory operands, 128 bits are fetched from memory, but
only the first and third doublewords are used in the computation.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] «- DEST[31:0] * SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] «- DEST[31:0] * SRC[31:0];
DEST[127:64] «— DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent
PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
PMULUDQ __m128i _mm_mul_epu32 (__m128ia, __m128ib)

PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol. 2B 4-99

INSTRUCTION SET REFERENCE, N-Z Intel®

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

4-100 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

intgl.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is

PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol. 2B 4-101

INSTRUCTION SET REFERENCE, N-Z Intel®

POP—Pop a Value from the Stack

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

8F /0 POPr/m16 Valid Valid Pop top of stack into m16; increment stack
pointer.

8F /0 POP r/m32 N.E. Valid Pop top of stack into m32; increment stack
pointer.

8F /0 POP r/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

OF A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

OF A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

OF A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

OF A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

OF A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

OF A9 POP GS Valid N.E. Pop top of stack into GS; increment stack

pointer by 64 bits.

Description

Loads the value from the top of the stack to the location specified with the destination operand
(or explicit opcode) and then increments the stack pointer. The destination operand can be a
general-purpose register, memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16, 32, 64 bits)
and the operand-size attribute of the current code segment determines the amount the stack
pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP register (stack
pointer) is incremented by 4; if they are 16, the 16-bit SP register is incremented by 2. (The
B flag in the stack segment’s segment descriptor determines the stack’s address-size attribute,

4-102 Vol. 2B POP—Pop a Value from the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

and the D flag in the current code segment’s segment descriptor, along with prefixes, determines
the operand-size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing
a general protection fault. However, any subsequent attempt to reference a segment whose
corresponding segment register is loaded with a NULL value causes a general protection excep-
tion (#GP). In this situation, no memory reference occurs and the saved value of the segment
register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to OH as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt®. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS,
ES, SS are not valid. See the summary chart at the beginning of this section for encoding data
and limits.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP
SS instruction, the breakpoint may not be triggered. However, in a sequence of instructions that POP the
SS register, only the first instruction in the sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:
POP SS

POP SS
POP ESP

POP—Pop a Value from the Stack Vol. 2B 4-103

INSTRUCTION SET REFERENCE, N-Z Intel®

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16*)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
Fl;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP « RSP + 8;
ELSE (* OperandSize = 16*)
DEST « SS:RSP; (* Copy a word *)
RSP « RSP + 2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP « SP + 2;
ELSE (* OperandSize = 32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
FI;
Fl;

Loading a segment register while in protected mode results in special actions, as described in
the following listing. These checks are performed on the segment selector and the segment
descriptor it points to.

64-BIT_MODE

IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);

4-104 Vol. 2B POP—Pop a Value from the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;

Fl;
FI;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN
IF segment selector is NULL
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
or segment selector's RPL = CPL
or segment is not a writable data segment
or DPL # CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
Fl;
Fl;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))
THEN #GP(selector);
FI;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister «<— segment descriptor;

POP—Pop a Value from the Stack Vol. 2B 4-105

INSTRUCTION SET REFERENCE, N-Z Intel®

Fl;
Fl;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.
If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

4-106 Vol. 2B POP—Pop a Value from the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not
a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed to is a data
or nonconforming code segment, but both the RPL and the CPL are greater
than the DPL.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

#PF(fault-code) If a page fault occurs.

#NP If the FS or GS register is being loaded and the segment pointed to is

marked not present.

POP—Pop a Value from the Stack Vol. 2B 4-107

INSTRUCTION SET REFERENCE, N-Z Intel®

POPA/POPAD—Pop All General-Purpose Registers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX,
and EAX.

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers.
The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if
the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX (if the operand-size
attribute is 16). (These instructions reverse the operation of the PUSHA/PUSHAD instructions.)
The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP register is
incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPA is used and to 32 when POPAD is used (using the operand-size override
prefix [66H] if necessary). Others may treat these mnemonics as synonyms (POPA/POPAD) and
use the current setting of the operand-size attribute to determine the size of values to be popped
from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN
EDI « Pop();
ESI « Pop();
EBP « Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX « Pop();
EDX « Pop();
ECX « Pop();
EAX « Pop();
ELSE (* OperandSize = 16, instruction = POPA *)
DI « Pop();
Sl « Pop();

4-108 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

Intel® INSTRUCTION SET REFERENCE, N-Z

BP « Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX « Pop();
DX « Pop();
CX « Pop();
AX « Pop();
Fl;
Fl;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack segment.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

POPA/POPAD—Pop All General-Purpose Registers Vol. 2B 4-109

INSTRUCTION SET REFERENCE, N-Z Intel®

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.
9D POPFD N.E. Valid Pop top of stack into EFLAGS.
REX.W + 9D POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is
32) and stores the value in the EFLAGS register, or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is,
the FLAGS reqgister). These instructions reverse the operation of the PUSHF/PUSHFD instruc-
tions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode.
The POPF instruction is intended for use when the operand-size attribute is 16; the POPFD
instruction is intended for use when the operand-size attribute is 32. Some assemblers may force
the operand size to 16 for POPF and to 32 for POPFD. Others may treat the mnemonics as
synonyms (POPF/POPFD) and use the setting of the operand-size attribute to determine the size
of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of oper-
ation. When the processor is operating in protected mode at privilege level 0 (or in real-address
mode, the equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except
VIP, VIF, and VM may be modified. VIP, VIF and VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than or equal to
IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM. Here, the IOPL
flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaffected. The inter-
rupt flag (IF) is altered only when executing at a level at least as privileged as the IOPL. If a
POPF/POPFD instruction is executed with insufficient privilege, an exception does not occur
but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use POPF/POPFD instruc-
tions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is less than 3, POPF/POPFD
causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned is
POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 bits from the stack,
loads the lower 32 bits into RFLAGS, and zero extends the upper bits of RFLAGS.

See Chapter 3 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
more information about the EFLAGS registers.

4-110 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THEN IFCPL=0
THEN
IF OperandSize = 32;

THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified;
VIP and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified; VIP
and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE (* OperandSize = 16 *)
EFLAGSI[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified *)

Fl;
ELSE (*CPL>07%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can be
modified; IF, IOPL, and VM, and all reserved bits are unaffected,;
VIP and VIF are cleared *)
ELSE
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
Fl;
ELSE IF (Operandsize = 64)
IF CPL > IOPL
THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can
be modified; IF, IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
ELSE
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
FI;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected *)
FI;
FI;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3

THEN IF OperandSize = 32

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol. 2B 4-111

INSTRUCTION SET REFERENCE, N-Z Intel®

THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected *)
ELSE (* IOPL < 3 %)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;
Fl;
Fl;

Flags Affected
All flags except the reserved bits and the VM bit.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an
operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-112 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Intel® INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol. 2B 4-113

INSTRUCTION SET REFERENCE, N-Z Intel®

POR—Bitwise Logical OR

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EB Ir POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 OF EB /r POR xmm1, Valid Valid Bitwise OR of xmm2/m128 and
xmm2/m128 xmm1l.
Description

Performs a bitwise logical OR operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if either or both of the corresponding
bits of the first and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « DEST OR SRC,;

Intel C/C++ Compiler Intrinsic Equivalent
POR __m64 _mm_or_si64(__m64 m1, _ m64 m2)
POR _ m128i _mm_or_si128(__m128i ml, _ m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

4-114 Vol. 2B POR—BItwise Logical OR

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

POR—BItwise Logical OR Vol. 2B 4-115

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-116 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

POR—RBiItwise Logical OR

Intel® INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 18 /1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.

OF 18 /2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.

OF 18 /3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.

OF 18 /0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the

processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source operand
to a location in the cache hierarchy specified by a locality hint:

®* TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium Il processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and
higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and
higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

®* NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

— Pentium 11l processor—1st-level cache
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine
level instruction using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other
than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no
data movement occurs. Prefetches from uncacheable or WC memory are ignored.

PREFETCHh—Prefetch Data Into Caches Vol. 2B 4-117

INSTRUCTION SET REFERENCE, N-Z Intel®

The PREFETCHbh instruction is merely a hint and does not affect program behavior. If executed,
this instruction moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be over-
loaded or ignored by a processor implementation. The amount of data prefetched is also
processor implementation-dependent. It will, however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). A PREFETCHh instruction is considered a hint to this speculative
behavior. Because this speculative fetching can occur at any time and is not tied to instruction
execution, a PREFETCHh instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction
is also unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as
CPUID, WRMSR, OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched.
The value “i” gives a constant (MM_HINT_TO, MM _HINT_T1, MM_HINT _T2, or
_MM_HINT_NTA) that specifies the type of prefetch operation to be performed.

Numeric Exceptions
None.

Exceptions (All Operating Modes)
None.

4-118 Vol. 2B PREFETCHh—Prefetch Data Into Caches

Intel® INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F6 Ir PSADBW mm1, Valid Valid Computes the absolute differences of the
mm2/m64 packed unsigned byte integers from mm2

/m64 and mm1; differences are then summed
to produce an unsigned word integer result.

66 OF PSADBW xmm1, Valid Valid Computes the absolute differences of the

F6 /r xmm2/m128 packed unsigned byte integers from xmm2
/m128 and xmm1; the 8 low differences and 8
high differences are then summed separately
to produce two unsigned word integer results.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the source
operand (second operand) and from the destination operand (first operand). These 8 differences
are then summed to produce an unsigned word integer result that is stored in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Figure 4-5 shows the operation of the PSADBW
instruction when using 64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word of the desti-
nation operand, and the remaining bytes in the destination operand are cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8 low-order
bytes of the source and destination operands are operated on to produce a word result that is
stored in the low word of the destination operand, and the 8 high-order bytes are operated on to
produce a word result that is stored in bits 64 through 79 of the destination operand. The
remaining bytes of the destination operand are cleared.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PSADBW—Compute Sum of Absolute Differences Vol. 2B 4-119

INSTRUCTION SET REFERENCE, N-Z Intel®

SRC X7 X6 X5 X4 X3 X2 X1 X0

DEST Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5) | ABS(X4:Y4) [ABS(X3:Y3)| ABS(X2:Y2) | ABS(X1:Y1) | ABS(X0:Y0)

DEST 00H 00H 00H 00H 00H 00H | SUM(TEMP?..TEMPO)

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO « ABS(DEST(7:0] — SRCJ[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 « ABS(DEST[63:56] — SRC[63:56]);
DEST[15:0] « SUM(TEMPO:TEMP?7);
DEST[63:16] «- 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 < ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] « SUM(TEMPO:TEMP?7);
DEST[63:6] «— 000000000000H;
DEST[79:64] « SUM(TEMP8:TEMP15);
DEST[127:80] «- 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
PSADBW __m64_mm_sad_pu8(_m64 a, _m64 b)
PSADBW __m128i _mm_sad_epu8(_m128ia, __ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

4-120 Vol. 2B PSADBW—Compute Sum of Absolute Differences

intgl.

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

PSADBW—Compute Sum of Absolute Differences Vol. 2B 4-121

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-122 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSADBW—Compute Sum of Absolute Differences

Intel® INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 70 /rib PSHUFD xmm1, Valid Valid Shuffle the doublewords in
xmm2/m128, imm8 xmm2/m128 based on the

encoding in imm8 and store
the result in xmm1.

Description

Copies doublewords from source operand (second operand) and inserts them in the destination
operand (first operand) at the locations selected with the order operand (third operand). Figure 4-6
shows the operation of the PSHUFD instruction and the encoding of the order operand. Each
2-bit field in the order operand selects the contents of one doubleword location in the destination
operand. For example, bits 0 and 1 of the order operand select the contents of doubleword 0 of
the destination operand. The encoding of bits 0 and 1 of the order operand (see the field encoding
in Figure 4-6) determines which doubleword from the source operand will be copied to double-
word 0 of the destination operand.

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO
\ \ / /'Encoding 00B - X0
ORDER of Fieldsin 01B - X1
ORDER 10B - X2
76543210 Gherand 11B- X3

Figure 4-6. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a doubleword in the source operand to be copied to more than one doubleword location
in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-123

INSTRUCTION SET REFERENCE, N-Z Intel®

Operation

DEST[31:0] < (SRC >> (ORDER][1:0] * 32))[31:0];
DEST[63:32] <« (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] « (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] « (SRC >> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD __m128i _mm_shuffle_epi32(_m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

4-124 Vol. 2B PSHUFD—Shuffle Packed Doublewords

intgl.

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM
#PF(fault-code)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-125

INSTRUCTION SET REFERENCE, N-Z Intel®

PSHUFHW—Shuffle Packed High Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F30F 70 /rib PSHUFHW xmm1, xmm2/ Valid Valid Shuffle the high words in
m128, imm8 xmm2/m128 based on the

encoding in imm8 and store
the result in xmmZ1.

Description

Copies words from the high quadword of the source operand (second operand) and inserts them
in the high quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFHW instruction, each
2-bit field in the order operand selects the contents of one word location in the high quadword
of the destination operand. The binary encodings of the order operand fields select words (0, 1,
2 or 3, 4) from the high quadword of the source operand to be copied to the destination operand.
The low quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the high quadword of the source operand to be copied to more than one word
location in the high quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[63:0] < SRC[63:0];

DEST[79:64] < (SRC >> (ORDER][1:0] * 16))[79:64];
DEST[95:80] < (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] « (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] < (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epil6(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

4-126 Vol. 2B PSHUFHW—Shuffle Packed High Words

intgl.

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

PSHUFHW—Shuffle Packed High Words Vol. 2B 4-127

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM
#PF(fault-code)

4-128 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFHW—Shuffle Packed High Words

Intel® INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F20F 70 /rib PSHUFLW xmm1, Valid Valid Shulffle the low words in
xmm2/m128, imm8 xmm2/m128 based on the

encoding in imm8 and store the
result in xmm21.

Description

Copies words from the low quadword of the source operand (second operand) and inserts them
in the low quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFLW instruction, each
2-bit field in the order operand selects the contents of one word location in the low quadword of
the destination operand. The binary encodings of the order operand fields select words (0, 1, 2,
or 3) from the low quadword of the source operand to be copied to the destination operand. The
high quadword of the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the low quadword of the source operand to be copied to more than one word
location in the low quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDERI[1:0] * 16))[15:0];
DEST[31:16] <« (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER[7:6] * 16))[15:0];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epil6(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

PSHUFLW—Shuffle Packed Low Words Vol. 2B 4-129

INSTRUCTION SET REFERENCE, N-Z Intel®

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

4-130 Vol. 2B

PSHUFLW—Shuffle Packed Low Words

intgl.

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM
#PF(fault-code)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFLW—Shuffle Packed Low Words Vol. 2B 4-131

INSTRUCTION SET REFERENCE, N-Z Intel®

PSHUFW—Shuffle Packed Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF70/rib PSHUFW mm1, Valid Valid Shuffle the words in mm2/m64 based
mm2/m64, imm8 on the encoding in imm8 and store the

result in mm1.

Description

Copies words from the source operand (second operand) and inserts them in the destination
operand (first operand) at word locations selected with the order operand (third operand). This
operation is similar to the operation used by the PSHUFD instruction, which is illustrated in
Figure 4-6. For the PSHUFW instruction, each 2-bit field in the order operand selects the
contents of one word location in the destination operand. The encodings of the order operand
fields select words from the source operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. The desti-
nation operand is an MMX technology register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the source operand to be copied to more than one word
location in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER([1:0] * 16))[15:0];

DEST[31:16] < (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] < (SRC >> (ORDER][7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pil6(__m64 a, int n)

Flags Affected
None.

Numeric Exceptions

None.

4-132 Vol. 2B PSHUFW—Shuffle Packed Words

Intel® INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[hit 3] = 1.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PSHUFW—Shuffle Packed Words Vol. 2B 4-133

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-134 Vol. 2B PSHUFW—Shuffle Packed Words

Intel® INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 73 /7 ib PSLLDQ xmm1, Valid Valid Shift xmm1 left by imm8 bytes
imm8 while shifting in Os.

Description

Shifts the destination operand (first operand) to the left by the number of bytes specified in the
count operand (second operand). The empty low-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all Os.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

Operation

TEMP <« COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI,
DEST « DEST << (TEMP * 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ _ m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR|[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

PSLLDQ—Shift Double Quadword Left Logical Vol. 2B 4-135

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-136 Vol. 2B

PSLLDQ—Shift Double Quadword Left Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F1/r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in Os.
66 OF F1 /r PSLLW xmm1, Valid Valid Shift words in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in Os.
66 OF 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by imm8
while shifting in 0s.
OF F2/r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in 0s.
66 OF F2 /r PSLLD xmm1, Valid Valid Shift doublewords in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF72/6ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in 0s.
66 OF 72 /6 ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left by
imm8 while shifting in Os.
OF F3/r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in 0s.
66 OF F3 /r PSLLQ xmm1, Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF 73 /6 ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in 0s.
66 OF 73 /6 ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by

imm8 while shifting in Os.

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the left by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted left, the empty low-order bits are
cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s.
Figure 4-7 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-137

INSTRUCTION SET REFERENCE, N-Z Intel®

Pre-Shift
DEST X3 X2 X X0
Shift Left
with Zero
Extension
Y A \
POSE?EhSIttI— X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-7. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the double-
words in the destination operand; and the PSLLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H;
ELSE
DEST[15:0] < ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] << COUNT);
Fl;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «~ 0000000000000000H;

ELSE
DEST[31:0] < ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] « ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] <~ 0000000000000000H;
ELSE
DEST « ZeroExtend(DEST << COUNT);
FI;

4-138 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

PSLLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] <~ 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < ZeroExtend(DEST[127:112] << COUNT);
FI;

PSLLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] < ZeroExtend(DEST[127:96] << COUNT);
FI;

PSLLQ instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN
DEST[128:0] <+~ 00000000000000000000000000000000H;
ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] < ZeroExtend(DEST[127:64] << COUNT);
FI;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pil6 (__m64 m, int count)

PSLLW __m64 _mm_sll_pil6(__m64 m, __m64 count)
PSLLW _ m128i _mm_slli_pil6(_m64 m, int count)
PSLLW __m128i _mm_slli_pil6(_m128i m, _ m128i count)
PSLLD __m64 _mm_slli_pi32(_m64 m, int count)

PSLLD __m64 _mm_sll_pi32(_m64 m, __m64 count)
PSLLD _m128i _mm_slli_epi32(_m128i m, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, __m128i count)
PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)
PSLLQ _ m128i _mm_slli_si64(__m128i m, int count)

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-139

INSTRUCTION SET REFERENCE, N-Z Intel®

PSLLQ _ m128i _mm_sll_si64(__m128i m, _ m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-140 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-141

INSTRUCTION SET REFERENCE, N-Z

intgl.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OFEl/r PSRAW mm, Valid Valid Shift words in mm right by mm/m64
mm/m64 while shifting in sign bits.

66 OF E1 /r PSRAW xmm1, Valid Valid Shift words in xmm1 right by
xmm2/m128 xmm2/m128 while shifting in sign

bits.

OF 71 /4ib PSRAW mm, Valid Valid Shift words in mm right by imm8
imm8 while shifting in sign bits

66 OF 71 /4 ib PSRAW xmm1, Valid Valid Shift words in xmm1 right by imm8
imm8 while shifting in sign bits

OFE2/r PSRAD mm, Valid Valid Shift doublewords in mm right by
mm/m64 mm/m64 while shifting in sign bits.

66 OF E2 /r PSRAD xmm1, Valid Valid Shift doubleword in xmm1 right by
xmmz2/m128 xmm2 /m128 while shifting in sign

bits.

OF 72 /4 ib PSRAD mm, Valid Valid Shift doublewords in mm right by
imm8 imm8 while shifting in sign bits.

66 OF 72 /4 ib PSRAD xmm1, Valid Valid Shift doublewords in xmmZ1 right by
imm8 imm8 while shifting in sign bits.

Description

Shifts the bits in the individual data elements (words or doublewords) in the destination operand
(first operand) to the right by the number of bits specified in the count operand (second operand).
As the bits in the data elements are shifted right, the empty high-order bits are filled with the
initial value of the sign bit of the data element. If the value specified by the count operand is
greater than 15 (for words) or 31 (for doublewords), each destination data element is filled with
the initial value of the sign bit of the element. (Figure 4-8 gives an example of shifting words in

a 64-bit operand.)

Pre-Shift
DEST

Shift Right
with Sign
Extension

X3

[

Y
X3 >> COUNT

X2

L

Y / Y
X2 >> COUNT | X1>> COUNT | X0 >> COUNT

X1 X0

Post-Shift
DEST

Figure 4-8. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

4-142 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Intel® INSTRUCTION SET REFERENCE, N-Z

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand, and the PSRAD instruction shifts each of the
doublewords in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
FI;
DEST[15:0] < SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] < SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] < SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] < SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DESTI[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN COUNT « 32;
Fl,
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « SignExtend(DEST[127:96] >>COUNT);

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol. 2B 4-143

INSTRUCTION SET REFERENCE, N-Z Intel®

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW __m64 _mm_srai_pil6 (__m64 m, int count)

PSRAW __m64 _mm_sraw_pil6 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __m128i _mm_srai_epil6(__m128i m, int count)
PSRAW __m128i _mm_sra_epil6(__m128i m, _ m128i count))
PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)
PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

4-144 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Intel® INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol. 2B 4-145

INSTRUCTION SET REFERENCE, N-Z Intel®

PSRLDQ—Shift Double Quadword Right Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 73 /3 ib PSRLDQ Valid Valid Shift xmm1 right by imm8 while
xmm1, imm8 shifting in Os.
Description

Shifts the destination operand (first operand) to the right by the number of bytes specified in the
count operand (second operand). The empty high-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all Os.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI,
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ __m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

4-146 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

Numeric Exceptions

None.

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-147

INSTRUCTION SET REFERENCE, N-Z

intgl.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D1 /r PSRLW mm, Valid Valid Shift words in mm right by amount
mm/mé64 specified in mm/m64 while shifting in Os.
66 OF D1 /r PSRLW xmm1, Valid Valid Shift words in xmm1 right by amount
xmm2/m128 specified in xmm2/m128 while shifting
in 0s.
OF71/2ib PSRLW mm, Valid Valid Shift words in mm right by imm8 while
imm8 shifting in Os.
66 OF 71 /2ib PSRLW xmm1, Valid Valid Shift words in xmm1 right by imm8 while
imm8 shifting in Os.
OF D2 Ir PSRLD mm, Valid Valid Shift doublewords in mm right by
mm/m64 amount specified in mm/m64 while
shifting in Os.
66 OF D2 /r PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
xmm2/m128 amount specified in xmm2 /m128 while
shifting in Os.
OF 72 /2ib PSRLD mm, Valid Valid Shift doublewords in mm right by imm8
imm8 while shifting in Os.
66 OF 72 /2ib PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
imm8 imm8 while shifting in 0s.
OF D3 /r PSRLQ mm, Valid Valid Shift mm right by amount specified in
mm/m64 mm/m64 while shifting in Os.
66 OF D3 /r PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
xmm2/m128 amount specified in xmm2/m128 while
shifting in Os.
OF 73 /2ib PSRLQ mm, Valid Valid Shift mm right by imm8 while shifting
imm8 in Os.
66 OF 73/2ib PSRLQ xmml1, Valid Valid Shift quadwords in xmm1 right by imm8
imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the right by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted right, the empty high-order bits
are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all Os.
Figure 4-9 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-hit count operand are checked to compute the count.

4-148 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

Pre-Shift
DEST X3 X2 X1 X0
Shift Right
with Zero \— L \—
Extension
/ Y / /
Post-Shift

DEST | X3>> COUNT | X2 >> COUNT | X1>> COUNT | X0 >> COUNT

Figure 4-9. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand; the PSRLD instruction shifts each of the double-
words in the destination operand; and the PSRLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] < ZeroExtend(DEST[63:48] >> COUNT);
FI;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «- 0000000000000000H

ELSE
DEST[31:0] < ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] < ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] «~ 0000000000000000H
ELSE
DEST « ZeroExtend(DEST >> COUNT);
FI;

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-149

INSTRUCTION SET REFERENCE, N-Z Intel®

PSRLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < ZeroExtend(DEST[127:112] >> COUNT);
Fl;

PSRLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «- 00000000000000000000000000000000H
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] < ZeroExtend(DEST[127:96] >> COUNT);
Fl;

PSRLQ instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] « 00000000000000000000000000000000H
ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] < ZeroExtend(DEST[127:64] >> COUNT);
Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __m64 _mm_srli_pil6(__m64 m, int count)

PSRLW __m64 _mm_srl_pil6 (__m64 m, __m64 count)
PSRLW __m128i _mm_srli_epil6 (__m128i m, int count)
PSRLW __m128i _mm_srl_epil6 (__m128i m, __m128i count)
PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (_m64 m, __m64 count)
PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)
PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)

4-150 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

intgl.

PSRLQ

Flags Affected

None.

INSTRUCTION SET REFERENCE, N-Z

_ m128i _mm_srl_epi64 (__m128i m, __m128i count)

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-151

INSTRUCTION SET REFERENCE, N-Z Intel®

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-152 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

Intel® INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F8/r PSUBB mm, Valid Valid Subtract packed byte integers in
mm/m64 mm/m64 from packed byte integers in
mm.
66 OF F8 /r PSUBB xmm1, Valid Valid Subtract packed byte integers in
xmm2/m128 xmm2/m128 from packed byte integers
in xmm1.
OF F9 Ir PSUBW mm, Valid Valid Subtract packed word integers in
mm/m64 mm/m64 from packed word integers in
mm.
66 OF F9 /r PSUBW xmml1, Valid Valid Subtract packed word integers in
xmm2/m128 xmm2/m128 from packed word integers
in xmm1.
OF FA /r PSUBD mm, Valid Valid Subtract packed doubleword integers in
mm/m64 mm/m64 from packed doubleword
integers in mm.
66 OF FA /r PSUBD xmm1, Valid Valid Subtract packed doubleword integers in
xmm2/m128 xmm2/mem128 from packed

doubleword integers in xmm1.

Description

Performs an SIMD subtract of the packed integers of the source operand (second operand) from
the packed integers of the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled
with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is too large or
too small to be represented in a byte, the result is wrapped around and the low 8 bits are written
to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is too large
or too small to be represented in a word, the result is wrapped around and the low 16 bits are
written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual result is too
large or too small to be represented in a doubleword, the result is wrapped around and the low
32 bits are written to the destination element.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol. 2B 4-153

INSTRUCTION SET REFERENCE, N-Z Intel®

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] « DEST][7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] « DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] « DEST][7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] «- DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] < DEST[127:112] — SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] «- DEST[31:0] — SRCJ[31:0];
DEST[63:32] «- DEST[63:32] — SRC[63:32];
PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] «— DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)
PSUBW __m64 _mm_sub_pil6(_m64 ml, __m64 m2)
PSUBD __m64 _mm_sub_pi32(__m64 ml, __m64 m2)
PSUBB __m128i _mm_sub_epi8 (__m128ia, __m128ib)
PSUBW __m128i _mm_sub_epil6 (_m128ia, __m128ib)
PSUBD __m128i _mm_sub_epi32 (_m128ia, __m128ib)

4-154 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol. 2B 4-155

INSTRUCTION SET REFERENCE, N-Z Intel®

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-156 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Intel® INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mm2 /m64.
66 OF FB /r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm1 from
xmm2 /m128.
Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The source operand can be a quadword integer stored
in an MMX technology register or a 64-bit memory location, or it can be two packed quadword
integers stored in an XMM register or an 128-bit memory location. The destination operand can
be a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD subtract is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] «<- DEST[63:0] — SRC[63:0];
DEST[127:64] «— DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBQ __m64 _mm_sub_si64(__m64 ml, _ m64 m2)
PSUBQ _ m128i _mm_sub_epi64(__m128i ml, __ m128i m2)

Flags Affected
None.

PSUBQ—Subtract Packed Quadword Integers Vol. 2B 4-157

INSTRUCTION SET REFERENCE, N-Z Intel®

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

4-158 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

intgl.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSUBQ—Subtract Packed Quadword Integers Vol. 2B 4-159

INSTRUCTION SET REFERENCE, N-Z Intel®

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFE8 /Ir PSUBSB mm, Valid Valid Subtract signed packed bytes in
mm/m64 mm/m64 from signed packed bytes
in mm and saturate results.
66 OF E8 Ir PSUBSB xmm1, Valid Valid Subtract packed signed byte integers
xmm2/m128 in xmm2/m128 from packed signed
byte integers in xmm1 and saturate
results.
OF E9 Ir PSUBSW mm, Valid Valid Subtract signed packed words in
mm/m64 mm/m64 from signed packed words
in mm and saturate results.
66 OF E9 /r PSUBSW xmm1, Valid Valid Subtract packed signed word
xmmz2/m128 integers in xmm2/m128 from packed

signed word integers in xmm1 and
saturate results.

Description

Performs an SIMD subtract of the packed signed integers of the source operand (second
operand) from the packed signed integers of the destination operand (first operand), and stores
the packed integer results in the destination operand. See Figure 9-4 in the 1A-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Over-
flow is handled with signed saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual byte result
is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than
8000H), the saturated value of 7FFFH or 8000H, respectively, is written to the destination
operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-160 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte (DEST[63:56] — SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRCJ[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] — SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] < SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord (DEST[63:48] — SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(_m64 ml, __m64 m2)
PSUBSB __m128i _mm_subs_epi8(__m128i m1l, _ m128i m2)
PSUBSW __m64 _mm_subs_pil6(__m64 ml, __m64 m2)
PSUBSW __m128i _mm_subs_epil6(__m128i ml, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Vol. 2B 4-161

INSTRUCTION SET REFERENCE, N-Z Intel®

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-162 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

intgl.

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Vol. 2B 4-163

Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF D8 Ir PSUBUSB mm, Valid Valid Subtract unsigned packed bytes in
mm/m64 mm/m64 from unsigned packed bytes
in mm and saturate result.
66 OF D8 /r PSUBUSB xmml1, Valid Valid Subtract packed unsigned byte
xmmz2/m128 integers in xmm2/m128 from packed

unsigned byte integers in xmm1 and
saturate result.

OF D9 /r PSUBUSW mm, Valid Valid Subtract unsigned packed words in
mm/m64 mm/m64 from unsigned packed words
in mm and saturate result.
66 OF D9 /r PSUBUSW xmm1, Valid Valid Subtract packed unsigned word
xmm2/m128 integers in xmm2/m128 from packed

unsigned word integers in xmm1 and
saturate result.

Description

Performs an SIMD subtract of the packed unsigned integers of the source operand (second
operand) from the packed unsigned integers of the destination operand (first operand), and stores
the packed unsigned integer results in the destination operand. See Figure 9-4 in the I1A-32 Intel®
Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation.
Overflow is handled with unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte
result is less than zero, the saturated value of O0H is written to the destination operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an individual word
result is less than zero, the saturated value of 0000H is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-164 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] — SRC[127:120));

PSUBUSW instruction with 64-bit operands:
DEST[15:0] < SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord (DEST[63:48] — SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_sub_pu8(_m64 ml, __m64 m2)
PSUBUSB _m128i _mm_sub_epu8(_m128i ml, _ m128i m2)
PSUBUSW __m64 _mm_sub_pul6(__m64 ml, __m64 m2)
PSUBUSW _ m128i _mm_sub_epul6(__m128i ml, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Vol. 2B 4-165
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-166 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Intel® INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Vol. 2B 4-167
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z Intel®

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 68 /Ir PUNPCKHBW mm, Valid Valid Unpack and interleave high-order
mm/m64 bytes from mm and mm/m64 into
mm.
66 OF 68 /r PUNPCKHBW xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 bytes from xmm1 and
xmm2/m128 into xmm1.
OF 69 /Ir PUNPCKHWD mm, Valid Valid Unpack and interleave high-order
mm/m64 words from mm and mm/m64 into
mm.
66 OF 69 /r PUNPCKHWD xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 words from xmm1 and
xmm2/m128 into xmm1.
OF 6A Ir PUNPCKHDQ mm, Valid Valid Unpack and interleave high-order
mm/m64 doublewords from mm and
mm/m64 into mm.
66 OF 6A/r PUNPCKHDQ xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 doublewords from xmm1 and
xmm2/m128 into xmm1.
66 OF 6D /r PUNPCKHQDQ xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 quadwords from xmm1 and
xmm2/m128 into xmm1.

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, or quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. Figure 4-10 shows the unpack operation for bytes in 64-bit operands. The
low-order data elements are ignored.

SRC| Y7 |Y6 | Y5|Y4|Y3|Y2|Y1l]|YO X7| X6 | X5| X4 | X3 |X2 | X1|X0 |DEST

DEST| Y7 | X7 |Y6 | X6 |Y5 | X5|Y4 | X4

Figure 4-10. PUNPCKHBW Instruction Operation Using 64-bit Operands

4-168 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

Intel® INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 64-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 64-bit memory
operand, the full 64-bit operand is accessed from memory, but the instruction uses only the high-
order 32 bits. When the source data comes from a 128-bit memory operand, an implementation
may fetch only the appropriate 64 bits; however, alignment to a 16-byte boundary and normal
segment checking will still be enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and destination
operands, the PUNPCKHWD instruction interleaves the high-order words of the source and
destination operands, the PUNPCKHDQ instruction interleaves the high-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKHQDAQ instruction inter-
leaves the high-order quadwords of the source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all Os in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKHBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKHWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] <« DEST[39:32];
DEST[15:8] « SRC[39:32];
DEST[23:16] < DEST[47:40];
DEST[31:24] « SRC[47:40];
DEST[39:32] «~ DEST[55:48];
DESTI[47:40] « SRC[55:48];
DEST[55:48] <« DEST[63:56];
DEST[63:56] < SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] « DEST[47:32];
DEST[31:16] < SRC[47:32];
DEST[47:32] < DEST[63:48];
DEST[63:48] < SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] « DEST[63:32];
DEST[63:32] < SRC[63:32];

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Vol. 2B 4-169
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z Intel®

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0] « DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] « DEST[79:72];
DEST[31:24] « SRC[79:72];
DEST[39:32] «- DEST[87:80];
DEST[47:40] <« SRC[87:80];
DEST[55:48] «— DEST[95:88];
DEST[63:56] «<— SRC[95:88];
DEST[71:64] « DEST[103:96];
DEST[79:72] « SRC[103:96];
DEST[87:80] « DEST[111:104];
DEST[95:88] «- SRC[111:104];
DEST[103:96] « DEST[119:112];
DEST[111:104] «- SRC[119:112];
DEST[119:112] « DEST[127:120];
DEST[127:120] < SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] < SRC[79:64];
DEST[47:32] «— DEST[95:80];
DEST[63:48] < SRC[95:80];
DEST[79:64] < DEST[111:96];
DEST[95:80] «- SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] «— SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] «- DEST[95:64];
DEST[63:32] <« SRC[95:64];
DEST[95:64] « DEST[127:96];
DEST[127:96] «— SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] « DEST[127:64];
DEST[127:64] < SRC[127:64];

4-170 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

intgl.

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW
PUNPCKHBW
PUNPCKHWD
PUNPCKHWD
PUNPCKHDQ
PUNPCKHDQ

__m64 _mm_unpackhi_pi8(__m64 m1, _ m64 m2)
__m128i _mm_unpackhi_epi8(_m128i m1, _ m128i m2)
__m64 _mm_unpackhi_pil6(__m64 m1l,_ m64 m2)
__m128i _mm_unpackhi_epil6(__m128i m1, m128i m2)
__m64 _mm_unpackhi_pi32(__m64 ml, _ m64 m2)
_m128i _mm_unpackhi_epi32(__m128i m1, _ m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (__m128ia, _ m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

Vol. 2B 4-171

INSTRUCTION SET REFERENCE, N-Z Intel®

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-hit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-172 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

intgl.

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

Unpack Low Data

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 60 /r PUNPCKLBW mm, Valid Valid Interleave low-order bytes from mm
mm/m32 and mm/m32 into mm.
66 OF 60 /r PUNPCKLBW xmml1, Valid Valid Interleave low-order bytes from
xmmz2/m128 xmml and xmm2/m128 into xmm1.
OF61/r PUNPCKLWD mm, Valid Valid Interleave low-order words from mm
mm/m32 and mm/m32 into mm.
66 OF 61 /r PUNPCKLWD xmml1, Valid Valid Interleave low-order words from
xmm2/m128 xmml and xmm2/m128 into xmm1.
OF 62 /r PUNPCKLDQ mm, Valid Valid Interleave low-order doublewords
mm/m32 from mm and mm/m32 into mm.
66 OF 62 /r PUNPCKLDQ xmm1, Valid Valid Interleave low-order doublewords
xmmz2/m128 from xmm1 and xmm2/m128 into
xmm1.
66 OF 6C /r PUNPCKLQDQ Valid Valid Interleave low-order quadword from
xmml, xmm2/m128 xmml and xmm2/m128 into xmm1
register.
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. (Figure 4-11 shows the unpack operation for bytes in 64-bit operands.). The

high-order data elements are ignored.

SRC|Y7|Y6 |Y5|Y4|Y3

DEST

DEST

Y2 | Y1l |YO

X7|X6 | X5| X4 | X3 X2 | X1|X0
Y3 | X3[Y2|X2[Y1l|X1|YO | X0

Figure 4-11. PUNPCKLBW Instruction Operation Using 64-bit Operands

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack

Low Data

Vol. 2B 4-173

INSTRUCTION SET REFERENCE, N-Z Intel®

The source operand can be an MMX technology register or a 32-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 128-bit memory
operand, an implementation may fetch only the appropriate 64 bits; however, alignment to a
16-byte boundary and normal segment checking will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and destination
operands, the PUNPCKLWD instruction interleaves the low-order words of the source and
destination operands, the PUNPCKLDAQ instruction interleaves the low-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKLQDQ instruction inter-
leaves the low-order quadwords of the source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all Os in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKLBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKLWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] < SRC[31:24];
DEST[55:48] «— DEST[31:24];
DEST[47:40] « SRC[23:16];
DEST[39:32] <~ DEST[23:16];
DEST[31:24] « SRC[15:8];
DEST[23:16] < DEST[15:8];
DEST[15:8] «— SRCI[7:0];
DEST[7:0] « DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] «- SRC[31:16];
DEST[47:32] «— DEST[31:16];
DEST[31:16] <« SRC[15:0];
DEST[15:0] < DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] «— SRC[31:0];
DEST[31:0] «— DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0] <« DEST[7:0];
DEST[15:8] « SRC[7:0];
DEST[23:16] < DEST[15:8];
DEST[31:24] « SRC[15:8];
DEST[39:32] <~ DEST[23:16];

4-174 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

Intel® INSTRUCTION SET REFERENCE, N-Z

DEST[47:40] < SRC[23:16];
DEST[55:48] < DEST[31:24];
DEST[63:56] « SRC[31:24];
DEST[71:64] <~ DEST[39:32];
DEST[79:72] < SRC[39:32];
DEST[87:80] «- DEST[47:40];
DEST[95:88] < SRC[47:40];
DEST[103:96] « DEST[55:48];
DEST[111:104] « SRCI[55:48];
DEST[119:112] « DEST[63:56];
DEST[127:120] < SRC[63:56];
PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] « DEST[15:0];
DEST[31:16] « SRC[15:0];
DEST[47:32] <« DEST[31:16];
DEST[63:48] < SRC[31:16];
DEST[79:64] <« DEST[47:32];
DEST[95:80] < SRC[47:32];
DEST[111:96] « DEST[63:48];
DEST[127:112] < SRC[63:48];
PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] «~ DEST[31:0];
DEST[63:32] « SRCJ[31:0];
DEST[95:64] « DEST[63:32];
DEST[127:96] «— SRC[63:32];
PUNPCKLQDQ
DEST[63:0] «~ DEST[63:0];
DEST[127:64] <« SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW _ m64 _mm_unpacklo_pi8 (__ m64 ml, __m64 m2)
PUNPCKLBW _ m128i _mm_unpacklo_epi8 (__m128i m1, _ m128i m2)
PUNPCKLWD _ m64 _mm_unpacklo_pil6 (__ m64 ml, __m64 m2)
PUNPCKLWD _ m128i _mm_unpacklo_epil6 (__ m128i m1l, _ m128i m2)
PUNPCKLDQ _ m64 _mm_unpacklo_pi32 (__m64 ml, __m64 m2)
PUNPCKLDQ _ m128i _mm_unpacklo_epi32 (__m128i m1, _ m128i m2)
PUNPCKLQDQ _ m128i _mm_unpacklo_epi64 (__m128i m1, _ m128i m2)

Flags Affected
None.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Vol. 2B 4-175
Low Data

INSTRUCTION SET REFERENCE, N-Z Intel®

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

4-176 Vol. 2B

If any part of the operand lies outside of the effective address space from
0 to OFFFFH.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

Intel® INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Vol. 2B 4-177
Low Data

INSTRUCTION SET REFERENCE, N-Z Intel®

PUSH—Push Word or Doubleword Onto the Stack

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

FF /6 PUSH r/m16 Valid Valid Push r/m16.

FF /6 PUSH r/m32 N.E. Valid Push r/m32.

FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size
64-bits.

50+rw PUSH r16 Valid Valid Push r16.

50+rd PUSH r32 N.E. Valid Push r32.

50+rd PUSH r64 Valid N.E. Push r64. Default operand size
64-bits.

6A PUSH imm8 Valid Valid Push sign-extended imm8. Stack

pointer is incremented by the size of
stack pointer.

68 PUSH imm16 Valid Valid Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

68 PUSH imm32 Valid Valid Push sign-extended imm32. Stack

pointer is incremented by the size of
stack pointer.

OE PUSH CS Invalid Valid Push CS.

16 PUSH SS Invalid Valid Push SS.

1E PUSH DS Invalid Valid Push DS.

06 PUSH ES Invalid Valid Push ES.

OF AO PUSH FS Valid Valid Push FS and decrement stack
pointer by 16 bits.

OF AO PUSH FS N.E. Valid Push FS and decrement stack
pointer by 32 bits.

OF AO PUSH FS Valid N.E. Push FS. Default operand size
64-bits. (66H override causes 16-bit
operation).

OF A8 PUSH GS Valid Valid Push GS and decrement stack
pointer by 16 bits.

OF A8 PUSH GS N.E. Valid Push GS and decrement stack
pointer by 32 bits.

OF A8 PUSH GS Valid N.E. Push GS, default operand size
64-bits. (66H override causes 16-bit
operation).

NOTES:

* See IA-32 Architecture Compatibility section below.

4-178 Vol. 2B PUSH—Push Word or Doubleword Onto the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16, 32 or 64 bits).
The operand-size attribute of the current code segment determines the amount the stack pointer
is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is decremented by 4. If both attributes are 16, the 16-bit SP register (stack
pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the stack, a sign-
extended value is pushed on the stack. If the source operand is the FS or GS and its size is less
than the address size of the stack, the zero-extended value is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-size
attribute. The D flag in the current code segment’s segment descriptor (with prefixes), deter-
mines the operand-size attribute and the address-size attribute of the source operand. Pushing a
16-bit operand when the stack address-size attribute is 32 can result in a misaligned stack pointer
(a stack pointer that is not be aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus if a PUSH instruction uses a memory operand in which the ESP register
is used for computing the operand address, the address of the operand is computed before the
ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the 64-bit RSP
register (stack pointer) is decremented by 8. A 66H override causes 16-bit operation. Note that
pushing a 16-bit operand can result in the stack pointer misaligned to 8-byte boundary.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the
ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes
the new value of the SP register (that is the value after it has been decremented by 2).

PUSH—Push Word or Doubleword Onto the Stack Vol. 2B 4-179

INSTRUCTION SET REFERENCE, N-Z

Operation

IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP - 8);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;
ELSE
TEMP = SRC;
FI
RSP <« TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP - 2);
RSP <« SRC; (* Push word *)
FI;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
ESP <« (ESP — 4);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); FI;
ELSE
TEMP = SRC;
FI;
SS:ESP « TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16*)
ESP < (ESP - 2);
SS:ESP <« SRC; (* Push word *)
FI;
ELSE StackAddrSize = 16
IF OperandSize = 16
THEN
SP « (SP - 2);
SS:SP < SRC; (* Push word *)
ELSE (* OperandSize = 32 *)
SP « (SP —4);
SS:SP < SRC; (* Push doubleword *)
Fl;
Fl;
Fl;

4-180 Vol. 2B PUSH—Push Word or Doubleword Onto the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

PUSH—Push Word or Doubleword Onto the Stack Vol. 2B 4-181

INSTRUCTION SET REFERENCE, N-Z Intel®

PUSHA/PUSHAD—Push All General-Purpose Registers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.
60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP,
EBP, ESI, and EDI.

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are stored on
the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), EBP, ESI,
and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (original value),
BP, Sl, and DI (if the operand-size attribute is 16). These instructions perform the reverse oper-
ation of the POPA/POPAD instructions. The value pushed for the ESP or SP register is its value
before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat
these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-
size attribute to determine the size of values to be pushed from the stack, regardless of the
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation

IF 64-bit Mode
THEN #UD

Fl;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp « (ESP);

Push(EAX);

Push(ECX);

Push(EDX);

Push(EBX);

Push(Temp);

4-182 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

Intel® INSTRUCTION SET REFERENCE, N-Z

Push(EBP);
Push(ESI);
Push(EDI);
ELSE (* OperandSize = 16, PUSHA instruction *)

Temp « (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(Sl);
Push(DI);

Fl;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

PUSHA/PUSHAD—Push All General-Purpose Registers Vol. 2B 4-183

INSTRUCTION SET REFERENCE, N-Z Intel®

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.
9C PUSHFD N.E. Valid Push EFLAGS.
9C PUSHFQ Valid N.E. Push RFLAGS.
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the
entire contents of the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if
the operand-size attribute is 16) and pushes the lower 16 bits of the EFLAGS register (that is,
the FLAGS register) onto the stack. These instructions reverse the operation of the
POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 and 17)
are not copied; instead, the values for these flags are cleared in the EFLAGS image stored on
the stack. See Chapter 3 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume
1, for more information about the EFLAGS register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer (RSP) by 8
and pushs RFLAGS on the stack. 16-bit operation is supported using the operand size override
prefix 66H. 32-bit operand size cannot be encoded in this mode. When copying RFLAGS to the
stack, the VM and RF flags (bits 16 and 17) are not copied; instead, values for these flags are
cleared in the RFLAGS image stored on the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

4-184 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE=0)or (PE=1and ((VM =0) or (VM =1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND O0FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;
ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000 _O0OFCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment boundary.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions

#GP(0) If the 1/O privilege level is less than 3.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol. 2B 4-185

INSTRUCTION SET REFERENCE, N-Z Intel®

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

4-186 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Intel® INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EF Ir PXOR mm, mm/m64 Valid Valid Bitwise XOR of mm/m64
and mm.
66 OF EF /r PXOR xmm1, xmm2/m128 Valid Valid Bitwise XOR of

xmm2/m128 and xmm1.

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second
operand) and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Each bit of the result is 1 if the corresponding
bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are
the same.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent
PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)
PXOR _ m128i _mm_xor_sil28 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

PXOR—Logical Exclusive OR Vol. 2B 4-187

INSTRUCTION SET REFERENCE, N-Z Intel®

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-188 Vol. 2B PXOR—Logical Exclusive OR

intgl.

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

ub

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PXOR—Logical Exclusive OR Vol. 2B 4-189

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

intgl.

Opcode**

DO /2
REX + DO /2
D2 /2
REX + D2 /2

C0/2ib
REX +CO0 /2 ib

D1/2
D3 /2

Cl/2ib

D1/2
REX.W + D1 /2

D3 /2

REX.W + D3 /2
Cl/2ib
REX.W + C1 /2
ib

DO /3

REX + DO /3
D2 /3

REX + D2 /3
C0/3ib

REX + CO0 /3 ib
D1/3

D3/3

C1/3ib

D1/3

Instruction

RCL r/m8, 1
RCL r/m8*, 1
RCL r/m8, CL
RCL r/m8*, CL

RCL r/m8,
imm8

RCL r/m8*,
imm8

RCL r/m16, 1
RCL r/m16, CL

RCL r/m16,
imm8

RCL r/m32, 1
RCL r/m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32,
imm8

RCL r/m64,
imm8
RCRr/m8, 1
RCR r/m8*, 1
RCR r/m8, CL

RCR r/m8*, CL

RCR r/m8,
imm8

RCR r/m8*,
imm8

RCR r/m16, 1

RCR r/m16, CL
RCR r/m16,

imm8
RCR r/m32, 1

64-Bit
Mode

Valid
Valid
Valid
Valid

Valid

Valid

Valid
Valid

Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.

Valid
N.E.

Valid
Valid

Valid

Valid
N.E.

Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
Valid
Valid

Valid

Description

Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, r/m8) left CL times.
Rotate 9 bits (CF, r/m8) left CL
times.

Rotate 9 bits (CF, r/m8) leftimm8
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 17 bits (CF, r/m16) left once.
Rotate 17 bits (CF, r/m16) left CL
times.

Rotate 17 bits (CF, r/m16) left imm8
times.

Rotate 33 bits (CF, /m32) left once.
Rotate 65 bits (CF, r/m64) left once.
Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) left CL
times.

Rotate 65 bits (CF, r/m64) left CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) left imm8
times.

Rotate 65 bits (CF, r/m64) left inm8
times. Uses a 6 bit count.

Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 17 bits (CF, r/m16) right
once.

Rotate 17 bits (CF, r/m16) right CL
times.

Rotate 17 bits (CF, r/m16) right
imm8 times.

Rotate 33 bits (CF, /m32) right
once. Uses a 6 bit count.

4-190 Vol. 2B

RCL/RCR/ROL/ROR-—Rotate

intgl.

INSTRUCTION SET REFERENCE, N-Z

Opcode
REX.W + D1 /3

D3 /3
REX.W + D3 /3
C1/3ib

REX.W + C1/3
ib

DO /0

REX + D0 /0
D2 /0

REX + D2 /0
Co/0ib

REX + CO0/0ib

D1/0
D3 /0
C1/0ib

D1/0
REX.W + D1 /0

D3/0
REX.W + D3 /0

C1/0ib
C1/0ib

DO /1

REX + D0 /1
D2/1

REX +D2/1
Co/1ib

REX +CO0/1ib

D171
D3/1
Cl/1ib

D1/1

Instruction

RCR r/mé64, 1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32,
imm8

RCR r/m64,
imm8

ROL r/m8, 1
ROL r/m8*, 1
ROL r/m8, CL
ROL r/m8*, CL
ROL r/m8,
imm8

ROL r/m8*,
imm8

ROL r/m16, 1
ROL r/m16, CL
ROL r/m16,
imm8

ROL r/m32, 1
ROL r/mé64, 1

ROL r/m32, CL
ROL r/m64, CL

ROL r/m32,
imm8

ROL r/m64,
imm8

ROR r/m8, 1
ROR r/m8*, 1
ROR r/m8, CL
ROR r/m8*, CL
ROR r/m8,
imm8

ROR r/m8*,
imm8

ROR r/m16, 1
ROR r/m16, CL
ROR r/m16,
imm8

ROR r/m32, 1

64-Bit
Mode

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid

Valid
Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode

N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.

Valid
N.E.

Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid

Description
Rotate 65 bits (CF, r/m64) right
once. Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) right CL
times.

Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) right
imm8 times.

Rotate 65 bits (CF, r/m64) right
imma8 times. Uses a 6 bit count.

Rotate 8 bits r/m8 left once.
Rotate 8 bits r/m8 left once
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits r/m8 left imm8 times.

Rotate 8 bits r/m8 left imm8 times.

Rotate 16 bits r/m16 left once.
Rotate 16 bits r/m16 left CL times.
Rotate 16 bits r/m16 left imm8 times.

Rotate 32 bits r/m32 left once.

Rotate 64 bits r/m64 left once. Uses
a 6 bit count.

Rotate 32 bits r/m32 left CL times.

Rotate 64 bits r/m64 left CL times.
Uses a 6 bit count.

Rotate 32 bits r/m32 left imm8 times.

Rotate 64 bits r/m64 left imm8 times.
Uses a 6 bit count.

Rotate 8 bits r/m8 right once.
Rotate 8 bits r/m8 right once.
Rotate 8 bits r/m8 right CL times.
Rotate 8 bits r/m8 right CL times.

Rotate 8 bits r/m16 right imm8
times.

Rotate 8 bits r/m16 right imm8
times.

Rotate 16 bits r/m16 right once.
Rotate 16 bits r/m16 right CL times.

Rotate 16 bits r/m16 right imm8
times.

Rotate 32 bits r/m32 right once.

RCL/RCR/ROL/ROR-—Rotate

Vol. 2B 4-191

INSTRUCTION SET REFERENCE, N-Z Intel®

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

REXW +D1/1 ROR1/m64,1 Valid N.E. Rotate 64 bits r/m64 right once.
Uses a 6 bit count.

D3/1 ROR r/m32,CL Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W +D3/1 ROR/m64,CL Valid N.E. Rotate 64 bits r/m64 right CL times.
Uses a 6 bit count.

Cl/lib ROR r/m32, Valid Valid Rotate 32 bits r/m32 right imm8

imm8 times.
REX.W + C1/1 ROR r/